
HAL Id: hal-04327914
https://hal.science/hal-04327914

Submitted on 6 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FLOT: Scene Flow on Point Clouds guided by Optimal
Transport

Gilles Puy, Alexandre Boulch, Renaud Marlet

To cite this version:
Gilles Puy, Alexandre Boulch, Renaud Marlet. FLOT: Scene Flow on Point Clouds guided by Optimal
Transport. European Conference on Computer Vision (ECCV), Aug 2020, Virtual conference, France.
pp.527-544, �10.1007/978-3-030-58604-1_32�. �hal-04327914�

https://hal.science/hal-04327914
https://hal.archives-ouvertes.fr


FLOT: Scene Flow on Point Clouds guided by
Optimal Transport

Gilles Puy1, Alexandre Boulch1, and Renaud Marlet1,2

1 valeo.ai, Paris, France
2 ENPC, Paris, France

Abstract. We propose and study a method called FLOT that estimates
scene flow on point clouds. We start the design of FLOT by noticing that
scene flow estimation on point clouds reduces to estimating a permutation
matrix in a perfect world. Inspired by recent works on graph matching,
we build a method to find these correspondences by borrowing tools from
optimal transport. Then, we relax the transport constraints to take into
account real-world imperfections. The transport cost between two points
is given by the pairwise similarity between deep features extracted by a
neural network trained under full supervision using synthetic datasets.
Our main finding is that FLOT can perform as well as the best existing
methods on synthetic and real-world datasets while requiring much less
parameters and without using multiscale analysis. Our second finding is
that, on the training datasets considered, most of the performance can
be explained by the learned transport cost. This yields a simpler method,
FLOT0, which is obtained using a particular choice of optimal transport
parameters and performs nearly as well as FLOT.

1 Introduction

Scene flow [38] is the 3D motion of points at the surface of objects in a scene. It
is one of the low level information for scene understanding, which can be useful,
e.g., in autonomous driving. Its estimation is a problem which has been studied
for several years using different modalities as inputs such as colour images, with,
e.g., variational approaches [1], [45] or methods using piecewise-constant priors
[16], [22], [39], or also using both colour and depth as modalities [2], [12], [32].

In this work,3 we are interested in scene flow estimation on point clouds only
using 3D point coordinates as input. In this setting, [8] proposed a technique
based on the minimisation of an objective function that favours closeness of
matching points for accurate scene flow estimate and local smoothness of this
estimate. In [35], 2D occupancy grids are constructed from the point clouds and
given as input features to a learned background removal filter and a learned
classifier that find matching grid cells. A minimisation problem using these grid
matches is then proposed to compute a raw scene flow before a final refinement
step. In [36], a similar strategy is proposed but the match between grid cells is

3 The code is available at https://github.com/valeoai/FLOT.

ar
X

iv
:2

00
7.

11
14

2v
1 

 [
cs

.C
V

] 
 2

2 
Ju

l 2
02

0

https://github.com/valeoai/FLOT


2 G. Puy, A. Boulch, and R. Marlet

done using deep features. In [3], [47], the point clouds are projected onto 2D
cylindrical maps and fed in a traditional CNN trained for scene flow estimation.
In contrast, FLOT directly consumes point clouds by using convolutions defined
for them. The closest related works are discussed in Section 2.

We split scene flow estimation into two successive steps. First, we find soft-
correspondences between points of the input point clouds. Second, we exploit
these correspondences to estimate the flow. Taking inspiration from recent works
on graph matching that use optimal transport to match nodes/vertices in two
different graphs [18], [29], [34], we study the use of such tools for finding soft-
correspondences between points.

Our network takes as input two point clouds captured in the same scene at
two consecutive instants t and t+ 1. We extract deep features at each point using
point cloud convolutions and use these features to compute a transport cost
between the points at time t and t+ 1. A small cost between two points indicates
a likely correspondence between them. In the second step of the method, we
exploit these soft-correspondences to obtain a first scene flow estimate by linear
interpolation. This estimate is then refined using a residual network. The optimal
transport and networks’ parameters are learned by gradient descent under full
supervision on synthetic datasets.

Our main contributions are: (a) an optimal transport module for scene ow
estimation and the study of its performance; (b) a lightweight architecture that
can perform as well as the best existing methods on synthetic and real-world
datasets with much less parameters and without using multiscale analyses; (c) a
simpler method FLOT0 obtained for a particular choice of the OT parameters
and which achieves competing results with respect to the state-of-the-art methods.
We arrive at this simplified version by noticing that most of the performance in
FLOT are explained by the learned transport cost. We also notice that the main
module of FLOT0 can be seen as an attention mechanism. Finally, we discuss,
in the conclusion, some limitations of FLOT concerning the absence of explicit
treatment of occlusions in the scene.

2 Related Works

Deep Scene Flow Estimation on Point Clouds. In [4], a deep network is
trained end-to-end to estimate rigid motion of objects in LIDAR scans. The closest
related works where no assumption of rigidity is made are [11], [15], [40], [46]. In
[40], a parametric continuous convolution that operates on data lying on irregular
structures is proposed and its efficiency is demonstrated on segmentation tasks and
scene flow estimation. The method [15] relies on PointNet++ [30] and uses a new
flow embedding layer that learns to mix the information of both point clouds to
yield accurate flow estimates. In [11], a technique to perform sparse convolutions
on a permutohedral lattice is proposed. This method allows the processing of
large point clouds. Furthermore, it is proposed to fuse the information of both
point clouds at several scales, unlike in [15] where the information is fused once
at a coarse scale. In contrast, our method fuse the information once at the finest



FLOT: Scene Flow by Optimal Transport 3

scale. Let us highlight that our optimal transport module is independent of the
type of point cloud convolution. We choose PointNet++ but other convolution
could be used. In [46], PWC-Net [33] is adapted to work on point clouds. The
flow is estimated in a coarse-to-fine scale fashion showing improvement over the
previous method. Finally, let us mention that recent works [25], [46] address this
topic using self-supervision. We however restrict ourselves to full supervision in
this work.

Graph Matching by Optimal Transport. Our method is inspired by
recent works on graphs comparison using optimal transport. In [18], the graph
Laplacian is used to map a graph to a multidimensional Gaussian distribution
that represents the graph structure. The Wasserstein distance between these
distributions is then used as a measure of graph similarity and permits one to
match nodes between graphs. In [27], each graph is represented as a bag-of-vectors
(one vector per node) and the measure of similarity is the Wasserstein distance
between these sets. In [29], a method building upon the Gromov-Wasserstein
distance between metric-measure spaces [21] is proposed to compare similarity
matrices. This method can be used to compare two graphs by, e.g., representing
each of them with a matrix containing the geodesic distances between all pairs of
nodes. In [34], it is proposed to compare graphs by fusing the Gromov-Wassertsein
distance with the Wasserstein distance. The former is used to compare the graph
structures while the latter is used to take into account node features. In our
work, we use the latter distance. A graph is constructed for each point cloud by
connecting each point to its nearest neighbours. We then propose a method to
train a network that extract deep features for each point and use these features
to match points between point clouds in our optimal transport module.

Algorithm Unrolling. Our method is based on the algorithm unrolling
technique which consists in taking an iterative algorithm, unrolling a fixed number
of its iterations, and replacing part of the matrix multiplications/convolutions in
these unrolled iterations by new ones trained specifically for the task to achieve.
Several works build on this technique, such as [10], [17], [24], [26] to solve linear
inverse problems, or [5], [14], [20], [41] in for image denoising (where the denoiser
is sometimes used to solve yet another inverse problem). In this work, we unroll
few iterations of the Sinkhorn algorithm and train the cost matrix involved in it.
This matrix is trained so that the resulting transport plan provides a good scene
flow estimate. Let us mention that this algorithm is also unrolled, e.g., in [9] to
train a deep generative network, and in [31] for image feature assignments.

3 Method

3.1 Step 1: Finding Soft-Correspondences between Points

Let p, q ∈ Rn×3 be two point clouds of the same scene at two consecutive instants
t and t+ 1. The vectors pi, qj ∈ R3 are the xyz coordinates of the ith and jth

points of p and q, respectively. The scene flow estimation problem on point clouds
consists in estimating the scene flow f ∈ Rn×3 where fi ∈ R3 is the translation
of pi from t to t+ 1.



4 G. Puy, A. Boulch, and R. Marlet

Fig. 1. The point clouds p and q go through g which outputs a feature for each input
point. These features (black arrows) go in our proposed OT module where they are
used to compute the pairwise similarities between each pair of points (pi, qj). The
output of the OT module is a transport plan which informs us on the correspondences
between the points of p and q. This information permits us to compute a first scene
flow estimate f̃ , which is refined by h to obtain fest. The convolution layers (conv) are
based on PointNet++ [30] but the OT module could accept the output of any other
point cloud convolution. The dashed-blue arrows indicate that the point coordinates
are passed to each layer to be able to compute convolutions on points.

Perfect World. We construct FLOT starting in the perfect world where p+f =
P q, with P ∈ {0, 1}n×n a permutation matrix. The role of FLOT is to estimate
the permutation matrix P without the knowledge of f . In order to do so, we
use tools from optimal transport. We interpret the motion of the points pi as
a displacement of mass between time t and t+ 1. Each point in the first point
cloud p is attributed a mass which we fix to n−1. Each point qj then receives
the mass n−1 from pi if pi + fi = qj , or, equivalently, if Pij = 1. We propose
to estimate the permutation matrix P by computing a transport plan T ∈ Rn×n+

from p to q which satisfies

T ∈ argmin
U∈Rn×n

+

n∑
i,j=1

CijUij subject to U1 = 1n−1 and Uᵀ1 = 1n−1, (1)

where 1 ∈ Rn is the vector with all entries equal to 1, and Cij > 0 is the
displacement cost from point pi to point qj [28]. Each scalar entry Tij > 0 of
the transport plan T represents the mass that is transported from pi to qj .

The first constraint in (1) imposes that the mass of each point pi is entirely
distributed over some of the points in q. The second constraint imposes that each



FLOT: Scene Flow by Optimal Transport 5

Input: cost matrix C; parameters K,λ, ε > 0.
Output: transport plan T.
a← 1n−1;
U← exp(−C/ε);
for k = 1, . . . ,K do

b← [(1n−1)� (Uᵀa)]λ/(λ+ε) ;

a← [(1n−1)� (U b)]λ/(λ+ε) ;

end
T← diag(a) U diag(b) ;

Algorithm 1: Optimal transport module. The symbol � denote the element-
wise division and multiplication, respectively.

points qj receives exactly a mass n−1 from some of the points p. No mass is lost
during the transfer. Note that in the hypothetical case where the cost matrix C
would contain one zero entry per line and per column then the transport plan is
null everywhere except on these entries and the mass constraints are immediately
satisfied via a simple scaling of the transport plan. In this hypothetical situation,
the mass constraints would be redundant for our application as it would have
been enough to find the zero entries of C to estimate P. It is important to note
the mass constraints play a role in the more realistic situation where “ambiguities”
are present in C by ensuring that each point gives/receives a mass n−1 and that
each point in p has a least one corresponding point in q and vice-versa.

We note that n−1P satisfies the optimal transport constraints. We need now
to construct C so that T = n−1P.

Real World and Fast Estimation of T. In the real world, the equality
p + f = P q does not hold because the surfaces are not sampled at the same
physical locations at t and t + 1 and because objects can (dis)appear due to
occlusions. A consequence of these imperfections is that the mass preservation in
(1) does not hold exactly: mass can (dis)appear. One solution to circumvent this
issue is to relax the constraints in (1). Instead of solving (1), we propose to solve

min
U∈Rn×n

+

 n∑
i,j=1

CijUij + εUij (logUij − 1)

+ λKL

(
U1,

1

n

)
+ λKL

(
Uᵀ1,

1

n

)
,

(2)

where ε, λ > 0, and KL denotes the KL-divergence. The term Uij(logUij − 1)
in (2) is an entropic regularisation on the transport plan. Its main purpose, in
our case, is to allow the use of an efficient algorithm to estimate the transport
plan: the Sinkhorn algorithm [7]. The version of this algorithm for the optimal
transport problem (2) is derived in [6] and is presented in Alg. 1. The parameter
ε controls the amount of entropic regularisation. The smaller ε is, the sparser
the transport plan is, hence finding sparse correspondences between p and q.
The regularisation parameter λ adjust how much the transported mass deviates



6 G. Puy, A. Boulch, and R. Marlet

from the uniform distribution, allowing mass variation. One could let λ→ +∞
to impose strict mass preservation.

Note that the mass regularisation is controlled by the power λ/(λ + ε) in
Alg. 1. This power tends to 1 when λ→ +∞ to impose strict mass preservation
and reaches 0 in absence of any regularisation. Instead of fixing the parameters
ε, λ in advance, we let these parameters free and learn them by gradient descent
along with the other networks’ parameters.

We would like to recall that, in the perfect world, it is not necessary for the
power λ/(λ+ ε) to reach 1 to yield accurate results as the final quality is also
driven by the quality of C. In a perfect situation where the cost would be perfectly
trained with a bijective mapping already encoded in C by its zero entries, then
any amount of mass regularisation is sufficient to reach accurate results. This
follows from our remark at the end of the previous subsection but also from the
discussion in the subsection below on the role of C and the mass regularisation.
In a real situation, the cost is not perfectly trained and we expect the power
λ/(λ+ ε) to vary in the range of (0, 1) after training, reaching values closer to 1
when trained in a perfect world setting and closer to 0 in presence of occlusions.

Learning the Transport Cost. An essential ingredient in (2) is the cost
C ∈ Rn×n where each entry Cij encodes the similarity between pi to point qj .
An obvious choice could be to take the Euclidean distance between each pair
of points (pi, qj), i.e., Cij = ‖pi − qj‖2, but this choice does not yield accurate
results. In this work, we propose to learn the displacement costs by training a
deep neural network g : Rn×3 → Rn×c that takes as input a point cloud and
output a feature of size c for each input point. The entries of the cost matrix are
then defined using the cosine distance between the features g(p)i, g(q)j ∈ Rc at
points pi and qj , respectively:

Cij =

(
1− g(p)ᵀi g(q)j
‖g(p)i‖2 ‖g(q)j‖2

)
· i‖·‖26dmax

(pi − qj) . (3)

The more similar the features g(p)i and g(q)j are, the less the cost of transporting
a unit mass from pi to qj is. The indicator function

i‖·‖26dmax
(pi − qj) =

{
1 if ‖pi − qj‖2 6 dmax,
+∞ otherwise,

(4)

is used to prevent the algorithm to find correspondences between points too far
away from each other. We set dmax = 10 m.

In order to train the network g, we adopt the same strategy as, e.g., in [9]
to train generative models or in [31] for matching image features. The strategy
consists in unrolling K iterations of Alg. 1. This unrolled iterations constitute
our OT module in Fig. 1. One can remark that the gradients can backpropagate
through each step of this module and allow us to train g.

On the Role of C and of the Mass Regularisation. We gather in this
paragraph the earlier discussions on the role of C and the mass regularisation.



FLOT: Scene Flow by Optimal Transport 7

For the sake of the explanation, we come back in the perfect-world setting and
consider (1). In this ideal situation, one could further dream that it is possible
to train g perfectly such that Cij is null for matching points, i.e., when Pij = 1,
and strictly positive otherwise. The transport plan would then satisfy T = n−1P
with a null transport cost. However, one should note that the solution T would
entirely be encoded in C up to a global scaling factor: the non-zero entries of T
are at the zero entries of C. In that case, the mass transport constraints only
adjust the scale of the entries in T. Such a perfect scenario is unlikely to occur
but these considerations highlight that the cost matrix C could be exploited alone
and could maybe be sufficient to find the appropriate correspondences between p
and q for scene flow estimation. The mass transport regularisation plays a role
in the more realistic case where ambiguities appears in C. The regularisation
enforces, whatever the quality of C and with a “strength” controlled by λ, that
the mass is distributed as uniformly as possible over all points. This avoids that
some points in p are left with no matching point in q, and vice-versa.

FLOT0. FLOT0 is a version of FLOT where only the cost matrix C is exploited
to find correspondences between p and q. This method is obtained when removing
the mass transport regularisation in (2), i.e., by setting λ = 0. In this limit, the
“transport plan” satisfies

T = exp(−C/ε). (5)

T is then used in the rest of the method as if it was the output of Alg. 1.

3.2 Step 2: Flow Estimation from Soft-Correspondences

We obtained, in the previous step, a transport plan T that gives correspondences
between the points of p, q. Our goal now is to exploit these correspondences to
estimate the flow. As before, it is convenient to start in the perfect world and
consider (1). In this setting, we have seen that f = Pq − p and that, if g is well
trained, we expect n−1P = T. Therefore, an obvious estimate of the flow is

f̃i =

n∑
j=1

Pij qj − pi =
1

n−1

n∑
j=1

Tij qj − pi =

∑n
j=1 Tij qj∑n
j=1 Tij

− pi, (6)

where we exploited the fact that
∑n
j=1 Tij = n−1 in the last equality.

In the real world, the first equality in (6) does not hold. Yet, the last expression
in (6) remains a sensible first estimation of the flow. Indeed, this computation is
equivalent to computing, for each point pi, a corresponding virtual point that is
a barycentre of some points in q. The larger the transported mass Tij from pi
to qj is, the larger the contribution of qj to this virtual point is. The difference
between this virtual point and pi gives an estimate of the flow fi. This virtual
point is a “guess” on the location of pi + fi made knowing where the mass from
pi is transported in q.



8 G. Puy, A. Boulch, and R. Marlet

However, we remark that the flow f̃ estimated in (6) is, necessarily, still
imperfect as it is highly likely that some points in p+ f cannot be expressed as
barycentres of the found corresponding points q. Indeed, some portion of objects
visible in p might not visible any more in q due to the finite resolution in point
cloud sampling. The flow in these missing regions cannot be reconstructed from
q but has to be reconstructed using structural information available in p, relying
on neighbouring information from the well sampled regions. Therefore, we refine
the flow using a residual network:

fest = f̃ + h(f̃), (7)

where h : Rn×3 → Rn×c takes as inputs the estimated flow f̃ and uses convolutions
defined on the point cloud p.

Let us finally conclude this section by highlighting the fact that, in the case
of FLOT0, (6) simplifies to

f̃i =

∑n
j=1 exp(−Cij/ε) (qj − pi)∑n

j=1 exp(−Cij/ε)
. (8)

On can remark that the OT module essentially reduces to an attention mechanism
[37] in that case. The attention mechanism is thus a particular case of FLOT
where the entropic regularisation ε plays the role of the softmax temperature. Let
us mention that similar attention layers haved been showed effective in related
problems such as rigid registration [42,43,44].

3.3 Training

The network’s parameters, denoted by θ, and ε, γ are trained jointly under full
supervision on annotated synthetic datasets of size L. Note that to enforce
positivity of ε, γ, we learn their log values. A constant offset of 0.03 is applied to
ε to avoid numerical instabilities in the exponential function during training.

The sole training loss is the `1-norm between the ground truth flow f and
the estimated flow fest:

min
θ

1

3L

L∑
l=1

∥∥∥M(l) (f
(`)
est − f (`))

∥∥∥
1
, (9)

where M(l) ∈ Rn×n is a diagonal matrix encoding an annotated mask used to
remove points where the flow is occluded.

We use a batchsize of 4 at n = 2048 and a batchsize of 1 at n = 8192 using
Adam [13] and a starting learning rate of 0.001. The learning rate is kept constant
unless specified in Section 4.

3.4 Similarities and Differences with Existing Techniques

A first main difference between FLOT and [11], [15], [46] is the number of
parameters which is much smaller for FLOT (see Table 1). Another difference is



FLOT: Scene Flow by Optimal Transport 9

that we do not use any downsampling and upsampling layers. Unlike [11], [46],
we do not use any multiscale analysis to find the correspondences between points.
The information between point clouds is mixed only once, as in [15], but at the
finest sampling resolution and without using skip connections between g and h.

We also notice that [11], [15], [46] rely on a MLP or a convnet applied on the
concatenated input features to mix the information between both point clouds.
The mixing function is learned and thus not explicit. It is harder to find how
the correspondences are effectively done, i.e., identify what input information
is kept or not taken into consideration. In contrast, the mixing function in
FLOT is explicit with only two scalars ε, λ adjusted to the training data and
whose roles are clearly identified in the OT problem (2). The core of the OT
module is a simple cross-correlation between input features, which is a module
easy to interpret, study and visualise. Finally, among all the functions that the
convnets/MLPs in [11], [15], [46] can approximate, it is unlikely that the resulting
mixing function actually approximates the Sinkhorn algorithm, or an attention
layer, after learning without further guidance than those of the training data.

4 Experiments

4.1 Datasets

As in related works, we train our network under full supervision using Fly-
ingThings3D [19] and test it on FlyingThings3D and KITTI Scene Flow [22,23].
However, none of the datasets provide point clouds directly. This information
needs to be extracted from the original data. There is at least two slightly different
ways of extracting these 3D data, and we report results for both versions for
a better assessment of the performance. The first version of the datasets are
prepared4 as in [11]. No occluded point remains in the processed point clouds.
We denote these datasets FT3Ds and KITTIs. The second version of the datasets
are the ones prepared5 by [15] and denoted FT3Do and KITTIo. These datasets
contains points where the flow is occluded. These points are present at the input
and output of the networks but are not taken into account to compute the
training loss (9) nor the performance metrics, like in [15]. Further information
about the datasets is in the supplementary material. Note that we keep aside
2000 examples from the original training sets of FT3Ds and FT3Do as validation
sets, which are used in Section 4.3.

4.2 Performance Metrics

We use the four metrics adopted in [11], [15], [46]: the end point error EPE; two
measures of accuracy, denoted by AS and AR, computed with different thresholds
on the EPE; a percentage of outliers also computed using a threshold on the
EPE. The definition of these metrics is recalled in the supplementary material.

4 Code and pretrained model available at https://github.com/laoreja/HPLFlowNet.
5 Code and datasets available at https://github.com/xingyul/flownet3d.

https://github.com/laoreja/HPLFlowNet
https://github.com/xingyul/flownet3d


10 G. Puy, A. Boulch, and R. Marlet

Table 1. Performance of FLOT on the validation sets of FT3Dp, FT3Ds, and FT3Do

(top). Performance of FLOT measured at the output of the OT module, i.e., before
refinement by h, on FT3Dp and FT3Ds (bottom). The corresponding performance
on FT3Do is in the supplementary material. We report average scores and, between
parentheses, their standard deviations. Please refer to Section 4.3 for more details.

Dataset K ε λ/(λ+ ε) EPE AS AR Out.

W
it

h
fl

o
w

r
e
fi

n
e
m

e
n
t FT3Dp

FLOT0 0.03 (0.00) 0 (fixed) 0.0026 (0.0005) 99.56 (0.08) 99.69 (0.05) 0.44 (0.10)

1 0.03 (0.00) 0.70 (0.00) 0.0011 (0.0001) 99.83 (0.01) 99.89 (0.01) 0.17 (0.01)

3 0.03 (0.00) 0.82 (0.00) 0.0009 (0.0001) 99.85 (0.01) 99.90 (0.01) 0.16 (0.01)

5 0.03 (0.00) 0.88 (0.00) 0.0009 (0.0001) 99.84 (0.02) 99.90 (0.01) 0.17 (0.02)

FT3Ds

FLOT0 0.03 (0.00) 0 (fixed) 0.0811 (0.0005) 50.32 (0.34) 83.08 (0.24) 52.15 (0.34)

1 0.03 (0.00) 0.64 (0.01) 0.0785 (0.0003) 50.91 (0.52) 83.67 (0.10) 51.73 (0.38)

3 0.03 (0.00) 0.59 (0.00) 0.0786 (0.0010) 51.06 (0.95) 83.78 (0.35) 51.72 (0.76)

5 0.03 (0.00) 0.56 (0.00) 0.0798 (0.0003) 49.77 (0.50) 83.39 (0.08) 52.58 (0.31)

FT3Do

FLOT0 0.03 (0.00) 0 (fixed) 0.1834 (0.0018) 21.94 (0.69) 52.79 (0.53) 77.19 (0.43)

1 0.03 (0.00) 0.50 (0.01) 0.1798 (0.0009) 22.01 (0.14) 53.39 (0.24) 76.77 (0.16)

3 0.03 (0.00) 0.34 (0.00) 0.1797 (0.0014) 22.77 (0.53) 53.74 (0.54) 76.39 (0.43)

5 0.03 (0.00) 0.35 (0.01) 0.1813 (0.0020) 22.64 (0.41) 53.58 (0.41) 76.52 (0.46)

N
o

fl
o
w

r
e
fi

n
e
m

e
n
t

FT3Dp

FLOT0

Same as above

0.0026 (0.0006) 99.59 (0.07) 99.70 (0.05) 0.42 (0.10)

1 0.0010 (0.0001) 99.83 (0.01) 99.89 (0.01) 0.18 (0.01)

3 0.0009 (0.0000) 99.85 (0.01) 99.90 (0.01) 0.16 (0.01)

5 0.0010 (0.0001) 99.84 (0.03) 99.90 (0.01) 0.17 (0.02)

FT3Ds

FLOT0

Same as above

0.1789 (0.0004) 17.57 (0.07) 43.34 (0.08) 75.34 (0.07)

1 0.1721 (0.0005) 18.24 (0.11) 44.64 (0.14) 74.54 (0.11)

3 0.1764 (0.0003) 17.64 (0.07) 43.52 (0.10) 75.09 (0.07)

5 0.1761 (0.0009) 17.68 (0.13) 43.60 (0.23) 75.07 (0.13)

Let us highlight that the performance reported on KITTIs and KITTIo are
obtained by using the model trained on FT3Ds and FT3Do, respectively without
fine tuning. We do not adapt the model for any of the method. We nevertheless
make sure that the xyz axes are in correspondence for all datasets.

4.3 Study of FLOT

We use FT3Ds, FT3Do and FT3Dp to check what values the OT parameters ε, λ
reach after training, to study the effect of K on the FLOT’s performance and
compare it with that of FLOT0. FT3Dp is exactly the same dataset as FT3Ds

except that we enforce p + f = Pq when sampling the point to simulate the
perfect world setting. The sole role of this ideal dataset is to confirm that the
OT model holds in the perfect world, the starting point of our design.

For these experiments, training is done at n = 2048 for 40 epochs and takes
about 9 hours. Each model is trained 3 times starting from a different random
draw of θ to take into account variations due to initialisation. Evaluation is
performed at n = 2048 on the validation sets. Note that the n points are drawn
at random also at validation time. To take into account this variability, validation
is performed 5 different times with different draws of the points for each of the



FLOT: Scene Flow by Optimal Transport 11

Fig. 2. Illustration of correspondences, found by FLOT (K = 1) trained on n = 8192
(see Section 4.4), between p and q in two different scenes of KITTIs. We isolated
one car in each of the scenes for better visualisation. The point cloud p captured
at time t is represented in orange. The lines show the correspondence between a
query point pi and the corresponding point qj∗ in q on which most the mass is
transported: j∗ = argmaxj Tij . The colormap on q represents the values in Ti where
yellow corresponds to 0 and blue indicates the maximum entry in Ti and show how the
mass is concentrated around qj∗ .

trained model. For each score and model, we thus have access to 15 values whose
mean and standard deviation are reported in Table 1. We present the scores
obtained before and after refinement by h.

First, we notice that ε = 0.03 for all model after training. We recall that we
applied a constant offset of 0.03 to prevent numerical errors occurring in Alg. 1
in the exponential function when reaching to small value of ε. Hence, the entropic
regularisation, or, equivalently, the temperature in FLOT0, reaches its smallest
possible value. Such small values favour sparse transport plans T, yielding sparse
correspondences between p and q. An illustration of these sparse correspondences
is provided in Fig. 2. We observe that the correspondences are accurate and that
the mass is well concentrated around the target points, especially when these
points are near corners of the object.

Second, the power λ/(λ+ ε), which controls the mass regularisation, reaches
higher values on FT3Dp than FT3Do. This is the expected behaviour as FT3Dp

contains no imperfection and FT3Do contains occlusions. The values reached on
FT3Ds are in between those reached on FT3Dp than FT3Do. This is also the
expected behaviour as FT3Ds is free of occlusions and the only imperfections are
the different sampling of the scene as t and t+ 1.

Third, on FT3Dp, FLOT reduces by 2 the EPE compared to FLOT0, which
nevertheless already yields good results. Increasing K from 1 to 3 further reduces
the error and stabilises at K = 5. This validates the OT model in our the perfect
world setting: the OT optimum and perfect world optimum coincide.

Fourth, on FT3Ds and FT3Do, the average scores are better for FLOT than
FLOT0, except for two metrics at K = 5 on FT3Ds. The nevertheless good
performance of FLOT0 indicates that most of it is due to the trained transport



12 G. Puy, A. Boulch, and R. Marlet

Table 2. Performance on FT3Ds and KITTIs. The scores of FlowNet3D and
HPLFlowNet are obtained from [11]. We also report the scores of PointPWC-Net
available in [46], as well as those obtained using the official implementation†. Italic
entries are for methods publicly available but not yet published at submission time.

Dataset Method EPE AS AR Out. Size (MB)

FT3Ds

FlowNet3D [15] 0.114 41.2 77.1 60.2 15

HPLFlowNet [11] 0.080 61.4 85.5 42.9 77

FLOT (K = 1) 0.052 73.2 92.7 35.7 0.44

PointPWC-Net [46] 0 .059 73 .8 92 .8 34 .2 30

PointPWC-Net† 0 .055 79 .0 94 .4 29 .8 30

KITTIs

FlowNet3D [15] 0.177 37.4 66.8 52.7 15

HPLFlowNet [11] 0.117 47.8 77.8 41.0 77

FLOT (K = 1) 0.056 75.5 90.8 24.2 0.44

PointPWC-Net [46] 0 .069 72 .8 88 .8 26 .5 30

PointPWC-Net† 0 .067 78 .5 90 .6 22 .8 30

cost C. On FT3Ds and FT3Do, changing K from 1 to 3 has less impact on the
EPE than on FT3Dp. We also detect a slight decrease of performance when
increasing K from 3 to 5. The OT model (2) can only be an approximate model
of the (simulated) real-world. The real-world optimum and OT optimum do not
coincide. Increasing K brings us closer to the OT optimum but not necessarily
always closer to the real-world optimum. K becomes an hyper-parameter that
should be adjusted. In the following experiments, we use K = 1 or K = 3.

Finally, the absence of h has no effect on the performance on FT3Dp, with
FLOT still performing better than FLOT0. This shows that OT module is able
to estimate accurately the ideal permutation matrix P on its own and that
the residual network h is not needed in this ideal setting. However, h plays a
important role on the more realistic datasets FT3Ds and FT3Do, with an EPE
divided by around 2 when present.

4.4 Performance on FT3Ds and KITTIs

We compare the performance achieved by FLOT and the alternative methods on
FT3Ds and KITTIs in Table 2. We train FLOT using n = 8192 points, as in [11],
[46]. The learning rate is set to 0.001 for 50 epochs before dividing it by 10 and
continue training for 10 more epochs.

The scores of FlowNet3D and HPLFlowNet are obtained directly from [11].
We report the scores of PointPWC-net available in [46], as well as the better scores
we obtained using the associated code and pretrained model.6 The model sizes
are obtained from the supplementary material of [15] for FlowNet3D, and from
the pretrained models provided by [11] and [46]. HPLFlowNet, PointPWC-Net
and FLOT contain 19 M, 7.7 M, and 0.11 M parameters, respectively.

6 Code and pretrained model available at https://github.com/DylanWusee/PointPWC.

https://github.com/DylanWusee/PointPWC


FLOT: Scene Flow by Optimal Transport 13

Table 3. Performance on FT3Do and KITTIo.

Dataset Method EPE AS AR Out.

FT3Do

FlowNet3D [15] 0.160 25.4 58.5 78.9

FLOT0 0.160 33.8 63.8 70.5

FLOT (K = 1) 0.156 34.3 64.3 70.0

FLOT (K = 3) 0.161 32.3 62.7 71.7

KITTIo

FlowNet3D [15] 0.173 27.6 60.9 64.9

FLOT0 0.106 45.3 73.7 46.7

FLOT (K = 1) 0.110 41.9 72.1 48.6

FLOT (K = 3) 0.107 45.1 74.0 46.3

FLOT performs better than FlowNet3D and HPLFlowNet on both FT3Ds

and KITTIs. FLOT achieves a slightly better EPE than PointPWC-Net on
KITTIs and a similar one on FT3Ds. However, PointPWC-Net achieves better
accuracy and has less outliers. FLOT is the method that uses the less trainable
parameters (69 times less than PointPWC-Net).

We illustrate in Fig. 3 the quality of the scene flow estimation for two scenes
of KITTIs. We notice that FLOT aligns correctly all the objects. We also remark
that the flow f̃ estimated at the output of the OT module is already of good
quality, even though the performance scores are improved after refinement.

4.5 Performance on FT3Do and KITTIo

We present another comparison between FlowNet3D and FLOT using FT3Do

and KITTIo, originally used in [15]. We train FlowNet3D using the associated
official implementation. We train FLOT and FLOT0 on n = 2048 points using
a learning rate of 0.001 for 340 epochs before dividing it by 10 and continue
training for 60 more epochs.

The performance of both methods is reported in Table 3. We notice that FLOT
and FLOT0 achieve a better accuracy than FlowNet3D with an improvement
of AS of 8.8 points on FT3Do and 17.7 on KITTIo. The numbers of outliers are
reduced by the same amount. FLOT at K = 1 performs the best with FLOT0

close behind. On KITTIo, the best performing model are those of FLOT0 and
FLOT at K = 3.

The reader can remark that the results of FlowNet3D are similar to those
reported in [15] but worse on KITTIo. The evaluation on KITTIo is done differ-
ently in [15]: the scene is divided into chunks and the scene flow is estimated
within each chunk before a global aggregation. In the present work, we keep
the evaluation method consistent with that of Section 4.4 by following the same
procedure as in [11], [46]: the trained model is evaluated by processing the full
scene in one pass using n random points from the scene.



14 G. Puy, A. Boulch, and R. Marlet

Inputs p (orange) and q (blue) Ground truth p + f (orange) and input q (blue)

Estimated p + f̃ (orange) and input q (blue) Refined p + fest (orange) and input q (blue)

Inputs p (orange) and q (blue) Ground truth p + f (orange) and input q (blue)

Estimated p + f̃ (orange) and input q (blue) Refined p + fest (orange) and input q (blue)

Fig. 3. Two scene from KITTIs with input point clouds p, q along with the ground
truth p + f , estimated p + f̃ and refined p + fest using FLOT (K = 1) at n = 8192.

5 Conclusion

We proposed and studied a method for scene flow estimation built using optimal
transport tools. It can achieves similar performance to that of the best performing
method while requiring much less parameters. We also showed that the learned
transport cost is responsible for most of the performance. This yields a simpler
method FLOT0, which performs nearly as well as FLOT.

We also noticed that the presence of occlusions affects the performance of
FLOT negatively. The proposed relaxation of the mass constraints in Eq. (2)
permits us to limit the impact of these occlusions on the performance but does not
handle them explicitly. There is thus room for improvements by detecting, e.g.,
by analysing the effective transported mass, and treating occlusions explicitly.



FLOT: Scene Flow by Optimal Transport 15

Table 4. Architecture of g and h where layer 4(∗) is linear and used in h only.

Layer ` 1 2 3 4(∗)

MLP size 32 - 32 - 32 64 - 64 - 64 128 - 128 - 128 3

A Networks architecture

The convolutions used in g and h are based on PointNet++ [30] in our imple-
mentation. Each convolution layer takes as inputs the point cloud r ∈ Rn×3 on

which the convolution are performed and the features φ
(`)
i ∈ Rc′ , i = 1, . . . , n,

coming from the previous layer `. Note that these features are simply the point
coordinates r at the input of g and the estimated flow f̃ at the input of h. For
each point ri, the indices N (ri) of the m = 32 nearest neighbors to ri in r are
then computed to obtain m features at point ri, each one satisfying(

φ
(`)
j

ᵀ
, rᵀj − r

ᵀ
i

)ᵀ
∈ Rc

′+3, (10)

j ∈ N (ri). These features are passed through a MLP : Rc′+3 → Rc′′ consisting of
a series of fully connected layer, instance normalisation layer with affine correction
[?], and leaky ReLu with a negative slope of 0.1, repeated 3 times in the same
order. Finally, the new feature at point ri is obtained after passing through a
final max pooling layer:

φ
(`+1)
i = max

j∈N (pi)

{
MLP

[
(φ

(`)
j

ᵀ
, rᵀj − r

ᵀ
i )ᵀ
]}
∈ Rc

′′
, (11)

where the max is computed independently for each of the c′′ channels. These
computations are repeated for each point ri of the point cloud using the same
MLP. The networks g and h share the same architecture, which is given in Table
4. Note nevertheless that the weights are not shared between g and h.

B Datasets

The datasets FT3Ds and KITTIs are prepared7 as in [11]. No occluded point
remains in the processed point clouds: one can always find a point qj in q such
that qj = pi+fi at full sampling rate N . However, in practice, most of the points
pi do not have a direct matching in q as both point clouds are randomly and
independently sub-sampled to keep only n� N points. This simulates different
sampling of the scene. Nevertheless, no object appears or disappears because
of occlusions between t and t + 1. FT3Ds contains 19, 640 training examples,
from which we keep 2, 000 aside for validation, and 3, 824 test examples. KITTIs

contains 200 examples for which 142 are used for test, as in [11]. We do not use

7 Code available at https://github.com/laoreja/HPLFlowNet.

https://github.com/laoreja/HPLFlowNet


16 G. Puy, A. Boulch, and R. Marlet

the remaining KITTI examples. The ground points in KITTIs are removed using
a threshold on the height. All points whose depth is larger than 35 m are removed
in both datasets.

The datasets FT3Do and KITTIo are the prepared8 by [15]. In FT3Do, masks
where the flow is non valid, e.g., due to occlusions, are provided in used in the
training loss, like in [15]. These masks are also used to compute the scores only
on valid points at test time for all methods. However, the points where the
corresponding flow is non-valid are present at the input of all networks. No mask
is provided for KITTIo. FT3Do contains 19, 999 training examples, from which
we keep 2, 000 aside for validation, and 2, 003 test examples.9 KITTIo contains
150 test examples. The ground points in KITTIo are removed by [15]. All points
whose depth is larger than 35 m are removed in both datasets.

C Performance metrics

We use the following four metrics adopted in [11], [15], [46]:

– EPEi = ‖(fest)i − fi‖2: end point error, averaged over all i;
– AS: percentage of points such that EPEi < 0.05 or EPEi/ ‖fi‖2 < 0.05;
– AR: percentage of points such that EPEi < 0.1 or EPEi/ ‖fi‖2 < 0.1
– Out.: percentage of points such that EPEi > 0.3 or EPEi/ ‖fi‖2 > 0.1.

The above metrics are computed as follows. The point clouds p, q are obtained
by selecting n random points out of the N provided points in the datasets. The
flow is estimated and compared to the ground truth flow f on these n selected
points. The scores are averaged over the whole validation/test set.

D Additional experimental results

D.1 Study of FLOT

We report in Table 5 the performance of FLOT obtained at the output of the OT
module on FT3Do. The corresponding performance with refinement are available
in the core of the paper. As on FT3Ds, we remark that the refinement permits
to improve the EPE by around 2, confirming its utility in presence of occlusions.

D.2 Computation time in the OT module

At n = 2048, the computation time10 in the OT module is 1.4, 2.0 and 2.2 ms for
FLOT0, FLOT K = 1, FLOT K = 3, respectively. At n = 8192, the computation

8 Datasets available at https://github.com/xingyul/flownet3d.
9 We removed 8 examples with all points marked as occluded (7 in the training set

and 4 in the test set). One example which contains a non valid value in the training
dataset is also removed.

10 Computed on a Nvidia GeForce RTX 2080 Ti.

https://github.com/xingyul/flownet3d


FLOT: Scene Flow by Optimal Transport 17

Table 5. Performance of FLOT measured at the output of the OT module, i.e., before
refinement by h, on FT3Do. We report the average scores and their standard deviations
between parentheses.

Dataset K EPE AS AR Out.

FT3Do

FLOT0 0.3539 (0.0028) 6.98 (0.11) 22.05 (0.28) 88.76 (0.14)

1 0.3412 (0.0042) 7.55 (0.17) 23.50 (0.40) 88.02 (0.22)

3 0.3426 (0.0028) 7.38 (0.04) 23.09 (0.05) 88.21 (0.03)

5 0.3440 (0.0021) 7.32 (0.05) 22.94 (0.16) 88.34 (0.09)

time in the OT module is 13.1, 16.0, 17.9 ms for FLOT0, FLOT K = 1, FLOT
K = 3, respectively. This represents at most 8% of the total computation time
which is itself at most of 27.8 ms at n = 2048 and 346 ms at n = 8192. Most
of the time, at least 67% at n = 2048 and 86% at n = 8192, is spent in the
feature extractor g. This shows that the OT module is responsible for just a
small fraction of the total computation time.

Note that the time spent in the OT module is independent of the type of
convolution used. Replacing our implementation of PointNet++ with a faster
one or choosing a faster convolution will directly improve the computation time
spend in g and h. Our implementation of the OT module can also be made faster
by avoiding to compute densely the cost matrix C by restricting the computation
to points that are less than dmax meters apart, as these points never contribute
to T.

References

1. Basha, T., Moses, Y., Kiryati, N.: Multi-view Scene Flow Estimation: A View
Centered Variational Approach. In: Conference on Computer Vision and Pattern
Recognition. pp. 1506–1513. IEEE (2010)

2. Battrawy, R., Schuster, R., Wasenmller, O., Rao, Q., Stricker1, D.: LiDAR-Flow:
Dense Scene Flow Estimation from Sparse LiDAR and Stereo Images. In: Inter-
national Conference on Intelligent Robots and Systems. pp. 7762–7769. IEEE
(2019)

3. Baur, S.A., Moosmann, F., Wirges, S., Rist, C.B.: Real-time 3D LiDAR Flow for
Autonomous Vehicles. In: Intelligent Vehicles Symposium. pp. 1288–1295. IEEE
(2019)

4. Behl, A., Paschalidou, D., Donné, S., Geiger, A.: PointFlowNet: Learning represen-
tations for rigid motion estimation from point clouds. In: Conference on Computer
Vision and Pattern Recognition. pp. 7962–7971. IEEE (2019)

5. Chen, Y., Pock, T.: Trainable Nonlinear Reaction Diffusion: A Flexible Framework
for Fast and Effective Image Restoration. Transactions on Pattern Analysis and
Machine Intelligence 39(6), 1256–1272 (2017)

6. Chizat, L., Peyré, G., Schmitzer, B., Vialard, F.X.: Scaling algorithms for unbalanced
transport problems. Mathematics of Computation 87, 2563–2609 (2018)

7. Cuturi, M.: Sinkhorn Distances: Lightspeed Computation of Optimal Transport.
In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q.



18 G. Puy, A. Boulch, and R. Marlet

(eds.) Advances in Neural Information Processing Systems. pp. 2292–2300. Curran
Associates, Inc. (2013)

8. Dewan, A., Caselitz, T., Tipaldi, G.D., Burgard, W.: Rigid scene flow for 3D LiDAR
scans. In: International Conference on Intelligent Robots and Systems (IROS). pp.
1765–1770. IEEE (2016)

9. Genevay, A., Peyré, G., Cuturi, M.: Learning generative models with sinkhorn
divergences. In: Storkey, A., Perez-Cruz, F. (eds.) International Conference on
Artificial Intelligence and Statistics. Proceedings of Machine Learning Research,
vol. 84, pp. 1608–1617. PMLR (2018)

10. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: Interna-
tional Conference on Machine Learning. pp. 399–406 (2010)

11. Gu, X., Wang, Y., Wu, C., Lee, Y.J., Wang, P.: HPLFlowNet: Hierarchical Permu-
tohedral Lattice FlowNet for Scene Flow Estimation on Large-Scale Point Clouds.
In: Conference on Computer Vision and Pattern Recognition. pp. 3249–3258. IEEE
(2019)

12. Hadfield, S., Bowden, R.: Kinecting the dots: Particle based scene flow from depth
sensors. In: International Conference on Computer Vision. pp. 2290–2295. IEEE
(2011)

13. Kingma, D.P., Adam, J.B.: Adam : A method for stochastic optimization. In:
International Conference on Learning Representations. arXiv.org (2015)

14. Liu, J., Sun, Y., Eldeniz, C., Gan, W., An, H., Kamilov, U.S.: RARE: Image
Reconstruction using Deep Priors Learned without Ground Truth. Journal of
Selected Topics in Signal Processing (2020)

15. Liu, X., Qi, C.R., Guibas, L.J.: FlowNet3D: Learning Scene Flow in 3D Point
Clouds. In: Conference on Computer Vision and Pattern Recognition. pp. 529–537.
IEEE (2019)

16. Ma, W.C., Wang, S., Hu, R., Xiong, Y., Urtasun, R.: Deep Rigid Instance Scene
Flow. In: Conference on Computer Vision and Pattern Recognition. pp. 3609–3617.
IEEE (2019)

17. Mardani, M., Sun, Q., Donoho, D., Papyan, V., Monajemi, H., Vasanawala, S.,
Pauly, J.: Neural Proximal Gradient Descent for Compressive Imaging. In: Ben-
gio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R.
(eds.) Advances in Neural Information Processing Systems. pp. 9573–9583. Curran
Associates, Inc. (2018)

18. Maretic, H.P., Gheche, M.E., Chierchia, G., Frossard, P.: GOT: An Optimal Trans-
port framework for Graph comparison. In: Wallach, H., Larochelle, H., Beygelzimer,
A., d'Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information
Processing Systems. pp. 13876–13887. Curran Associates, Inc. (2019)

19. Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox,
T.: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow,
and Scene Flow Estimation. In: Conference on Computer Vision and Pattern
Recognition. pp. 4040–4048. IEEE (2016)

20. Meinhardt, T., Moller, M., Hazirbas, C., Cremers, D.: Learning Proximal Oper-
ators: Using Denoising Networks for Regularizing Inverse Imaging Problems. In:
International Conference on Computer Vision. pp. 1799–1808. IEEE (2017)

21. Mémoli, F.: Gromovwasserstein distances and the metric approach to object match-
ing. Foundations of computational mathematics 11(4), 417–487 (2011)

22. Menze, M., Heipke, C., Geiger, A.: Joint 3d estimation of vehicles and scene flow.
In: ISPRS Workshop on Image Sequence Analysis (2015)

23. Menze, M., Heipke, C., Geiger, A.: Object scene flow. ISPRS Journal of Photogram-
metry and Remote Sensing 140, 60–76 (2018)



FLOT: Scene Flow by Optimal Transport 19

24. Metzler, C., Mousavi, A., , Baraniuk, R.: Learned D-AMP: Principled Neural
Network based Compressive Image Recovery. In: Guyon, I., Luxburg, U.V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in
Neural Information Processing Systems. pp. 1772–1783. Curran Associates, Inc.
(2017)

25. Mittal, H., Okorn, B., Held, D.: Just Go with the Flow: Self-Supervised Scene Flow
Estimation. In: Conference on Computer Vision and Pattern Recognition. IEEE
(2020)

26. Mousavi, A., Baraniuk, R.G.: Learning to invert: Signal recovery via deep convo-
lutional networks. In: International Conference on Acoustics, Speech and Signal
Processing. pp. 2272–2276. IEEE (2017)

27. Nikolentzos, G., Meladianos, P., Vazirgiannis, M.: Matching node embeddings for
graph similarity. In: AAAI Conference on Articial Intelligence. pp. 2429–2435 (2017)

28. Peyré, G., Cuturi, M.: Computational optimal transport: With applications to data
science. Foundations and Trends in Machine Learning 11(5-6), 355–607 (2019)

29. Peyr, G., Cuturi, M., Solomon, J.: Gromov-Wasserstein Averaging of Kernel and Dis-
tance Matrices. In: Balcan, M.F., Weinberger, K.Q. (eds.) International Conference
on Machine Learning. vol. 48, pp. 2664–2672. PMLR (2016)

30. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space. In: Guyon, I., Luxburg, U.V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural
Information Processing Systems. pp. 5099–5108. Curran Associates, Inc. (2017)

31. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: Learning
Feature Matching with Graph Neural Networks. In: Conference on Computer Vision
and Pattern Recognition. IEEE (2020)

32. Shao, L., Shah, P., Dwaracherla, V., Bohg, J.: Motion-Based Object Segmentation
Based on Dense RGB-D Scene Flow. Robotics and Automation Letters 3(4), 3797–
3804 (2018)

33. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for Optical Flow Using
Pyramid, Warping, and Cost Volume. In: Conference on Computer Vision and
Pattern Recognition. pp. 8934–8943. IEEE (2018)

34. Titouan, V., Courty, N., Tavenard, R., Laetitia, C., Flamary, R.: Optimal Transport
for structured data with application on graphs. In: Chaudhuri, K., Salakhutdinov,
R. (eds.) International Conference on Machine Learning. vol. 97, pp. 6275–6284.
PMLR (2019)

35. Ushani, A.K., Wolcott, R.W., Walls, J.M., Eustice, R.M.: A learning approach
for real-time temporal scene flow estimation from LIDAR data. In: International
Conference on Robotics and Automation. pp. 5666–5673. IEEE (2017)

36. Ushani, A.K., Eustice, R.M.: Feature Learning for Scene Flow Estimation from
LIDAR. In: Billard, A., Dragan, A., Peters, J., Morimoto, J. (eds.) Conference on
Robot Learning. Proceedings of Machine Learning Research, vol. 87, pp. 283–292.
PMLR (2018)

37. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L.u., Polosukhin, I.: Attention is All you Need. In: Guyon, I., Luxburg, U.V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 30. pp. 5998–6008. Curran Associates,
Inc. (2017)

38. Vedula, S., Baker, S., Rander, P., Collins, R., Kanade, T.: Three-dimensional scene
ow. In: International Conference on Computer Vision. vol. 2, p. 722729. IEEE
(1999)



20 G. Puy, A. Boulch, and R. Marlet

39. Vogel, C., Schindler, K., Roth, S.: Piecewise rigid scene flow. In: International
Conference on Computer Vision. pp. 1377–1384. IEEE (2013)

40. Wang, S., Suo, S., Ma, W.C., Pokrovsky, A., Urtasun, R.: Deep parametric continu-
ous convolutional neural networks. In: Conference on Computer Vision and Pattern
Recognition. pp. 2589–2597. IEEE (2018)

41. Wang, S., Fidler, S., Urtasun, R.: Proximal Deep Structured Models. In: Lee, D.D.,
Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural
Information Processing Systems. pp. 865–873. Curran Associates, Inc. (2016)

42. Wang, X., Jabri, A., Efros, A.A.: Learning Correspondence From the Cycle-
Consistency of Time. In: Conference on Computer Vision and Pattern Recognition.
pp. 2566–2576. IEEE (2019)

43. Wang, Y., Solomon, J.M.: Deep Closest Point: Learning Representations for Point
Cloud Registration. In: International Conference on Computer Vision. pp. 3522–
3531. IEEE (2019)

44. Wang, Y., Solomon, J.M.: PRNet: Self-Supervised Learning for Partial-to-Partial
Registration. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F.,
Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems.
pp. 8814–8826. Curran Associates, Inc. (2019)

45. Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., Cremers, D.: Efficient dense
scene flow from sparse or dense stereo data. In: Forsyth, D., Torr, P., Zisserman,
A. (eds.) European Conference on Computer Vision. pp. 739–751. Springer Berlin
Heidelberg (2008)

46. Wu, W., Wang, Z., Li, Z., Liu, W., Fuxin, L.: PointPWC-Net: A Coarse-to-Fine
Network for Supervised and Self-Supervised Scene Flow Estimation on 3D Point
Clouds. arXiv:1911.12408v1 (2019)

47. Zou, C., He, B., Zhu, M., Zhang, L., Zhang, J.: Learning motion field of LiDAR
point cloud with convolutional networks. Pattern Recognition Letters 125, 514–520
(2019)


	FLOT: Scene Flow on Point Clouds guided by Optimal Transport

