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ABSTRACT Unsupervised Domain Adaptation (UDA) for re-identification (re-ID) is a challenging task: to
avoid a costly annotation of additional data, it aims at transferring knowledge from a domain with annotated
data to a domain of interest with only unlabeled data. Pseudo-labeling approaches have proven to be effective
for UDA re-ID. However, the effectiveness of these approaches heavily depends on the choice of some
hyperparameters (HP) that affect the generation of pseudo-labels by clustering. The lack of annotation in the
domain of interest makes this choice non-trivial. Current approaches simply reuse the same empirical value
for all adaptation tasks and regardless of the target data representation that changes through pseudo-labeling
training phases. As this simplistic choice may limit their performance, we aim at addressing this issue. We
propose new theoretical grounds on HP selection for clustering UDA re-ID as well as method of automatic
and cyclic HP tuning for pseudo-labeling UDA clustering: HyPASS. HyPASS consists in incorporating
two modules in pseudo-labeling methods: (i) HP selection based on a labeled source validation set and
(ii) conditional domain alignment of feature discriminativeness to improve HP selection based on source
samples. Experiments on commonly used person re-ID and vehicle re-ID datasets show that our proposed
HyPASS consistently improves the best state-of-the-art methods in re-ID compared to the commonly used
empirical HP setting.

INDEX TERMS hyperparameter tuning, object re-identification, pseudo-labeling, unsupervised domain
adaptation

I. INTRODUCTION

Re-identification (re-ID) aims at retrieving images of a
person or an object of interest captured by different cameras.
While supervised learning has achieved excellent perfor-
mance on widely used re-ID datasets [56], it suffers from a
significant drop in performance when re-ID models are evalu-
ated cross-dataset, i.e., on images of a target context different
from the training context. To avoid a manual annotation,
the computer vision community has become increasingly
involved to seek how to transfer knowledge of a re-ID model
from a source domain to a target domain without identity (ID)

label on the target domain. Creative Unsupervised Domain
Adaptation (UDA) methods for re-ID have been designed.
These methods tailor the open-set nature of re-ID in which
classes of individuals at test time are different from those
seen during the training stage.
In particular, pseudo-labeling approaches have proven to be
the best UDA methods to learn ID-discriminative features
for the target domain [69] [45] [14]. For this purpose, these
methods rely on generating artificial labels for the target
unlabeled training data. Due to the open-set nature of the
re-ID UDA task, pseudo-labels are generally generated by
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FIGURE 1: Performance sensibility of the best state-of-the-
art methods SpCL [14] with respect to parameter ε (the
maximum neighborhood distance) of DBSCAN [9] for two
different cross-dataset experiments. HyPASS consistently en-
sures a better HP choice.

clustering the target training samples [45, 13, 14]. To this
end, it is necessary to specify values for the hyperparam-
eters (HP) that set the clustering algorithm. Density-based
clustering algorithms [1, 32, 9] are the most widespread in
the UDA re-ID literature. In particular, DBSCAN [9] is used
for its effectiveness in a large majority of pseudo-labeling
approaches, including the best performing ones [14, 61]. For
DBSCAN, one hyperparameter to set is ε, defined as the
maximum neighborhood distance. Despite the development
of approaches robust to noise in pseudo-labels [13, 14], their
final performance is still quite sensitive to the choice of ε.
In Fig. 1, there is a limited range of ε values for which
performance of SpCL [14], the best state-of-the-art methods,
remain near ‘optimal’ and not very sensitive. Indeed, given a
cross-dataset task, for example PersonX→Market (the re-ID
datasets are presented later in Sec. V-A), these values seem
condensed in a range around ε = 0.5, where performance
reaches a mAP of 75.8%. However, if ε is set to 0.6,
performance drops to 72.2%. For ε = 0.7, the performance
drop is even sharper: down to 7.8%.

Therefore, selecting a suitable value for this critical HP is
crucial to obtain the best performance. This behavior is not
specific to DBSCAN and the same can be said for HP k of k-
means (this will be discussed later in Sec. VI-C2 with Fig. 4).
The lack of labels for the target data makes this selection non-
trivial in the UDA context. Unlike the supervised setting, it
is impossible to form a labeled validation set to do HP tuning
with a re-ID performance metric on the target domain (mAP,
rank-1...). The state-of-the-art for UDA re-ID [45, 14] sets
these critical pseudo-labeling HP (like ε) by validation on one
adaptation task (e.g. PersonX→MSMT) with a labeled target
validation data set, then uses this empirical value for other

adaptation tasks. This empirical setting strategy assumes that
a value selected for HP from one adaptation task transfers
well to another one. However, this assumption only holds to a
certain extent and, to our knowledge, there is no rule to know
in advance how well this value transfers to a new task in the
UDA setting. In Fig. 1, by using this strategy for SpCL [14]
method, with the best value ε on PersonX→MSMT (ε = 0.6),
we get a mAP of 72.2% on the PersonX→Market task.
However, if we had chosen ε = 0.5 we could have obtained
a better mAP of 75.8%. This indicates that empirical setting
has its limits and that a task-specific choice of HP would
be more desirable in order to get maximum performance of
the pseudo-labeling method. Again, these remarks also apply
to other clustering algorithms (see [13] and Fig. 4 for k-
means). Moreover, the clusters depend on the learned feature
representation. As the feature representation varies through
learning, this HP choice might even be better if we could
cyclically adjust its value to the learned feature representation
before each pseudo-labeling updates by clustering.

Motivated by the above concerns, we propose to improve
existing pseudo-labeling methods by an automatic and cyclic
selection of clustering HP suitable to the adaptation task and
feature representation. To achieve this goal, our contribution
is twofold:
• Theoretical modeling and insights that shed light on

the conditions under which source-based validation is
relevant for the UDA re-ID clustering task are provided.

• A novel method to automate the selection of clustering
HP used by pseudo-labeling approaches is proposed:
HyperParameters Automated by Source & Similarities
(HyPASS). It consists in (i) a source-guided automatic
HP tuning performed before each clustering phase and
(ii) a conditional domain alignment of feature simi-
larities with source ID-discriminative features applied
during the training phase to improve HP selection.

Extensive experiments on commonly used and challenging
re-ID tasks for people or vehicles and ablative studies show
that HyPASS can be integrated into the best pseudo-labeling
methods and improves consistently re-ID performance com-
pared to a less well-chosen HP value with empirical setting.
The paper is structured as follows: In Sec. II , we review
the literature on UDA re-ID and HP selection for UDA
classification. Then, in Sec. III, we present our theoretical
grounds on clustering HP selection in the UDA re-ID setting.
This motivates the design of HyPASS presented in Sec. IV.
In Sec. V, HyPASS is evaluated on commonly used and chal-
lenging cross-dataset benchmarks, and thorough analysis and
discussion are conducted about its components and training
computation time.
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II. RELATED WORK
A. UNSUPERVISED DOMAIN ADAPTATION FOR re-ID
State-of-the-art methods for UDA re-ID can be divided into
two main families: Domain translation and Pseudo-labeling
methods.

1) Domain Translation Methods
In the one hand, Image-to-Image translation methods aim
at reducing the domain discrepancy at the pixel level. A
generative model [70] learns to translate images from one
domain to another while preserving some class-related infor-
mation. Source images are translated into target style then
used with their original labels to learn a re-ID model for
the target domain in a supervised way [52, 7, 37]. Existing
works [68, 41] further reduce the domain discrepancy at
the camera level, with additional target camera labels. But
overall, images translated into the target style highly depend
on the quality of the generated images and the source domain
appearances, thus failing to capture specific target re-ID cues.
In the other hand, domain discrepancy can also be directly
tackled at the feature level with Domain Invariant Feature
learning. In existing works, various assumptions are made to
learn a domain-shared space, such as a semantic attribute fea-
ture space [23], a re-ID disentangled/factorized feature space
[2, 21, 22] or a re-ID feature space learned by regularizing
the model with an unsupervised domain discrepancy loss
to align the source and target feature distributions [23, 33].
As Image-to-Image translation, Domain Invariant Feature
learning cannot learn target-specific discriminative features
that are not shared with the source domain.

2) Pseudo-Labeling Methods
Pseudo-labeling methods generally exploit a source-trained
model to initialize pseudo-identity labels for target data. The
pseudo-labels are generated by clustering the target data fea-
ture representations obtained by this model. Some works on
pseudo-labeling define their own strategy to assign labels to
target data based, for example, on similarity to a selected set
of prototypes [58, 69, 30, 51, 24, 59]. Most pseudo-labeling
methods are built on a self-learning iterative paradigm which
alternates between (i) optimization for target re-ID feature
learning with the lastly optimized model on target images
and (ii) pseudo-label prediction (pseudo-labeling) by feature
clustering [45, 63, 20, 48, 60, 71, 54, 3, 13, 61, 64, 71,
38, 62, 55]. Most of these works improve the classical self-
learning algorithm on not overfitting the pseudo-label errors,
by using teacher-student or ensemble of expert models [13,
64, 61] while other approaches focus on designing efficient
sample selection and outlier detection strategies [54, 3]. More
robust frameworks are also designed by optimizing losses
based on distance distributions [20, 27], by leveraging local
features [11], intra-inter camera features [53, 25], the labeled
source samples [8], multiple cluster views [10] or attention-
based model [19], or by mixing pseudo-labels with domain-
translation methods [60, 48, 71, 4], online pseudo-label re-
finery strategy, temporal ensembling and label propagation

[62, 66] or meta learning [55]. A recent approach, SpCL
[14], proposed self-contrastive learning during the training
phase, by leveraging the source and target samples. Most of
the above-mentioned pseudo-labeling methods, including the
best and most recent ones, use DBSCAN to pseudo-label
the target training samples [45, 63, 20, 48, 60, 71, 33, 54,
3, 64, 71, 13, 61]. They are all possibly affected by the
clustering sensibility to hyperparameters, as it is shown in
[45] and illustrated in Fig. 1, where performance of the best
state-of-the-art methods, SpCL, depends on the choice of a
critical HP. Other approaches, using less common clustering
algorithms, also seem concerned (shown later in Sec. VI-C2
with Fig. 4 for k-means). Moreover, to our knowledge, they
all choose a fixed empirical value to set this HP, which re-
mains the same no matter the adaptation task, and through all
the pseudo-labeling cycles. performance of these approaches
may suffer from this restricted HP setting. Our contribution
aims at overcoming those limiting aspects by integrating a
new automatic and cyclic HP selection phase into the pseudo-
labeling cycle. Our contribution aims to be general so that it
can be easily integrated and improve any existing or future
pseudo-labeling approach.

B. HYPERPARAMETER SELECTION FOR UDA
CLASSIFICATION
As HP selection in the UDA setting has been studied, to
our knowledge, only for the classification task, we focus
on the related work for this task. In UDA classification,
HP selection remains a major problem. Many approaches
in UDA classification use the same strategy as UDA re-
ID pseudo-labeling methods: the empirical setting of HP
values, used on different cross-dataset adaptation tasks [49,
40, 44, 35]. Manually labeling a part of the target dataset
to make a validation set [17] is out of the UDA context.
The use of a source validation set [12, 39] offers biased
estimation of the classification target expected risk because
of the domain discrepancy. Importance weighting methods
[46, 29, 5] tackle this issue by weighting the estimated risk
with source samples but they still suffer from high variance
estimation. The recent work [57] improves these approaches
and proposes an importance-weighted cross-validation in
the feature space to reduce the source estimator variance.
However, two major aspects prevent its application for HP
selection of the pseudo-labeling UDA clustering. First, it
requires the estimation of probability densities of the source
and target distributions (in the feature space). cyclically inte-
grated in a pseudo-labeling framework, these densities should
be re-estimated before each update of the pseudo-labels by
clustering. This would be harder to integrate in any pseudo-
labeling methods, computationally expensive and the ratio
of estimated densities could increase approximation errors.
Finally, the approach is adapted for classification problems
only, which differs from the clustering task.
To our knowledge, there is no general work on clustering HP
selection adapted to UDA pseudo-labeling. That’s why we
recast the theory behind these source leveraging approaches
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[46, 29, 5, 57] to fit the clustering task. Moreover, in order
to better integrate it into pseudo-labeling approaches, our ap-
proach takes a new turn compared to those ones, by avoiding
estimation of importance weights: we propose to optimize the
model for domain alignment in the feature similarity space
with source ID-discriminative features to improve the esti-
mation with a source validation set by reducing its variance.

III. THEORETICAL GROUNDS OF HYPERPARAMETER
SELECTION FOR CLUSTERING IN UDA re-ID
The selection of HP λ ∈ Rnλ , nλ ∈ N∗ consists in finding
the value λ∗ ∈ Rnλ that minimizes a defined expected
risk. Unlike the models learnable parameters, HPs are not
directly learnt during the training loop of a machine learning
pipeline. A typical strategy to estimate λ∗ is model selection:
among a set of candidate models defined by different HP
values, we choose the one that gives the lowest empirical risk.
This strategy is not applicable with the UDA setting because
target annotations are not available. Moreover, as discussed
in Sec. II-B, existing approaches (for classification) are not
directly adapted for re-ID. The goal of this section is thus to
give theoretical leads that will give us more insights about
two questions: How do the source data bias the target risk
estimation? How to overcome this bias? We first introduce
notations and the problem formulation (Sec. III-A). Then
we define the expected risk to optimize for the clustering
task (Sec. III-B), in order to deduce an empirical estimate
based on the source data (Sec. III-C). Finally, a focus is
given to the variance of this estimate to better understand
how to improve HP selection by reducing it (Sec. III-D).
For this, we first show that the variance can be reduced by
reducing the domain discrepancy between the source and
target in the feature similarity space (Sec. III-E1). Then we
give theoretical analysis on the pairwise ratio, showing that
with reasonable assumptions, the source empirical risk can
be used directly to do efficient HP selection (Sec. III-E2).

A. PROBLEM FORMULATION AND NOTATIONS
1) Offline vs Online Cyclic HP tuning for clustering
If we focus on the iterative pseudo-labeling paradigm, we can
note that the learned feature representation changes during
each training phase of an iterative cycle. Since the pseudo-
labels are updated by clustering in this representation space,
we intuitively expect the optimal clustering hyperparameter
value to change when this representation changes (as it will
be shown empirically in Sec. VI-B). The model selection is
classically done via an evaluation criterion on the "main" task
(in our case the re-ID as a retrieval task). Proceeding in this
way necessarily implies training completely with selected
HP values, evaluating (with re-ID metrics such as mAP)
and repeating again and again. This would thus make the
selection computationally expansive (a training time analysis
is given in Sec. VI-C4). To overcome this, our idea is to
perform an online model selection directly at the clustering
task level, at each iterative cycle.

2) Modeling the clustering task
As introduced in Sec. III, the first step is to define the
expected risk to be minimized w.r.t λ for HP selection. This
expected risk RL,p (defined in [50]) is defined in relation
to the unknown distribution of data characterized by the
probability density p and a cost function L which depends
on our underlying task: a clustering task for our problem. A
clustering is considered "good" when it generates pseudo-
labels related to the ground-truth identity labels. Our idea
is therefore to model this clustering task as a verification
problem. For this, let’s suppose that the re-ID data are
i.i.d and come from an unknown joint distribution given by
the density p(x, x′, r) defined on χ × χ × {−1, 1} where
χ ⊆ Rnχ , nχ ∈ N represents the set of images for which
r = 1 if x and x′ have the same ID and r = −1 otherwise.
Thus, the goal is to find a clustering function Cλ which is
expected to classify all the m ∈ N pairs of images in a
set X = ((xi, x

′
i)1≤i≤m) as their respective ground truth

labels are R = (ri)1≤i≤m. We also assume that clusters are
predicted from a measure of similarities between elements in
the set. For the set X , the pairwise similarities are given by
S(X) = (s(xi, x

′
i))1≤i≤m, where s : χ × χ → R is a given

similarity function. Therefore, Cλ is a Rm → {−1, 1}m
function.

B. SIMILARITY-BASED CLUSTERING RISK
MINIMIZATION
By definition, following previous notations, the expected risk
RL,p for the clustering task can be seen as a function of λ:

RL,p(λ) ,
∫
X,R

L
(
Cλ(S(X)), R

)
p(X,R)dXdR , (1)

where p(X,R) is a joint probability density defined on
(χ× χ)m × {−1, 1}m.
The UDA setting for the clustering task does not involve
only one distribution associated to its density p, but two
distributions related to the source S and the target T . Their
joint probability densities are noted respectively pS(X,R)
and pT (X,R). To perform source-based HP selection, we
need to link the target expected risk RL,pT defined by Eq. 1
with pS .

C. SIMILARITY IMPORTANCE-WEIGHTED RISK
We consider the re-ID UDA context with the target and
source distributions defined above. Our goal is to link the
target expected risk (Eq. 1) with pS . By developing the target
expected risk, we have:

RL,pT (λ) =

∫
X,R

L(Cλ(S(X)), R)pT (X,R)dXdR

=

∫
X,R

pT (X,R)

pS(X,R)
L(Cλ(S(X)), R)pS(X,R)dXdR

=

∫
X,R

w(X,R)L(Cλ(S(X)), R)pS(X,R)dXdR

.
(2)

4 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

With the pairwise weight ratio w defined as:

w(X,R) ,
pT (X,R)

pS(X,R)
. (3)

Then we can define the pairwise weighted risk as:

RL,w(λ) ,
∫
X,R

w(X,R)L(Cλ(S(X)), R)pS(X,R)dXdR.

(4)
From Eq. 4, we can deduce the associated pairwise weighted
empirical risk which is an unbiased estimator of RL,pT (λ)
with finite source samples:

R̂L,w(λ) =
1

N

N∑
i=1

w(Xi, Ri)L(Cλ(S(Xi)), Ri), (5)

where {(Xi, Ri)}1≤i≤N , N ∈ N∗ are samples from
pS(X,R).

D. VARIANCE OF THE ESTIMATOR
Even if the estimator given by Eq. 5 is unbiased, a high
variance can add noise to HP selection with source samples.
Before giving an expression of the estimator’s variance, we
define the exponential in base 2 of the Rényi divergence
(called Rényi divergence in the rest of the paper for simplic-
ity) of order α ≥ 0, α 6= 1 between the source and target
distribution described by the densities pS and pT as:

dα(pT ||pS) ,

(∫
X,R

pS(X,R)α

pT (X,R)α−1
dXdR

) 1
α−1

=

(∫
X,R

w(X,R)−αpT (X,R)dXdR

) 1
α−1

=

(
E

(X,R)∼pT
[w(X,R)−α]

) 1
α−1

.

(6)
Let Y be Y = w(X,R)L(Cλ(S(X)), R) for (X,R) ∼

pS(X,R). Using the lemma 2 from Cortes et al. [5] and with
the definition of R̂L,w (Eq. 5), we can get a bound on the
variance of R̂L,w(λ):

V ar(Y ) = E
(X,R)∼pS

[Y 2]− E
(X,R)∼pS

[Y ]2

≤ dα+1(pT ||pS)RL,pT (λ)1−
1
α − E

(X,R)∼pS
[Y ]2

≤ dα+1(pT ||pS)RL,pT (λ)1−
1
α −RL,pT (λ)2

V ar(R̂L,w) ≤
dα+1(pT ||pS)RL,pT (λ)1−

1
α −RL,pT (λ)2

N
,

(7)

This bound on the empirical risk variance confirms the
intuition that the more source (validation) samples we have,
the lesser is the variance. However, in practice, the amount
of labeled source samples is limited. Therefore we cannot act
on this constant in order to improve our estimation. However,
this bound on the empirical risk variance also shows that the
greater the dα+1(pT ||pS), the greater the variance of the esti-
mator. In order to control this variance, and therefore improve
the use of the pairwise weighted empirical risk estimator

for model selection, it is necessary to control dα+1(pT ||pS)
which measures the domain discrepancy between pT and pS

according to the Rényi divergence. Moreover, reducing this
divergence should make the estimation less sensible to the
number of source validation samples according to Eq. 7.

E. ADDRESSING THE VARIANCE AND WEIGHT RATIO
1) Using feature similarity
The input space (images) is high-dimensional. Therefore,
dα+1(pT ||pS) is more likely to be greater (and thus the
variance of the estimator given by Eq. 7) than the divergence
between probability distributions in a lower-dimensional fea-
ture space ( as stated in Sec. 4.2 of [57]). Indeed, the pairwise
weight ratio can more likely grow to infinity since pS when
pT 6= 0 is more likely to be 0. Moreover, a feature space
induced by a learnable feature encoder could allow us to
reduce the divergence by penalizing it during the learning
phase.
Usually in re-ID, a feature space is learned so that a given
similarity function used in this space can measure ID related-
ness between images. Therefore, we introduce a feature en-
coderE : χ→ RnE , nE ∈ N and redefine s : RnE×RnE →
R. We also define SE the feature similarity function with
respect to E such as SE(X) = (s(E(xi), E(x′i)))1≤i≤m.
Thus, SE , projects the set of images X into a new set
S ∈ Rm, in a space we call the feature similarity space.
Let pSSE (S,R) (resp. pTSE (S,R)) be the feature similarity
distribution densities of S (resp. T ) induced by SE and
defined on Rm × {−1, 1}m. We consider this space as our
new input space for computing the risks and therefore if we
note

wSE (S,R) =
pTSE (S,R)

pSSE (S,R)
, (8)

with analogous definitions and notations, we deduce the
pairwise similarity weighted empirical risk R̂L,wSE :

R̂L,wSE (λ) =
1

N

N∑
i=1

wSE (Si, Ri)L(Cλ(Si), Ri), (9)

where {(Si, Ri)}1≤i≤N , N ∈ N are samples from pSSE .
In practice, we have directly access to sets of pairwise image
samples {(Xi, Ri)}1≤i≤N defined above and we use SE to
get {(Si, Ri)} = {(SE(Xi), Ri)}.
According to Eq. 4, R̂L,wSE is an unbiased estimator of
the expected target risk RL,pTSE , that we can use to do HP
selection of λ with source labeled samples. We expect this
new estimator to be better for HP selection. Indeed, we expect
it to have a lower variance than due to the lower domain
discrepancy in this learnable low-dimensional feature space
(as stated in Sec. 4.2 of [57]):

V ar(R̂L,wSE ) ≤ V ar(R̂L,w). (10)

VOLUME 4, 2016 5
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FIGURE 2: Our HyperParameters Automated by Source & Similarities (HyPASS) cyclically integrated in iterations of a
classical pseudo-labeling framework.

In addition, the pairwise data samples being i.i.d. (see
Sec. III-A), the pairwise similarities are i.i.d. too and there-
fore the densities in the feature similarity space can be written
as:

{
pSSE (S,R) = pS(R)Πm

i=1p
S
SE

(Si|Ri)

pTSE (S,R) = pT (R)Πm
i=1p

T
SE

(Si|Ri) .

Since pS(R) and pT (R) are fixed by the domain distribu-
tions and are independent from E, we assume that E can be
learned to penalize the conditional domain discrepancy (i.e.
the the divergence between the conditional distributions) in
the feature similarity space in order to improve HP selection
with our estimator R̂L,wSE .

2) Computing the pairwise weight ratio
To sum up, our goal is to do HP selection of λ by minimizing
RL,pT (Eq. 4) w.r.t λ. For this, we established the expression
of the pairwise weighted empirical risk estimator R̂L,wSE
with source samples (Eq. 9). This estimator will be improved
by learningE to penalize the conditional domain discrepancy
in the feature similarity space. Using R̂L,wSE requires to
compute wSE . As mentioned in Sec. II-B, unlike importance
weighted risk estimation approaches for UDA classification,
we do not wish to estimate the pairwise weight ratio in a

pseudo-labeling framework: this would require estimating
the probability density of this ratio at each new pseudo-
labeling step. This would be computationally expensive.
Moreover, the quotient of estimated probabilities in the ratio
could increase approximation errors and therefore add noise
to the risk estimate. To avoid computing pairwise weight
ratio, it would be desirable that we can do HP selection using
the source empirical risk R̂L,pSSE (λ).

To do relevant HP selection using R̂L,pSSE (λ) in-

stead of R̂L,wSE (λ) , it is therefore necessary that
argminλ R̂L,pSSE (λ) ≈ argminλ R̂L,wSE (λ). In other

words, this ensures that selecting the best λ with R̂L,pSSE (λ)

is the same as selecting the best λ with R̂L,wSE (λ).
Given the expression of R̂L,wSE (λ) (Eq. 9), a direct suffi-
cient condition to ensure this is that:

∀1 ≤ i ≤ N,wSE (Si, Ri) = c, c ∈ R+. (11)

In practice, Eq. 11 can be satisfied by using the whole
source validation set as a unique pair (S,R) to do HP
selection. This will be part of our framework design choice
as discussed later in Sec. IV-A in what we call One-clustering
evaluation.

To summarize, these theoretical considerations show us
that to select HP λ from the source examples, it is sufficient to
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minimize the source empirical risk, provided that we satisfy
condition (i) and that we minimize the conditional domain
discrepancy in the feature similarity space w.r.t E.

IV. SOURCE-GUIDED SELECTION OF
PSEUDO-LABELING HYPERPARAMETERS AND
SIMILARITY ALIGNMENT
We wish to apply the theory discussed above and integrate
it into a pseudo-labeling algorithm. For this purpose, we
propose a novel method integrated intto the classical iterative
pseudo-labeling paradigm [45]: HyperParameters Automated
by Source & Similarities (HyPASS). Fig. 2 gives an overview
of the incremented method. HyPASS consists in integrating
a new clustering HP selection phase (Auto HP TUNING)
from a source validation set before each clustering update
and optimizing the model to minimize the conditional feature
similarity domain discrepancy Lcondalign. In this part, we give
more details about this two major novelties.

A. AUTOMATIC CLUSTERING HP TUNING
Our method proposes a new step of automatic selection of
clustering HP λ. This selection is cyclic because it takes place
at each cycle before the update of the pseudo-labels, in order
to adapt the selected HP to the representation learned by E.

One-clustering evaluation
We suppose we have access to a separate labeled source
validation set DSval of NSval samples. We also assume that
HP search is restricted to a finite size set Λ ⊂ Rnλ . Given
a clustering criterion L and a HP value λ to evaluate, HP
tuning phase uses the source empirical risk with samples
from DSval. Remember that to satisfy the condition (i) for
using the source empirical risk , we should use the whole set
of validation samples and on a one-clustering evaluation of
the associated risk. Moreover, it can be very computationally
expensive to do multiple clusterings to evaluate a unique HP
value, and NSval can be ‘too small’ to split DSval into different
subsets for clustering. Therefore, we decide to only perform
one clustering on the full set DSval to evaluate one parameter
value of λ with the source empirical risk. At the end of this
step, we keep the value λ∗ that gives the lowest empirical risk
value.

B. LEARNING WITH CONDITIONAL DOMAIN
ALIGNMENT OF FEATURE SIMILARITIES.
1) Learning features for re-ID
From the pseudo-labels, the model is trained to minimize a
loss function LTID in order to learn an ID-discriminative fea-
ture representation on the target domain. This loss function
can be for example the cross entropy loss, the triplet loss,
a contrastive loss function or the sum of several of these
terms. Besides, we also wish this representation to be ID-
discriminative on the source domain by optimizing a loss
function LSID with the labeled source samples. Intuitively,

we motivate this choice in order not to degrade the discrim-
inativeness of the representation on the target domain, while
optimizing the feature similarity alignment between source
and target.

2) Domain Discrepancy
Reducing the domain discrepancy in the conditional simi-
larity feature space is a key aspect to reduce the variance
when using the source empirical estimation (as shown in
Sec. III-E2). Given a differentiable domain alignment cri-
terion Lalign (e.g., Maximum Mean Discrepancy (MMD)
[44]), we optimize the domain alignment in the conditional
feature similarity space given by the formula:

Lcondalign = Lalign(SS+, S
T
+ ) + Lalign(SS−, S

T
− ) , (12)

where SS+, ST+ , SS− and ST− are the similarities between
features of, resp., positive pairs of the source, positive pairs
of the target, negative pairs of the source and negative pairs
of the target in the feature similarity space. Minimizing this
term aligns intra-cluster similarity distributions but also inter-
cluster similarity distributions between domains.

3) Global criterion
The total loss Ltotal is given by:

Ltotal = LTID + LSID + Lcondalign. (13)

Note that we choose not to weight the different loss terms
in Ltotal in order not to introduce new additional HP in the
UDA context. Indeed, experiments in Sec. V will show that
this loss choice already allows to get performance improve-
ments from HyPASS in various UDA benchmarks.

C. GENERAL PSEUDO-CODE OF HyPASS
We propose in the Algo. 1 a pseudo-code for training a
pseudo-labeling re-ID UDA framework by using HyPASS.
The proposed automatic hyperparameter tuning from source
data (AUTO HP-TUNING) called by Algo. 1 is detailed in
Algo. 2 introduced by our approach.
Algo. 1 describes the whole HyPASS training paradigm.
A model is first initialized (INITIALIZATION) to predict
the first pseudo-labels for the target training set. Then the
algorithm iterates cyclically through a FEATURE EXTRAC-
TION phase with the actual model for the source validation
set and the target training set. Then during the AUTO HP-
TUNING phase a value for λ∗ is automatically selected by
maximizing a clustering quality criteria. Then this HP value
is used to pseudo-label/cluster the target training features
during the PSEUDO-LABELING phase. Then the model is
fine-tuned with the source training set and the pseudo-labeled
target training using HyPASS loss function (see Eq. 13).
Algo. 2 further details the AUTO HP-TUNING phase, where
the algorithm iterates through different HP values proposed
by a HP selection strategy or function which are used to
pseudo-label the source validation set and compute with the
source label a clustering quality metric to be maximized.
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Algorithm 1 HyperParameters Automated by Source & Sim-
ilarities (HyPASS)

Require: Labeled source training set DS

Require: Labeled source validation set DSval: D
S
val ∩DS =

∅
Require: Unlabeled target data DT

Require: Clustering/Pseudo-labeling function Cλ with HP
λ

Require: HP list Λ
Require: Clustering/Pseudo-Labeling quality metric L (to

maximize)
Require: Loss Functions for Training: LSID, LTID, Lalign
Require: Number of training epochs Nepoch
Require: Feature encoder E

INITIALIZATION:
Compute SS , ST the sets of feature similarities for all
pairs of images in DS and DT , respectively.
Train E to minimize Linit ← LSID + Lalign(SS , ST ).
PSEUDO-LABELING TRAINING:
for t = 1 to Nepoch do

FEATURE EXTRACTION: Compute target training
features F T and source validation features FSval from
DT and DSval.
AUTO HP-TUNING: Find λ∗ that maximizes L with
pseudo-labeling of FSval by Cλ∗ and DSval ground-truth
labels.
PSEUDO-LABELING: Pseudo-label some/all target
samples by Cλ∗ with F T .
TRAINING:
Compute SS+/SS−, ST+ /ST− the positive/negative sets of
feature similarities in DS and DT , respectively.
Train E to minimize Ltotal ← LTID + LSID +
Lalign(SS+, S

T
+ ) + Lalign(SS−, S

T
− ) with DS and

pseudo-labeled DT .
end for
Return E

V. EXPERIMENTS
A. DATASETS AND PROTOCOL
1) Datasets

We study HyPASS on different re-ID adaptation tasks: Person
re-ID and Vehicle re-ID. Person re-ID is evaluated on the
large re-ID dataset MSMT17 [52] (MSMT): used as the target
domain, it offers a challenging adaptation task due to its large
number of images and identities in its gallery (cf. dataset
statistics in Tab. 1). We also use Market-1501 [67] (Market)

TABLE 1: Dataset composition

Dataset train
IDs

train
images

test
IDs

gallery
images

query
images

query images
per ID

train images
per ID

Market [67] 751 12,936 750 16,364 3,368 4 17
Duke [43] 702 16,522 702 16,364 2,228 3 24

PersonX [47] 410 9,840 856 17,661 30,816 36 24
MSMT [52] 1,041 32,621 3,060 82,161 11,659 4 31

Vehicle-ID [26] 13,164 113,346 800 7,332 6,532 8 9
Veri [28] 575 37,746 200 49,325 1,678 8 66

VehicleX [28] 1,362 192,150 N.A. N.A. N.A. 4 141

Algorithm 2 AUTO HP-TUNING

Require: Number of HP values to validate Nsearch
Require: Hyperparameter (HP) search function
search_next()

Require: Source validation set features FSval and labels Y Sval
Require: Pseudo-labeling function Cλ∗
Require: Pseudo-labeling quality metric L

Initialize best HP value λ∗

Initialize best metric value L∗ ← −∞
for t = 1 to Nsearch do
λ← search_next()
Get pseudo-labels Ŷ Sval by clustering FSval with Cλ
Compute L← L(Ŷ Sval, Y

S
val)

if L ≥ L∗ then
λ∗ ← λ
L∗ ← L

end if
end for
Return λ∗

as the target domain using the synthetic dataset PersonX as
the source domain. PersonX [47] is composed of synthetic
images generated on Unity with different types of person ap-
pearances, camera views and occlusions. Then we also report
classical benchmarks between Market and DukeMTMC-reID
[43] (Duke). Vehicle re-ID is less used than Person re-ID for
UDA re-ID benchmarking. However, we find it interesting to
test our module on a different kind of object of interest and
on a potentially different domain discrepancy. We use for this
task Vehicle-ID [26], Veri-776 [28] (Veri) datasets as source
or target domains and the synthetic vehicle dataset VehicleX
[34] as source domain.

2) Protocol
The feature encoder E is evaluated on the target test set.
When it is available, we use the source query set as source
validation setDSval since it is never used elsewhere during the
training and no official validation set has been built for these
benchmarks. As no test sample is available for VehicleX, we
randomly remove 5000 images from the training set to build
the validation set. We report the Mean Average Precision
(mAP) and rank-1 (top-1) in percents on the target test set
after UDA training.

3) Remarks
In the different protocols, the source validation sets are very
varied in size (number of images) and distinct from the
target training set in terms of number of IDs and number
of samples per ID. According to our theoretical insights in
Sec. III-E2, we do not expect these statistic differences to
influence a good selection of λ. This will be confirmed by
the experiments in Sec. VI-C3 for further discussion and
experiments about this point and the choice of validation set.
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TABLE 2: Main implementation choices for experiments.

Theory Implementation choices
λ Maximum Neighborhood Distance ε
Λ Bayesian Search [15] with ε ∈ [0, 2]
Cλ DBSCAN [9]
L Adjusted Random Index (ARI) [42]
E ResNet-50 [16] initialized on ImageNet [6]

Lalign Maximum Mean Discrepancy (MMD) [44]
s based on L2 distance with normalized features

LSID, L
T
ID

Cross-Entropy & Triplet Losses (UDAP [45] & MMT [13])
Contrastive Loss (SpCL [14])

B. IMPLEMENTATION CHOICES AND DETAILS
1) Implementation Choices
a: Frameworks
In order to show its effectiveness, we integrate HyPASS
within 3 state-of-the-art methods: UDAP [45], MMT [13]
and SpCL [14]. UDAP is a classical pseudo-labeling method,
while MMT and SpCL, which manage noise in pseudo-
labels, are the best approaches on UDA re-ID. We focus
our experiments on these three frameworks for mainly three
reasons: these are renowned re-ID approaches, supplied
with a code for reproducibility, and with the best UDA
re-ID performance on different adaptation tasks (for SpCL
particularly).

b: Clustering algorithm
We focus our experiments on DBSCAN [9] clustering for
two reasons: it is the most widespread in the state of the art
and it is used by the best approaches (cf. Sec. II). Thus, our
experiments focus on the selection of ε HP that is critical for
performance (cf. Sec. I). However, experiments are also made
with other clustering algorithms (k-means, Agglomerative
Clustering [1], HDBSCAN [32]) to show the genericity of
HyPASS (cf. Sec. VI-C1). The main implementation choices
are summarized in Tab. 2.

c: Empirical setting comparison
Pseudo-labeling state-of-the-art approaches use empirical
values to set HP ε in DBSCAN. The empirical setting strategy
supposes that, in addition to a source labeled dataset, we have
access to labels of a part of a calibration target dataset. There-
fore, it becomes possible to evaluate the re-ID performance
for this cross-dataset adaptation task for different values of
ε. Then, the ε associated to the best mAP is selected, and
reused for other cross-dataset adaptation tasks with another
target (unlabeled) dataset.
We can choose PersonX as the source dataset. Indeed, Per-
sonX being a synthetic dataset, it is free to label and it
does not raise any problem of privacy access to real people
identities. For the sake of a robust empirical setting, we
suppose that we have access to the test set of MSMT, the
biggest and most challenging person re-ID dataset. We train
different models with best SOTA method SpCL, for different
values of ε (ε = 0.3, 0.4, 0.5, 0.6, 0.7 see Fig. 1), for the
cross-dataset adaptation task PersonX→MSMT. The mAP

of each model is computed on MSMT test set, and the ε
associated with the best mAP is kept. After experiments, as
shown on Fig. 1, we obtain ε = 0.6. This value will therefore
be reused for other cross-dataset adaptation task, with other
target domains, such as PersonX→Market. In Sec. VI-C1,
we compare HyPASS to this empirical setting strategy (i.e.
re-use ε = 0.6). Sec. VI-A gives extensive results for more
cross-dataset experiments comparing this empirical strategy
with HyPASS.

d: HDBSCAN comparison

HDBSCAN is a hierarchical clustering version of DBSCAN
that automatically selects a parameter like ε, according to an
unsupervised criterion of stability of the clusters in the hier-
archy [32]. It therefore seems like a reasonable alternative to
DSBCAN with empirical setting since it has an unsupervised
heuristic to automatically select an ε value. Indeed, we can
see HDBSCAN as an automatic HP tuning of ε and it is
therefore relevant to compare HyPASS (DBSCAN) to HDB-
SCAN on different state-of-the-art methods. The comparison
is done in Sec. VI-A. HDBSCAN still needs a value for nmin
controlling the minimum of samples per cluster that is set
to 10 during experiments since it gives the best results for
different cross-dataset benchmarks in other state-of-the-art
work [63].

2) Implementation Details

Our framework is implemented in PyTorch [36]. We use 4 x
24Go NVIDIA TITAN RTX GPU for our experiments.

a: Data preprocessing

We build two mini-batches: one of size 64 for source images
and another of the same size for target ones. Each batch is
made of P=16 identities and K=4 instances per identity (and
sampled randomly at initialization phase for target due to lack
of labels). Images are resized to 256x128 for person images
as in [67, 43, 52] and 224x224 for vehicle ones as in [26,
28]. We randomly flipped and cropped images but we do not
use random erasing augmentation during initialization phase
since it has been shown to be harmful for direct transfer [31].

b: Feature encoder/Network

For state-of-the-art comparison, we use a Resnet-50 [16]
pretrained on ImageNet [6] as our backbone. The last stride
of ResNet-50 is set to 2 to have higher resolution feature map.
After the global average pooling layer, we add a BatchNorm
layer and then the classification layer(s) which is initialized
with the Kaiming initialization [16]. At test time, we use
the normalized 2048 pre-classification features with squared
Euclidean distance to compute the ranking lists.
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c: Domain Alignment
For Lalign, we use the MMD PyTorch implementation of D-
MMD paper [33] with the Gaussian kernel 1. The features
are normalized before computing the (conditional) pairwise
feature similarities.

d: Initial phase
The network is trained during 60 epochs. The learning rate
is set to 3, 5.10−4 and is decayed by a factor 10 every 20
epochs. Since we have not yet pseudo-labels for the target
data, the classical Cross Entropy Loss and Triplet Loss are
optimized on the source samples only, jointly with Lalign on
the source and target unlabaled samples.

e: HP tuning
We perform HP search with Bayesian optimization. We
choose Bayesian optimization since it is a powerful HP
search approach that is able to look for relevant HP values
(Λ) according to an updated belief [15]. We use the library
GPyOpt 2 using Gaussian processes. We just used the default
Bayesian optimizer parameters using basic Gaussian pro-
cesses as the modeling function and Expected Improvement
(EI) as the acquisition type. The search range for ε is set to
[0, 2] (it is the whole range of variation for ε since the features
are normalized and thus belong to the unit hypersphere). For
k-means variant, k is searched in the full range [1, number
of target training samples]. At each Auto HP tuning step, we
evaluate NHP = 50 hyperparameter values proposed by the
Bayesian search. With this setting, the initial value can be
sampled randomly since it has no influence on performance
as shown later in Sec. VI-C5.
The Adjusted Random Index (ARI) [18] is computed be-
tween the source validation set ground truth labels and the
cluster predictions using the scikit-learn implementation 3.

f: Pseudo-labeling training phase
Implementation details for this step are framework-specific.
We put the symbol "*" after the name of the framework to
indicate that it corresponds to our version (to include Hy-
PASS and allow easier experimental comparisons) based on
the original framework. We give the specific implementation
details below. If not specified we make the same choices
(optimizer, number of epochs,...) as given in their respective
paper.

3) Framework-specific details
a: UDAP*
We build our code from the UDAP [45] implementation pub-
licly available on the official UDAP GitHub 4. For UDAP, we

1https://github.com/djidje/D-MMD
2https://sheffieldml.github.io/GPyOpt/
3https://scikit-learn.org/
4https://github.com/LcDog/DomainAdaptiveReID

use an initialization phase before the pseudo-labeling UDA
learning. DBSCAN is run on k-reciprocal encoded features
with k = 30 whereas the k-means version directly uses
the feature as in the original paper. The minimum samples
nmin per cluster is set to 4 (as in paper [45]). Compared to
the UDAP paper, we use only one 2048 feature space with
Triplet Loss, and add a Cross Entropy Classification loss for
the target pseudo-labeled samples (since it improves perfor-
mance). To add HyPASS, we add to this UDAP* loss, the
classification and triplet losses LSID for the source samples
(by initializing a new classification layer for source IDs) as
well as Lalign. Other training hyparameters are the same as
in the UDAP paper [45].

b: MMT*
We build our code from the MMT [13] implementation pub-
licly available on the official MMT GitHub 5. For MMT, we
use an initialization phase before the pseudo-labeling UDA
learning. DBSCAN is run on k-reciprocal encoded features
with k = 30 whereas the k-means version directly uses the
features as in the original paper [45]. The minimum samples
nmin per cluster is set to 4. To add HyPASS, we only add to
the original MMT global loss function, the hard classification
and triplet losses defined in paper [45], for the source samples
(by initializing a new classification layer for source IDs), as
well as Lalign. Other training hyparameters are the same as
in MMT paper [45].

c: SpCL*
We build our code from the SpCL [14] implementation
publicly available on the official SpCL GitHub 6. It does not
need an initialization phase and the ID loss on source samples
is already implemented and used in the original framework
with the contrastive loss. To include HyPASS, we add Lalign
to the global objective and remove the cluster criterion (for
HyPASS and HDBSCAN experiments). Other hyparameters
are the same as in the SpCL paper [14].

Our implementations based on the authors’ code for UDAP*,
MMT* gives better performance than those reported in
the papers. For SpCL*, we obtained only slightly inferior
performance (-1.1 p.p. at worst), which should not interfere
with conclusions that will be made from experiments in
Sec. VI.

5https://github.com/yxgeee/MMT
6https://github.com/yxgeee/SpCL
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TABLE 3: Comparison of HyPASS with empirical setting strategy on pseudo-labeling state-of-the-art methods on person re-ID
adaptation tasks. * means we used authors’ code and add HyPASS.

HP selection Market→MSMT PersonX→Market PersonX→MSMT Market→Duke Duke→Market
mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

UDAP* [45] Empirical (ε = 0.6) 12.0 30.6 48.4 68.4 10.5 26.3 50.1 70.2 55.3 78.1
HDBSCAN 11.8 29.8 48.1 68.3 10.3 25.9 51.3 72.5 55.9 80.0

HyPASS 21.4 48.8 62.2 73.7 15.6 36.4 64.9 78.0 69.8 87.1

MMT* [13] Empirical (ε = 0.6) 23.8 49.9 71.1 66.8 17.4 39.0 65.3 78.1 73.6 89.4
HDBSCAN 23.0 47.8 70.9 66.1 18.0 41.1 65.2 78.2 74.2 90.4

HyPASS 25.1 52.2 74.5 88.9 20.3 45.9 68.8 82.8 76.0 90.1

SpCL* [14]
Empirical (ε = 0.6) 25.7 53.4 72.2 86.1 22.1 47.7 68.3 82.5 76.1 89.8

HDBSCAN 24.6 52.0 70.8 86.5 21.1 46.9 66.4 81.3 75.8 89.5
HyPASS 27.4 55.0 77.9 91.5 23.7 48.6 71.1 84.5 78.9 92.1

TABLE 4: Comparison of HyPASS with empirical setting
strategy on pseudo-labeling state-of-the-art methods on ve-
hicle re-ID adaptation tasks. * means we used authors’ code
and add HyPASS.

HP selection VehicleID→Veri VehicleX→Veri
mAP rank-1 mAP rank-1

UDAP* [45] Empirical (ε = 0.6) 35.6 74.1 35.0 75.9
HDBSCAN 35.9 75.0 35.5 79.9

HyPASS 36.9 74.9 37.0 77.0

MMT* [13] Empirical (ε = 0.6) 36.4 74.2 36.3 75.8
HDBSCAN 37.0 75.9 36.5 75.9

HyPASS 36.9 75.0 36.8 76.1

SpCL* [14]
Empirical (ε = 0.6) 37.6 79.7 37.4 81.0

HDBSCAN 37.4 79.9 37.5 79.8
HyPASS 40.0 81.1 40.3 81.9

VI. RESULTS AND ANALYSIS OF HyPASS.
A. EFFECTIVENESS OF HyPASS ON
STATE-OF-THE-ART METHODS.
1) Performance analysis of HyPASS.
a: HyPASS vs empirical setting.
Results in resp. Tab. 3 and Tab. 4 show that our automatic HP
selection improves the three SOTA frameworks, on all person
re-ID and vehicle re-ID adaptation tasks. This improvement
is particularly significant for UDAP: it increases, e.g., the
mAP by +9.4 p.p. on Market→MSMT and +13.8 p.p. on
PersonX→Market over the empirical setting strategy. This
improvement of using HyPASS over the empirical setting
strategy is also consistent for "easier" adaptation tasks such
as Duke→Market (+14.5 p.p.) and Market→Duke (+14.8
p.p.). HyPASS seems thus to benefit a simple pseudo-labeling
approach like UDAP by making it competitive with more
complex approaches like MMT, designed to be resistant to
pseudo-label noise. Our contribution also improves consis-
tently MMT and SpCL (the best state-of-the-art approaches)
on all tasks: there is, e.g., up to +4.1 p.p. mAP improvement
on PersonX→Market for SpCL compared to the SpCL re-
ported performance (using empirical setting). Furthermore,
we highlight that SpCL with HyPASS for cross-dataset UDA
re-ID is able to outperform (or at least be competitive with)
performance of the latest UDA re-ID and unsupervised ap-
proaches: for example, SpCL + HyPASS reaches 71.1 %
mAP on Market→Duke whereas [53, 55, 62, 66, 4, 65] reach
respectively, 59.1%, 53.8%, 69.2%, 69.2%, 69.1% and 67.6%

mAP on Duke or Market→Duke.
We recall that experiments have been conducted with an
empirical setting performed on PersonX→MSMT (ε = 0.6).
A different empirical setting choice, on PersonX→Market
for example, would let to an empirical value ε = 0.5
(see Fig. 1), and therefore improvements given by using
HyPASS would be greater on other cross-datasets. Indeed,
with ε = 0.5, the performance are further degraded for SpCL
on PersonX→MSMT (20.3% mAP). Therefore HyPASS im-
proves the mAP by +3.4 p.p with this other empirical setting
for SpCL.

b: HyPASS vs HDBSCAN.
Moreover, results in Tab. 3 and Tab. 4 show that using Hy-
PASS (with DBSCAN) consistently outperforms HDBSCAN
for the three frameworks and on all the person & vehicle
re-ID cross-datasets benchmarks. Indeed, results show that
HDBSCAN is in fact not necessarily better than using the
empirical setting ε = 0.6 (for e.g. 24.6% mAP for SpCL on
PersonX→Market with HDBSCAN instead of 25.7% mAP
with empirical setting) or only brings small improvements
(+0.1 p.p. for SpCL and PersonX→Market with HDBSCAN
instead of empirical setting). Therefore, the conclusions done
for empircal setting vs HyPASS remains the same for empri-
cal setting vs HDBSCAN: among those three HP selection
strategies, using HyPASS appears to be the best one.

B. A CLUSTER QUALITY ANALYSIS TO UNDERSTAND
THE EFFECTIVENESS OF HYPASS.
To understand more precisely the positive impact of HyPASS
on the training process, we monitor the evolution of: (i)
the quality of the clusters found during the pseudo-labeling
cycles, through the ARI of the pseudo-labeled target samples,
every 10 epochs (after the pseudo-labels are updated); (ii)
HP ε found by HyPASS. Fig. 3 shows that HyPASS seems to
find better clusters (with better ARI) than the fixed empirical
parameter strategy (ε = 0.6) from the first epochs on. We
believe this impact on the quality of the clusters is ‘iterative’:
better clusters (pseudo-labels) in early epochs will imply the
learning of better representations and therefore the possibility
to make better clusters when the pseudo-labels are updated.
Fig. 3 also highlights that the value of the selected ε changes
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cyclically (as the feature representation changes) over the
pseudo-labeling cycles.

C. ABLATIVE STUDY & PARAMETER ANALYSIS ON
TRAINING TIME AND PERFORMANCE.
1) Relevance of the optimization losses
In the ablative study presented in Tab. 5, we seek to verify
the relevance of our optimization losses (see Eq. 13) for the
selection of HP for the UDAP [45], MMT [13] and SpCL [14]
approaches.

We train different variants by removing terms from the
total loss function (see. Eq. 13) in order to observe their ef-
fects on the final performance (mAP). Variant #5 corresponds
to HyPASS with the total loss function. First, we notice
that training the model to be discriminating on the source
domain (variant #3) together with our Auto HP tuning allows
improvements compared to variant #1 (only Auto HP tuning)
for UDAP: +18.6 p.p. mAP on PersonX→Market. We believe
that the feature encoder in variant #1 specializes on target
domain while forgetting source domain initialization. Thus,
HP selection becomes worse because it is done on a repre-
sentation that is less and less discriminating for the source
domain over time. After a certain number of epochs, bad
choices of HP may impact the quality of pseudo-labels and,
then, target representation. In variant #2, performance drops
even more if alignment is added without LSID (variant #2):
-28.7 p.p. on PersonX→Market . We believe that alignment
on poorly discriminative source is even more harmful to the
target representation. We notice the same behavior for MMT
with -29.4 p.p. and -8.7 p.p. respectively. Therefore, when
using Auto HP of HyPASS, it is necessary to keep optimizing
source ID-discriminative features with LSID.

Adding the term Lcondalign of conditional domain alignment

FIGURE 3: Positive impact of an iterative HP tuning of ε
(HyPASS) on the clustering quality. The figure represents
evolution of ARI of the pseudo-labeled target training set
through epochs on PersonX→Market with SpCL [14].

TABLE 5: Ablation studies on HyPASS for UDAP*, MMT*
and SpCL* methods (mAP in %). #5 is (full) HyPASS.

# Losses Auto.
HP tuning

PersonX
→Market

LTID LSID Lcondalign mAP

UDAP* [45]

1 X X 30,2
2 X X X 20.1
3 X X X 48.8
4 X X X 53.2
5 X X X X 62.2

MMT* [13]

1 X X 55.9
2 X X X 41.3
3 X X X 70.7
4 X X X 71.5
5 X X X X 74.5

SpCL* [14]
3 X X X 68.1
4 X X X 73.9
5 X X X X 77.9

FIGURE 4: Performance sensibility for the state-of-the-art
framework MMT [13] with respect to k parameter of k-
means.

of feature similarities (variant #5) further improves substan-
tially performance by using Auto HP (variant #3): +13.4
p.p. on PersonX→Market . The same improvement trend is
observed for MMT and SpCL. This seems to confirm our
theoretical considerations of reducing the variance of the
estimation by reducing the domain discrepancy in the feature
similarity space when using Auto HP (see Sec. III-E1).

Finally, by comparing variants #4 and #5, we ob-
serve the contribution of our cyclic Auto HP: +9 p.p. on
PersonX→Market . The same is true for MMT and SpCL.
We believe this shows the importance of choosing a suitable
HP for each pseudo-labeling update cycle as done with the
Auto HP tuning step of HyPASS (variant #5).

2) Performance of HyPASS with other clustering algorithms.
a: K-means
Other clustering algorithms can be used instead of DBSCAN.
But they still need to set HP. For example, k-means relies
on the number k of clusters. Similarly to the sensibility of
DBSCAN with ε, Fig. 4 shows that the performance with k-
means is also sensible to the number of clusters HP. Again,
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TABLE 6: Performance (mAP) of HyPASS on k-means and
Agglomerative Clustering and with state-of-the-art pseudo-
labeling approaches. We set k = 1500 as empirical setting
since it is the best configuration on PersonX→MSMT in our
experiments. For Agglomerative Clustering, empirical setting
ε = 0.6 is motivated by analogy to our experiments for
PersonX→MSMT with DBSCAN (see Fig. 1) which is also
a density-based algorithm.

Clustering HP choice PersonX→Market

MMT* [13] k-means Empirical k = 1500 59.8
HyPASS 71.1

SpCL* [14] Agglo. Clustering [1] Empirical ε = 0.6 72.6
HyPASS 78.2

choosing a good HP value is crucial to get good performance:
for example, by choosing k = 250, performance drops from
70.8% to 50.2% mAP for PersonX→Market and from 16.6%
to 10.1% compared to k = 500 for PersonX→MSMT with
MMT .
Therefore, empirical setting strategy for choosing k on an-
other adaptation task quite limits performance too. Indeed,
re-using the best value from PersonX→MSMT (k=1500)
leads to 59.8% mAP for PersonX→Market whereas it
could have been 70.8% for k=500. Reciprocally, choos-
ing k=500 from PersonX→Market leads to 13.6% for
PersonX→MSMT instead of 17.4% for k=1500.
As illustrated on Fig. 4 and shown in Tab. 6, using HyPASS
leads to better performance compared to empirical setting.
For PersonX→Market with MMT, it leads to 71.1% mAP in-
stead of 59.8% reusing k=1500 obtained by empirical setting
on PersonX→MSMT.

b: Agglomerative Clustering
Agglomerative Clustering [1] is another clustering algorithm
that can be used instead of DBSCAN. As DBSCAN, Ag-
glomerative Clustering is a density-based clustering algo-
rithm that relies on a neighborhood distance threshold pa-
rameter ε. HyPASS can also improve performance of pseudo-
labeling methods using this clustering algorithm. As shown
in Tab. 6, for PersonX→Market with SpCL, using HyPASS
leads to 78.2% mAP instead of 72.2% using empirical setting
(ε = 0.6).

3) Influence of the validation set size.

TABLE 7: Experiments with different validation set size
NS
val on SpCL for PersonX→Market showing the validation

set size on performance and training computation time.

Empirical setting HyPASS NS
val =

1000 5000 10000 30816
Time 60h12 (6 × ∼ 10h02) 12h08 34h39 42h21 68h43

mAP (in %) 72.2 76.1 77.8 77.8 77.9

We have seen that HyPASS brings consistent improve-
ments on various adaptation tasks (see Tab. 3) and therefore
with various sizes validation set (see Tab. 1 number of
query validation images). These also show experimentally

that performance improvements from HyPASS is also robust
to various dataset compositional bias between the source and
target domains, more particularly the difference in number of
query per IDs and IDs.
But the validation set size also intuitively influences the
clustering computation time, and thus the full training com-
putation time of the frameworks where HyPASS is added.
Moreover, it is also interesting to have more experimen-
tal insights on the influence of the validation set on per-
formance improvement of HyPASS for a fixed adaptation
task. That’s why we further investigate the influence of
the validation set size on the training computation time
and the re-ID performance. Experiments are conducted on
PersonX→Market for the SpCL framework. For this, we
randomly select N images from PersonX query set. The
execution time (on the same machine) and re-ID performance
are reported in Tab. 7. The empirical setting strategy has been
performed on PersonX→Market adaptation task with the 5
HP values: ε = 0.3, 0.4, 0.5, 0.6, 0.7. The empirical setting
strategy requires 5 training of SpCL with the 5 HP values
for PersonX→MSMT then one more training of SpCL for
PersonX→Market with the best ε (ε = 0.6) evaluated by the
mAP on the target test set.
We notice that the training computation time increases with
the validation set size. However, it is still fairly reasonable
for a training time including hyperparameter selection. Even
with a large validation set (30k images), the complete training
time lasts only 68h40 and brings significant performance for
this adaptation task (+5.7 p.p.). In practice, it is quite big
for a validation set size, and experiments show that even
with 5k images, performance remains the same, with a train-
ing computation time reduced by about 25h33 compared to
empirical setting. More generally, performance of HyPASS
is not really sensible validation set size variations tested
(from 1/10 up to 3 times the size of the training set induced
only 1.8 p.p. variation). Indeed, this is consistent with our
guess that reducing the domain discrepancy should allow less
sensibility to the number of validation samples, as motivated
by Eq. 7 in Sec. III-D.

4) Influence of Auto HP selection criterion.
We included in the design of HyPASS different modeling
choices aiming at improving training time and performance.
To show the relevance of these choices, we conducted various
experiments by changing HyPASS HP selection strategy on
PersonX→MSMT on the framework SpCL. First, HyPASS
HP selection is directly based on cyclic clustering quality
evaluations instead of re-ID performance evaluation in order
to reduce the computation cost. As illustrated in Tab. 8, using
HyPASS but with the mAP criterion (the re-ID criterion
which is our main task) on the source test to select the
clustering HP gives almost the same performance of HyPASS
(77.1% mAP), but greatly increases the training time to
90h29 instead of 68h43. We reckon that it is mainly due
to the higher number of training steps needed to evaluate
HP values with the mAP. Even though the best target mAP
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is the final goal, our assumption to select HP by clustering
quality evaluation instead of mAP evaluation (Sec. III-A1) is
relevant to limit the training time while having the best re-ID
performance.

TABLE 8: Impact of HyPASS with different version of Auto
HP criterion on the re-ID performance and computation.
Experiments done on SpCL for PersonX→Market.

Variants Auto HP criterion mAP Time
SpCL w/ mAP HP selection re-ID task (mAP) 77.1 90h29

SpCL w/ HyPASS clustering task (ARI) 77.9 68h43

5) Performance with other HyPASS variants
a: Domain Alignment.
We conducted some experiments with other implementa-
tion choices for HyPASS with SpCL on PersonX→Market.
For instance, a 2-layer Domain Adversarial Neural Network
(DANN [12]) can be used instead of MMD to align the pair-
wise feature similarities. Tab. 9 shows that HyPASS keeps
performance improvement over the framework without Hy-
PASS (+5.1 p.p. mAP compared to SpCL without HyPASS).

b: Cluster quality criterion.
The Normalized Mutual Information (NMI) can replace the
ARI and gives as good performance (+0.2 p.p. mAP in Tab. 9
compared to HyPASS with ARI).

c: HP search strategy.
Using a more simple HP search strategy like grid search for
ε ∈ Λ = [0.05, 0.1, 0.15, ..., 2] can replace the Bayesian
search. It still gives good results with HyPASS (-0.3 p.p.
compared to Bayesian search in Tab. 9).

d: HP search initialization.
In Tab. 10, when using Bayesian Search with NHP = 50
proposed values per HP tuning phase, the initial value ε0 has
completely no impact on performance.

TABLE 9: Performance of HyPASS for PersonX→Market
with SpCL* [14] pseudo-labeling method on different vari-
ants.

PersonX→Market (mAP in %)
SpCL* 72.2

SpCL*+ HyPASS (MMD + Bay. search + ARI) 77.9
SpCL* + HyPASS (DANN [12] + Bay. search + ARI) 77.3

SpCL* + HyPASS (MMD + Bay. search + NMI) 78.1
SpCL* + HyPASS (MMD + Grid Search + ARI) 77.6

VII. CONCLUSION
This paper addresses the problem of empirical HP selec-
tion for pseudo-labeling UDA re-ID approaches as it can
have a negative impact on performance when addressing
new unlabeled cross-datasets. We provided novel theoretical
insights to highlight the conditions under which a source-
based selection is effective for the UDA clustering task.
These allowed us to design a new method, HyPASS, to

TABLE 10: Robustness of HyPASS against the
Bayesian search initialization of ε0. Performance for
PersonX→Market of HyPASS with SpCL* [14] pseudo-
labeling method are reported with different values of
Bayesian Search initialization.

Bayesian search initialization ε0 PersonX→Market (mAP in %)
0.01 77.8
0.8 77.9
2 77.8

automatically select suitable HP for the clustering phase
of pseudo-labeling UDA methods. It is based on source
guidance and domain similarity alignment. When HyPASS
is applied to select critical clustering HP instead of using
empirical settings, it consistently improves performance of
the best methods of the state-of-the-art. We believe that
suitable HP selection could be relevant for the unsupervised
re-ID scenario in which pseudo-labeling methods seem also
effective [14]. Further work could be done on how to select
suitable HP in the unsupervised scenario when we don’t want
to use any available labeled dataset.
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