N

N
N

HAL

open science

Localization of 3D objects using model-constrained
SLAM

Angélique Loesch, Steve Bourgeois, Vincent Gay-Bellile, Michel Dhome,

Olivier Gomez

» To cite this version:

Angélique Loesch, Steve Bourgeois, Vincent Gay-Bellile, Michel Dhome, Olivier Gomez. Localization
of 3D objects using model-constrained SLAM. Machine Vision and Applications, 2018, 29 (7), pp.1041-

1068. 10.1007/s00138-018-0951-x . hal-04327823

HAL Id: hal-04327823
https://hal.science/hal-04327823v1

Submitted on 13 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04327823v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Localization of 3D objects using model-constrained SLAM

Angelique Loesch - Steve Bourgeois - Vincent Gay-Bellile - Michel Dhome - Olivier

Gomez

Received: date / Accepted: date

Abstract Accurate and real-time camera localization rela-
tive to an object is needed for high-quality Augmented Re-
ality applications. However object tracking is not an easy
task in an industrial context where objects may be textured
or not, have sharp edges or occluding contours, be relatively
small or too large to be entirely observable from one point
of view.

This paper presents a localization solution built on a key-
frame-based SLAM algorithm. It only uses as inputs an RGB
camera and a CAD model of the object of interest. The 3D
model provides an absolute constraint that reduces drasti-
cally the SLAM drift. It is based on 3D oriented contour
points called edgelets, dynamically extracted from the model
by Analysis-by-Synthesis technique on the graphics hard-
ware. This model constraint is then expressed through two
different formalisms in the SLAM optimization process.
The dynamic edgelet generation ensures the genericity of
our tracking method, since it allow to localize polyhedral
and curved objects. The proposed solution is easy to deploy,
requiring no manual intervention on the model, and runs in
real-time on HD video-streams. It is thus perfectly adapted
for high-quality Augmented Reality experiences. Videos are
available as supplementary material.

Keywords Simultaneous Localization And Mapping -
Constrained bundle adjustment - Occluding contours -
Memory consumption - Real-time - Augmented Reality

A. Loesch, S. Bourgeois, V. Gay-Bellile, O. Gomez

CEA LIST, Point Courrier 94, Gif-sur-Yvette, F-91191 France
E-mail: {angelique.loesch, steve.bourgeois, vincent.gay-bellile,
olivier.gomez2 } @cea.fr

M. Dhome
Pascal Institute, Blaise Pascal University, Clermont-Ferrand France
E-mail: michel.dhome @univ-bpclermont.fr

1 Introduction

Applications such as quality control, automation of complex
tasks or maintenance support with Augmented Reality (AR)
could greatly benefit from visual tracking of 3D objects [5].
However, this technology is under-exploited due to the dif-
ficulty of providing deployment facility, localization quality
and genericity simultaneously. Most existing solutions in-
deed involve a complex or an expensive deployment of mo-
tion capture sensors, or require human supervision to sim-
plify the 3D model [31]. And finally, most tracking solutions
are restricted to textured or polyhedral objects to achieved an
accurate camera pose estimation [3,36].

Tracking any object is a challenging task due to the large
variety of object forms and appearances. Industrial objects
may indeed have sharp edges, or occluding contours that
correspond to non-static and view-point dependent edges.
They may also be textured or textureless. Moreover, some
applications require to take large amplitude motions as well
as object occlusions into account, tasks that are not always
dealt with common model-based tracking methods. These
approaches indeed exploit 3D features extracted from a model,
that are matched with 2D features in the image of a video-
stream [13]. However the accuracy and robustness of the
camera localization depend on the visibility of the object as
well as on the motion of the camera.

To better constrain the localization, recent solutions rely on
environment features that are reconstructed online, in addi-
tion to the model ones. These approaches combine SLAM
(Simultaneous Localization And Mapping) and model-based
tracking solutions by using constraints from the 3D model of
the object of interest. This model can indeed be used to con-
strain the SLAM initialization [2] or its optimization pro-
cess [33,29,21]. Constraining SLAM algorithms with a 3D
model results in a drift free localization. However, such ap-
proaches are not generic since they are only adapted for tex-

Angelique Loesch et al.

tured or polyhedral objects.

In this paper, we propose a solution that fulfills the require-
ments concerning deployment facility, localization quality
and genericity. This solution, based on a visual key-frame-
based constrained SLAM, only exploits an RGB camera and
a geometric CAD model of the object of interest. An RGB
camera is indeed preferred over an RGBD sensor, since the
latter imposes limits on the volume, the reflectiveness or
the absorptiveness of the object, and the lighting conditions.
A geometric CAD model is also preferred over a textured
model since textures may hardly be considered as stable in
time (deterioration, marks,...) and may vary for one manu-
factured object. Furthermore, textured CAD models are cur-
rently not widely spread. Contrarily to previous methods, the
presented approach does not need 3D model simplification
to bring out sharp edge. It deals with polyhedral and curved
objects by extracting sharp, occluding contours and silhou-
ette from a model render on GPU, and is real-time, accurate
and robust to occlusion or sudden motion.

2 Related work

Several visual localization methods exist in the state of the
art. This Section focuses especially on model-based tracker
solutions and on constrained SLAM (C-SLAM) algorithms,
adapted to object tracking.

2.1 Model-based tracking methods

Camera localization relative to an object of interest may be
achieved thanks to model-based tracking methods. These so-
lutions rely on a two-step process. First, 3D features pro-
vided by a 3D model of the object of interest are matched
with their corresponding 2D features in the image. Then,
the camera pose that minimizes the re-projection of these
3D features with respect to their 2D counterparts is esti-
mated. With a textureless CAD model, these 3D features are
3D oriented surface points on the model, that result in edge
points in the image. We refer to these surface points as ed-
gelets throughout the paper. The main difficulties of model-
based tracking using such features, are encountered during
the 3D/2D matching step. Visual features such as 2D con-
tour points are indeed not adapted to local discrimination
(difficulty of distinguishing an edge point from another).
To constrain the 3D/2D matching, the camera motion has
to be small between two frames which limits the solution
robustness against fast and sudden displacements. Besides,
edgelets may depend of the camera point of view (silhou-
ette, auto-occluding contours, ...) and can not be extracted
from sharp edges of the model. In early works [3,37], to
bypass these issues, some methods have focused on poly-
hedral object tracking only, or limited the camera motion to

low displacements.

However polyhedral object tracking solutions are not generic
approaches since they can not deal with curved objects. When
the object of interest is indeed polyhedral, surface points
that generate contours in the image, mostly come from sharp
edges of the model. These edgelets are thus independent of
the camera point of view and can be precomputed. They are
identified by a simple threshold on the dihedral angle be-
tween the model facets. However, the dihedral angle crite-
ria is not relevant when dealing with manufactured objects
with sharp edges rounded into fillets. A simplification of ob-
ject models may resolve this problem by transforming round
edges into sharp edges, but the simplification degree gener-
ally needs to be adjusted by an expert.

Besides, the object tracking exploitation is also reduced to
expert utilization, to control the camera motion. Small am-
plitude displacements between images are indeed needed to
facilitate 3D/2D matching between edgelets and 2D contour
points, and to maintain good robustness and stability. The
3D/2D matching step is usually performed by projecting
each edgelet extracted from the model and by searching lo-
cally around this projection a 2D image contour with a sim-
ilar orientation. Without prediction, this projection is per-
formed on the current image with the pose estimated on the
previous one. Nevertheless, a small research area is crucial
for low discriminant features such as edges to avoid match-
ing errors and to keep real-time performances.

Several approaches work on object tracking genericity and
stability to larger displacement and sudden motion.

Thus, solutions focus on tracking methods adapted to
any kind of objects, both polyhedral and curved. Some model-
based trackers locally approximate the 3D model surface us-
ing parametrizations based on curvature radius [16] or quadrics
[26]. These parametrizations have the advantage of being
differentiable and thus easily integrable in a cost function to
optimize. However, for very complex objects, the number of
quadrics or curvature radii may quickly increase and compli-
cate the model parametrization. To enable computationally
tractable tracking, the number of quadrics or curvature radii
has to be limited which results in an approximation of object
surfaces for complex objects and thus a less accurate track-
ing.

Other solutions exploit Analysis-by-Synthesis technique to
identify the edgelets of an object model, with the use of nor-
mal and depth maps from synthetic model renders [25,27,
39]. These methods are based on non photo-realistic ren-
ders to be independent of illumination conditions [8]. They
have the advantage of being efficient on any object, since
they consider the observation distance and exploit the model
without simplification. However the resulting edgelets are
only locally valid, since they are not parametrized according
to the object surface. Thus, they have to be re-estimated at

Localization of 3D objects using model-constrained SLAM

each image of the sequence. This process is time consuming
due to the data transfer between GPU and CPU, especially
when the geometric model has many faces or when the im-
age has a high resolution.

Other methods aims to lift the low amplitude motion
constraint, in order to increase the tracking robustness to
sudden motion. A first solution is to use particle filters [11]
to eliminate this assumption by generating an important num-

ber of hypotheses for the current pose. Each of them is weighted

based on the re-projection error between sharp edges and
their closest edge in the image. This approach offers a ro-
bust tracking solution with respect to fast motions and occlu-
sions. However, its computing cost is not compatible with a
real-time execution for complex objects.

Another strategy to increase the displacement between frames,
is to predict the camera pose on the current image. One pos-
sibility is to use an external sensor such as an IMU [1]. It
is also possible to exploit image features that are more dis-
criminant than edgelets, e.g. key-points, to compute a first
estimation of the camera displacement between the previ-
ous image and the current one. This estimation is then re-
fined with the model edges. In [27,36], key-points extracted
on the objects of interest are used. Since these approaches
require a textured object that is always visible in the image
(not occluded), an alternative solution is to exploit the object
environment by extracting key-points on the whole image as
proposed by constrained SLAM solutions.

2.2 Constrained SLAM solutions
2.2.1 Key-frame-based SLAM

Key-frame-based SLAM algorithms [12,22] are iterative pro-
cesses that reconstruct online 3D primitives from the envi-
ronment with respect to 2D observations and estimate the
camera pose for each image thanks to 2D/3D correspon-
dences between the previously reconstructed primitives and
those extracted from the images. The reconstructed map is
improved with new primitives at each key-frame. To limit
the error accumulation, a possible solution is to use a non-
linear optimization process called bundle adjustment. It re-
fines camera poses and 3D feature points by minimizing
their re-projection errors [35]. Standard SLAM algorithms
[12,22] are often used to estimate the localization of a cam-
era in an unknown environment. However, they are not well
adapted for object tracking. Camera poses are indeed ex-
pressed in an arbitrary coordinate frame and with an arbi-
trary scale that is subject to drift over time. Thus, the idea
to use constrained bundle adjustments that minimize simul-
taneously the multi-view geometry and a constraint term
based on the CAD model has been developed.

2.2.2 Constrained bundle adjustment

Since standard SLAM algorithms are not appropriate for
object tracking, C-SLAM methods propose to include con-
straints provided by the model of the object of interest. This
constraint integration allows to express the SLAM recon-
struction into the object-frame with the correct scale and to
prevent the drift of SLAM algorithms.

Model constraints exploit an a priori partial knowledge of
the scene geometry, usually a 3D model. They can be ex-
pressed with a metric error [29] corresponding to the 3D
distance between 3D features reconstructed by SLAM and
the model of the object. However combining this error with
a pixel one in the constrained bundle adjustment requires an
adaptive weight to deal with heterogeneous measurements.
Model constraints can also be expressed through a re-projection
error of 3D features reconstructed by SLAM and projected
on the model while some of their DoF are fixed during the
optimization [19,34]. The constraint can furthermore be de-
fined with a re-projection error between 3D features extracted
from the model and their associated image observations. These
features are considered as an absolute information, and are
then fixed in the bundle adjustment process. They may come
from a 3D point cloud [21] or, when objects of interest are
textureless, correspond to 3D oriented points (edgelets) from
edges of a CAD model [33]. This latter method is called
in this article EC-SLAM (SLAM constrained to edgelets).
However, although the approach of [33] is real-time and
accurate, it reaches its limits for curved objects since only
sharp edges are exploited.

We propose in this paper an EC-SLAM that tracks polyhe-
dral and curved objects with robustness and accuracy. Ed-
gelets are dynamically generated according to Analysis-by-
Synthesis technique and integrated as a model constraint
into a C-SLAM algorithm.

Notations Matrices are designated in this paper by sans-
serif capital font such as M and vectors by bold font such
as v or V. The projection matrix P associated to a cam-
era is given by P = KR (I3] —t), where K is the matrix
of intrinsic parameters and (R,t) the extrinsic ones. X cor-
responds to all the optimized parameters in a bundle ad-
justment: the extrinsic parameters of the optimized cameras
{Rj,t_,-}f=1 and the 3D point positions {Q; ?/:QI. X corre-
sponds to the vector concatenating all the optimized pose
parameters X; = {Rj,tj}izl.

3 Overview

This paper is an extension of previous works [17,18]. It pro-
poses a constrained SLAM solution for generic object track-
ing that deals with large amplitudes and occlusions.

Angelique Loesch et al.

New frame

Localization

Keyframe?

Triangulation

gener;tion by l
rendering

Classic bundle
adjustment

4]:|—

Constrained bundle
adjustment

v

Model constraint
representations

feead)

Mapping process

Fig. 1: Our EC-SLAM framework with a four-step mapping
process: triangulation, model constraint formalism, classic
and constrained bundle adjustment. Edgelet generation by
rendering is performed in parallel on GPU before the model
constraint representation.

Our EC-SLAM framework shown in Figure 1, is built on
key-frame-based SLAM as [33] divided in a localization and
a mapping threads. In the localization thread, camera pose is
estimated at each frame thanks to a matching algorithm that
establishes 2D/3D correspondences. The mapping process
is then performed when a key-frame is detected. Generally
it is decomposed into two important steps, the triangulation
that extends the 3D map with new 3D features, and the re-
finement of camera poses and 3D feature positions through
a bundle adjustment constrained to the CAD model. Our
framework is however slightly different to answer the gener-
icity and robustness issues.

3.1 Edgelet generation

In [33], the model constraint is provided by static edgelets
extracted offline on the sharp edges of the CAD model. A
visibility test is then performed to only get the subset of visi-
ble edgelets for each key-frame optimized in the constrained
bundle adjustment.

However, this solution tracking only polyhedral objects, we
propose a different use of the 3D model by extracting dy-
namically edgelets with Analysis-by-Synthesis technique. In
Section 4, our edgelet extraction by rendering the CAD model
of the object of interest is detailed. Nevertheless, replacing

the precomputed edgelets of an EC-SLAM as [33] with a
constellation generated by rendering implies modifications
in the SLAM framework. In fact, since the edgelets gener-
ated from the silhouette and occluding contours of the CAD
model are viewpoint dependent, they should be estimated
online. Moreover, our edgelet generation process induces an
additional computing cost that depends on various factors,
such as the image resolution used during the rendering, the
performance and current workload of GPU (it can also be
used to display some content on a screen). The presented
edgelet generation is then achieved in the mapping thread
on GPU in parallel of other processes to prevent its compu-
tational cost from slowing down the tracking process and to
maintain real-time performances. The output of this gener-
ation is finally a set of edgelets that are evenly distributed
and non-ambiguous for the matching and the pose estima-
tion steps.

3.2 Model constraint representations

The dynamic edgelets are exploited to refine the camera pose
and the SLAM reconstruction in the constrained bundle ad-
justment as presented in Figure 1.

3.2.1 Re-projection formalism

A first possible model constraint formalism takes directly
advantage of edgelet information through a re-projection er-
ror E(X) similar to the one proposed by [33], where our
dynamic edgelets are associated to 2D contour points in the
image.

In that case, the model constraint is expressed as followed:

E(X)=) H(X;,m,), (1)

with H(X;,m;) the edgelet re-projection error

Ny
H(Xj.im;) =) (m;.(m;; —P;M;))%. @)

i=1
It measures the orthogonal distance between the projection
of edgelets M;, and their corresponding edge m; ; concate-
nated in the vector m;, for the j™ key-frame. n;, j is the
normal to the projection of the edgelet direction. This re-
projection formalism will be evaluated in Section 6.
However, with this constraint representation, edgelet con-
stellations have to be stored for all the optimized key-frames.
This storage increases the memory footprint of the optimiza-
tion process, which grows with the duration and the resolu-
tion of the video. Besides, this formalism is time consuming
since the 2D/3D correspondences have to be re-estimated
at each constrained bundle adjustment on all the optimized

Localization of 3D objects using model-constrained SLAM

key-frames. Thus two other representations of the model
constraint are proposed to manage this issue.

3.2.2 Output model-based poses

These other model constraint formalisms are presented in
Section 5. Both correspond to hybrid model / trajectory con-
straints that do not exploit directly the dynamic edgelet con-
stellations as with the re-projection formalism. They instead
use the outputs of a model-based tracker (named model-
based poses as opposite of the SLAM poses). These con-
straints are defined as pose errors more compact in memory,
but expressed in pixels to be homogeneous with respect to
the environment constraint (see Section 3.3) proposed by the
SLAM in the constrained bundle adjustment.

The output model-based poses used in these both formalisms,
are the optimal camera poses with respect to the object model
that best align the dynamic edgelets and their observations
in the image. Since the observations that correspond to ed-
gelets are initially unknown, the camera pose and these ob-
servations are defined as the parameters that minimize the
model-based error given by equation 2 whose the vector rep-
resentation is the following:

H(X;,m;) =" (X;,m;)h(X;,m;), 3)

with 27 (X, ;) = [(mo,j.(mo,; — P;Mo))...(ny,j.(my, ; — P;My))].
This minimization problem is usually solved by alternating
the estimation of the observations m; and the estimation of
the pose parameters X j- The m; are estimated by projecting
the edgelets with the current pose parameters and matching
them to the nearest contour with a similar orientation. The
pose parameters are then refined by minimizing H(X;,m;)
with a Levenberg-Marquardt algorithm [14].

To ensure a good convergence, such algorithm requires an
initial estimation of X ; close to the solution and a configu-
ration of edgelets/observations that constrains the 6 DoF of
the camera. In our context, the first assumption is verified
since the optimization process uses the SLAM pose as ini-
tial guess. On the contrary, the second assumption cannot be
ensured. It is then preferable to keep the poorly constrained
DoF to their initial value during the optimization process.

This can be achieved by using a truncated Levenberg-Marquardt F(X) =

[4]. This approach relies on a different approximation of the
Hessian matrix’s cost function than the usual Levenberg-
Marquardt. While the Hessian matrix of H(X;,m;) is ap-
proximated with W; ~ J jTJ jin classic Levenberg-Marquardt
[28], it is approximated by W; = TSVD(JjTJj) in a trun-
cated Levenberg-Marquardt, where TSV D(A) represents the
truncated SV D of the matrix A.

The resulting orientation and position parameters X? = {RS, t5}

of the optimal model-based pose are stored to be used as

a constraint for this key-frame over the rest of the track-
ing. The associated projection matrix is denoted P; The
vector X¢ represents the set of model-based pose parame-
ters X? = {R§,t}} for all the key-frames optimized in the
constrained bundle adjustment. The 2D contour points as-
sociated to edgelets on key-frame j with the optimal pose
(R%[t5), are concatenated in the vector m¢. Finally, we de-

T : : (R .
fine W¢ = JS ' JS as the approximation of H” (X, m;).

3.3 Optimization process

Since our model constraint may present inaccuracies espe-
cially if the object is occluded, creating incorrect 2D/3D as-
sociations or erroneous model-based poses, optimizing si-
multaneously as [33] the model and the multi-view con-
straints could result in a deterioration of the multi-view ge-
ometry relationships, that may causes localization failures.
Then our approach consists in first optimized the environ-
ment constraint only. We determine the optimal solution of
the multi-view relationships for all the optimized key-frames.
These key-frames are selected via a covisibility graph [23].
To obtain this optimal solution, a classic bundle adjustment
without any model constraint is thus performed as presented
in Figure 1. The cost function G(X) to minimize is the fol-
lowing:

No
G(X)=Y Y d*(ai),P;Qi).)

i=1j€L;
The re-projection error d of equation 4 is the euclidean dis-
tance between q; ; the 2D observation of the i" 3D point Q;
in the j™ key-frame and the projection of this 3D point. L;
is the set of the key-frame indexes observing Q;.
Then, the model and multi-view constraints are combined
in a constrained bundle adjustment. Since multi-view con-
straint is less robust but more accurate than the model con-
straint, we use a fusion strategy, which ensures that the degra-
dation of the multi-view constraint remains small. To achieve
this task, Lhuillier constrained bundle adjustment framework
[15] is chosen. Thus the cost function of our constrained
bundle adjustment combining multi-view and model con-
straints is given by:

(0]

o —G(X) +E(X), Q)

where E(X) is the model constraint re-projection error or
the two formalisms described in next Section 5 using the
optimal model-based poses presented in Section 3.2.1. ¢
is a threshold which is slightly greater than the squared re-
projection error obtained after minimizing Equation 4. The
fraction ﬁ with @ > 0 corresponds to a regularization
term that prevents the degradation of the multi-view rela-
tionships estimated after the classic bundle adjustment.

Angelique Loesch et al.

We can notice that in practice, with the re-projection for-
malism proposed by [33] and defined by equation 1, our dy-
namic edgelets can also be directly integrated in the con-
straint bundle adjustment with a classic cost function. Then
this latter will be only composed of the edgelet constraint
and the multi-view relationships between the images. Both
terms will be expressed in pixels and optimized simultane-
ously. This classic cost function will be given by:

F(X) = G(X) +E(X), 6)
with G(X) the environment constraint presented in equa-
tion 4 and E(X the re-projection formalism of the model
constraint. Moreover the classic bundle adjustment optimiz-
ing the multi-view geometry relationships only, become op-
tional.

3.4 Road map and contributions

Edgelet generation is detailed in Section 4. Additional con-
tributions over [17,18] include the edgelet orientation defi-
nition in Section 4.1.3, and the improvement of the CPU/GPU
transfer in Section 4.1.5. Furthermore these edgelet gener-
ation steps are evaluated in Section 6. Both hybrid model
/ trajectory constraints are described in Section 5. Our EC-
SLAM solution is evaluated on several polyhedral and curved
objects, and compared with other tracking solutions on syn-
thetic and real data to assess its genericity, robustness and
accuracy. All the evaluations of Section 6 are performed
with the new edgelet orientation and data transfer, since it
allow more accuracy in the camera pose estimation and bet-
ter performances.

Moreover, additional contributions over [17, 18] concern the
evaluation of our EC-SLAM framework robustness when
the model constraint is inaccurate, and the evaluation of our
solution tested on public datasets. Section 7 is also a contri-
bution of this paper where we present an Augmented Real-
ity application involving a static curved object with movable
parts.

4 Dynamic edgelet extraction

rely on a basic constant-step sampling.

In this Section, the introduced egdelet extraction provides a
constellation of edgelets adapted to both matching and pose
estimation.

4.1 Edgelet generation

Similarly to [39], our virtual rendering process relies on an
image space approach. This choice is motivated by the large
amount of faces (hundred of thousands) of 3D models used
in our applications that will result in costly rendering times
for object space approach [6,30].

Our solution aims to estimate for each pixel both its proba-
bility of being a contour and its probability of being matched
with its corresponding contour in a real image.

In the following, let’s consider each pixel of the image as a

N()E[.V,) L(X,Y;) N(Xi,Y.;)
W) | X | RGY) X"
P(X:i,Yi) P(Xi.V.i R(X,Y;)
........... Y. = North s, = North-East

Fig. 2: Each pixel of the rendered image corresponds to the
random variable X;. L(X;,Y;) and R(X;,Y;) are the neigh-
bor pixels along the normal to the direction Y;. N(X;,Y;)
and P(X;,Y;) are the neighbor pixels along the direction ¥;.
On the left example with ¥; = Nord and on the right with
Y; = Nord — Est.

random variable X;, with X; = 1 if the pixel is a contour, 0
otherwise. We denote Y; the random variable that represents
the 2D direction of a contour X;, with ¥; € {North,North —
East,North— West,West }. L(X;,Y;) (respectively R(X;,Y;))

As mentioned in Section 2, tracking solutions based on Analysis-is the function that returns the left (respectively right) neigh-

by-Synthesis technique rely on renders of 3D models to iden-
tify surface points that are likely to generate contours. For
computational performance, these surface points are sam-
pled into a set of edgelets prior to the matching process.
However, in most tracking solutions, the importance of the
sampling is neglected. Although it has a major impact on
the matching of edgelets with 2D image contours and on the
pose estimated from these correspondences, most solutions

bor of a pixel X; along the normal to the direction ¥;, and
N(X;,Y;) (respectively P(X;,Y;)) correspond to the function
that returns the next (respectively previous) neighbor of X;
along the direction Y;. Since we are only looking to the di-
rection that might take a contour, the neighbor pixel order
(left, right and next, previous) is defined arbitrarely. Finally
Nmap(X;) (respectively Dmap(X;)) is the function that re-
turns the normal (respectively the depth) of the pixel X;.

Localization of 3D objects using model-constrained SLAM

b
,7‘_; E—‘_
(@) (b)

Fig. 3: Normal (left) and depth (right) maps of a rendered
orthosis CAD model for a given camera point of view.

4.1.1 Edgelet probability

This first step of our edgelet generation estimates for each
pixel its probability of being a contour. Usually, two types of
2D contours are distinguished: crease edges and silhouettes.
On one hand, crease edges are relative to the sharp edges of
the 3D model and appears as discontinuities in the normal
map (Nmap)(see Figure 3(a)). On the other hand silhouettes
correspond to the outline of the object or the auto-occluding
contours and appears as discontinuities in the depth map
(Dmap)(see Figure 3(b)). In both cases, the orientation of
a 2D contour point corresponds to the 2D direction of the
discontinuity in the image space.

Therefore, we define the probability of X; to be a crease edge
with direction Y; as:

Pcrease<xi‘yi) :max(lacrease(xhyi))a)
with the angular discontinuity measure:

crease(X;,Y;) =

A x (1 —Nmap(L(X;,Y;)) - Nmap(R(X;,Y;))), ©

where A = (1 — cos(angleMax))~! is the normalization fac-
tor defined to reach an intensity of 1 for an angular ampli-
tude of angleMax.

In a similar way, the probability of X; to belong to the sil-
houette with an orientation ¥; is given by:

Psithouerte (XI‘YZ) = max(] s silhouette(Xi, Yl));)
where silhouette is the depth discontinuity measure defined
as follows:

_ Laplacian(Dmap, X;,Y;)

silhouette(X;,Y;) = . (10)
B x Dmap(X)

Laplacian is the 1D laplacian oriented with respect to direc-
tion ¥;, and f is a weight factor. Since the discontinuity is
normalized with respect to the observation distance, the pa-
rameter B does not depend on the dimension of the scene.
Therefore, B can be easily interpreted as the minimal depth
discontinuity, expressed as a ratio of observation distance,
that provides a silhouette contour with a probability of 1.
Consequently, the probability of being a contour is defined
as:

HDcomm,uf (Xz) =
n}?x (max (Pcrease (Xi | Yj) s Piithouerte (Xi | Yj))) an

J

Fig. 4: Matching map of the rendered orthosis CAD model
for a given camera point of view. More the edgelet pixel is
dark, more the edgelet is likely to match to a 2D contour
point.

Fig. 5: Orientation map of the rendered orthosis CAD model
for a given camera point of view. The 3D orientation is ex-
pressed through the R, G and B channels of the rendered
image.

and the 2D direction associated to X; is defined as:

DirgD (X,) =
argmax(max (Perease (Xi|Y;): Psithouerre (XiY;)))- (12)

¥j
4.1.2 Matching probability

This second step estimates the probability that each virtual
contour is matched to its corresponding contour in the real
image. Usually, during the matching process, the edgelets
are associated to the nearest contour located along the nor-
mal of the contour. Consequently, the probability of cor-
rectly matching an edgelet can be assessed from the number
of contours encountered within this 1D neighborhood.

Therefore, we propose to value this probability from the
probability map estimated at the previous step. In the fol-
lowing, let’s consider X, to be the pixels of the 1D neigh-
borhood of a pixel X; still along the normal of the contour.
And let N be the random variable representing the number
of contours within the neighborhood. We define the proba-
bility of a pixel to be both a contour and correctly matched
in a real image according to the Expected Value of N as:

IP)comour (Xl)

Pmarch(Xi): 1+]E(N) .

13)

This matching probability is represented in Figure 4 for each
edgelet detected on the rendered orthosis model.

Angelique Loesch et al.

4.1.3 3D edgelet orientation

The 3D edgelet orientation is in theory the same one that the
edge they belong. This orientation can be easily determined
from the 3D positions of two adjacent contour points in the
in the edgelet probability map, method exploited in our pre-
vious works. However, the rasterization step of the render-
ing process creates aliasing and damage the orientation es-
timation. The erroneous edgelet orientation is then able to
disturb the 2D/3D matching process and decrease the track-
ing accuracy. In order to deal with this issue, we propose a
new solution in the image space based on the hypothesis that
our 3D model mesh is an orientable 2-manifold surface. Our
approach locally approximates the model surface by planes
whom the intersections correspond to crease edges, or sil-
houettes (including auto-occluding contours). Thus the idea
is to identify the two planes whose the intersection forms an
edge that approximates locally the 3D model contour. The
intersection direction will then corresponds to the 3D edge-
let orientation.

Each pixel X; that might be an edgelet, belongs to the in-
tersection between two planes according to our definition.
That’s why an analysis of pixels in the adjacent neighbor-
hood of X; in the contour normal direction is performed,
to establish which of them can be associated to the model
planes creating the contour. The two pixel selection differs
if X; is a crease edge or a silhouette. On one hand, if the
contour point X; is part of a crease edge, the plane pixels are
chosen by taking the adjacent pixels from both sides of X; in
the direction Diryp(X;). Then the 3D direction of the plane
intersection and by extension the 3D direction of the contour
point X; is given by:

Dir3D (Xl) =

Nmap(L(Xi,DirQD(Xi))) /\Nmap(R(Xi,DirZD(Xi))). (14)

On the other hand, if the contour point X; belongs to the
silhouette, the two pixel selection has to take into account
that the object has auto-occluding contours. Indeed one of
the planes creating the edge where X; stands, is not visible
on the front-face rendering. To visualize this occulted plane,
a back-face rendering is achieved. The first neighbor pixel
belonging to the hidden plane corresponds to the pixel X;
in terms of 2D position but in the back-face rendering. The
second plane pixel is choosing in the front-face rendering as
for the crease edges. Its selection depends of its distance to
the camera position dist.4,;. Thus, 3D direction of the plane
intersection and the contour point X; is defined as:

Dir3p(X;) = Nmappacr(X;) A Nmap(C(X;, Dirap(X;))),
(15)

with Nmappaq the function that returns the back-face ren-
dering normal of the pixel X;. C(X;, Dirp(X;)) is the neigh-

bor pixel in the front-face rendering the closest of the cam-
era. An orientation map of the rendered orthosis model is
shown in Figure 5.

4.1.4 Edgelet sampling

An edgelet map P, (see Figure 4), that provides for each
pixel its probability of being an edgelet correctly matched
to its corresponding contour, has been estimated previously.
This edgelet map is then exploited by the sampling step to
provide a set of edgelets relevant to the matching and pose
estimation processes.
On one side, to be pertinent to the matching process, this set
of edgelets must maximize the expectation of the matching
success. On the other side, to be suitable to the pose estima-
tion process, the matches estimated from this set of edgelets
must constrain the 6 DoF of the camera pose. Particularly, a
set of matches that is unevenly distributed in the image, both
in term of position and contour orientation, is not a relevant
configuration for pose estimation.
Our sampling process (see Figure 6) relies on a division of
both the 2D position and 2D orientation spaces of the ed-
gelets projections. The 2D position space is divided in a
regular grid of N x N buckets, and each bucket is divided
in 4 angular sectors. Then, a set of edgelets is sampled for
each angular sector of each spatial bucket, in order to obtain
an evenly distribution in 2D space. The sampling itself is
achieved with respect to a sampling probability affected to
each edgelet. To define this sampling probability, let {Z;} be
the set of edgelets of an angular sector of a spatial bucket.
The probability Pygpring of an edgelet Z € {Z;} is defined
as follows:
Pmatch (Z)

]P)Sdmplmg (Z) B Zi IP)malch (Zt) . (10

With this sampling strategy, inside an angular sector of
a spatial bucket, edgelets with a high matching probability
Parcn are more likely to be sampled. Moreover, the random
nature of the sampling prevents the local agglomeration of
edgelets.

4.1.5 Implementation details

While the edgelet sampling step is achieved on CPU, the
edgelet generation step is performed on GPU. Our imple-
mentation relies on multiple rendering passes with GLSL
shaders. The first pass computes the depth map Dmap and
the normal map Nmap. The second and third one compute
the back-face normal map Nmapy, and the 3D orientation
Dir;p. The fourth one computes the edgelet map Py, and
the 2D direction Diryp. The last one computes the match-
ing probability map P,,,c,. Since the sampling is achieved

Localization of 3D objects using model-constrained SLAM

Fig. 6: Edgelet sampling method. The rendered image is di-
vided in buckets, also divided in 4 angular sectors to obtain
an edgelet set evenly distributed in term of 2D position and
orientation.

on CPU, the textures containing all the edgelet informa-
tion have to be transferred to CPU memory. However in
each map, most of the pixels are not relevant and correspond
to the background or the model surfaces instead of edgelet
data. That is why, instead of transferring the entire textures
asynchronously by GPU as in earlier works, a filter is pro-
posed as a pre-processing in order to only transfer the edge-
let pixels to CPU. This new filter is a rendering pass based
on a geometry shader and a transform feedback process.

A set of vertices is generated on GPU through a Vertex Buffer
Object (VBO) in order to optimize computation times. This
set contains as many vertices as pixels in one texture. The
geometry shader reduces the set size by storing only the ver-
tices representing edgelet pixels with their 2D coordinates
as attributes. Moreover the geometry shader adds more at-
tributes to each edgelet vertex, as 2D and 3D positions, nor-
mal and depth values, 3D and 2D orientations and match-
ing probability values of each edgelet. Then the vertices are
saved in an other VBO thanks to the Transform Feedback
process with an interleaved data mode, in order to simplify
the edgelet reading on CPU. The new set of vertices is or-
ganized on GPU similarly as the sequential reading on CPU
and the reading performance is optimal. Since all the edge-
let information are stored contiguously, edgelets with their
attributes can be indeed read in a sequential way. In this fil-
ter step, the rasterization process coming usually after the
geometry shader in a rendering pass, is deleted since it is
time consuming and not relevant in our case. The vertices
containing the edgelet data are then directly transferred to
CPU in an asynchronous way after the geometry shader ex-
ecution, with the help of Pixel Buffer Object (PBO).
Moreover, to reduce the amount of data to transfer, the prob-
ability is encoded on an unsigned byte (the value 255 corre-
sponding to 1).

5 Hybrid model/trajectory constraint

Edgelets extracted from the CAD model on GPU as de-
scribed in the previous Section, are exploited to expressed
the model constraint of our EC-SLAM algorithm. They can
be directly used in the model constraint representation as
proposed in the re-projection formalism presented in Sec-
tion 3.2.1, or dedicated to the optimization of the model-
based poses exploited into both formalisms of our model
constraint in the present Section.

We describe two approaches slightly different that uses the
3D model to estimate model-based poses as presented in
Section 3.2.2. These model-based poses are exploited as hy-
brid model/trajectory constraints in the constrained bundle
adjustment in order to decrease the memory footprint of
the optimization process. However, using the outputs of a
model-based tracker as constraints implies to deal with het-
erogeneous error terms between the environment constraint
and the model one. We then propose two hybrid model / tra-
jectory constraints to combine the benefits of both kinds of
constraints and keep error terms homogeneous.

Different pose distances are introduced in this Section, that
measure the deviation of pose parameters from X¢ by their
impact on the model constraint.

5.1 Main idea

We propose to use a difference of pixel errors as a pose dis-
tance. More precisely, it consists in measuring the difference
between the re-projection error (see equation 2) correspond-
ing to a key-frame pose (R}|t;) and the one corresponding to
the model-based pose with the parameters)_(;? associated to
the same ;" key-frame. The corresponding distance is then
defined by the following equation:

S S
E(X) = Y H(X;mj) —) H(Xj,mf),
= =

a7

Notice that to ensure the pixel error to be minimal at the pose
(R}[t9), E (X) is evaluated by using the 2D contour points
m¢ associated to edgelets for the key-frame j. We define the

vector representation of our hybrid error E(X) as follow:

E(X) =H(X,m") — H(X‘,m°), (18)
with m€ the vector concatenating the 2D contour points as-
sociated with the parameters X¢ for all the edgelets and for
all the optimized key-frames. An illustration of this hybrid
error for a given key-frame and a given edgelet is repre-
sented in Figure 7. With this definition we ensure that E(X)
is minimal when the model constraint H(X,m¢) is mini-
mal (ie. at the pose parameters X¢). Besides, the pose de-

fined by the parameters X¢, the 2D contour points m¢, and

Angelique Loesch et al.

Fig. 7: Point A (respectively B) is an edgelet extracted from
a cube model and projected according to a SLAM key-frame
pose in red (respectively according to the model-based pose
in orange). Point C is the 2D contour point associated to the
edgelet B. The error E(X) of equation 18 can be interpreted
as the difference d,0(A,C) — dono (B, C), with dyypo the

orthogonal distance.

consequently the pixel error associated to the parameters
X¢ are constant. Since the 2D contour points m¢ are no
longer re-estimated, it is not required to store the contour
images. Furthermore, contrary to the re-projection formal-
ism described in Section 3.2.1, the edgelet/contour match-
ing step is not necessary anymore, which allows to reduce
computation time. Only the vector of the 2D contour points
m° and, in case of dynamic edgelets, the edgelet constel-
lation are memorized for each key-frame. Compared to re-
projection formalism, it implies a large reduction of mem-
ory footprint and computation cost. However, this memory
consumption can remain important if the number of edge-
lets and key-frames is high. In the following Subsections,
we introduce two approximations of E(X) that reduce the
memory footprint.

5.2 First approximation

This first approximation relies on the hypothesis that the
model-based tracker has converged to a local minimum. Thus
it is reasonable to consider that the distance between the
projection of the edgelets with respect to the parameters
X¢ and their corresponding 2D contour points is negligi-
ble. In Figure 7, this assumption corresponds to approximate
dortho (Avc) —dortho (Ba C) by dortho (A,B).

Under such hypothesis, the 2D contour points m§ of equa-
tion 17 are replaced by the projection of their corresponding
3D edgelets with respect to the parameters)_(5. The resulting

approximation of E(X) is given by:
S = -
E(X) =) H(X;Mj),
j=1

19)

where 1_/[3 = {PjMi}ﬁ\Z is the vector concatenating edgelets
M; projected according to PS.

With this approach, it is not necessary to keep in memory the
2D associated contours, since only the model-based pose pa-
rameters are exploited. In the case of polyhedral object, the
memory footprint of the resulting constrained bundle ad-
justment is very small, since only a set of edgelets shared
by all the key-frames has to be stored as proposed by [33].
However, the memory consumption is higher with dynamic
edgelets extracted from occluding contours as presented in
Section 4, since they depend on the point of view. They are
generated online and stored for each key-frame. That is why
a second approximation of equation 18 is proposed to reduce
memory consumption.

5.3 Second approximation

This second approximation relies on the hypothesis that the
poses of the EC-SLAM key-frames are located in the neigh-
borhood of their corresponding model-based poses. This ap-
proximation is valid in practice since the model-based poses
are obtained by refining the SLAM poses with equation 2.
Under this hypothesis, equation 18 can be approximated with
a second order Taylor expansion around the model-based
poses X¢:

E(X) ~ E(X%) +E'(X)5 + %5%"(5&)5, (20)
where § = X — X¢ is the difference between pose parame-
ters (positions and orientations) provided by the SLAM and
model-based tracking algorithms. X¢ is obtained after the
model-based refinement and corresponds to the minima of
the model-based cost functions (equation 2) for all the op-
timized key-frames. Thus H'(X¢,m¢) (equation 3) is null.
Consequently the first derivative E'(X¢) = H'(X¢,m¢) = 0.
Besides the second derivative E” (X¢) = H” (X¢,m¢) can be
approximated by the S x S diagonal matrix W¢ with S the
number of optimized key-frames. The diagonal term of this
matrix is W§ = J?TJ;, Jj € [0..5], which corresponds to the
approximation of H’ ’(X?,ﬁl ;) introduced in Section 3.2.2.
This matrix is estimated during the model-based refinement
step for the key-frame j. W9 is determined only once per
key-frame and stored in addition to the optimal pose param-
eters)_(;.. The hybrid error defined in equation 20 becomes:
EX)=EX)+ %STWCS Q1)
Since E(X¢) = H(X¢,m¢) — H(X¢,m) = 0 according to
equation 18, the hybrid error definition becomes:

S 1
EX)= 5(STWC(S (22)
This definition of our hybrid constraint presents several ad-
vantages. W¢ converts the difference between the pose pa-
rameters to an error in pixels and makes this error homo-
geneous with the multi-view term of the constrained bundle

Localization of 3D objects using model-constrained SLAM

11

adjustment (equation 5). It also allows not to store contour
images for each key-frame contrary to equation 2. Moreover,
neither the edgelets, nor their associated observations inter-
vene, allowing not to store any of them. Only the model-
based pose {R¢, t¢} and the 6 x 6 matrix W are exploited in
the optimization process for each key-frame.

This hybrid constraint results in a bundle adjustment with a
memory footprint invariant to the video resolution and the
model complexity.

6 Experimental results

In this entire Section, the EC-SLAM of [33] exploiting static
edgelets extracted from sharp edges of CAD models, and
using a re-projection error as presented in Section 3.2.1 is
called rfSEC-SLAM. On the contrary, our SLAM solutions
exploiting dynamic edgelets extracted from sharp and oc-
cluding contours (see Section 4) are called DEC-SLAM.
The approach using the re-projection error is named rDEC-
SLAM. If the first hybrid formalism is used (see Section
5.2), our solution is called thDEC-SLAM. Finally, our DEC-
SLAM exploiting the second hybrid representation (see Sec-
tion 5.3) is named phDEC-SLAM.

We first evaluate in Section 6.2 our EC-SLAM frame-
work exploiting dynamic edgelets and using the second hy-
brid constraint presented in Section 5.3. Results are only
presented with the phDEC-SLAM, since it has similar re-
sults in term of accuracy as the other ones. Secondly, we
evaluate in Section 6.3 the different model constraint for-
malisms described in Sections 3.2.1, 5.2 and 5.3 in term
of computation time, memory consumption and accuracy.
Our DEC-SLAM is also compared on these criteria with the
solution rSEC-SLAM of [33] exploiting static edgelets. Fi-
nally, in Section 6.4, our DEC-SLAM using the three model

constraint formalisms is evaluated on two public benchmarks:

CoRBS [38] and ICL-NUIM [7].

Evaluations are performed on synthetic and real data with
objects that have different natures to assess the genericity of
the proposed solution. In the experiments, we use a laptop
with an Intel (R) Core (TM) i7-4800MQ CPU @ 2.70GHz
processor and a NVIDIA GeForce GT 730M graphics hard-
ware.

6.1 Synthetic data presentation

The synthetic sequences used for the experimental results,
are generated with a resolution of 640 x 480. Only the tracked
object is modified. The camera trajectory and the object en-
vironment are the same for all the sequences. The camera
/ object distances do not exceed 8 meters and the object of
interest is not always entirely in the camera field of view.

The object environment is composed of 4 walls covered with
brick texture and an untextured ground. Several objects, with
a volume of about 4m> have been tested:

— atorus (Figure 9(a)), a simple curved object with a 13K

face model.

a dragon (Figure 9(b)) that presents both sharp edges

and occluding contours. The associated model has 100K

faces.

— a part of a robotic exoskeleton arm, referred to as an or-
thosis, (Figure 9(c)) with many sharp edges. The CAD
model of this object has 264K faces.

— a dwarf (Figure 12(a)), a curved object with a 8K face
model.

— abypass (Figure 17(a)), a curved object from the chem-
ical industry, and mainly composed by pipes. Its CAD
model used during the tracking has 152K faces. The by-
pass environment is slightly different from the others.
For some robustness evaluation (see Section 6.2.4), the
bypass can be occluded by an orthosis as shown in Fig-
ure 11(b).

The EC-SLAM initialization for the synthetic sequences is
obtained by the ground truth pose.

Quantitative results are obtained by measuring the differ-
ence between the ground truth and the estimated camera
positions. These localization errors are expressed as a per-
centage of the camera / object distance. An other possible
measure used in these experimental results is an orientation
error expressed in radians between the the camera orienta-
tion and the ground truth one. A mean 2D error expressed
in pixels is also computed and corresponds to the mean 2D
distance between edgelets projected according to the esti-
mated camera poses and edgelets projected according to the
ground truth camera poses.

6.2 DEC-SLAM framework evaluation

Evaluations of our DEC-SLAM framework through phDEC-
SLAM solution, concerns the edgelet orientation definition
(presented in Section 4.1.3), the sampling strategy (Section
4.1.4), the transfer time between GPU and CPU of edge-
let information (Section 4.1.5), and the exploitation of the
Lhuillier cost function in our constrained bundle adjustment
to deal with erroneous constraint (Section 3). A first com-
parison with a model-based tracker algorithm is also per-
formed to demonstrate the robustness and the stability of
our solution when sudden motions occur. A second compar-
ison with the rSEC-SLAM of [33] is achieved to evaluate the
use of dynamic edgelets against static ones extracted offline
on sharp edges only. Finally, our DEC-SLAM algorithm is
tested on several real sequences tracking any kind of objects,
to assess its genericity.

Angelique Loesch et al.

(b) (©)
' ' — simple orientation ' ' —simple orientation
—— new orientation —— new orientation ——new orientation
100 : - 100! 100 4
—~ 80 - —~ 80 = 80
g g g
[a]
8 8 8
Q 60 - 9 60 9 60 J
o
g g g
S S S
T 40 - ® 40 ® 40
£ £ £
20 20! 20,
0
GO 10 15 20 G0 5 10 15 20 25 0 10 15
keyframes (#) keyframes (#) keyframes (#)
(@ (e) ®
5
2 —simple orientation o —simple orientation ——simple orientation
—— new orientation —— new orientation ——new orientation
20 3 1
18 25
— ~038
g S g
5 5 2 5
5™ G S 06
c c c
2 S1s 2
=12 2 7]
] o o
e e S04
10 4
8
05 02
6
4 0

10 20
keyframes (#)

(2

10 15
keyframes (#)

(6]

20 5 10
keyframes (#)

@

Fig. 9: Comparison of DEC-SLAM with simple 3D orientation definition and the solution we proposed that uses dynamic
generated edgelets with new orientations. In green our solution exploiting the presented edgelet generation and in red the

other method.

6.2.1 Edgelet orientation

The 3D edgelet orientation described in Section 4.1.3 is com-
pared to a simple orientation definition based on the 3D po-
sitions of two adjacent contour points of the rendered model
in the image space.

The edgelet orientation is used in two processes of DEC-
SLAM algorithm: the 2D/3D matching step when edgelets
are associated to image contours, and then the camera pose
estimation based on the minimization of the orthogonal dis-
tance between projected 3D edgelets and their associated 2D

contours (for the re-projection formalism or the optimization
of the output model-based poses for the hybrid constraint
representations). Thus the 3D orientations are first evaluated
in a qualitative way, then their impact on the rate of 2D/3D
matches and on the accuracy of the camera position are eval-
uated.

Figure 8 shows the 3D orientations obtained for a simple ob-
ject as the torus. Figure 8(a) corresponds to the simple 3D
orientation, whereas Figure 8(b) represents our 3D edgelet
orientation for a given point of view. With our method, the
3D directions seem to correspond to the expected ones. On
the contrary, with the simple definition, the 3D orientation

Localization of 3D objects using model-constrained SLAM

are not well estimated because of the aliasing effect from
the rasterization step of the rendering process.

Figure 9 presents the impact of our new 3D orientation def-
inition. The evaluation is performed on the torus (Figure
9(a)), the dragon (9(b)) and the orthosis (9(c)) sequences in
order to confirm the genericity of our method. Our DEC-
SLAM is compared to one with simple 3D edgelet orienta-
tion. The impact on the 2D/3D matching step is shows on
Figures 9(d),9(e) and 9(f) representing the rate of edgelets
associated to image contours. Indeed, the well estimation of
the 3D edgelet direction increases the probability that a pro-
jected edgelet matches with an image contour with a similar
orientation. The 2D/3D matching rate is presented in per-
cent according to the number of extracted edgelets for each
key-frame. For each sequence, the 2D/3D matching mean
rate is higher for our solution with 82.2% against 45.0% for
the torus sequence, 64.2% against 46.3% for the dragon se-
quence and 63.1% against 41.4% for the orthosis sequence.
The gap between the two methods is more important when
the object is curved, the aliasing effect being more signifi-
cant.

Finally the accuracy of our solution exploiting the new 3D
edgelet orientation definition is compared to a DEC-SLAM
with a simple edgelet orientation. It is evaluated through a
position error. The quantitative results are presented in Fig-
ure 9(g), 9(h) and 9(i). On the torus sequence, for both meth-
ods, the position error is important. The optimization pro-
cess is indeed less constrained due to the object symmetry.
However, our 3D edgelet orientation allows a camera posi-
tion more accurate since the mean position error is around
9% whereas the solution with the simple orientation defini-
tion has a mean position error of more than 16%. For the
dragon sequence and the orthosis one, the tracking is also
more accurate with the new 3D orientation. The mean posi-
tion error is around 0.5% for the dragon sequence using the
proposed 3D orientation definition, against 1.5% with the
simple method. For the orthosis sequence, the object of in-

Fig. 8: Representation of 3D edgelet orientations of the torus
rendered model for a given camera point of view with simple
orientation on the left and with our proposed orientation on
the right.

(a) (b)

Fig. 10: Set of edgelets extracted with our sampling method
on the left and with a random sampling solution on the right.

min (%) | max (%) | mean (%) | std. (%)
Random 1 570 | 19,0420 | 84383 | 84943
sampling
Proposed | ¢ <16¢ | 103170 | 3.5466 | 3.4458
sampling

Table 1: Localization errors (%) with different sampling
strategies.

terest is polyhedral and the aliasing effect is less perceptible.
Thus both methods are accurate with a mean position error
less than 1%.

The DEC-SLAM with the proposed 3D orientation allows a
higher 2D/3D matching rate and a higher or similar accuracy
than the one with simple edgelet orientation.

6.2.2 Sampling strategy

The proposed sampling strategy described in Section 4.1.4
is compared with a random sampling. This evaluation is per-
formed on the orthosis sequence where the proposed solu-
tion is ran a hundred times with the two sampling strategies
(400 edgelets are used). The mean errors over the 100 trials
and over all the images of the orthosis sequence are esti-
mated, as well as the min/max errors and the standard de-
viation (std.). Results are reported in Table 1. Our proposed
sampling better constrains the matching and the pose esti-
mation, halving the localization errors. Edgelets resulting of
the different sampling methods are also shown in Figure 10.
Our sampling allows a more evenly distribution.

6.2.3 Edgelet data transfer time

Our method of edgelet transfer from GPU to CPU detailed
in Section 4.1.5 is compared to a simple asynchronous tex-
ture transfer using Pixel Buffer Object.

In the presented approach, the transfer begins with the syn-
chronization between GPU and CPU for the data reading ac-
cess. Then the filtering pass follows, storing only the edgelet
data. The transfer ends with the reading of the VBO con-
taining edgelet information. With the simple texture trans-

Angelique Loesch et al.

SD sequence (ms) | HD sequence (ms)
mean std. mean std.
Texture | 355 1 017 | 1707 | 375
transfer
Proposed | 56 | 910 | 103 | 023
solution

Table 2: Computation time for the edgelet data transfer be-
tween GPU and CPU. The comparison is made between a
texture transfer and the proposed method.

fer method, the transfer also begins with the synchroniza-
tion between GPU and CPU. However, there is no filter per-
formed and the transfer ends when all the textures contain-
ing edgelet information are read.

Table 2 presents the mean and standard deviation (std.) of

transfer and reading times on the whole key-frames of the
dragon sequence. Computation time are expressed in mil-
liseconds. To evaluate the impact of our optimization, trans-
fer computation time is evaluating on a Standard Definition
(SD) sequence with a 640 x 480 resolution and a High Def-
inition (HD) sequence with a 1280 x 960 resolution.
Table 2 shows an important time saving since transfer time
between the simple texture transfer and our proposed solu-
tion decrease of over 84% for the SD video and of 94% for
the HD one. Moreover, we can see that the simple texture
transfer approach is almost five times more time consuming
between the SD and the HD sequence, whereas our proposed
transfer method is only almost twice more time consuming.
Edgelet transfer time with the simple texture transfer method
depends directly of the sequence definition since all the pix-
els of all the textures are transferred to CPU. On the con-
trary, our method proposes to only transfer the edgelet pix-
els through an optimized array. Thus the presented approach
runs faster ans is less affected by the sequence resolution.

6.2.4 Lhuillier cost function

Int this experiment,the robustness of our solution exploiting
inaccurate constraints is evaluated. Particularly, we seek to
compare our constrained bundle adjustment using Lhuillier
cost function and an other one using a classic cost function
optimizing simultaneously the environment and the model
constraints as in [33]. The hybrid constraint may indeed be
erroneous, especially if the output of the model-based tracker
is inaccurate when the object is occluded or small in the im-
age.

The experiment consists in occluding an object of interest
to disturb the model-based tracking and obtain erroneous
model-based poses for the constrained bundle adjustment.
Figure 11 shows the position errors and 2D errors with our

(a) (b)

H H Lhuillier cost function
of i i |—dlassic cost function o

+ [~ Lhuillier cost function
i | =—classic cost function

position error (%)
o
2D error (pixels)

0 5 20 25 0 5 20 25

10 15 10 15
keyframes (#) keyframes (#)

(©) (@

Fig. 11: Comparison between Lhuillier cost function and
classic cost function on a synthetic sequence.The bypass is
the object of interest and is occluded by an orthosis in a
part of the video. (a) and (b) present some frames of this se-
quence. (c) shows the position errors of our phDEC-SLAM
with a classic cost function (green) or Lhuillier cost function
(red) in the constrained bundle process. The blue dots cor-
respond to the interval where the bypass is occluded and the
model-based poses are erroneous. (d) present the 2D errors
of both methods.

phDEC-SLAM approach and with a phDEC-SLAM con-
strained with a classic cost function. The two object trackers
are experimented on a synthetic sequence where a bypass is
momentarily occluded by an orthosis as shown on Figures
11(a) and 11(b). When the bypass is occluded, the model-
based pose can reach a position error of almost 22%. How-
ever this erroneous constraint does not degrade the camera
pose since after the optimization process exploiting Lhuillier
cost function, the mean position error is less than 1% (see
Figure 11(c)) and the mean 2D error is 1.56 pixels. However
with the use of a classic cost function, the localization is less
accurate when the model-based pose is erroneous. The mean
localization error is more than 2% and the mean 2D error is
around 2 pixels.

6.2.5 Comparison to model-based tracking

We compare our DEC-SLAM with model-based tracking in
term of robustness against large displacements. The latter
uses edgelets extracted with the proposed solution described
in Section 4. For the matching step, the pose estimated on

Localization of 3D objects using model-constrained SLAM

(a) (b)

—original frame rate
original frame rate / 8
—original frame rate / 10

— original frame rate
original frame rate / 8
16/L—original frame rate / 10

1) IS

position error (%)
N

position error (%)

iy

) 200 400 600 800 % 200 400 600 800
keyrames (#) keyframes (#)

(c) ()

Fig. 12: Comparison of model-based tracking and our DEC-
SLAM solution on the dwarf sequence. (a) Illustration of
the dwarf. (b) Edgelets extracted with the solution described
in Section 4 for a given camera pose. Localization errors
resulting from model-based tracking (c) and from the pro-
posed DEC-SLAM (d) on the dwarf sequence with the orig-
inal frame rate (red), a frame rate divided by 8 (green) and
by 10 (blue).

the previous image is used to project each edgelet and the
nearest 2D image contour with a similar orientation is se-
lected as its correspondent. The comparison is made on the
dwarf synthetic sequence described in Section 6.1. The two
algorithms are evaluated by varying the frame rate of the
camera on the dwarf sequence. The travel speed of the cam-
era is unchanged.

Three scenarios are tested: the original frame rate and frame
rates divided by 8 and by 10. Figure 12(c) and 12(d) repre-
sent the position errors for the model-based tracking and the
proposed solution respectively. The DEC-SLAM succeeds
on the three scenarios. The mean error stays in the interval
[0.78%, 0.92%] and is almost constant for all frame rates.
On the other hand, model-based tracking fails on the se-
quence with the lowest frame rate due to too large ampli-
tude motions. The mean position error increases with the
displacement amplitude, its values are 2.41% and 6.65% for
the sequences with the original frame rate and with a frame
rate divided by 8, respectively. Moreover, the standard devi-
ation is important (2.76% vs 0.33% for our solution) due to
tracking instabilities (jitter). The proposed solution is thus
more accurate and more robust to large displacements than
model-based tracking.

Fig. 13: Comparison of the proposed solution (right) with
model-based tracking (left) on the car seat sequence where
sudden motions occur.

This robustness comparison is also made on a real se-

quence to obtained qualitative results, as shown in Figure
13. The tracked object corresponds to a car seat that is fully
curved and whose CAD model has 79K faces.
Thanks to the SLAM prediction based on key-points, the
generated edgelets at each key-frame are extracted from an
accurate pose contrary to the model-based approach, that
uses the pose estimated on the previous frame. Moreover,
the pose predicted by the SLAM also facilitates the 3D/2D
matching step, especially when large amplitude motion oc-
curs. Thus our solution results in a stable (jitter-free) local-
ization while model-based tracking presents some localiza-
tion instabilities and fails to track when the motion ampli-
tude is large as illustrated in Figure 13. Additional data are
given in the first part of Online Resource 1, with a compari-
son video on the car seat sequence.

6.2.6 Comparison to rSEC-SLAM

We compare our proposed solution with the rfSEC-SLAM
algorithm described in [33] in terms of localization accu-
racy and tracking genericity. The dragon and the orthosis
sequences are used for the evaluation. Both objects have
sharp edges, but they are not predominant for the dragon.
Fig. 14(a) and 14(b) represent position errors on the two se-
quences. For the dragon sequence, the proposed solution is

Angelique Loesch et al.

—phDEC-SLAM (OM)|
—ISEC-SLAM (OM)
6| ~——phDEC-SLAM (SM)
—rSEC-SLAM (SM)

——phDEC-SLAM
—TSEC-SLAM
7

IS

position error (%)
@

position error (%)
w

' M
% 5 20 25 °

10 15
keyframes (#)

(2) (d)

10
keyframes (#)

Fig. 14: Comparison of the rSEC-SLAM of [33] and our
phDEC-SLAM, on the dragon (a) and the orthosis (b) se-
quences. Localization errors for the orthosis sequence are
measured with the use of a simplified model (SM) and the
original one (OM).

5 times more accurate than the one proposed by [33]. In fact,
the edgelets obtained with the dihedral criteria are not evenly
distributed on the object whereas the dynamic edgelets gen-
erated with the solution we proposed (see Section 4) bet-
ter represents the silhouette and object contours. For the or-
thosis sequence, the original model and a simplified version
are used. With the proposed solution, the localization errors
are almost the same whatever the model complexity. On the
other hand, the localization accuracy of the rSEC-SLAM is
affected by the model complexity. Mean errors values are of
1.18% and 2.36% with the simplified and the original model
respectively. In fact, without model simplification, edgelet
detection with the dihedral criteria results in a noisy con-
stellation. The proposed solution does not require any model
simplification to generate an evenly distributed edgelet con-
stellation and thus to achieve accurate tracking.

Figures 15(a) and 15(b) illustrate on a real bypass se-

quence the same issue with a set of 2000 edgelets dynami-
cally generated with the solution described in Section 4 and
extracted with a dihedral criteria, respectively. A constel-
lation of edgelets obtained via the dihedral criteria is not
evenly distributed, whereas the edgelets obtained with the
proposed solution are distributed on the whole object sur-
face, including the pipes.
The accuracy of EC-SLAM is directly affected by the qual-
ity of the edgelet constellation as seen in Figurel5(c) and
15(d) on the real bypass sequence. The DEC-SLAM is more
accurate than the rSEC-SLAM proposed in [33] since their
edgelets constellation poorly constraints camera poses. Ad-
ditional data are given in the second part of Online Resource
1, with a comparison video on the bypass sequence.

(© (d)

Fig. 15: Comparison between DEC-SLAM (left) and the
rSEC-SLAM of [33] (right) on the bypass sequence. (a) Dy-
namic generated edgelets for that point of view (b) Static ed-
gelets generated with a dihedral criteria. (c) and (d) Model
re-projections on a bypass portion.

6.2.7 Tracking genericity evaluation

To finally assess the genericity of our DEC-SLAM method,
experiments are carried on several real sequences with dif-
ferent kind of objects. Our solution presents similar accurate
and robust tracking results on these objects of interest what-
ever the model constraint formalism. Then Figure 24 shows
3D model projections on the real scene according to the es-
timated camera poses with phDEC-SLAM solution only.
Our proposed solution has been successfully tested with ob-
jects for which a CAD model is available, for example with
a sport car (Figure 24(g)), a bypass from the chemical in-
dustry (Figure 15) and a seat from a car OEM (Figure 13).
The genericity of our solution is also demonstrated by track-
ing objects like a metal statue of dragon (Figure 24(d)), and
a Raving Rabbid (Figure 24(a)) using 3D models recon-
structed by photogrammetry. Industrial objects like a real-
sized car (Figure 24(j)), a car cylinder head (Figure 24(m)),
or an other kind of orthosis (Figure 24(p)) with a known
CAD model have been tracked successfully.

These objects might be polyhedral (the sport car, the cylin-
der head or the orthosis) or curved (the Raving Rabbid, the
dragon or the car seat), but they also can present sharp and
occluding contours at the same time (the bypass or the real-
sized car). Some are textured (the dragon), while others are
absolutely textureless (the Raving Rabbid).

Our solution is robust to occlusions, thanks to the proposed
DEC-SLAM framework, which guarantees the multi-view
relationships to be well estimated. Additional data are given
in the third part of Online Resource 1, with a compilation

Localization of 3D objects using model-constrained SLAM

Polyhedral object (sport car)
SEC-SLAM [33] | thDEC-SLAM | phDEC-SLAM
3 optimized 47.9 27.9 23.6
key-frames
10 optimized 130.5 77.9 76.2
key-frames
30 optimized 216.6 203.9 188.7
key-frames

Table 3: Computation time in milliseconds of the mapping
process for the thDEC-SLAM, phDEC-SLAM and rSEC-
SLAM on the sport car sequence. It is given for 3,10 and 30
optimized key-frames.

Curved object (dragon statue)
rDEC-SLAM | rhDEC-SLAM | phDEC-SLAM
3 optimized 97.8 94.8 94.1
key-frames
10 optimized 172.1 170.6 130.3
key-frames
30 optimized 385.3 330.0 261.3
key-frames

Table 4: Computation time in milliseconds of the mapping
process for the rtDEC-SLAM, rhDEC-SLAM and phDEC-
SLAM on the dragon sequence. It is given for 3,10 and 30
optimized key-frames.

video that shows our tracking solution on several polyhedral
and curved objects.

6.3 EC-SLAM comparison

The different formalisms of the presented solution are com-
pared in terms of computational cost, memory consumption
and accuracy in this Section.

6.3.1 Computation time evaluation

In this Subsection, the different model constraint formalisms

integrated in our DEC-SLAM framework are evaluated in

term of computational costs. Since these solutions differ only
by their bundle adjustment, this experiment consists in com-

paring the processing time required by the mapping process

described in Section 3. The mapping process is achieved

once per new key-frame, then we compare the median pro-

cessing time of these executions. Also, since the computa-

tion time depends on the number of optimized key-frames,

the different solutions are compared for a set of 3, 10 and 30

optimized key-frames.

This experiment is achieved on two real sequences recorded

with a HD resolution (1280 x 1024). The two objects used

are a metal statue of dragon (see Figure 24(d)) with a 3D

model reconstructed by photogrammetry and a sport car (see

Figure 24(g)), whose the CAD model is available. The SLAM

initialization on these real videos is performed manually and
followed by a contour refinement process.

The sport car illustrates the performances for a polyhedral
object, while the dragon sequence illustrates the performances
for a curved object. For the car sequence, the performances
of our thDEC-SLAM and phDEC-SLAM are compared to
the performances of rSEC-SLAM of [33]. For the dragon se-
quence, the rDEC-SLAM, rhDEC-SLAM and phDEC-SLAM
are compared in term of computational cost.

The computation time of the mapping processes is pre-
sented in Tables 3 and 4. The classic bundle adjustment op-
timizing the multi-view constraint and the dynamic edgelet
generation (and optimal output model-based poses for both
hybrid constraint representations) are running in parallel, to
optimize the computation time. Moreover, even if rDEC-
SLAM and rSEC-SLAM have not the model-based pose re-
finement step in their framework (contrary to the rhDEC-
SLAM and phDEC-SLAM), the 2D/3D associations between
edgelets and their 2D counterparts have to be re-estimated
at each constrained bundle adjustment on all the optimized
key-frames. This process participates in slowing down its
execution. Computation time is globally more important with
the tracking of curved objects. It is due to the edgelet gen-
eration process, which has to be performed online at the last
key-frame since the occluding contours depend on the cam-
era point of view (see Section 3.1). On the contrary, the ed-
gelet extraction is performed offline only once for polyhe-
dral objects. Tables 3 and 4 show that the exploitation of
any hybrid constraint representation allows to reduce com-
putation time. Compared to the use of re-projection formal-
ism, the computation time decreases of around 44% for the

10°
10°
o @ o
g g
c =
g 10 2 o
a a 10
- £
2 2 |
8 1 310
2 Fad
g g
] & 107}
E =
1071
3
—rhDEC-SLAM 10 — hDEC-SLAM
phDEC-SLAM pPhDEC-SLAM
2 — ISEC-SLAM — DEC-SLAM
10 10

-
500 1000 1500 0 500 1000 1500 2000
frames (#) frames (#)

(a) (b)

Fig. 16: The memory footprint associated to the car se-
quence (a) and the dragon one (b), is drastically decreased
with the use of the rhDEC-SLAM and phDEC-SLAM (see
Section 5) compared to rSEC-SLAM of [33] or our rDEC-
SLAM. The memory consumption is expressed in MB with
a logarithmic scale on the y axis.

Angelique Loesch et al.

sport car sequence and around 8% on the dragon one even
if a model-based pose refinement is performed in addition
to the constrained bundle adjustment with the use of hybrid
constraint (with 3 and 10 key-frames in the bundle adjust-
ment). The computation time decrease of around 10% and
23% with the use of 30 key-frames.

6.3.2 Memory consumption comparison

Optimizing a SLAM reconstruction with a bundle adjust-
ment constrained to a 3D model implies the storage of ad-
ditional data for each key-frame. In this Section, the mem-
ory footprint of these data is evaluated, depending on the
use of the chosen model constraint formalism and the ed-
gelet generation process (static or dynamic). These evalu-
ations are conducted on the two real sequences introduced
in Section 6.3.1. The edgelet extraction is performed offline
for the car sequence and online for the dragon statue. Our
rhDEC-SLAM and phDEC-SLAM are compared to [33] for
the sport car and with our rDEC-SLAM for the dragon. The
results are summarized in Figures 16(a) and 16(b).

As explained in Section 3.2, IDEC-SLAM or rSEC-SLAM
require to store edgelets and contour images for each key-
frame optimized in the constrained bundle adjustment. Con-
sequently the memory footprint increases every time a new
key-frame is created. The impact is even greater as the video
resolution (for curved objects) and the number of edgelets
are high. For the real sequences, the number of edgelets pro-
jected and associated to 2D contour points is set to 2000, and
94 (respectively 113) key-frames are created over the car se-
quence (respectively dragon sequence).

Thus, as shown in Figures 16(a) and 16(b), the memory foot-
print for rSEC-SLAM is near 235 MB at the end of the sport
car sequence and more than 292 MB for the rDEC-SLAM
at the end of the dragon one. The latter sequence requires
more memory since edgelets extracted from occluding con-
tours are stored for each key-frame, which is not required
with polyhedral objects. The memory footprint drastically
decreases with the use of a hybrid constraint formalisms,
since contour images are not required anymore in the con-

(a) (b)

Fig. 17: Images from the bypass (a) and sedan car (b) syn-
thetic sequences.

strained bundle adjustment. Pose parameters of the model-
based tracker outputs are henceforth stored instead. In ad-
dition to the pose parameters storage, our rhDEC-SLAM
requires to save sets of edgelets. Since they are extracted
only once with polyhedral object, the memory consumption
is limited to 0.1 MB at the end of the car sequence. How-
ever, generating and accumulating sets of edgelets at each
key-frame for curved objects, increase the memory footprint
to 10 MB at the end of the dragon sequence. Finally the
phDEC-SLAM allows a memory footprint close to 0.12 MB
(respectively 0.04 MB) at the end of the sport car sequence
(respectively dragon sequence), only pose parameters and
matrices W€ of the model-based tracker outputs (see Sec-
tion 5.3) being stored. We can notice that with polyhedral
objects, the memory consumption is higher for the phDEC-
SLAM (0.12 MB) than for the thDEC-SLAM (0.10 MB).
Indeed, in addition to the pose parameters stored for both
hybrid constraint representations, for the rhDEC-SLAM, a

unique set of edgelets is stored for the whole sequence, whereas

for the phDEC-SLAM, matrices Wj? are stored at each key-
frame creation.

This latter allows our memory consumption to be invariant
to the number of edgelets and their generation, invariant to
the resolution of the tracking video. Thus, if polyhedral (re-
spectively curved) objects are tracked, the rhDEC-SLAM
(respectively phDEC-SLAM) is more suitable. Additional
data are given in the fourth part of Online Resource 1, with
a comparison video on the sport car and dragon sequences.

6.3.3 Accuracy evaluation

Our proposed DEC-SLAM algorithm is evaluated in terms
of accuracy and robustness on polyhedral and curved objects
and also compare to rSEC-SLAM described in [33].

The accuracy of our DEC-SLAM solution is evaluated on
two synthetic sequences. The first one corresponds to the
bypass sequence (see Figure 17(a)) presented in Section 6.1.
The second sequence has a sedan car as object of interest.
Its CAD model has 50K faces. The sedan car environment
is composed of city buildings as seen in Figure 17(b).
Figures 18(a), 18(b) and 18(c) present the localization error
in position and orientation, and the 2D error on the bypass
sequence. Figures 18(d), 18(e) and 18(f) present the same
errors on the sedan car sequence.

The rDEC-SLAM and the phDEC-SLAM provide similar
accuracies on both polyhedral and curved objects, contrary
to the thDEC-SLAM that presents some lacks of accuracy.
On the sedan sequence, the median pixel error is 1.38 for
the thDEC-SLAM, 1.12 for the phDEC-SLAM, 1.28 for
the rDEC-SLAM and 1.63 for the rfSEC-SLAM of [33]. On
the bypass sequence, the median pixel error is 1.39 for the
rhDEC-SLAM, 0.99 for the phDEC-SLAM, 0.91 for the
rDEC-SLAM and 0.66 for the rSEC-SLAM of [33]. This

Localization of 3D objects using model-constrained SLAM

10 T 0.04 4
—rhDEC-SLAM —rhDEC-SLAM —rhDEC-SLAM
9 phDEC-SLAM phDEC-SLAM phDEC-SLAM
—DEC-SLAM 0.035 —DEC-SLAM 3.5[—DEC-SLAM
s —TrSEC-SLAM —TrSEC-SLAM —TrSEC-SLAM
. 0.03 3
7 2
— 8
S —
% 6 30.025 TE 25
5 5 g
5} = =
es 5 002 5 2
= &]
3 80015 Q1is
Q c
3 o
© o001 1
2
i 0.005 0.5
0
% 5 10 15 0 5 10 15 % 5 10 15
keyframes (#) keyframes (#) keyframes (#)
(@ (©
0.06 6 T
— rhDEC-SLAM —rhDEC-SLAM —rhDEC-SLAM
o PhDEC-SLAM|| phDEC-SLAM phDEC-SLAM
—DEC-SLAM —rDEC-SLAM —DEC-SLAM
—TISEC-SLAM 0.05/| —rsEC-SLAM 5[|—rsEC-SLAM
7 g
@
c
~ 6 8 0.04 _4
= = [
55 5 s
5 = =
° 5003 5 3
24 5 s
@ =1 a
o 8 «
Q
3 §oo2 2
S
2
0.01 1
1
0 0 0
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
keyframes (#) keyframes (#) keyframes (#)

Fig. 18: Accuracy comparison between static edgelet cSLAM [33] (black), dynamic edgelet cSLAM (red) and the first hybrid
(blue) and the second (green) cSLAM on the bypass (top) and sedan car (bottom) sequences.

latter is less accurate when the object of interest is curved.
Edgelets obtained with the dihedral criteria are not evenly
distributed on the object whereas the dynamic edgelets gen-
erated with the proposed solution, better represents the sil-
houette and object contours.

6.4 Evaluation on public datasets

To assess the robustness and accuracy of our DEC-SLAM
approach, we run our method on two public datasets. Even
if these benchmarks are more adapted for RGBD solutions,
EC-SLAM are able to localize accurately the camera with-
out depth information. The SLAM initialization on these se-
quences is obtained by the first ground truth pose.

6.4.1 CoRBS dataset

Our DEC-SLAM solution is evaluated and compared on the

Comprehensive RGBD Benchmark for SLAM (CoRBS) dataset

that proposes real sequences with different objects of inter-
est. It provides the real depth and RGB frames thanks to the
use of a Kinect v2, with a ground truth trajectory of the cam-
era and a ground truth 3D model of the scene. The CoRBS
dataset is composed of 5 sequences named ktO, kt1, kt2, kt3
and kt4 for each object of interest (a desk and a wooden
human manikin). An overview of these two objects with
their reconstructed 3D models is presented in Figure 19.
This benchmark is interesting to evaluate our DEC-SLAM
with the different model constraint formalisms, since the
tracked objects are polyhedral and complex like the desk, or
curved as the wooden human manikin. The sequences have
a 640 x 480 definition and a frequency of 30Hz.

We evaluate our rDEC-SLAM, rhDEC-SLAM and phDEC-
SLAM solutions and compare it to RGBD C-SLAM [20]
(only the ktO sequence is available for this approach) and
rSEC-SLAM [33]. Table 5 describes the Absolute Trajec-
tory Error (ATE) inspired by [32] and expressed through the
Root-Mean-Square-Error metric (RMSE). This error quan-
tifies the accuracy of the entire trajectory for all the five desk
sequences. The rDEC-SLAM solution presents the best re-

20

Angelique Loesch et al.

(€

Fig. 19: CoRBS sequences [38]. Frames from the different
sequences where the desk and human manikin are tracked
(left). Their associated reconstructed 3D model (right).

sults in term of accuracy for the first three sequences and
is very close of the most accurate approach on the last two
sequences. For the kt0 one, RGBD C-SLAM has the same
RMSE of 0.013 meters as our -DEC-SLAM. However the
other model constraints formalisms integrated into our DEC-
SLAM solution provide also accurate localization with a tra-
jectory error around 0.020 meters for this sequence. On this
polyhedral object, rSEC-SLAM of [33] reaches good per-
formances, especially for the ktl and kt3 sequences where
it gets the smallest trajectory error. Our thDEC-SLAM and
phDEC-SLAM also track with accuracy the desk with simi-
lar localization error. The first one has the best result for the
ktl and kt4 sequences, the second one following just near
by. This latter has the best RMSE for the kt2 sequences.
Table 6 describes the localization error for all the five human
manikin sequences. The object of interest is a curved one.
Then rSEC-SLAM [33] and RGBD C-SLAM are less accu-
rate, few sharp edges existing on the 3D model. Edgelets ex-
tracted with the dihedral criteria are not well distributed on
the model and do not well constrain the camera pose estima-
tion. The rDEC-SLAM approach obtains the best trajectory
errors except for the ktl sequence where the phDEC-SLAM
precedes it with a RMSE of 0.146 meters.

The proposed DEC-SLAM method obtain accurate results

on CoRBS sequences with all the model constraint formalisms,

the objects of interest being polyhedral or curved.

6.4.2 ICL-NUIM dataset

The Imperial College London and National University of
Ireland Maynooth (ICL-NUIM) dataset [7] is a benchmark

Desk sequence
Error (m) | ktO ktl kt2 kt3 kt4
RMSE 0.013 | - - - -
RGBD Std. 0.005 | - - - -
C-SLAM [20] Min - - - - -
Max 0.073 | - - - -
RMSE 0.020 | 0.010 | 0.601 | 0.287 | 0.354
Std. 0.006 | 0.003 | 0.238 | 0.126 | 0.256
rSEC-SLAM[33] | iy 0.006 | 0.001 | 0.047 | 0.053 | 0.017
Max 0.048 | 0.026 | 1.011 | 0.841 1.244
RMSE 0.013 | 0.010 | 0.600 | 0.294 | 0.360
Std. 0.005 | 0.004 | 0.238 | 0.128 | 0.257
DEC-SLAM Min 0.003 | 0.001 | 0.042 | 0.061 | 0.017
Max 0.041 | 0.025 | 1.007 | 0.858 | 1.246
RMSE 0.020 | 0.010 | 0.603 | 0.288 | 0.351
Std. 0.006 | 0.004 | 0.238 | 0.126 | 0.257
rhDEC-SLAM Min 0.006 | 0.001 0.053 | 0.055 | 0.016
Max 0.049 | 0.025 1.016 | 0.854 1.260
RMSE 0.021 | 0.011 | 0.600 | 0.293 | 0.358
Std. 0.012 | 0.004 | 0.237 | 0.129 | 0.254
PhDEC-SLAM Min 0.001 0.001 0.042 | 0.066 | 0.026
Max 0.063 | 0.030 1.003 | 0.854 1.222

Table 5: Trajectory error for the CoRBS Desk sequences
[38].

Human sequence
Error (m) | ktO ktl kt2 kt3 kt4
RMSE 0.036 | - - - -
RGBD Std. 0.017 | - - -
C-SLAM [20] Min - - - -
Max 0.208 | - - - -
RMSE 0.032 | 0.223 | 0.077 | 0.740 | 0.147
Std. 0.014 | 0.120 | 0.047 | 0.349 | 0.074
rSEC-SLAM[33] Min 0.002 | 0.015 | 0.006 | 0.052 | 0.017
Max 0.067 | 0.619 | 0.218 | 1.572 | 0.472
RMSE 0.019 | 0.158 | 0.027 | 0.510 | 0.086
Std. 0.008 | 0.087 | 0.011 | 0.252 | 0.048
rDEC-SLAM Min 0.001 | 0.016 | 0.003 | 0.024 | 0.005
Max 0.055 | 0.440 | 0.059 | 1.282 | 0.248
RMSE 0.046 | 0.150 | 0.062 | 0.760 | 0.272
Std. 0.021 | 0.072 | 0.032 | 0.308 | 0.076
ThDEC-SLAM Min 0.003 | 0.026 | 0.032 | 0.141 | 0.130
Max 0.095 | 0.317 | 0.174 | 1.524 | 0.475
RMSE 0.030 | 0.146 | 0.029 | 0.516 | 0.127
Std. 0.013 | 0.073 | 0.012 | 0.252 | 0.074
PhDEC-SLAM Min 0.003 | 0.011 | 0.002 | 0.043 | 0.012
Max 0.068 | 0.290 | 0.070 | 1.310 | 0.431

Table 6: Trajectory error for the CoORBS Human manikin
sequences [38].

created for a different context than object tracking evalua-
tion. The scene indeed corresponds to a living room as seen
in Figure 20(a), a much larger object of interest than the ones
we exploit previously. However, even if this dataset is out
of our context and our DEC-SLAM is not necessarily well
adapted for this kind of scene when the object of interest
is too large for the camera field of view, it is able to run
on these sequences. The 3D model of the scene is indeed
available (Figure 20(b)). The ICL-NUIM sequences have a
640 x 480 resolution and are recorded at 30 Hz. Images are
synthetic but with real world lightning conditions. The se-
quences are also noisy according to an RGB noise model to
simulate the one providing of real camera.

Localization of 3D objects using model-constrained SLAM

(€]

Fig. 20: ICL-NUIM sequences [7]. (a) A frame from the kt1
sequence. (b) The 3D model of the living room used as a
constraint in our solution. (c) and (d) 3D model projected on
the kt1 and kt2 sequences with the rDEC-SLAM.

(@ (b)

Fig. 21: Our DEC-SLAM is not able to estimate camera
poses when any model information or environment key-
points are available to constrain our method. Without depth
information, our solution fails when the camera is looking
to planar textureless regions. (a) and (b) are frames from the
ICL-NUIM ktO sequence [7]. The tracking is lost when only
walls are visible.

Table 7 describes the trajectory accuracy expressed with the
RMSE metric of [32] as for the CoRBS dataset, for the living
room sequences ktl and kt2. We compare our rDEC-SLAM,
rhDEC-SLAM and phDEC-SLAM to the rSEC-SLAM of
[33] and RGBD SLAM approaches such as DVO [10], FO-
VIS [9], ICP of KinectFusion [24] and finally, RGBD C-
SLAM [20].
Trajectory errors for the ktO and kt3 living room sequences
are not presented in this paper. Our DEC-SLAM solution
does not exploit RGBD frames and are not able to estimate
the camera pose when this latter is looking at a planar tex-
tureless region of the scene (walls) as it happens with these
both sequences (see Figure 21).

However accurate results are obtained on the kt1 and kt2 se-
quences with our DEC-SLAM and the different model con-
straint formalisms. On kt1, the - DEC-SLAM and the phDEC-
SLAM have the second best trajectory error with a RMSE
of 0.018 meters behind ICP solution [24] (RMSE equal to

21
Error (m) | ktl kt2
RMSE | 0.125 | 0473
Std. 0.037 | 0.175
DVO [10] Min 0.051 | 0.137
Max 0.200 | 0.834
RMSE | 1.868 | 1.495
Std. 0.871 | 0.504
FOVIS [9] Min 0.333 | 0.270
Max 3.039 | 2.773
RMSE | 0.005 | 0.010
Std. 0.002 | 0.004
ICP [24] Min 0.001 | 0.004
Max 0011 | 0015
RMSE | 0.025 | 0.023
RGBD Std. 0.015 | 0.011
C-SLAM [20] Min - -
Max 0.087 | 0.093
RMSE | 0.024 | 0.010
Std. 0.011 | 0.004
rSEC-SLAM[33] |) 0.003 | 0.001
Max 0.089 | 0.025
RMSE | 0.018 | 0.010
Std. 0.013 | 0.004
rDEC-SLAM Min 0.000 | 0.001
Max 0.094 | 0.025
RMSE | 0.068 | 0.048
Std. 0.038 | 0.017
thDEC-SLAM Min 0.001 | 0.005
Max 0.157 | 0.077
RMSE | 0.018 | 0.011
Std. 0.012 | 0.005
phDEC-SLAM Min 0.001 | 0.001
Max 0.091 | 0.034

Table 7: Trajectory error for the kt1 and kt2 ICL-NUIM se-
quences [7].

0.005 meters). On kt2, the rDEC-SLAM has the best tra-
jectory error with the ICP approach and the rfSEC-SLAM
[33] that corresponds to a RMSE equal to 0.010 meters. Our
phDEC-SLAM as the second best trajectory accuracy with
a RMSE of 0.011 meters.

Even if we do not exploit depth information, our DEC-SLAM
approach presents similar accurate results compared to [24]
and superior results to [10,9,20]. Moreover, the mean 2D
error of our DEC-SLAM on both sequences is around 4 pix-
els, that is small enough for RA application. The 3D model
of the scene is globally well re-projected on the images as
seen in Figures 20(c) and 20(d).

7 Application

DEC-SLAM is useful to Augmented Reality (AR) applica-
tions for maintenance support, automation of complex tasks
or other quality controls. Our method is able to localize com-
plex static objects, but also objects with simple dynamic
parts thanks to dynamic edgelet generation (see Section 4).
Thus more complex scenarios can be proposed to guide in-

22

Angelique Loesch et al.

dustrial people with AR applications. In the industry do-
main, objects of interest may be composed of several parts,
curved or not. For example, in the petrochemical industry
and in a maintenance support scenario, a valve may be open
or close during the sequence, or in a part assembly scenario,
elements may be piled up successively. In these cases, the
objects of interest have different states. To give suitable in-
formation, the AR application has then to localize these ob-
ject parts according to the camera pose and their current
state.

7.1 Automatic object part state estimation

In order to estimate the state of a movable object part, the
idea is to exploit 3D contours extracted from the CAD model
as presented in Section 4.

However it is not enough to only compare the rate of 2D/3D
matching between projected edgelets and image contours
for each potential state to estimate the accurate current one.
Projected edgelets and 2D image contours are not perfectly
fused when the model is rendered in the current state (see
Figure 22(a)). The camera pose may be inaccurate, the 3D
model may not be identical to the object of interest partic-
ularly when it is created by photogrammetry. The edgelet
extraction and the 2D contour detection may also be in-
accurate. The object state estimation is then not obvious.
These contour alignment issues have to be taking into ac-
count to estimate correctly which edgelets from the different
rendered models correspond to the current state, and thus to
propose a robust state estimation.

Our state estimation approach is based on a score for
each potential state (open, close or half open for example in
the case of a valve), computed as a weighted sum of 2D/3D
matches between edgelets and 2D contours. The highest score

Fig. 22: Super-imposition between projected edgelets from
the current state (red) and 2D image contours (blue) on the
left, and between projected edgelets from a false potential
state (green) and 2D contours on the right. To estimate the
accurate state of the valve, false positive association as be-
tween edgelets from the potential state and the static part of
the object have to be considered.

Other potential states
2D/3D Same No Wrong
matching orientation | match orientation
Same

One . . 0 + +
potential orientation
No
state - 0 +
match
Wrong 0
orientation

Table 8: Weights for the state estimation.

defines the potential state as the accurate current state. Since
some associations must be irrelevant and disturb the state
estimation, our method does not look for matching an ed-
gelet to a contour pixel. It aims to associate each 2D con-
tour pixel to edgelets extracted from the different rendered
models based on the potential states. In a Region Of Interest
(ROI), 2D contours of the static part as well as the mov-
able one are analyzed in order to help the state estimation.
The 2D/3D matching step is performed for the pixel with
edgelets from all the potential model renders and the weight
according to the association status is presented in the Ta-
ble 8 that follows. Three different status may happen when
we want to associate a pixel with an edgelet. For a given 2D
contour pixel, a match is found with a projected edgelet hav-
ing the same orientation, a match is found with a projected
edgelet having a wrong orientation, or no match is found.
The weight according to a 2D/3D association between the
given pixel and an edgelet from a potential state depends of
the 2D/3D association of this same pixel with edgelets from
the other potential states. The score of each potential state
corresponds to the sum of all the 2D/3D correspondences
weighted according to their status for every 2D contour pix-
els. Thus a pixel with a 2D/3D association having the same
status for each potential state, is not relevant to estimate if a
state is actually the accurate current state. Its weight is then
null. A 2D/3D correspondence with the same orientation be-
tween a pixel and a projected edgelet will have a positive
weight if it exists only for one potential state. It will have a
negative weight for the other potential states where it does
not exist. The table also shows that if a noisy contour pixel
has no match for a potential state but has a 2D/3D associ-
ation with a wrong orientation on the other potential states,
this correspondence is relevant and a positive weight will be
given for this no match.

7.2 Integration into a AR application

In an AR application, the state estimation is performed dur-
ing a live sequence in addition to the other tasks as the cam-
era localization and the AR effect displays. It is also im-

Localization of 3D objects using model-constrained SLAM

23

. —

(a) (b)

h
(c) (d)

Fig. 23: Maintenance support on a bypass system with AR
effect displays.

portant to have a real-time running application for the user
comfort.

To display virtual information in the AR application, the
camera pose has to be known. This camera localization is
also in our case needed to estimate the state of the movable
parts. Then the AR application is running on a multi-thread
architecture with a thread for the localization process corre-
sponding to our DEC-SLAM, an other one for the display
and a last one for the state estimation.

The presented application aims to guide a user in order to
replace a pH sensor. The sensor is integrated into a bypass
system. This one allows to deviate the liquid contained into
the pipes in order to change the pH sensor without leak. The
maintenance support scenario is the following:

Open the bypass in order to let the liquid circulate.
Close the entrance of the main pipe to deviate the fluid.
Close the pipe exit.

Change the pH sensor located in the main pipe.

Open the main pipe exit.

Open the main pipe entrance.

Close the bypass.

The application has to detect the bypass state (open/close),
validate automatically the different steps of the scenario and
show the next move to the user. The application user can
see through a tablet screen different AR effects like the fluid
circulation according to the valve state in red, or actions to
do on the valves and the pH sensor in green (see Figure 23).
Additional data are given in the fifth part of Online Resource
1.

8 Conclusion and Perspectives

In this article, a real-time solution for camera localization
relative to any industrial object is proposed. A key-frame-

based SLAM algorithm is presented with a model constraint
improving the tracking accuracy.

This constraint is represented through dynamic edgelets ex-
tracted by rendering on the graphic hardware. They are sam-
pled to guarantee homogeneous spatial and angular distribu-
tions and to prevent the inclusion of ambiguous edgelets in
matching steps of the DEC-SLAM algorithm. Two different
formalisms in addition to the re-projection error representa-
tion, are proposed to integrate the model constraint in the op-

timization process. They correspond to hybrid model/trajectory

constraint expressions that exploit the output of a model-
based tracker, optimized thanks to the dynamic edgelets.
They reduce the memory footprint of the DEC-SLAM while
achieving similar accuracy. Our solution has been tested on
several polyhedral and curved objects to attest its generic-
ity. Experimental results demonstrate that our solution is as
robust and accurate as rSEC-SLAM [33] exploiting static
edgelets extracted offline from sharp model edges and us-
ing a re-projection error formalism. In addition, the hybrid
constraint representations are able to reduce drastically the
memory consumption and the computation time. Our results
illustrate the high accuracy reached that allows convincing
Augmented Reality applications.

As further work, we aim to focus on larger object to track
as power plants or pipelines, or more rooms with available
3D models as with the ICL-NUIM dataset. Dealing with
big objects may be indeed a challenging task. Whereas our
DEC-SLAM solution proposes an accurate localization with
local optimization when tracked objects are relatively small,
it is not necessarily the case when objects are too large for
the camera field of view. Potentially significant drifts over
time may occur because of not well constrained DoF. Local-
ization error may then accumulate itself, needing local and
global corrections. However with the use of our hybrid con-
straint formalisms light in memory consumption and with
the use of a model-based tracking of the large object of inter-
est, a global optimization of the trajectory may be possible
when localization error occurs.

Acknowledgements This work was partly funded by the french re-
search program FUI through the project NASIMA. The authors would
also like to thank their project partners Diotasoft and Faurecia for pro-
viding the car seat sequence.

References

1. Bleser, G., Stricker, D.: Advanced tracking through efficient im-
age processing and visualinertial sensor fusion. Computers and
Graphics 3(1), 59-72 (2009)

2. Bleser, G., Wuest, H., Strieker, D.: Online camera pose estimation
in partially known and dynamic scenes. In: International Sympo-
sium on Mixed and Augmented Reality (2006)

3. Drummond, T., Cipolla, R.: Real-time visual tracking of complex
structures. PAMI 24(7), 932-946 (2002)

24 Angelique Loesch et al.

(m) ' ' o ()

® “ @ ®

Fig. 24: Accurate localization results on a Raving Rabbid, a dragon, a sport car, a real-sized car, a car cylinder head, and an
orthosis with our phDEC-SLAM. Results are similar with rDEC-SLAM and thDEC-SLAM. The accuracy can be appreciated
by the projection of the 3D blue models on the object of interest in the images.

Localization of 3D objects using model-constrained SLAM

25

11.

12.

13.

15.

16.

18.

19.

20.

21.

22.

23.

24.

Finsterle, S., Kowalsky, M.: A truncated levenberg marquardt
algorithm for the calibration of highly parameterized nonlinear
models. Computers & geosciences 37(6), 731-738 (2011)
Gay-Bellile, G., Bourgeois, S., Tamaazousti, M., Naudet-Collette,
S., Knodel, S.: A mobile markerless augmented reality system for
the automotive field. In: International Symposium on Mixed and
Augmented Reality Workshop (2012)

Hajagos, B., Szcsi, L., Csbfalvi, B.: Fast silhouette and crease edge
synthesis with geometry shaders. In: Spring Conference on Com-
puter Graphics (2013)

Handa, A., Whelan, T., McDonald, J., Davison, A.: A benchmark
for RGB-D visual odometry, 3D reconstruction and SLAM. In: In-
ternational Conference on Robotics and Automation. Hong Kong,
China (2014)

Hertzmann, A.: Introduction to 3d non-photorealistic rendering:
Silhouettes and outlines. In: Special Interest Group on Computer
GRAPHics and Interactive Techniques (1999)

Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D.,
Fox, D., Roy, N.: Visual odometry and mapping for autonomous
flight using an rgb-d camera. In: International Symposium on
Robotics Research (2011)

Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for
rgb-d cameras. In: International Conference on Robotics and Au-
tomation (2013)

Klein, G., Murray, D.: Full-3d edge tracking with a particle filter.
In: British Machine Vision Conference (2006)

Klein, G., Murray, D.: Parallel tracking and mapping for small
AR workspaces. In: International Symposium on Mixed and Aug-
mented Reality (2007)

Lepetit, V., Fua, P.: Monocular model-based 3d tracking of rigid
objects: A survey. Foundations and Trends in Computer Graphics
and Vision 1(1), 1-89 (2006)

Levenberg, K.: A method for the solution of certain non-linear
problems in least squares. Quarterly of Applied Mathematics 2(2),
164-168 (1944)

Lhuillier, M.: Incremental fusion of structure-from-motion and
gps using constrained bundle adjustments. Pattern Analysis and
Machine Intelligence 34(12), 24892495 (2012)

Li, G., Tsin, Y., Genc, Y.: Exploiting occluding contours for real-
time 3d tracking: A unified approach. In: International Conference
on Computer Vision (2007)

. Loesch, A., Bourgeois, S., Gay-Bellile, V., Dhome, M.: Generic

edgelet-based tracking of 3d objects in real-time. In: Intelligent
RObots and Systems (2015)

Loesch, A., Bourgeois, S., Gay-Bellile, V., Dhome, M.: A hybrid
structure / trajectory constraint for visual slam. In: 3D Vision
(2016)

Lothe, P., Bourgeois, S., Dekeyser, F., Royer, E., Dhome, M.: To-
wards geographical referencing of monocular slam reconstruction
using 3d city models: Application to real-time accurate vision-
based localization. In: Computer Vision and Pattern Recognition
(2009)

Melbouci, K., Collette, S.N., Gay-Bellile, V., Ait-aider, O.,
Dhome, M.: Model based rgbd slam. In: International Conference
on Image Processing (2016)

Middelberg, S., Sattler, T., Untzelmann, O., Kobbelt, L.: Scalable
6-dof localization on mobile devices. In: European Conference on
Computer Vision (2014)

Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.:
Real time localization and 3d reconstruction. In: Computer Vision
and Pattern Recognition (2006)

Mur-Artal, R., Montiel, J.M.M., Tards, J.D.: Orb-slam: a versatile
and accurate monocular slam system. Transactions on Robotics
31(5), 1147-1163 (2015)

Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim,
D., Davison, A.J., Fitzgibbon, A.: Kinectfusion: Real-time dense

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

surface mapping and tracking. In: International Symposium on
Mixed and Augmented Reality (2011)

Nienhaus, M., Doellner, J.: Edge-enhancement - An algorithm for
real-time non-photorealistic rendering. Journal of WSCG 11(2)
(2003)

Oikawa, M.A., Taketomi, T., Yamamoto, G., Fujisawa, M.,
Amano, T., Miyazaki, J., Kato, H.: Local quadrics surface approx-
imation for real-time tracking of textureless 3d rigid curved ob-
jects. In: Symposium on Virtual and Augmented Reality (2012)
Petit, A., Marchand, E., Kanani, K.: Combining complementary
edge, point and color cues in model-based tracking for highly dy-
namic scenes. In: International Conference on Robotics and Au-
tomation (2014)

Press, W.H.: Numerical recipes 3rd edition: The art of scientific
computing. pp. 282-283. Cambridge university press (2007)
Ramadasan, D., Chevaldonne, M., Chateau, T.: Dcslam: A dynam-
ically constrained real-time slam. In: International Conference on
Image Processing (2015)

Raskar, R.: Hardware support for non-photorealistic rendering. In:
Special Interest Group on computer GRAPHics and Interactive
Techniques Workshop on Graphics hardware (2001)
Stanimirovic, D., Damasky, N., Webel, S., Koriath, D., Spillner,
A., Kurz, D.: [poster] a mobile augmented reality system to as-
sist auto mechanics. In: International Symposium on Mixed and
Augmented Reality (2014)

Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A
benchmark for the evaluation of rgb-d slam systems. In: Intelligent
Robots and Systems (2012)

Tamaazousti, M., Gay-Bellile, V., Collette, S.N., Bourgeois, S.,
Dhome, M.: Real-time accurate localization in a partially known
environment: Application to augmented reality on textureless 3d
objects. In: International Symposium on Mixed and Augmented
Reality Workshop (2011)

Tamaazousti, M., Gay-Bellile, V., Naudet-Collette, S., Bourgeois,
S., Dhome, M.: Nonlinear refinement of structure from motion re-
construction by taking advantage of a partial knowledge of the
environment. In: Conference on Computer Vision and Pattern
Recognition (2011)

Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle
adjustment - a modern synthesis. In: International Conference on
Computer Vision (2000)

Vacchetti, L., Lepetit, V., Fua, P.: Combining edge and texture in-
formation for real-time accurate 3d camera tracking. In: Interna-
tional Symposium on Mixed and Augmented Reality (2004)
Vacchetti, L., Lepetit, V., Fua, P.: Stable real-time 3d tracking us-
ing online and offline information. Pattern Analysis and Machine
Intelligence 26(10), 1385-1391 (2004)

Wasenmuller, O., Meyer, M., Stricker, D.: CoRBS: Comprehen-
sive rgb-d benchmark for slam using kinect v2. In: Winter
Conference on Applications of Computer Vision (2016). URL
http://corbs.dfki.uni-kl.de/

Wuest, H., Wientapper, F., Stricker, D.: Adaptable model-based
tracking using analysis-by-synthesis techniques. In: Computer
Analysis of Images and Patterns (2007)

