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Abstract

The DX community actively seeks meaningful
benchmarks to compare diagnosis algorithms per-
formance. This project aims to extend an exist-
ing benchmark providing structural models with
simulated measurement data and various fault
and cyber-attack scenarios. By utilizing existing
benchmarks for leak detection in water networks,
this project aims to create a tool for testing and
comparing diagnosis algorithms.

1 Introduction

The DX community is often actively researching for inter-
esting benchmarks for comparing the performance of diag-
nosis algorithms [1, 2, 3, 4].

The paper [5] proposed a set of water distribution network
benchmarks for structural methods in fault diagnosis. How-
ever, it only provided structural models and no realistic data
were provided. This project aims to extend the benchmark
with simulated measurement data and to provide scenarios
including different types of faults and cyber-attacks.

The water network community is actively developing
benchmarks, mainly for leakage detection. These problems
can be of interest to the fault diagnosis community.

Our idea is to develop a benchmark for fault diagnosis
based on one benchmark of the water network community.
The project aims to provide a tool for simulation and sce-
narios to test and compare diagnosis algorithms. The goals
are as follows:

* to provide a tool that can be accessed using open-
source software;

* to allow to simulate leakages, other faults, and cyber-
attacks in a unified framework;

* to provide a structural model of the network used for
simulation;

* to generate a set of exemplary scenarios for diagnosis.

The article is organized as follows. Section 2 provides
background for structural analysis, Section 3 presents ex-
isting benchmarks from the water network research com-
munity. Section 4 describes our project for benchmarking.
Then, Section 5 concludes the article and gives some future
works.

2 Background

Consider a system described by a set of equations 3(z, x, £)
for which z is the vector of known (or measured) variables
of a set Z, x is the vector of unknown, i.e., unmeasured
variables of a set X and f is the vector of faults of a set F'.
Z, X, and F' are respectively of cardinal n., n,, and n;.
Each equation is associated to a component of the system.
The model generally represents nominal behavior, hence the
violation of one equation indicates that the system is faulty
and points at the responsible component.

The structural model of a system X(z,x, £) can be ob-
tained by abstracting the functional equations of ¥(z, x, £)
by structural equations. A structural equation e; abstracts
the links between the functional equation e; and its vari-
ables.

When used for fault diagnosis, structural analysis may
determine subsets of equations that will generate diagnos-
tic tests. The degree of redundancy of a system is defined
as the difference between the number of equations and the
number of unknown variables included in them. The Struc-
turally Overdetermined (SO) subsets of equations (i.e., with
more equations than unknown variables) are useful for di-
agnosis because they show redundancy.

The MTES (Minimal Test Equations Support) is a very
important concept defined in [6]. Very roughly speaking,
MTES sets correspond to sets of equations that can be used
to generate diagnosis residuals and they determine the de-
gree of diagnosability.

3 Existing benchmarks

Water network companies often use simulation software to
detect and localize the leakages in the network. Therefore,
the water network research community can benefit from the
existence of simulators. In recent years several benchmarks
were proposed, with different goals, including leakage de-
tection [7], leakage detection and isolation [8], cyber-attack
detection [9], and sensor placement [10]. The benchmarks
are described in the following subsections.

3.1 Battle of the Leakage Detection and Isolation
Methods (BattLeDIM)

The Battle of the Leakage Detection and Isolation Methods
(BattLeDIM) [7] competition was organized in 2020 as a
part of the CCWI/WDSA 2020 conference. Eighteen teams
submitted their solutions to the competition. The goal of
the competition was to detect and localize the leakages. The



solutions were scored based on economic cost, including the
value of water lost and the cost of the repair crew.

The competition was based on an L-Town network - an
artificial network generated based on a real city in Cyprus.
The organizers provided the participants with simulated
SCADA datasets - one containing historical data with an-
notations for detected leaks and another for leak detection
and localization. Additionally, the participants could use
. inp file for the nominal model of the L-Town network.
The nominal model was distorted compared to the "real"
model used for dataset generation.

The ’real’ model contains three demand patterns: resi-
dential, commercial, and industrial. Each node demand has
unique values due to added randomness. The ’nominal’
model was disturbed in the following ways:

* Only residential and commercial demand patterns are
available.

¢ Each node demand is randomized.

* Pipe parameters (roughness, length, and diameter) are
disturbed.

* Two additional pipes are added to the network struc-
ture.

The authors provided the following additional resources:

 Dataset generation and scoring algorithm: https://
github.com/KIOS-Research/BattLeDIM

e SCADA Dataset:
record/4017659

* Reproducible code: https://codeocean.com/
capsule/2366240/tree/vl

3.2 LeakDB: A benchmark dataset for leakage
diagnosis in water distribution networks

This paper provides a benchmark for leakage detection algo-
rithms called Leakage Diagnosis Benchmark (LeakDB) [8].
The benchmark consists of different networks with varying
characteristics in terms of size, topology and type of ele-
ments they contain. The models of the networks used in the
dataset are provided in the form of . inp files. The dataset
comprises simulated scenarios accompanied by label files,
indicating faults in binary notation.

A scoring algorithm is provided to evaluate the results of
the different algorithms using various metrics based on the
confusion matrix, such as accuracy, precision, recall, F1-
score, and detection delay.

The dataset is available at https://github.com/
KIOS-Research/LeakDB.

https://zenodo.org/

3.3 Battle of the Attack Detection Algorithms:
Disclosing Cyber Attacks on Water
Distribution Networks

This Section describes the competition BATtle of the At-
tack Detection ALgorithms (BATADAL) [9]. The compe-
tition results were presented at the Water Distribution Sys-
tems Analysis Symposium (World Environmental and Water
Resources Congress) in Sacramento, California, in 2017.

The competition was based on the C-Town network, a
real-world, medium-sized water distribution system oper-
ated through programmable logic controllers and a SCADA
system. The C-Town network consists of 429 pipes, 388
junctions, 7 storage tanks, 11 pumps, 5 valves, a reservoir,
and 9 PLCs.

The goal of the competition was to detect cyber-attacks.
The solutions were evaluated in terms of time-to-detection
and classification accuracy.

The data sets were generated with epanetCPA, a MAT-
LAB toolbox. The dataset (https://www.batadal.
net/data.html) contains replay or deception attacks
manipulating the information sent or received by sensors,
PLCs and the SCADA system.

3.4 The Battle of the Water Sensor Networks
(BWSN): A Design Challenge for Engineers
and Algorithms

Paper [10] presents a set of examples provided for sensor
placement competition with the task of detecting water con-
tamination attacks. The competition was called Battle of
the Water Sensor Networks BWSN and was undertaken as
part of the 8th Annual Water Distribution Systems Analy-
sis Symposium, Cincinnati, Ohio, in 2006. Fifteen research
groups participated in the competition.

The goal of the algorithms was to minimize four objec-
tives: expected time of detection, expected population af-
fected before detection, expected consumption of contami-
nated water before detection, and detection likelihood.

The competition included two networks: Network 1 with
126 nodes, 1 source, 2 tanks, 168 pipes, 2 pumps, 8 valves
and 5 sensors to place, and Network 2 with 12,523 nodes,
2 sources, 2 tanks, 14,822 pipes, 4 pumps, 5 valves and 20
sensors to place.

4 Project description

The benchmark proposed in [7] was selected for further de-
velopment because it provides the following features:

* arealistically configured town description,

e Two .inp filess L-TOWN_Real.inp for a real
town network that should be used for scenario simu-
lation; and L-TOWN . inp for the nominal model that
represents simplified and disturbed behaviour. The
L-TOWN. inp file was given to the competition partic-
ipants. It reflects the realistic situation where a water
provider company has a simulator of the process but it
is imperfect.

 a Python script to run the simulation with leakages,

* a configuration file to describe the simulated scenario.

4.1 L-Town

The L-Town network was proposed in [7] and is based on a
real city in Cyprus. The L-Town network is shown in Fig. 1.
It consists of 785 nodes and 905 pipes. Pressure in the net-
work is maintained with one pump filling the tank. Figure 2
shows the network structure with labeled selected nodes and
pipes. These points of interest will be used in the examples
within the paper.

4.2 Structural model of L-Town

The structural model of L-Town was generated using the
method described in [5]. The method was only based on
equations describing flow in a pipe depending on pressures,
flow balance equations, and flow and pressure measure-
ments. Therefore, the method needs a few extensions to the
base model to describe the L-Town network fully:



Figure 1: L-Town network. Nodes containing pressure sen-
sors and pipes containing flow sensors were indicated in red.
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Figure 2: L-Town network with points of interest marked in
red. PUM P1 - pump, T'1 - tank, n54 - node nearest to 7'1,
p673 - pipe with leak, n229 - node closest to the pipe with
leak (p673).

1. AMRs (Wireless water meters) for measuring demands
were added to the model, with the possibility to include
sensor faults.

In the base model, each network junction (v) represents
a pressure variable p; and a flow balance equation:

Y0icQo i = du, (D

where @, is a set of flows incoming and outgoing the
vertex v and d,, is the demand in node v.

To represent demand measurement, the following
equation is added:

5 = {dv,ma,, frma, } )

where d,, is a demand variable, mq, is a known mea-
surement variable for d, and f,,, is the fault on the
sensor.

2. An additional type of equation is added to the model
for a pump.
In the base model, each graph edge e represents a flow
variable g, and the corresponding flow equation:

qe = sgn(pi — p;).c(|pi — pj1)” 3)

where g is the flow in the pipe corresponding to edge
¢, p; and p; are the pressures of the vertices adjacent

to edge € = (v;,v;), and ¢ and +y are parameters mod-
elling physical properties of the pipe.

When a pipe contains a pump, the flow is dependent on
the pipe control, thus the flow equation is modified to:

e = f(ue), “)
where . is the known pipe control.

3. An additional type of equation is added to the model
for representing a tank.
In the base model, each node is associated to a flow
balance equation of type (1). A tank adds storage ca-
pability to a node, so the equation associated to a tank
node 7 becomes:

1
Li = Z/Eq,;qu,Qidt, (5)

where L; is the level of water in the tank in the node ¢
(we assume that the demands in tank nodes are equal
to 0), and A is the tank’s cross-sectional area.

The structural model of the L-Town network is gener-
ated by the code and in the configuration shown in Fig. 3.
Sensors are selected according to the configuration in [7].
Leaks in each node and sensor faults are included in the
model. The generated structural model contains 1694 un-
known variables, 119 known variables, 904 fault variables,
and 1813 equations. The degree of redundancy is 119.

It could be noted that the L-Town network (Fig. 1) con-
tains many nodes, even where the pipe is not branching. It
is motivated by the scheme of leakage localization in Bat-
tLeDIM [7] but introduces a lot of unnecessary complexity
in the network structure.

To simplify the network, the algorithm from
wntr.morph.skel.skeletonize is used. Net-
work simplification is also known as skeletonization. The
skeletonized network is shown in Fig. 4. It consists of 295
nodes and 419 pipes.

Additionally, with the skeletonized network, we generate
a mapping from the nodes of the original L-Town network
to the nodes of the skeletonized network. The node map is
shown below. For example, nodes n4, n9, and n6 of the orig-
inal network are all mapped to node n4 of the skeletonized
network.

{"nlll: "n1",
"n4": "n4", "n9": "n4", "n6": "n4",
"n7": "r17", "n351": "n7",
"n350": "n7", "n349": "n7"

}

The structural model of the skeletonized network is gen-
erated with the same sensor set as the original network. It is
important to note that some nodes containing sensors were
merged, so the resulting total number of sensors is smaller.
The structural model was generated without sensor faults,
and with 15 leaks placed randomly. The structural model
contains 714 unknown variables, 72 known variables, 15
fault variables, and 786 equations. The degree of redun-
dancy is 72. 15 MTES sets can be generated for this model
providing full fault isolability with respect to the 15 leaks.
All MTES have a degree of redundancy 1. The minimal size
of MTES is 706 equations.



input_file_name = ’'networks/L-TOWN.inp’

pressure_sensors = ['nl’, ’'n4’, 'n31’, ’'nb4’, ’'nl05’, ’'nll4’, ’"'nl6e3’, ’'nl88’",
'n215’, 'n229’, ’'n288’, 'n296’, ’'n332’, ’'n342’, ’'n4lo0’,
"n415’, ’'nd429", ’"n458’, 'n469’, ’'n495’, ’"'n506’, ’'nb5le6’,
"n519’, ’"n549’, ’'n6l3’, ’'n636’, ’'ne644’, 'n679’, 'n722’,
"n726’, 'n740’, 'n752’, 'n769’, 'T1’]
flow_sensors = ['PUMP_1", ’"p227’, "p235"]
demands = ['nl’, ’'n2’, 'n3’, 'n4’, ’'n6’, 'n7’, ’'ng’, 'n9’, ’'nli0’, ’'nll’, ’'nl3’,
'nlée’, ’'nl7’, ’'nl8’, 'nl9’, ’'n20’, ’'n2l1’, ’'n22’, "'n23’, ’'n24’,
'n25’, ’'n26’, 'n27’, 'n28’, 'n29’, ’'n30’, ’'n31’, 'n32’, ’'n33’,
"n34’, 'n35", 'n36’, 'n39’, ’'nd40’, ’'ndl’, ’'nd2’, "'nd3’, ’'ndd’,
"n45’, 'n343", ’'n344’, 'n345’, ’'n346’, 'n347’, 'n349’, ’'n350',
'n351’, ’'n352’, ’'n353’", ’'n354’, ’'n355’, ’'n356’, ’'n357’, ’'n358',
'n360’, ’'n361’, ’'n362’, 'n364’, 'n365’, 'n366’, "'n367’, "'n368’,
"n369’, ’'n370’, ’'n371", ’'n372", 'n373’, '"'n374’, 'n375’, 'n376’,
'n377’, ’'n378’, ’'n379’, 'n381’, ’'n382’, ’'n383’, ’'n384’, ’'n385',
'n386’, ’'n387’, ’'n388’, ’'n389']

epn_conv = EpanetConverter (input_file_name,
sensor_faults=True,
demands=demands,

epn_conv.structural_from_epanet ()

pressure_sensors=pressure_sensors,
flow_sensors=flow_sensors,
pumps=[’PUMP_1"1],
pressure_prefix='",

leaks=None,
tanks=["T1"],
flow_prefix='")

Figure 3: Example usage

|

Figure 4: L-Town network skeletonized

4.3 Faults and attacks
We consider the following types of faults and cyber-attacks:
¢ leaks,
* outages,
e pump degradation,
* change of pump control high limit,
* change of pump control low limit,

* masking of measurements by replay of historical val-
ues.

Leaks are simulated using the method from [7] without
modifications. There are two types of leaks: abrupt and in-
cipient. The exemplary leak configuration is formulated as
follows:

leakages:

- # 1linkID, startTime,
endTime, leakDiameter
leakType, peakTime

- p257, 2018-01-08 13:30,

53.5
— 53.01
£
o 52.51
E
@ 52.0
<
(=8
2 51.5 A
2 510 real
nominal
50.5 4 —— nominal no leak
T T T T T T T T T
o 2 M 2 Q 1 N 2
% Y 0% oY o oY s e e°
oY oY oY oY oY oY QoY oY oY

Figure 5: Pressure measurements during the leak in pipe
p673

2018-12-31 23:55, 0.011843,
incipient, 2018-01-25 08:30
- p673, 2018-03-05 15:45,
2018-03-23 10:25, 0.02291¢e,
abrupt, 2018-03-05 15:45

The exemplary measurements during the leak are shown
in Fig. 5. Red lines indicate the start and the end of the
leak. The blue plot shows pressure values in a node near the
leaking pipe. Clear pressure drop can be observed (however,
small leaks are nearly invisible). The orange line shows the
same pressure with the same leak simulated using the nom-
inal network model, and the green line shows the results
from the nominal model without the leak. It proves that the
nominal model can be helpful in fault detection.

Fig. 6 shows selected measurements during regular net-
work operation. The pump is placed in a pipe connected to
tank 7'1. Node nb54 is the nearest node with a pressure sen-
sor. We can observe that the tank level grows when there is
flow through the pump.

The pump is controlled by a simple set of rules:

LINK PUMP_1 CLOSED IF NODE Tl ABOVE 3.9000
LINK PUMP_1 OPEN IF NODE T1 BELOW 2.4000

The first kind of fault is an outage (Fig. 7), which is a
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Figure 7: Outage: measurement

lack of power causing the pump to stop. The outages can be
configured as follows:

outages:
- StartTime: 2019-01-02 00:00
EndTime: 2019-01-02 23:55

The second kind of fault is designed to model pump
degradation (Fig. 8). Pump degradation can be configured
as follows:

pump_curves:
- StartTime: 2019-01-02 00:00
EndTime: 2019-01-02 23:55
curve: [[0.0, 70], [0.0076, 40],
[0.0138, 0.0]1

Pump degradation is configured by a change in the char-
acteristic pump curve. The curve describes dependency of
the flowrate and pressure head. In Fig. 8, we can observe
that the pump is working but with reduced flowrate.

Next, we consider cyber-attacks. The first type of attack is
a change of pump control algorithms. There are two options.
The first is to modify the low control limit:

pump_control_low:
StartTime: 2019-01-02 00:00
EndTime: 2019-01-02 23:55

b
o

w
w»

w
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Figure 8: Pump degradation: measurement

4
€
— 3
[
>
K
=24 —— pump control change
—-- normal
T T T
§ 40 4
£
2
2 204
—
o
5
a 04
T T T T T T T T T
Q 2 Q 3 Q 2 O w3 Q
» 0% o o o> e L e°
[N\ N S A - A A P\

Figure 9: Measurement: pump low control limit change

value: 1.5,
and the second to modify the high control limit:

pump_control_high:
StartTime: 2019-01-02 00:00
EndTime: 2019-01-02 23:55
value: 3

Lowering the limits can cause a pressure drop in the net-
work and changing the high limit to a higher value can cause
tank overflow. Measurements corresponding respectively
to the changes in low and high control limits are shown in
Fig .9 and Fig. 10.

The second kind of attack is masking measurement val-
ues with a replay of historical values. The attack consisting
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Figure 10: Measurement: pump low control limit change



of modifying the high pump control limit and masking the
value of level in tank 71 was shown in Fig. 11. We can
observe that the value of the T'1 level is substituted with
values from the normal range, but the pressure in node n54
shows the discrepancy from normal operation. Masking can
be configured as follows:

masking_pressure:
— StartTime: 2019-01-02 00:00
EndTime: 2019-01-02 23:55
node: T1

by
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w
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w
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T1 level [m]
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Figure 11: Measurement: masking

4.4 Scenarios

Two scenarios with simulated measurement data are pre-
pared. Details of scenario 1 are shown in Fig. 12. It con-
tains three leakages, an outage, pump degradation and an
attack changing the control law of the pump. Scenario 2 is
similar but it additionally contains masking of a value of the
measurement of level in tank 7'1 during the attack.

4.5 Resources

Generated resources are published in a publicly available
repositories:

* https://github.com/asztyber/wdn-sa-
benchmark - contains .inp files for the original
and simplified L-Town network, structural models for
both networks and simulated measurements for both
scenarios. Additionally, the repository contains mod-
ified code for structural model generation including
demand, pump and tank equations.

* https://github.com/asztyber/wdn—
simulation - contains code for simulation of leaks,
faults and cyber-attacks in a desired configuration.

5 Conclusion

This article proposes a new benchmark for fault diagnosis.
The benchmark illustrates water distribution networks. It is
based on the L-Town network, based on a city of Cyprus.
Our benchmark provides a structural model of the network,

can generate a set of exemplary scenarios for diagnosis and
allows simulating the values of leakages, other faults and
also cyber-attacks. Thus, it can be used for structural anal-
ysis based diagnosis or data-based diagnosis. We hope that
the DX community will use it in the future for comparing
their different approaches and algorithms’ performances.
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