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Preprint

A spline-based regularized method for the reconstruction of
complex geological models

Ayoub Belhachmi · Azeddine Benabbou ·
Bernard Mourrain.

Abstract The study and exploration of the subsurface requires the construction of
geological models. This task can be difficult, especially in complex geological settings,
with various unconformities. These models are constructed from seismic or well data,
which can be sparse and noisy.

In this paper, we propose a new method to compute a stratigraphic function that
represents geological layers in arbitrary settings. This function interpolates the data
using piecewise quadratic C1 Powell-Sabin splines, and is regularized via a self-
adaptive diffusion scheme. For the discretization, we use Powell-Sabin splines on
triangular meshes.

Compared to classical interpolation methods, the use of piecewise quadratic
splines has two major advantages. First, their ability to produce surfaces of higher
smoothness and regularity. Second, it is straightforward to discretize high order
smoothness energies like the squared Hessian energy (Stein et al. 2018).

The regularization is considered as the most challenging part of any implicit
modeling approach. Often, existing regularization methods produce inconsistent geo-
logical models, in particular for data with high thickness variations. To handle this
kind of data, we propose a new scheme in which a diffusion term is introduced and
iteratively adapted to the shapes and variations in the data, while minimizing the
interpolation error.
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1 Introduction

Subsurface structures are usually described by geological models. Often, these structu-
res can be very complex, with several geological faults and many stratigraphic layers.
The geological model must faithfully represent the complexity observed in the data.
To build these models, several approaches have been proposed in the past (Mallet
1997; Sprague and Dekemp 2005; Caumon et al. 2009). The foundational approach in
structural modeling, known as explicit structural modeling, consists of modeling the
contact surfaces between geological units typically with parametric and/or polygonal
surfaces (Mallet 1992, Sprague and Dekemp 2005). An alternative approach, referred
to as implicit structural modeling, consists of representing the stratigraphic layers by an
implicit stratigraphic function. More specifically, the data points are along interfaces
delimiting stratigraphic layers, represented as a set of equipotential surfaces called
horizons. Implicit structural modeling has been widely used to build geomodels from
stratigraphic data (Lajaunie et al. 1997; Frank et al. 2007; Caumon et al. 2013; Hillier
et al. 2014). Among the implicit methods, we can distinguish two main classes of
interpolation methods. The first class includes methods based on dual kriging or
radial basis functions, where the interpolation is based on the data points locations
(Lajaunie et al. 1997; Chilès et al. 2007). The resulting linear system to solve is
dense, and its size depends on the number of data points. The second class includes
mesh-based methods, which rely on the discretization of the domain of study using a
mesh and then the function is approximated using piecewise continuous polynomial
basis functions supported around the nodes of the mesh, leading to a sparse linear
system to solve whose size is depending on the number of mesh nodes. For example
the discrete smooth interpolation methods (DSI) (See e.g. Mallet (1997), Frank et al.
(2007) and Irakarama et al. (2022)). They discretize the stratigraphic function on
a volumetric/surfacic mesh using finite element basis functions. Several modeling
softwares have been developed in the oil and gas industry based on these methods, for
example volume based modeling (VBM) by Souche et al. (2014).

In this paper, we present a new method to construct geological models from
stratigraphic data. In our case, the stratigraphic layers are represented by an implicit
spline function computed on a triangular mesh conforming to the geological faults,
using a Powell-Sabin finite element scheme (Speleers et al. 2012).

The stratigraphic data can be sparse and irregularly distributed over the domain.
The locally supported basis functions, used in the finite element method, can lead to an
underdetermined interpolation problem. Hence, a regularization term is introduced
to enforce a regular behaviour of the implicit function all over the domain. In our
specific context, we define a regular function as a function satisfying the following
regularity properties:
1. Mean value property and extrema at the boundaries principle. A regular function

must only contain extrema at the boundaries (e.g. interfaces of the geological
layers), whilst mean values elsewhere, ensuring no local extrema.

2. Function must be smooth, through minimizing a conventional smoothness energy.
3. Function should adhere to input data particularly in the proximity of faults or

boundary data, with only minimal regularization influence driving the function in
these areas.
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4. Consistent shape of the function far from data.

Smoothing techniques based on the minimization of second-order derivatives are
extensively used as a regularization in the implicit modeling problem, see Irakarama
et al. (2022). The Hessian smoothing energy is used by Renaudeau et al. (2019) as
a regularization energy; Their approach involves constructing the implicit function
using locally defined moving least square interpolants and explicitly minimizing the
Hessian energy. The DSI methods consider many smoothing operators according to the
choice of the basis functions used for interpolation. This includes the Hessian operator
(Irakarama et al. 2022), smooth gradient (Souche et al. 2014), constant gradient (Frank
et al. 2007) and Laplacian operator (Lévy and Mallet 1999). In his pioneering work,
Mallet (1989) introduced as a global roughness, a functional expressed using finite
differences scheme involving the minimization of the first order partial derivatives
as well as the second partial derivatives. Smith and Wessel (1990) introduced as
regularization a partial differential equation combining the Laplacian and bilaplacian
operators. For seismic data regularization, Fomel and Claerbout (2001) suggested
the use of a diffusion tensor allowing for anisotropic smoothing in some predefined
directions.

Existing regularization techniques can fail to reproduce geologically coherent
solutions when dealing with models presenting high thickness variations, as it will be
shown in this paper and also discussed in other works (Laurent 2016; Renaudeau et al.
2019; Irakarama et al. 2021). Geological models with strong thickness variations
are models that represent geological structures with high variations in the shape
and thickness of the layers. These variations are often anisotropic, meaning they vary
differently along different directions. These strong variations have long been a concern
and a challenge for different implicit modeling methods (Laurent 2016; Renaudeau
et al. 2019; Irakarama et al. 2021).

In this paper, we present a new regularization method based on diffusion energy. To
better handle models presenting high thickness variations, we introduce a conductivity
term in the diffusion equation that is iteratively adapted to the shape and the variation
in the data. The diffusion equation provides solutions that respects the mean value
property and the maxima at the boundaries. In this set of solutions, we seek the
smoothest solutions, minimizing the Hessian energy. Furthermore, in order to ensure
that the computed function is both smooth, and of a natural behaviour in the proximity
of domain boundaries and faults, we use an approximation of the Neumann boundary
condition. Further details can be found in Sect. 2.1.3. For the discretization, we use
Powell-Sabin splines, as an alternative to the standard linear finite elements. They are
quadratic splines with global C1 continuity (Dierckx 1997), defined on triangulation
and their use for the discretization of second-order smoothness energies (e.g. Hessian
energy) is straightforward. Our method produces solutions with higher regularity and
smoothness, free from local extrema and boundary artifacts.

This paper is structured as follows. In Sect. 2, we present the mathematical
framework of the geological modeling problem, and introduce the components of
the regularization method we propose. In Sect. 3, we describe our method and provide
details of the discretization using Powell-Sabin splines on a triangular mesh. In
Sect. 4.5, we provide examples to demonstrate the limitations of classical smoothing
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techniques as regularization methods, particularly with the Hessian smoothing energy,
when dealing with models that exhibit high thickness variations. We also provide
examples that illustrate the effectiveness of our method in handling complex geological
models that involve thickness variations and discontinuities. Finally, we conclude with
a discussion on the shortcomings of the method, as well as the proposed solutions,
and future perspectives.

2 Fitting and regularization

We consider a domain Ω ⊂ R2 with Np stratigraphic data points and an implicit
function u interpolating the data: (xp,yp,u(xp,yp)) for p = 1 : Np. Each subset of
points with equal value represents a horizon. The values assigned to the horizons, have
a strong impact on the resulting implicit functions (Renaudeau 2019). Furthermore, it
is common to conduct a prepossessing to determine optimal values that are adapted to
the thickness variations of the layers (Collon et al. 2015). In our approach, we choose
to assign arbitrary values, that increase in ascending order following the stratigraphic
order of the layers. We also maintain a constant gap between the values assigned
to two consecutive horizons. The domain Ω is discretized with a triangular mesh
conformal to the discontinuities (geological faults). On the triangulation, we define
basis functions in the space F of regular functions. The implicit function u is defined
as

u(x) =
Ns

∑
i=1

Bi(x)ui = B(x)U, ∀x ∈Ω , (1)

where the row vector B(x) = (Bi(x))
Ns
i=1 is a basis of F , U = (ui)

Ns
i=1 is a column vector

of unknowns and Ns is the dimension of F . To obtain a solution of the interpolation
problem of the geological data points over the domain Ω , we minimize the fitting
energy E f it , with ηp fitting weights associated to each of the data points.

E f it(u) =
N p

∑
p=1

ηp(u(xp,yp)− zp)
2. (2)

In our context, the data can be sparse and noisy, and basis functions are locally
supported. This leads to an underdetermined system with an infinite number of
possible solutions. To restrict the space of solutions a regularization term is introduced.
The implicit modeling problem is posed as a minimization of a sum of energies

min
u

E f it(u)+λEreg(u), (3)

where E f it is the fitting energy associated to the data constraints, Ereg is the regularization
energy associated to the regularity constraints, λ is the regularization weight controlling
the tradeoff between the fitting and regularization constraints.
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2.1 Regularization

The regularization of the implicit function is the main ingredient of any mesh-based
method. Regularization techniques are used for selecting a specific set of functions,
in the solution space, which satisfy the regularity constraints introduced beforehand.

2.1.1 Hessian smoothing and biharmonic equation

The Hessian energy also called squared Hessian (Stein et al. 2018), roughness, bending
or thin-plate energy, depending on the field of application, is a well-known regularizati-
on technique in data smoothing, image processing and many other engineering fields.
It is a smoothing energy based on the minimization over all the domain Ω of the
squared partial second derivatives entries of the Hessian matrix, Hu ∈ Rd×d .

EH2(u) =
∫

Ω

∥Hu∥2
F =

∫
Ω

(u2
xx +2u2

xy +u2
yy)dΩ . (4)

Minimizers of the Hessian energy are solutions of the biharmonic equation, see Stein
et al. (2018)

∆
2u = 0 in Ω , (5)

where ∆ 2 is the bilaplacian operator. Furthermore, Stein et al. (2018) showed that the
natural boundary conditions are{

nT Hun = 0 on ∂Ω ,
∇∆u ·n+∇(tT Hun) · t = 0 on ∂Ω ,

(6)

n is the unit normal vector on the boundaries ∂Ω and t the unit tangential vector
along the boundaries ∂Ω . They present higher smoothness and satisfy a specific
natural boundary condition, studied and analyzed by Stein et al. (2018), forcing the
function to be only linear in the normal direction to the boundaries. This behaviour is
interesting in our application, since no explicit boundary condition is available.

2.1.2 Harmonic functions and diffusion equation

Harmonic functions are solutions of the standard Laplace equation{
∆u = 0 in Ω ,

∇u ·n = g on ∂Ω .
(7)

which describes the stationary state of the heat diffusion phenomenon, where g(x) is a
known flux function on the boundaries. These functions exhibit properties that share
a commonality with our approach, including maxima at the boundaries and mean
value. The values of the implicit function are fixed for each horizon data points. A
harmonic fitting funtion, will vary between consecutive horizons without any local
extrema. However, the use of the diffusion equation to describe the stratigraphy can
be a difficult task because the gradient of the implicit function is unknown on the
boundaries of the domain. H1(Ω) denote the Sobolev space of functions defined on
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Ω , function space that consists of functions with square-integrable derivatives up to
the first order. Then, the weak form of Laplace equation using integration by parts is∫

Ω

∆uv ds = 0⇔
∫

Ω

∇u ·∇v ds−
∫

∂Ω

(∇u ·n)v dx = 0, ∀v ∈ H1(Ω),

(8)

⇔
∫

Ω

∇u ·∇v ds−
∫

∂Ω

gv dx = 0, ∀v ∈ H1(Ω).

Solving Eq. (8) subject to ∇u ·n = 0 is equivalent to the minimization of the Dirichlet
energy (Evans 2010)

E
∇2(u) =

1
2

∫
Ω

∥∇u∥2 dΩ . (9)

2.1.3 Handling the boundaries

When minimizing the Dirichlet energy Eq. (9) or solving standard Laplace equation
Eq. (8), the natural boundary condition that emerges is the vanishing Neumann
condition. It implicitly imposes that the normal derivative on the domain boundaries of
the implicit function vanishes, which results in contours of the implicit function ending
perpendicular to the domain boundaries to fulfill this condition. This is an undesired
effect that makes the use of the diffusion equation unsuitable for our application.

Irakarama et al. (2022) proposed a free boundary discretization for the Laplacian
avoiding this bias at the boundary. They use linear Lagrange elements as basis
functions, and Crouzeix-Raviart nonconforming linear elements as test functions.
Their method is based on a specific choice of basis functions and test functions
spaces. In our work we avoid restricting ourselves to a specific choice of discretization.
We propose a simple technique to avoid the implicit vanishing Neumann boundary
condition by constructing an approximation of Neumann boundary condition instead
of neglecting the integral of the normal derivative on the boundaries. The normal
derivative on the boundaries, is the rate of change of the implicit function along the
normal direction to the boundaries. It describes how the implicit function contours
finish on the boundaries. To obtain an estimation of Neumann boundary condition, we
propose constructing a first solution u0 of the minimization problem Eq. (3) using the
Hessian smoothing energy as regularization with a high regularization weight λ , in
order to obtain a regular solution on the boundaries. We then use the normal derivative
on the boundaries of the solution u0 as a Neumann condition such that∫

Ω

∇u ·∇v ds =
∫

∂Ω

(∇u0 ·n)v dx, ∀v ∈ H1(Ω). (10)

Solving Eq. (10) is equivalent to minimizing the following diffusion energy (Evans
2010)

EDi f (u) =
1
2

∫
Ω

∥∇u∥2 dΩ −
∫

∂Ω

gu dx with g = ∇u0 ·n on ∂Ω . (11)

Solution of the problem Eq. (3) with the diffusion energy Eq. (11) as regularization,
inherits good behaviour near the domain boundaries and presents the regularity
properties of the diffusion equation.
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2.2 Isotropic and anisotropic diffusion

Anisotropic nonlinear diffusion is a powerful technique in image and geometry
processing. It was introduced by Perona and Malik (1990) to smooth and denoise
images while preserving sharp edges, based on the equation div(c∇u) = 0, with
diffusion coefficient c = g(∇u) such as g(∇u) = 1

1+∥∇u∥2 or other functions inverting
the norm of the gradient. This method is only isotropic, since it uses a scalar diffusion
coefficient, and may not be sufficient to accurately describe models presenting anisotr-
opic thickness variations.

The anisotropic diffusion process can be described using a variant of the heat
diffusion partial differential equation (PDE)

∆
C = div(C∇u) = 0. (12)

The anisotropic Laplacian ∆C = div(C∇u) has spatially varying coefficients that
weight the derivatives along different directions, specified by a diffusion tensor field
C, such that C = (ci j) with c ji = ci j for i, j = 1 : d.

Andreux et al. (2015) introduced an anisotropic Laplace-Beltrami operator, for
shape analysis, using a diagonal tensor encoding some geometrical extrinsic quantities.
Expressed in the orthonormal basis of principal curvature directions, the diagonal
entries of their tensor chosen as function of the principal curvatures, privileging
diffusion in one of the principal curvature directions. The diffusion tensor C can be
also defined

C = c∥b⊗b+ c⊥(Id−b⊗b), (13)

where the vector b ∈Rd represents the anisotropy direction, c∥ and c⊥ are the parallel
and perpendicular diffusion coefficients, respectively, and Id is the identity matrix. This
representation is used in the context of magnetized plasmas in Tokamak (Giorgiani
et al. 2020), where the parallel diffusion c∥ is chosen several orders of magnitude higher
(up to 109) than the perpendicular diffusion coefficient k⊥, favoring the diffusion in
the anisotropy direction. Wang and Solomon (2021) proposed optimization on the
diffusion tensor to construct an optimal weights for geometric data interpolation,
based on a positive semidefinite tensor representation where the coefficients of this
tensor are unknowns of the problem.

In our context, models can exhibit high levels of anisotropy in which thickness
properties can vary significantly along different directions. Moreover, the anisotropy
directions are unknowns unlike the other fields of applications of the anisotropic
diffusion equation. Multiple techniques exist for estimating global directions of
anisotropy, however identifying local anisotropy directions remains a very challenging
task. Inspired by the success of the anisotropic diffusion in all these application fields,
we propose an iterative scheme in which the diffusion tensor is iteratively adapted to
the anisotropy present in data. We consider the anisotropic Laplacian ∆C defined by
the symmetric diffusion tensor field C(x) : Ω −→ Rd×d , where d is the dimension of
Ω . For d = 2, we use c1,c2,c3 scalar functions to denote the diffusion coefficients,
respectively, in the directions: xx,xy,yy.

∆
C = div(C∇u) with C =

(
c1 c2
c2 c3

)
. (14)
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The tensor representation of the diffusion generalizes the standard Laplacian for
C = Id and the isotropic nonhomogeneous diffusion for C = c(x)Id , with c(x) a scalar-
value diffusion function. Solving the anistropic diffusion equation is equivalent to
minimizing the following energy (Evans 2010)

EDi f (C)(u,g) =
1
2

∫
Ω

∇uT (x)C(x)∇u(x) dΩ −
∫

∂Ω

g(x)u(x)dx, (15)

where g(x) corresponds to the Neumann condition g(x) = ∇u0(x)TCn for x ∈ ∂Ω and
n is the interior normal to ∂Ω with u0 a regular solution on the domain boundaries
constructed using the technique described in Sect. 2.1.3.

3 A fitting method with diffusion regularization

In this section, we investigate the use of the anisotropic diffusion PDEs as regularization.
Then we propose a new formulation based on the nonlinear anisotropic diffusion with
an iterative scheme in which the diffusion tensor is iteratively adapted to the variations
and the anisotropy in data.

3.1 New formulation of regularization based on diffusion PDE

We consider the following nonlinear minimization problem with respect to the
unknowns u and C

min
u,C

E f it(u)+λEH2(u)+µEDi f (C)(u,g). (16)

The regularization term in our new formulation is a sum of two energies, weighted by
two scalars µ and λ , controlling respectively the tradeoff between the diffusion and the
smoothing. The diffusion energy is based on the anisotropic diffusion PDE, providing
anisotropic solutions that respect the mean value property and the maximum principle,
ensuring no local extrema. The Hessian energy term is added to ensure smoothness
of the solution. In the set of solutions of the anisotropic diffusion equation with the
diffusion tensor C, the smoothest solutions are selected by minimizing the Hessian
energy. The diffusion energy defined with the anisotropic diffusion tensor C, generates
solutions that are adapted to the anisotropy present in data, providing extra degrees of
freedom for the modeling problem. Thus, the formulation of our problem is nonlinear
regarding the two variables: the implicit function u and the diffusion tensor C.

To solve this nonlinear minimization problem, we propose an iterative scheme that
involves the two problem unknowns u and C. In our scheme we solve first for u, then
for C and we repeat until the difference between the fitting energies of consecutive
iterations is less than a chosen threshold ε . The diffusion energy is quadratic in u and
is convex if the tensor C is positive semi-definite. In this case, the solution is unique.
However, the diffusion energy with respect to the coefficients of the diffusion tensor
C is linear and can be either positive or negative. Thus, minimizing this energy with
respect to C can be challenging as the solution is not well-defined. To address this



A spline-based regularized method for the reconstruction of complex geological models 9

issue, we introduce a proxy problem that replaces the original diffusion energy when
optimizing for C. We propose to minimize instead a quadratic convex energy with
respect to C. To do so, we first optimize the following objective function with respect
to C for a given u

min
C

(
∫

Ω

∥C∇u∥2 dΩ +ω1EH2(C)+ω2

∫
Ω

∥C− Id∥2
F dΩ). (17)

We then inject C solution of Eq. (17) and we optimize with respect to u

min
u
(E f it(u)+λEH2(u)+µEDi f (C)(u,g)). (18)

Minimizers of the quadratic energy
∫

Ω
∥C∇u∗∥2dΩ with respect to the components of

the diffusion tensor C for a given u∗, give minimal quantity C∇u∗. Thus, the diffusion
tensor C is adapted based on the intensity and the direction of the gradient ∇u∗. In
regions where the gradient ∇u∗ is strong, we minimize strongly the tensor C in the
direction of the gradient ∇u∗, allowing less diffusion regularization to permit strong
variations of the implicit function. Conversely, where ∇u∗ is small, we minimize less
the tensor C and therefore regularize more reducing the variations of the implicit
function in the direction of ∇u∗. The Hessian smoothing term ω1EH2(C) on the
components of the diffusion tensors is added to obtain smooth diffusion coefficients
with minimal oscillations. A third term ω2

∫
Ω
∥C− Id∥2

F dΩ of a distance penalization
from the standard diffusion where the diffusion tensor is the identity matrix Id , to avoid
the trivial null tensor as solution for this problem.

To construct an initial solution u0, we only use the Hessian energy as regularization
associated with a high regularization weight λ0, favoring regularity over a good
fitting of data. C is then obtained via optimizing Eq. (17) with u = u0. Using C and
g(x) = ∇u0(x)TCn as Neumann boundary condition we obtain the next u. At step
(i), Ci is obtained via minimizing the Eq. (17) based on ui−1. In the same way ui
is obtained via minimizing Eq. (18) based on Ci−1 and g(x) = ∇ui−1(x)TCin on the
boundaries as Neumann boundary condition. We keep iterating until the difference
between the fitting energies of the current and the previous iteration is less than a
chosen threshold ε .

Algorithm 1 Iterative algorithm for nonlinear anisotropic diffusion energy
minimization.
Require: Initial solution u0←minu E f it(u)+λ0EH2 (u) for a high regularization weight λ0.

while dif ≥ ε do
Ci←minC EDi f (C,ui−1)+ω1EH2 (C)+ω2

∫
Ω
∥C− Id∥2

F dΩ ;
g = ∇uT

i−1Cin;
ui←minu E f it(u)+λEH2 (u)+µEDi f (Ci)(u,g);
di f = E f it(ui−1)−E f it(ui);

end while

3.2 Tangential diffusion along faults

Discontinuities such as faults are often encountered in geological structural modeling.
The generated mesh is conformal to the faults in discrete implicit approaches. The
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nodes on the faults are duplicated from either sides allowing a jump in the implicit
function. Faults are considered as inner boundaries of the domain Ω . We note
∂Ωin ⊂ ∂Ω the set of faults. Each fault is composed of a set of edges. In cases where
the stratigraphic layers exhibit a large thickness variation along the faults, solutions
of our method might not respect the mean value property and no local extrema along
the faults. For this reason, we add an extra constraint to our regularization formulation
Eq. (15) only on faults. Along the faults ∂Ωin, in the tangential direction to the edges
composing the faults, we apply the anisotropic diffusion PDE

(ctut)
′ = 0, (19)

where ct = tTCt and ut is the derivative of the implicit function u in the direction
t. The weak formulation is derived by multiplying Eq. (19) by a test function v and
integrating over ∂Ωin

∫
∂Ωin

ctutvt ds = [ct(x)ut(x)v(x)]x∈E , ∀v ∈ H1(Ω), (20)

E is the set of nodes on the extremities of the faults. As illustrated in Fig. 1, we
integrate Eq. (20) over the fault first from e1 towards e2 and then in the opposite
direction from the other side.

Fig. 1 Fault inside the mesh with extremities e1, e2. Red line represents the fault, blue
arrows represent the direction of the fault edges in both sides.

The resulting implicit boundary condition is a vanishing derivative in the direction
t at the extremities of the faults. In order to avoid ut(x) = 0 for x ∈ E, we set
u(x) = ui−1(x) and ∇u(x) = ∇ui−1(x) for x ∈ E as Dirichlet and Neumann boundary
condition, leading to solving over all Ω the following PDE system

div(C∇u) = 0 in Ω ,
∇uTCn = g on ∂Ω ,
(ctut)

′ = 0 on ∂Ωin,
u(x) = ui−1(x) , ∇u(x) = ∇ui−1(x) f or x ∈ E.

(21)
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Equivalently we minimize the following modified diffusion energy

EDi f (C)(u,g) =
1
2

∫
Ω

∇uT (x)C(x)∇u(x) dΩ −
∫

∂Ω

g(x)u(x)dx+
1
2

∫
∂Ωin

ct(ut(x))2dx

(22)
s.t u(x) = ui−1(x), ∇u(x) = ∇ui−1(x) f or x ∈ E.

3.3 Discretization

In this section, we discretize the energies used in the iterative scheme Eqs. (17)-
(18) as well as the fitting energy Eq. (2). Our formulation is generic (i.e. it works
for any choice of basis functions (Bi)i=1:Ns of F where one is able to discretize
the diffusion and squared Hessian energy). The implicit function u is defined as
∀x ∈Ω , u(x) = ∑

Ns
i=1 Bi(x)ui = B(x)U, where B(x) = (B1(x), ...,BNs(x)) is a basis of

F and U = (u1, ...,uNs)
T is the vector of unknowns. Minimizing the fitting energy Eq.

(2) is equivalent to solving the following linear system

N p

∑
p=1

ηpB(xp,yp)
T B(xp,yp)U =

N p

∑
p=1

ηpB(xp,yp)
T zp. (23)

We write this system as
AfitU = Z (24)

In order to discretize EH2(u) over the domain Ω , we consider the bilinear form h over
F

h(u,v) =
∫

Ω

(uxxvxx +2uxyvxy +uyyvyy)dΩ . (25)

We define a sparse matrix H ∈ R(Ns×Ns)

EH2(u) =
∫

Ω

∥Hu∥2
F = UT HU s.t Hi j = h(Bi,B j) for i, j = 1 : Ns. (26)

Minimizing EH2(u) gives the linear system HU = 0. We also express the diffusion
energy using the basis functions as

EDi f (C)(u,g) =
1
2

∫
Ω

UT
∇B(x)TC(x)∇B(x)U dΩ −

∫
∂Ω

g(x)B(x)Udx (27)

+
1
2

∫
∂Ωin

UT (tTCt)(Bt(x)T (Bt(x))Udx,

where Bt(x)= (∂t(Bi)) is the derivative of the basis functions in the tangential direction
to the faults. Therefore, minimizing Eq. (27) with respect to u, gives a linear system
of the form ∆CU = NC, where

∆
C
ji =

∫
Ω

C(x)∇Bi ·∇B j dΩ +
∫

∂Ωin

(tTC(x)t)∂t(Bi)∂t(B j) dx, i, j = 1 : Ns, (28)

NC
j =

∫
∂Ω

g(x)B j dx. (29)
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To discretize the anisotropy symmetric tensor C =

(
c1 c2
c2 c3

)
, each diffusion coefficient

c1,c2,c3 is discretized using the basis functions (Bi(x))
Ns
i=1 in F such that

∀x ∈Ω c j(x) =
Ns

∑
i=1

Bi(x)c j,i = B(x)C j, j = 1 : 3. (30)

We use the flat vector C =

C1
C2
C3

 to store the degrees of freedom of the three diffusion

coefficients. The terms of the minimization problem (ii) are discretized as follows

∥C∇u∥2 = (C∇u)T (C∇u) for a given u. (31)

C∇u =

[
c1ux + c2uy
c2ux + c3uy

]
=

[
ux uy 0
0 ux uy

]c1
c2
c3

=

[[
ux uy 0
0 ux uy

]
⊗B(x)

]
C. (32)

Using the formulation above, we get

∫
Ω

∥C∇u∥2dΩ =
∫

Ω

CT

 u2
x uxuy 0

uxuy u2
x +u2

y uxuy

0 uxuy u2
y

⊗ [B(x)T B(x)]

C dΩ . (33)

The Hessian energy for the diffusion coefficients is simply

EH2(C) = EH2(c1)+EH2(c2)+EH2(c3) =
∫

Ω

CT (I3⊗H)C dΩ . (34)

The distance from the identity matrix explained in Sect. 3.1 can be expressed as∫
Ω

∥C− Id∥2
F dΩ =

∫
Ω

(c1−1)2 +(c3−1)2 +2c2
2 dΩ . (35)

Then we minimize it by solving the following linear system1 0 0
0 2 0
0 0 1

⊗M

C =

1
0
1

⊗∫
Ω

B(x)T dΩ , with M =
∫

Ω

B(x)T B(x)dΩ . (36)

3.4 Powell-Sabin splines basis functions

We introduced the regularization formulation Eq. (15) and the fitting energy Eq. (2)
without specifying a choice of basis functions for the space F . A variety of basis
functions can be considered, without any changes in the regularization formulation.
In this paper, we use Powell-Sabin spline basis functions, referred to as PS-splines.
We consider the use of PS-splines basis functions for the discretization of the iterative
minimization problem Eqs. (17)-(18) formulated in the previous section. We recall the
main properties of these spline basis functions and we refer to Dierckx (1997) for the
details of the construction and the proof of the properties. The considered PS-splines
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are piecewise quadratic splines with global C1 continuity, defined on triangulation.
They are constructed on a specific PS-refinement (Fig. 2), have a local support, are
convex and form a partition of unity. We use the normalized B-spline representation
introduced by Dierckx (1997). Additionally, PS-splines are based on a PS-6 split
method that involves dividing each triangle of the input mesh into six quadratic
Bezier triangles, while increasing the number of unknowns by only a factor of three
(Fig. 2).

(a) (b)

Fig. 2 PS-refinement of a triangular mesh, (a) input, (b) refined mesh

The use of PS-splines presents many advantages. First, they are based on triangu-
lations, which offer an advantage, over grids, when an adaptive refinement is necessary.
The discretization of second order derivatives used in the Hessian energy minimization
is straightforward compared to the classic linear discretization.

3.5 Linear system weighting

The minimization problem Eq. (18) gives rise to a linear system of the form

AU = B, (37)

where the matrix A and the column vector B are expressed as

A = A f it +λH +µ∆
C and B = Z+µNC. (38)

The weights λ and µ associated, respectively, with the diffusion and Hessian energy,
control the tradeoff between fitting the data and regularizing the solution, as well as
the tradeoff between the diffusion properties and smoothness.

We use the weighting function m that gives the average of the absolute values of
the matrix elements, defined from RNs×Ns −→ R as

m(M) =
1

N2
s

Ns

∑
i, j=1
|Mi j|. (39)
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We apply this function to the matrices A f it , H, ∆C resulting, respectively, from the
fitting, Hessian and diffusion energies. The quantities m(A f it )

m(H) and m(A f it )

m(∆C)
estimate,

respectively, the average relative weight of A f it to H and to ∆C. We introduce two
coefficients 0≤ α ≤ 1 and β ≥ 0 such thatλ = (1−α)β

m(A f it )

m(H) ,

µ = αβ
m(A f it )

m(∆C)
.

(40)

The values of α and β define the solutions of Eq. (17): β is controlling the tradeoff
between fitting and regularization, while α the balance between the diffusion and
the Hessian smoothing effect. For α = 0.5 and β = 2, the three components have an
equal contribution. A small value of β is privileging the fitting but can compromise
the regularity of the surface mostly for models with high thickness variations. Taking
0≤ α ≤ 1 ensures staying in between the two extrema: the regularization is complete
smoothing for α = 0 and only a diffusion for α = 1.

4 Applications

Classical smoothing approaches based on the minimization of the second derivatives
are widely used as regularization for the implicit modeling problem Eq. (3). However,
these methods might fail to produce regular solutions when used on models exhibiting
high thickness variation. In this section, we consider the Hessian smoothing energy as
regularization and we show resulting solutions on models presenting high thickness
variation. Figures 3a, b demonstrates the interpolation of sparse data in one dimension.
The data points are irregularly distributed and exhibit high variations in the implicit
function values assigned to each data point. The resulting implicit functions are shown
in Fig. 3 as a multicolored line, with the first derivative of the implicit function as a blue
dashed line and the second derivative as a red line. In one dimension, the Hessian is
simply

∫
Ω
(uxx)

2dx. In Fig. 3, the univariate normalized PS-splines (Speleers 2013) are
used for interpolation. They are piecewise quadratic basis functions, which explains
why the second derivative of the implicit function is piecewise constant.

When minimizing the second derivatives, the resulting function tends to have
a smooth first derivative, which means that it cannot have strong changes. As a
consequence of this, the function is more exposed to local extrema, which are points
where the first derivative changes sign (see Fig. 3a). Our method minimizes globally
the first and the second derivatives but tolerates a high jump in the second and first
derivatives in the region between the two plateaus; see Fig. 3b.



A spline-based regularized method for the reconstruction of complex geological models 15

(a)

(b)

Fig. 3 One dimensional interpolation using (a) Hessian energy (b) our method. Black
dots are data points to interpolate, red line in the graph corresponds to the second
derivative of the implicit function, while the blue dashed line represents the first
derivative.

To benchmark the method in two dimensions, we use synthetic models with high
thickness variation introduced in the data. We refer to these models as bell, rings,
extracted layers and faulted synthetic, respectively, as shown in Figs. 4a, b, c, d. The
thickness variation is present mainly in the y-direction in models Figs. 4c, d, while,
in Fig. 4b along the radial direction and Fig. 4a along x and y. Data points along the
rings have the same isovalue. The three rings have, respectively, 1,2,10 as values.
The bell model has horizons with values of −1, 0, 1, 2, and 3 from bottom to top and
is a benchmark model of Renaudeau (2019). The faulted synthetic model has three
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horizons with values of 0, 1, and 2 from bottom to top, while the extracted layers
model has horizons with values of 6, 7, 8, and 9 from bottom to top.

(a) (b) (c)

(d)

Fig. 4 Resulting implicit functions using the Hessian smoothing on models presenting
high thickness variations and discontinuities. (a) Bell. (b) Rings. (c) Extracted layers.
(d) Faulted synthetic. Black dots are data points ordered along horizons. Red contours
represent the extracted isovalues that are geologically inconsistent, while green
contours represent extracted isovalues that are geologically valid .

Hessian smoothing on these models, as shown in Fig. 4, produces irregular
solutions, where the mean value property and the maximum principle are violated
with the presence of bubbles that are oscillations around local extrema in the resulting
implicit function. These bubbles represent an undesired artifact as they are geologically
incoherent, and occur in the regions where the variation of thickness in the data
is the strongest. In Fig. 4a, bubbles are present on the boundaries and around the
middle curved horizon, therefore the extraction in red of the isovalue corresponding
to this horizon is geologically inconsistent. In Figs. 4b and c, the isovalues 1 and
9 appear twice and are highlighted in red. Solutions obtained via the minimization
of the Hessian energy are really smooth, with desired behaviour near the domain
boundaries, except the boundaries where a high thickness variation is present. These
solutions can be seen to follow the data trend, with minimal bias near boundaries
(Fig. 4d left side). However, in the presence of high thickness variations, they are
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highly oscillative (Fig. 4d right side). Despite measuring minimal Hessian energy,
these solutions are geologically inconsistent.

4.1 Handling the boundaries

The use of the diffusion equation implies implicitly a vanishing Neumann boundary
condition, leading to contours finishing perpendicular to the boundaries, as shown in
Fig. 5a. This strong artifact is undesired for our application due to the presence of
discontinuities inside the domain in Fig. 5a. To overcome this limitation, as described
in Sect. 2.1.3, we first construct a function obtained using the Hessian smoothing with
a high weight in Fig. 5b, giving a regular function inside the domain and naturally
finishing on the boundaries. We use its normal component of the gradient on the
boundaries as Neumann initial boundary condition and to compute the first diffusion
tensor by minimizing Eq. (17). For the next iterations, we use the normal component
of the gradient of the previous solution to update the Neumann boundary condition.
Our solution finally respects all the regularity criteria and fitting constraints with a
natural behaviour near boundaries, free from the artifact as shown in Fig. 5c.

(a) (b)
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(c)

Fig. 5 (a) Resulting implicit function with implicit vanishing Neumann condition on
the boundaries. (b) Resulting implicit function with a high smoothing weight using
the Hessian energy. (c) Resulting implicit function free from boundary artifact using
our method

4.2 Comparison of diffusion schemes

In this section, we present a comparison between three diffusion schemes. Standard
diffusion with the diffusion tensor set as the identity matrix, isotropic diffusion as
introduced in Sect. 2.2 and anisotropic diffusion as introduced in Eq. (15). We consider
the iterative scheme on u and C, respectively, Eqs. (18) and (17) for the isotropic and
the anisotropic diffusion. The final solutions obtained are shown for comparison. For
comparison, we create models with thickness variations introduced in the data along
one direction (y direction) in Figs. 6a, b, c first model and along two directions in
the second and third, respectively, in Figs. 6d, e, f and Figs. 6g, h, i. In Figs. 6d, e, f
data points along the rings have the same isovalue, and the three rings have 1,2,10
as values. In Figs. 6g, h, i the values on the horizons are: −1,0,1,2,3, respectively,
from the bottom to the top.

The three diffusion schemes produce regular and globally smooth solutions,
respecting the mean value property and the maximum principle at the boundaries.
In the first model, where the thickness variation is only along the y-direction, almost
no difference is visually observed between the three different solutions. However,
significant differences are observed in the regions with anisotropic high thickness
variations: the flat region under the curved horizon in the bell model and between the
rings with isovalue 1 and 2 in the rings model. In these regions the standard diffusion
fails to produce smooth curves and some undesired oscillations are observed. The
isotropic diffusion produces fewer oscillations and the curves are smoother than the
standard diffusion. The anisotropic diffusion using the diffusion tensor is visually
producing solutions with higher smoothness and respecting the regularity criteria,
with a perfect fitting as well of the curved horizon in the middle highlighted in red;
see Fig. 6i. Decreasing the regularization weight improves the fitting of this horizon
in the standard and isotropic case, as shown in Figs. 6g, h, respectively; however, it
introduces more oscillations.
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Standard Isotropic Anisotropic

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Resulting implicit functions using different diffusion schemes in high thickness
variations models
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4.2.1 Mesh refinement effect

The level of refinement of the mesh determines the quality of fitting and the regularity
of the solutions of the minimization problem (Eq. 16). Our method, shown in Figs. 6c,
f, i, produces successfully smooth solution that respects all the regularity criteria and
accurately fits the data. This is achieved on meshes with a coarse level of refinement
as shown in the previous comparison section. The three examples shown in Fig. 7
demonstrate that refining the mesh leads to an enhancement in the quality of data fitting
for the three diffusion schemes (Fig. 7). Nevertheless, for the standard diffusion (Fig.
7a) and isotropic diffusion (Fig. 7b), some oscillations can be seen in the flat region
beneath the top of the curved horizon. Meanwhile, the anisotropic diffusion (Fig. 7c)
provides a solution with higher smoothness and regularity and the no local extrema
property is holding. The main difference between the solutions of the three diffusion
schemes lies in the smoothness of the curves in the flat region, where the thickness
variation is strong and the implicit function varies weakly. In the case of interest for
this region, a high refinement is necessary to maintain the good properties of the
solutions of our method. Advanced refinement techniques, such as adaptative mesh
refinement, can be an effective way to improve the quality of solutions. Adaptive
refinement techniques allow the mesh to be more refined in areas where the high
thickness variations are present and in the anisotropy directions. We refer to the
model in Fig. 7 as bell refined.

(a) (b) (c)

Fig. 7 Resulting implicit function on a refined mesh using (a) standard diffusion, (b)
isotropic diffusion, (c) anisotropic diffusion

4.3 Application to geological models

In this section, we show the effectiveness of our method on complex geological
models that contain faults. We first evaluate our method on a faulted model presenting
no significant thickness variations (Fig. 8), and another presenting strong thickness
variations (Fig. 9). The faulted model in Fig. 8 contains seven horizons. The values
assigned to the horizons are in the ascending order from the bottom to the top, ranging
from one to seven. The thickness variation in this model is not significant/pronounced,
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since the thickness of the layers between these horizons are relatively uniform. Figure 8
shows resulting implicit functions using the Hessian smoothing and our method as
regularization; Figs. 8a and b. Our method produces a regular solution throughout the
entire domain, displaying geologically consistent behaviour near the boundaries and
faults. Similarly, the Hessian smoothing solution respects all the regularity criteria.
Visually, the two solutions are quite similar, except near the fault inside the domain
due to the use of the tangential diffusion constraint introduced on the faults for our
method.

(a)

(b)

(c) (d)

Fig. 8 Geological benchmark model of Renaudeau (2019). (a) Resulting implicit
function using the Hessian energy, (b) resulting implicit function using our method.
(c) A zoomed-in view of the area within the black frame in Figure (a), (d) A zoomed-in
view of the area within the black frame in Figure (b).
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The model in Fig. 9 has been obtained by removing horizons 4,5 and 7. To further
complicate the problem, the value associated with the horizon 6 has been changed to
4. These modifications induce a very strong thickness variations, particularly along
the fault inside the domain. We refer to the models Fig. 8 and Fig. 9 respectively as
Geo and Geo refined.

The Hessian smoothing fails to produce a regular solution (Fig. 9a). The maximum
principle and the mean value property are violated throughout the domain. The
resulting implicit function increases until it reaches the value 4, and then decreases,
which induces a wrong extraction of the horizon 4, being extracted twice.

The method Eq. (15) with no tangential diffusion along the faults, generates a
regular solution within the domain. However, along the faults it is not maintaining
the mean value and the maximum principle, resulting in the formation of bubbles. To
overcome this limitation, we introduced the tangential diffusion along the faults in the
diffusion energy (Eq. 22). It ensures the respect of the regularity criteria along the
faults, thereby eliminates the bubbles as shown in Fig. 9c.
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(a)

(b)

(c)

Fig. 9 (a) Resulting implicit function using the Hessian energy, (b) resulting implicit
function using our method without the tangential diffusion constraint, (c) resulting
implicit function using our method with the tangential diffusion constraint.
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The average fitting error in Table. (1) is computed by dividing the fitting energy
Eq. (2) by the number of data points, and all fitting weights are equal to 1. For all
the models, we converge after three or four iterations. In our experiments, we opt for
a parameter α = 0.5 for the models exhibiting moderate thickness variations and 0.9
for models with strong thickness variations. The parameter β is typically set equal to
one, while we choose small values for the models with a sparse density of data points
and a very refined mesh.

To determine the high regularization weight denoted λ0 in Algorithm. (1), which
is associated to the Hessian energy to construct the initial solution u0, we set

λ0 = p
m(A f it)

m(H)
, (41)

with p a positive scalar. For all the models, a p = 10, gives a regular solution. For Geo
and Geo refined models, we choose a p = 100. While for Bell and Bell refined models,
we choose p = 1000. Finally, we choose p = 50 for the Extracted layers model.

Model Number of iterations Average fitting error α β

Extracted layers (Fig. 6d) 4 6.567e−3 0.5 1
Faulted synthetic (Fig. 5d) 4 0.02385 0.5 1
Bell refined (Fig. 7) 3 2.3116e−4 0.9 1
Bell (Fig. 6i) 4 3.3e−3 0.9 0.1
Rings (Fig. 6f) 3 4e−3 0.9 1
Geo (Fig. 8b) 4 1.8e−3 0.5 1
Geo refined (Fig. 9c) 4 6.391e−6 0.9 0.001

Table 1 Number of iterations, the fitting error and the parametrs (α ,β ) per model.

4.4 Discussion

Our method depends on the initial solution u0 obtained using the Hessian smoothing
energy. In cases where strong curvatures are present in data, starting from a very
penalized solution u0 (i.e. obtained using a high smoothing weight) can result in a
final solution where some regions are flat. To address this, a less penalized solution
u0 should be privileged.

Our approach is based on approximating the Neumann boundary condition to
prevent the issue of vanishing implicit Neumann boundary condition. We first consider
as an approximation the normal component on the boundaries of the gradient of the
initial solution u0. During the iterative process, we use the normal component of the
gradient of the previous solution as Neumann boundary condition. In areas near faults
and domain boundaries where data are unavailable, the final solution will tend to have
the same behaviour of the initial solution.

The minimization of Eq. (17) for tensorC aims to minimize the diffusion coefficients
(ci)i=1:3, while keeping c1 and c3 within the range of 0 to 1. However, this approach
does not guarantee that the resulting tensor C will be positive semidefinite. Further
investigations are needed to ensure that the tensors remain semidefinite positive, and



A spline-based regularized method for the reconstruction of complex geological models 25

to study the undesired consequences (e.g. oscillations or numerical instability) of any
violations of this condition on the resulting solutions.

The solution U of Eq. 37 is used to evaluate the implicit function all over the
domain. In models without faults, we discretize the domain using a regular grid, and
the implicit function is evaluated on the grid’s nodes. The isovalues are then extracted
linearly on each grid element using marching squares. However, in presence of
discontinuities, we refine the mesh generated conformal to the faults for interpolation,
and we use a marching triangles method for the extraction of the isovalues. It is worth
nothing, that the evaluation mesh used for the extraction of the isovalues, is refined
up to three times compared to the mesh used for interpolation.

4.5 Conclusion and perspectives

In this paper, we introduce a new regularization method based on autoadaptive
anisotropic diffusion. Our method is an iterative scheme, where a diffusion term
is adapted to the variations present in the data. Contrary to existing methods, our
approach is data driven and no preprocessing is needed to assign values to geological
horizons. Instead, our iterative scheme adapt the diffusion tensor to the anisotropy and
thickness variations present in the data to obtain a regular solution. Furthermore, in
our iterative scheme, the estimation of the Neumann boundary conditions is performed
simply by integrating the normal derivative of the previous solution on the boundary.

Extending our iterative scheme to three dimensions using Powell-Sabin splines
is feasible. Speleers (2013) presented a method for constructing a normalized basis
for the multivariate quadratic spline space defined over a generalized Powell-Sabin
refinement of a triangulation in RS, s ≥ 1. The extension of our regularization
formulation to three dimensions with the anisotropic diffusion tensor is possible,
as well as to other discretizations as long as one is able to discretize the diffusion and
the Hessian energy. However, it is worth noting that we did not conduct experiments
in the volumetric context.

Irakarama et al. (2022) proposed a free boundary discretization for the Laplacian,
by using a specific choice of the space of basis functions and test function space.
A similar approach can be applied to obtain a free boundary discretization for the
anisotropic Laplacian.

Wang and Solomon (2021) introduced a Cholesky factorization of the diffusion
tensor and considered an optimization on the elements of this factorized matrix instead
of the diffusion tensor elements. The same parameterization can be used in our method
to ensure that tensors stay positive semidefinite.

When constructing geological models, it is common to encounter situations where
new data become available after the initial model has been computed. In such cases, a
local update technique can be employed to enrich specific regions in the model using
the new data, without making significant changes to the rest of the model. In future
works, we will explore the use of local update techniques in such cases.
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