N

N

Reduced-Complexity Multirate Remote Sensing Data
Compression With Neural Networks
Sebastia Mijares I Verdu, Marie Chabert, Thomas Oberlin, Joan

Serra-Sagrista

» To cite this version:

Sebastia Mijares I Verdd, Marie Chabert, Thomas Oberlin, Joan Serra-Sagrista. Reduced-Complexity
Multirate Remote Sensing Data Compression With Neural Networks. IEEE Geoscience and Remote
Sensing Letters, 2023, 20, pp.6011705. 10.1109/1grs.2023.3325477 . hal-04327715

HAL Id: hal-04327715
https://hal.science/hal-04327715
Submitted on 6 Dec 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-04327715
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 20, 2023

6011705

Reduced-Complexity Multirate Remote Sensing
Data Compression With Neural Networks

Sebastia Mijares i Verdd, Marie Chabert™, Member, IEEE, Thomas Oberlin*, Member, IEEE,
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Abstract—One of the main limitations to the adoption of
deep learning for image compression is the need to train
multiple models to compress at multiple rates. In the case of
onboard remote sensing data compression, another limitation
is the computational cost of the neural networks. Addressing
both limitations, this letter presents a new reduced-complexity
architecture for multirate compression of remote sensing images.
The proposed architecture enables compressing at a precise
user-selected rate while keeping a competitive performance in
lossy compression on different sets of remote sensing data. The
proposed approach is amenable for onboard deployment.

Index Terms—Data compression, deep learning, lossy com-
pression, multirate, remote sensing.

I. INTRODUCTION

HERE is a lot to see from above, as illustrated by the

approximately 5500 satellites that are currently in orbit
around the Earth, of which more than 1100 are dedicated
to Earth observation, according to the Union of Concerned
Scientists as of May 2022 [1]. With 19% of those Earth
observation satellites launched in the last two years, it is clear
that interest in remote sensing remains strong today, with ever
more data being sensed and requiring transmission down to
Earth.

Remote sensing data compression is crucial, given the vast
volumes of captured data and the satellite’s limited downlink
capacity. In particular, lossy compression is often considered
in order to fit the bitrate requirements of the mission [2], [3].
Furthermore, computational capabilities are severely limited
on board, introducing yet another key requirement to a remote
sensing data compression algorithm. As a result, remote sens-
ing data compression is an active field of research, with many
new proposals and developments every year.
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Machine learning (ML) has produced a breakthrough in
lossy compression for natural images in the last 6 years,
surpassing techniques such as JPEG [4], JPEG 2000 [5], and
intraframe HEVC [6] in lossy compression [7], [8], [9], [10],
[11], [12]. ML compression has also been applied to remote
sensing data [13], [14], [15], [16], [17], [18], [19]. These
contributions have employed models presented in [7] and [9]
as baseline architectures. Regarding architectures dedicated to
single-band images, Alves de Oliveira et al. [15] that applying
the architecture proposed in [9] outperforms JPEG 2000 [5]
for satellite image lossy compression, and further proposed
a reduced-complexity version of that architecture competitive
with the baseline models. This reduced-complexity design was
later used for compression and denoising of panchromatic
satellite images [20] and as part of a 1-D + 2-D framework for
on board compression of hyperspectral satellite images [21].
Other works published on ML compression of single-band
remote sensing images include those by Xu et al. [22] and
by Di et al. [23], both of which are also based on [9].

A crucial barrier for the practical adoption of models like
those cited above is that they are trained for a specific rate-
distortion trade-off, regulated by a parameter in their loss
function. As a result, multiple models have to be trained
to allow for compression at multiple rates. This is not only
costly to train, but also has computational implications (storing
multiple models in memory and loading them on and off for
compression at different rates), not to mention the fact that
they do not allow for a continuous choice of rates. Numerous
authors have tackled this problem in order to propose multirate
neural image compression [12], [24], [25], [26], [27], [28].

In this letter, we propose a novel multirate variant of the
reduced-complexity compression architecture for remote sens-
ing data from [15]. The proposed method features compression
at a user-defined bitrate, a novel capability with respect to
other multirate compression neural architectures. To the best of
our knowledge, this is the first application of such methods to
remote sensing data, as well as the first attempt at complexity
reduction of such multirate architectures, and a first in practical
compression at a user-defined bitrate. It is demonstrated that
the proposed multirate compression architecture performs on
par with other more complex existing multirate compression
architectures and with the multimodel baseline. In the follow-
ing, multimodel baseline refers to a model trained multiple
times, one for each rate-distortion trade-off.

The rest of this letter is structured as follows. Section II
introduces the end-to-end optimized transform coding
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paradigm this work is based upon, going into detail on some
of the multirate compression techniques proposed to date.
Section III describes the proposed ML method and the asso-
ciated architecture. Section IV reports experimental results.
Finally, Section V provides a discussion of our findings.

II. END-TO-END OPTIMIZED TRANSFORM CODING

End-to-end optimized transform coding is the state-of-the-
art approach for lossy image compression based on ML. Just
like in classical transform coding, it consists in encoding the
image by transforming it to a latent domain, quantizing it,
and entropy-encoding it. For decompression, the bitstream is
entropy-decoded and transformed back to the original image
domain. Setting this paradigm apart from classical transform
coding, here, two neural networks act as the encoder and
decoder transforms, respectively, and are jointly trained to
minimize the rate-distortion trade-off [11].

Entropy coding in ML image compression can be achieved,
for instance, by an arithmetic coder with some probability
distribution known to both coder and decoder. In [7] this
distribution is fixed, but rate-distortion performance can be
greatly improved by adapting the distribution to the input
data. This was investigated in [9], introducing a hyperprior,
which consists of an additional neural network that processes
the latent representation to extract and encode some of its
parameters, such as its standard deviation. These parameters
have to be encoded and sent to the receiver as side informa-
tion. We will refer hereafter to the autoencoder architecture
presented in [9] as the Ballé2018 architecture. This lossy
compression paradigm using autoencoders has been refined
over time and state-of-the-art ML image codecs today use
increasingly complex versions of this concept, such as a
Gaussian Mixture entropy model and an expanded residual
CNN as the main transform [29], or an Asymmetric Gaussian
entropy model with a large hyperprior network [12].

The loss function to be optimized in training by these
autoencoders is

L(x,¢,9) = R(p(x)) + AD(x, ¢ o ¥r(x))

where R(-) stands for the rate, D(-, -) stands for the distortion
between the original and the reconstructed image, and A is a
parameter set during training that regulates the rate-distortion
trade-off. Since the model is optimized for a specific rate-
distortion trade-off, different models have to be trained in order
to allow for compression at different rates.

To overcome the practical limitation imposed by having to
train multiple models to compress images at different rates,
a multirate architecture would allow for continuous bitrate
choices and require the training of a single model, greatly
reducing cost in time and resources.

Modulation is one of the most relevant techniques to achieve
learned multirate image compression, and aims to mimic the
adjustment of quantization step size performed by classical
transform codecs. A modulated autoencoder is an autoencoder
together with an auxiliary neural network—the modulating
neural network—which, given some parameter (in this case
), adjusts the activations in the main autoencoder network to
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Fig. 1. Proposed architecture. Blocks labeled “Conv N x k x k/s” indicate
convolution with N filters using k x k kernels with a stride of length s, and
the arrow indicates downsampling or upsampling. Blocks labeled “Dense k”
indicate a dense feed-forward layer with k£ nodes. GDN stands for General
Divisive Normalization, and ReLU stands for Rectified Linear Unit. The
product between a tensor and a vector, ®, is carried out scaling every channel
in the tensor by its corresponding entry in the vector.

produce a different output. For autoencoders used in image
compression, a simple version of this consists in learning
a scaling of the latent representation, which amounts to
varying the quantization step of the encoder in relation to
the rate-distortion multiplier ), regulating that tradeoff as in
the fixed-rate case. In this method, which we will refer to as
bottleneck modulation, it is preferable to jointly optimize the
main autoencoder and the modulating network, in which case
the modulated network practically matched the rate-distortion
performance of the multimodel baseline [24], [28].

Various more complex modulated autoencoders have also
been proposed, which generally modulate the outputs of every
layer in the encoder and decoder, not just the latent representa-
tion. We will refer to this approach as full modulation. It has
been shown that full modulation could more closely match
the performance of the multimodel baseline than bottleneck
modulation [26]. Full modulation can be extended further to
include the parametrization of the entropy model [25].

III. PROPOSED METHOD

To address the specific needs of remote sensing data com-
pression using this ML paradigm, we propose a novel method
that can be feasibly run on on-board hardware, allows to com-
press at a user-selected bitrate, and is competitive with current
standards and techniques. To the best of our knowledge, this
is the first reduced-complexity multirate neural compression
method for remote sensing data.

A. Reduced-Complexity Bottleneck-Modulated Compressive
Autoencoder

A novel neural network architecture for remote sensing
data compression is proposed, based on [9] and shown in
Fig. 1. This design’s complexity is reduced as in [15] by
using a reduced number of filters in the hidden layers.
A bottleneck-modulating network [24], [28] is included, which
allows us to finely scale the features in the latent space
for multirate compression. The proposed architecture also
incorporates range-adaptive normalization as proposed in [21]
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TABLE I

DETAILED COMPLEXITY OF THE REDUCED-COMPLEXITY BOTTLENECK-
MODULATED ARCHITECTURE (PROPOSED AND BALLE 2018)

Layer Params. | FLOP/p Params. | FLOP/p
(Ours) (Ours) (Ballé) (Ballé)

Norm. 0 1 0 1
Conv 1,664 416 3,200 800
GDN 4,160 1040 16,512 4,128
Conv 102,464 6,404 409,600 25,600
GDN 4,160 260 16,512 1,032
Conv 102,464 1,601 409,600 6,400
GDN 4,160 65 16,512 258
Conv 307,392 1,201 614,400 2,400
HConv 331,968 1,297 221,184 864
HConv 921,792 900 409,600 400
HConv 0 0 614,400 150
THConv 0 0 614,400 150
THConv 921,792 900 409,600 400
THConv 331,968 1,297 221,184 216
TConv 307,264 1,200 614,400 2,400
iGDN 4,160 65 16,512 65
TConv 102,464 1,601 409,600 6,400
iGDN 4,160 260 16,512 258
TConv 102,464 6,404 409,600 25,600
iGDN 4,160 1,040 16,512 1,032
TConv 1,601 400 3,200 800
Denorm. 0 1 0 1
Dense 128 0 0 0
Dense 12,480 1 0 0
Bott. scaling 0 1 0 0
Total 3,560,257 26,352 | 5,463,040 79,355
Encoder 3,033,984 15,382 | 3,976,704 42,799

for data sources with widely varying sample distributions, as is
common for remote sensing images.

The choice of bottleneck-modulation over full modulation
as advocated by Yang et al. [26] is motivated by two reasons:
complexity reduction and precise bitrate allocation. Regarding
complexity, bottleneck modulation clearly requires far fewer
operations than full modulation and, although this negatively
impacts performance, the difference is small, as is indeed
found by Dumas et al. [24] and Yang et al. [26].

B. Complexity Analysis

Just as in [15], we compute the complexity of our proposed
architecture and that of the Ballé2018 baseline counting the
number of operations per pixel of each layer in Table I. In par-
ticular, we specify the number of operations of the encoder
since this is the part subject to onboard constraints. Note
that the number of filters per layer is detailed in Section IV.
Since the modulating network’s size is fixed regardless of
the input data size, it is assumed in the calculation that
the size is 128 x 128 pixels for the floating-point operations
per pixel (FLOP/pixel) calculation. Clearly, the contribution
of bottleneck modulation to the number of operations is
practically negligible, and the overall complexity and number
of parameters in the network is almost identical to that of the
equivalent fixed-rate model. As shown in Table I, our proposed
method requires 64% fewer operations than the Ballé2018
architecture in encoding.

The number of encoder operations of the proposed architec-
ture of around 15kFLOP/pixel is compatible with an embedded
implementation on board using hardware such as the Movidius
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Myriad 2 [15], and, by extension, with more capable and
efficient state-of-the-art hardware, where the method can be
run in a short-enough time so that it does not create a backlog
of data to be processed. For completeness sake, we also
mention that this complexity is two orders of magnitude higher
than that of the CCSDS-122.0 or JPEG 2000 standards [30].

C. Precise Bitrate Allocation

Using a bottleneck-modulated network makes precise bitrate
allocation computationally practical, unlike using a fully mod-
ulated network. This feature is a first in multirate neural
image compression. Indeed, the A parameter used to regu-
late the rate-distortion tradeoff does not guarantee a fixed
bitrate independent of image content. With the Ballé2018
architecture—trained with a single A value—one may find
widely different bitrates for different images depending on
their contents. Using a bottleneck-modulated autoencoder,
however, the choice of A may be adjusted iteratively to achieve
a user-selected bitrate with a single feed-forward pass. The
small computational cost of the modulating network and the
scaling of latent representation compared to the rest of the
encoding scheme, as illustrated in Table I, makes this viable.
This strategy of actively adapting A\ to approximate a given
bitrate would require multiple feed-forward passes if we used
a fully modulated autoencoder, which makes it not feasible in
practice.

In the proposed method, precise bitrate allocation is imple-
mented as an iterative process using binary search: starting
from the minimum and maximum A values used in training,
Amin and Apax, the bitrate at both ends and at their arithmetic
mean, Apig = ((Amin + Amax)/2), is computed. If the target
bitrate is above that produced by Amid, Amin <— Amid 1S Set,
and otherwise Amax < Amia 1S set, until the bitrate obtained
by Amin OF Amax i Off from the target by some precision error.

IV. EXPERIMENTAL RESULTS

To assess the proposed method, a number of models
are trained using the bottleneck-modulated architecture from
Fig. 1 or the equivalent fixed-rate multimodel baseline (same
backbone transform without modulation). Either mean squared
error (mse) or structural similarity index measure (SSIM) are
used as distortion metrics in the loss function of the models,
optimized using Adam [31]. The reduced-complexity models
use N = 64 and M = 192 filters per layer, while the Ballé2018
architecture is as in [9] (N = 128, M = 192), including
range-adaptive normalization instead of uniform normaliza-
tion. The proposed model is compared to said multimodel
baseline and to JPEG 2000 [5], and code and visual examples
are available at a GitHub repository at the time of submission.

Three different remote sensing datasets are used in our
experiments to show the general validity of the proposal as
follows.

1) 12-bit simulated panchromatic Pléiades images of 50 cm
resolution. A total of 96820 x 820 images are used in
training and 32 820 x 820 images are used in testing.

Thttps://github.com/smijares/mcos2023
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Fig. 2. Rate-distortion performance of our mse and SSIM-optimized models
in simulated Pléiades panchromatic images, frame-by-frame Landsat 8 OLI
images, and frame-by-frame AVIRIS images. Rate is measured in bits per
sample (bps), also known as bits per pixel per component (bpppc).

2) 16-bit Ll-processed Landsat 8 OLI images with
30 m spatial resolution, taking frame by frame
seven nonpanchromatic bands [32]. A total of
3584512 x 512 images are used in training and
1280512 x 512 images are used in testing.

3) 16-bit AVIRIS calibrated scenes, taking frame by frame
all the 224 spectral bands [33]. The images are of 30 m
resolution. A total of 180 scenes are used for training
and 20 scenes for testing, in 512 x 512 crops.

These datasets come from panchromatic, multispectral, and
hyperspectral images, and have different spatial resolutions,
thus, the robustness of the proposed method in spatial decor-
relation can be assessed in a variety of conditions. The models
are evaluated under the mse and SSIM metrics. Results for mse
are converted to peak signal-to-noise ratio (PSNR) as PSNR =
2010g,(((2? — 1)/(mse)!/?) dB, with b = 12 for Pléiades and
b = 16 for Landsat 8 and AVIRIS. SSIM results are converted
to a decibel scale as SSIM(dB) = —101log;,(1 — SSIM).

Fig. 2 reports the rate-distortion performance of the dif-
ferent models we tested, trained for either mse or SSIM.
As is clear from those diagrams, our reduced-complexity
bottleneck-modulated models performed on par with the equiv-
alent reduced-complexity multimodel baseline, on par with
the Ballé2018 multimodel baseline, and decisively surpassed
JPEG 2000 in all datasets, both under PSNR and SSIM as
target or evaluation distortion metrics. As expected, our models
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MSE-optimised
0.46 bps 36.98 dB PSNR
29.77 dB SSIM

SSIM-optimised
0.46 bps  36.23 dB PSNR
30.18 dB SSIM

Original

Fig. 3. Visual comparison of a Pléiades image compressed with the mse and
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Fig. 4. SA performance of our models in frame-by-frame AVIRIS images
and frame-by-frame Landsat 8 OLI images.

performed more competitively under the metric they were
optimized for. These results show that the architecture simpli-
fication from [15] and bottleneck modulation as we propose
do not significantly compromise compression performance
on a variety of datasets with different characteristics when
optimized for the mse and SSIM metrics.

Beyond mse and SSIM quantitative metrics, Figs. 3 and 4
provide some qualitative assessment. Fig. 3 shows a visual
comparison of a Pléiades image compressed at low bitrate
using mse or SSIM-optimized models of the proposed archi-
tecture. It can be observed that the SSIM-optimized model
recovered certain features more accurately, such as the grooves
in the earth near the plane, and generally producing more
clearly defined edges. See our Github for more visual examples
for Landsat 8 and AVIRIS datasets.

Fig. 4 reports the average spectral angle (SA) loss between
the original spectral pixel (x € R") and the distorted spectral
pixel (8 € R"), computed as SA = arccos (x"%/||x|||IX])
for multispectral Landsat 8 and hyperspectral AVIRIS images.
As shown, our reduced-complexity single model once more
surpasses JPEG 2000 and performs on par with the other
learned models. Thus, despite our models only compressing
in the 2-D domain, they remain competitive under spectral
loss metrics, notably those optimized for mse.

Finally, a runtime comparison between the learned models
is carried out to assess the complexity difference theoret-
ically estimated before. The models for Pléiades images
are evaluated, measuring the average time to compress all
688 test images. This experiment was conducted on a NVIDIA
GeForce RTX 3060 Ti GPU, and Table II lists those times.
As expected, the reduced-complexity multimodel baseline was
the fastest method, followed by the reduced-complexity modu-
lated model with a single quality input (hence modulating only
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TABLE II
LEARNED MODELS RUNTIME COMPARISON
Model GPU runtime
Reduced-complexity (fixed bitrate) 6.25 s
Ballé2018 (fixed bitrate) 8.90 s
Modulated with single quality input 7.34's
Modulated with target bitrate 10.09 s

once). Using a target bitrate in the modulated model yielded a
slower runtime than the Ballé2018 multimodel baseline. Our
multirate proposal requires an average of only 12 iterations to
converge to the target bitrate with a precision of £0.005 bps.

V. CONCLUSION

A reduced-complexity neural multirate compression archi-
tecture for remote sensing data is proposed, which can
compress images at multiple and varying bitrates in a single
execution, introducing, for the first time, a novel scheme that
allows compression at a user-defined bitrate. Experimental
results show the proposed method performs on par with
the multimodel baseline and is superior to current JPEG
2000 standard in compression of remote sensing images of
varying sources and resolutions. Finally, as was the case for the
reduced-complexity baseline [15], the proposed encoder could
be feasibly run on board using currently available hardware.
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