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A Appendix 1 Introduction

Microbial communities significantly influence global biogeochemical cycles, plant-nutrient relationships and interactions among diverse taxa [START_REF] Zi | Microbiome sustains forest ecosystem functions across hierarchical scales[END_REF]. In disciplines destined to serve human societies, the natural dynamics of microorganisms play a central role in human biology, agri-food systems and environmental biotechnologies. However, the modelling of microbial ecosystems is an ongoing challenge for the scientific community, in both fundamental and applied research [START_REF] Allen | Challenges in microbial ecology: building predictive understanding of community function and dynamics[END_REF].

Laboratoire de Biotechnologie de l'Environnement (LBE)

In the context of applied research, bioprocesses employ already-existing biological processes in an artificial setting. The laboratory in which the internship took place (LBE), intends to develop the concept of environmental biorefinery, which aims to transform biomass into renewable non-fossil fuels, as a byproduct of microbial metabolism, such as bacteria and microalgae, which have the capacity to produce biofuels, often considered as one of the most valuable alternatives to fossil fuels [START_REF] Dechatiwongse | Modelling of light and temperature influences on cyanobacterial growth and biohydrogen production[END_REF] [START_REF] Wang | Cfd optimization of continuous stirredtank (cstr) reactor for biohydrogen production[END_REF]. Their research also focuses on the treatment of residues, such as solid and liquid effluents derived from industrial activities and household waste. Residues can be valorized if subjected to microbial anaerobic digestion for producing biogas and organic crop fertilizers [START_REF] Mironiuk | The challenges and perspectives for anaerobic digestion of animal waste and fertilizer application of the digestate[END_REF], while also promoting the reusing of residual matter [START_REF] Cansino-Loeza | Chapter 1 -management of renewable energy sources[END_REF]. Luckily, the increasing diversity of anthropogenic pollutants found in water, threatening aquatic and terrestrial ecosystems, can also be addressed, since biodegradation can be performed by certain strains of yeasts, bacteria, fungi and algae [START_REF] Kasiri | Modeling of biological water and wastewater treatment processes using artificial neural networks[END_REF].

On the study and modelling of microbial growth

Generally, study and development of these processes is attempted through numerically powerful tools, such as dynamic simulations, which allow predicting performances based on (ODE) that represent the evolution of microbial biomass and metabolism as a response to a substrate input.

Traditionally, metabolism was studied by observing the growth of microorganisms in a closed medium, also known as batch culture [START_REF] Christopher | Lag Phase Is a Distinct Growth Phase That Prepares Bacteria for Exponential Growth and Involves Transient Metal Accumulation[END_REF]. However, batch culture was not suited for studying certain phenomena, especially since the nutrients run out after consumption [START_REF] Teramoto | Application of chemostat culture to nutrient uptake rate measurements by the macroalgae saccharina japonica var. religiosa (phaeophyceae) and ulva australis (ulvophyceae)[END_REF]. This is why, continuous culture in a chemostat (Fig. 1), where microorganisms grow in a medium with a constant inflow and outflow of nutrients and substrate, was the chosen setting for our modelling approach.

The main objective of this project is to introduce qualitative modelling in the context of environmental bioprocesses, and to evaluate its relevance for representing microbial ecosystems and their behavior.

Starting point

Complex models have been the focus of several scientists' work throughout history, as can be the study of substrate uptake kinetics, and predator-prey interactions.

The studying of these systems has contributed to the understanding of time-consuming phenomena and fundamental questions about physiology and evolutionary mechanisms such as species co-evolution or ecological successions [START_REF] Hobbs | Continuous culture-making a comeback?[END_REF], even reaching the molecular level [START_REF] Hong | The functional basis of adaptive evolution in chemostats[END_REF]. This contributed greatly to bridging the gap between experimental microbiology and in-situ studies performed by ecologists [START_REF] Kassen | Big questions, small worlds: microbial model systems in ecology[END_REF]. Generally, these subjects are already Fig. 1. Schematic illustration of a continuous culture. The sterile medium is pumped into the chemostat vessel (Q in ) along with sterile air. The stirring mechanism allows for equal access of all microorganisms to the nutrients, which is why the medium is assumed to be homogeneous. Simultaneously, the outflow of media and cells is collected (Q out ). The clear blue area represents the gaseous phase, whereas the clear yellow area represents the liquid phase where microorganisms grow. Adapted from [START_REF] Martinko | Brock biology of microorganisms (11th edn)[END_REF].

approached with quantitative models which are based on systems of dynamical equations.

Why consider another model for the chemostat, given the existing variety of modelling approaches? The reason lies in the essential significance of the chemostat's emergent properties for enhancing these methods. Currently, these properties remain insufficiently understood [START_REF] Hunt | Artificial consortium demonstrates emergent properties of enhanced cellulosic-sugar degradation and biofuel synthesis[END_REF].

About the latest quantitative methods : limitations

In microbiology, the 'omics' era has accelerated the development of theoretic biochemical models [START_REF] Hobbs | Continuous culture-making a comeback?[END_REF] [START_REF] Godon | Species coexistence in nitrifying chemostats: A model of microbial interactions[END_REF], which are primarily based on differential equations. Indeed, an understanding of microscopic mechanical properties became recently possible through molecular dynamics simulation [START_REF] Goh | Molecular dynamics simulations of large macromolecular complexes[END_REF], but even the most popular models are found by users to be excessively complex and time-consuming [START_REF] Rieger | Critical review of activated sludge modeling: State of process knowledge, modeling concepts, and limitations[END_REF] and model parameterization is still one of the biggest challenges in system biology [START_REF] Stewart | Solution dependence on initial conditions in differential variational inequalities[END_REF]. Experimental measurements are also made in spaced time intervals. Thus, time delays between experimental measurements force a discrete nature on data. The intrinsic constraint linked to the structure of data could explain why classical approaches lack support to match the increasing complexity of ecosystem modelling.

Benefits of an integrative approach

When it comes to understanding biological phenomena, predictions are more robust when a plurality of methods is used [START_REF] Jost | Predator-prey theory: hidden twins in ecology and microbiology[END_REF], which justifies the interest in finding an integrative approach.

This method is meant to yield a visual intuitive representation of a system of asynchronous events condensing information on inter-species interaction and on abiotic factors. Ultimately, this could allow for an efficient inference of the system's possible states and transitions. The aim is to bridge the gap between Ordinary Differential Equations (ODE)'s well-established methodology with this approach's expressive power even as the number of interactions increases and the system becomes more intricate.

Qualitative descriptions are an intuitive way of representing a system's main attractors [START_REF] Henzinger | Qualitative networks: a symbolic approach to analyze biological signaling networks[END_REF]. Building this abstract representation is a relatively easy task if the model is not complex, or has fewer effects than more realistic models, and is well-studied in literature.

Symbolic methods have proven helpful when trying to evaluate the existence of irreversible states in a system's behavioural analysis [START_REF] Bowden | A brief survey and synthesis of the roles of time in petri nets[END_REF] and are the main basis of this approach. The system is viewed as a network of nodes, corresponding to the realization of events, interconnected through observable or non-observable transitions [START_REF] -Yingzhi | Equal relation between g-good-neighbor diagnosability under the pmc model and g-good-neighbor diagnosability under the mm model of a graph[END_REF]. Since they were born as a response to computational complexity, their intuitive aspect is pursued by building a generic graphic description of a parameterised system. Among symbolic methods, Boolean networks [START_REF] Kauffman | Metabolic stability and epigenesis in randomly constructed genetic nets[END_REF] [START_REF] Thomas | Boolean formalization of genetic control circuits[END_REF] are used as a simple, yet expressive formalism [START_REF] Brim | Boolean network sketches: a unifying framework for logical model inference[END_REF] to model state transition systems [START_REF] Natalio | Verifiable biology[END_REF]. They are useful for representing intertwined feedback loops in an ecosystem, since handling them otherwise can be counter-intuitive and sometimes impossible [START_REF] Thomas | Regulatory networks seen as asynchronous automata: A logical description[END_REF]. These networks generate a highly abstract representation of large systems while performing an exhaustive coverage of the space of states [START_REF] Henzinger | Qualitative networks: a symbolic approach to analyze biological signaling networks[END_REF], allowing for the intuitive identification of the system's main attractors [START_REF] Dameron | Formalizing and enriching phenotype signatures using boolean networks[END_REF]. Among Boolean networks, Petri-Nets [START_REF] Petri | Fundamentals of a theory of asynchronous information flow[END_REF] are currently used for describing the topology of non-sequential discrete event systems since one of their major attributes is their ability to detect errors in a short number of observations [START_REF] -Yingzhi | Equal relation between g-good-neighbor diagnosability under the pmc model and g-good-neighbor diagnosability under the mm model of a graph[END_REF].

Inspired by these formalisms, 'Ecological Discrete Event Networks' was developed with the purpose of assisting scientists as a tool to discriminate between different scenarios in order to choose the most suitable model.

Objectives, questions and hypothesis

Since the greatest difficulty in switching between quantitative and qualitative models is finding a faithful qualitative translation of the system, the central question is : Is it possible to find a good discretization that allows a faithful translation of a system of differential equations into a possibilistic language?

When attempting to find an accurate generic expression of complex dynamical systems, other than the ones traditionally used, theoretical data was used. After a translation of quantitative data into qualitative data, the hypothesis is that it is possible to :

(1) Obtain a generic qualitative representation of a simple chemostat model (two dimensions) and explore trying to find additional information absent in ordinary differential equation (ODE) approaches.

(2) Utilize this approach to observe trends for models that are more complex and have more than two dimensions, making them harder to study using traditional methods.

The main objective in this project is to implement algorithms capable of predicting, from the initial conditions of the system and a set of parameters -(1) the set of possible states of the system -( 2) the transition rules between these states.

Materials and Methods

Firstly, the three ODE models that were qualitatively translated will be introduced, followed by a brief reminder of the chosen growth functions and a concrete example to present the approach. Lastly, a detailed explanation of the steps used to perform the translation will be shown.

Introduction to the three chosen models 2.1.1 Simple model: a single species growing in a substrate

This model studies the dynamics of s (substrate) and b (biomass) over time, where a microbial species metabolizes a single substrate. The continuous culture system's dynamics were supposed to follow the Chemostat equations (see Appendix A).

Once this equations are adapted, the system becomes :

             ds dt = D(S in -s) -µ(s)b db dt = µ(s)b -Db (1)
where D is the dilution rate (h -1 ), S in is substrate influx (g/L/h), and µ(s) is the specific growth function of the species (1/h).

The summarizing power of phase portraits can be high for simple models (i.e. twodimensions), making it easier to verify it. However, in more complex models, the higher number of variables and parameters, increases their complexity and makes their mathematical analysis harder to perform.

Intermediate model: Two species and in competition for a substrate

The previously created algorithm was modified in order to create a slightly similar model, except for the fact that instead of one species and one substrate, this model assumes that two species share the substrate a common food source in a bioreactor :

                         ds dt = D(S in -s) -µ A (s)b A + µ B (s)b B db A dt = µ A (s)b A -Db A db B dt = µ B (s)b B -Db B ( 2 
)
where In continuous culture, leaching (i.e. the loss of biomass) can happen if the dilution rate is superior to their maximum growth rate. In order to explore the faithfulness of this approach when studying this model, different cases were tested to compare leaching and equilibrium in qualitative networks (D > µ max of species A and B).

Third model: a nitrifying chemostat

A more complex model with commensalism between two microbial species was also studied using results from a previous publication [START_REF] Godon | Species coexistence in nitrifying chemostats: A model of microbial interactions[END_REF]. Two distinct functional groups of bacteria are represented according to their functional type, i.e. Ammonia Oxidizing Bacteria (AOB) and Nitrite Oxidizing Bacteria (NOB) (see Appendix Fig. 14). The ODE system for this model is:

                                                   db A dt = µ A (s 1 ) -D b A db B dt = µ B (s 2 ) -D b B ds 1 dt = (S in -s 1 )D -1 Y A µ A (s 1 )b A ds 2 dt = -s 2 D + 1 Y A µ A (s 1 )b A -1 Y B µ B (s 2 )b B ds 3 dt = -s 3 D + 1 Y B µ B (s 2 )b B
where YA and YB represent the yield constant of each species, which is the amount of biomass produced per every unit of substrate consumed for each functional group, and s1, s2, s3 denote the concentrations of substrate introduced in the reactor, substrate produced by the first functional group and substrate produced by the second functional group, respectively.

Reminder of the chemostat growth functions

Each of the three models was tested with three distinct specific growth functions (Haldane, Monod and Contois) in order to observe the contrasts.

Among the many growth functions used to understand microbial growth, Jacques Monod's growth function (1950) (Fig. 2) is by far the most used in literature [START_REF] Liu | Overview of some theoretical approaches for derivation of the monod equation[END_REF]. Alternatively, microbial growth rate occasionally drops as a response to excess substrate concentration [START_REF] Colucci | Study of the chemostat model with non-monotonic growth under random disturbances on the removal rate[END_REF], known as the inhibitory effect. In such cases, then the growth function discovered by John B.S. Haldane (1930) is the most adequate. In order to take into account microbial biomass for substrate production, Contois's growth function was also tested. It is possible to visualize an example of the growth of a single species according to each expression below (Fig. 2).

Monod :

µ(s) = µ max s K s + s Contois : µ(s, b) = µ max s K s b + s Haldane : µ(s) = µ max s K s + s + s 2 K i Fig. 2.
Curves of Monod, Contois, and Haldane Growth functions respectively. It is possible to see the effect of the inhibitory constant on Haldane's growth function.

Concrete example of qualitative description with a simple model

In the case of a simple chemostat, one species grows while consuming a single substrate, given a set of initial conditions and parameters. It is possible to qualitatively describe the system using the derivative of the variables. Depending on whether the variables are increasing or decreasing, the sign of the derivative is used to characterize the state of the system:

• 'increasing' ('+')

• 'stabilizing or decreasing' ('-')

Based on this example, it is possible to qualitatively summarize the transitions of the system with a transition rule, which illustrates the transition between one state of the system and another :

ds + , db + ≫ db - (3) 
Here, s (substrate) and b (biomass) can be qualified as increasing and decreasing. The symbol '»' separates conditions and resulting states, in that order. A condition and a resulting state are each viewed as single qualitative states, even when constituted by several decreasing and increasing variables. To avoid redundancy, if a variable does not change after a transition, it is omitted in the resulting state. Following this symbolic rule, it is possible to interpret that If substrate and biomass are increasing, then biomass can decrease.

where If precedes the state, or condition, that can possibly induce the transition towards the resulting state. By using this method, the quantitative trajectories were translated to a qualitative representation, summarized by a rule.

Since this is a particular trajectory of the system of dynamical equations given a set of initial conditions, the interest of this project was to extract the main trends when a wide range of initial conditions is simulated. Translating this simple, well-known model was useful to build a network of states, in which it is possible to circulate by using rules. Once the translation between quantitative and qualitative models was deemed faithful, the model was made increasingly complex by adding more differential equations.

Translating Ordinary Differential Equations into qualitative networks 2.4.1 Determining qualitative variables

The number of qualitative variables is different for each model:

-Model: One species, one substrate 

s 1 0 -s 2 0 -s 3 0 -b A 0 -b B 0
where ds, ds 1 , ds 2 , ds 3 , ds 4 , ds 5 stand for substrate variation, and db A , db B stand for biomass variation of two different species. The sense of variation, or state of the variable, is given by the sign.

Generating sets of parameters

In order to choose the values of the parameters, a pseudo-random sampling from a Uniform distribution ranging from 0 to S in was performed since there was no prior information about the distribution. After a large number of repetitions (n = 100), a mean is calculated, obtaining an averaged value for each of the general parameters D (Dilution rate), S in (Substrate influx), but also for the specific growth function parameters µ max (Maximum specific growth rate), K i (Inhibition constant), and K s (Saturation constant).

This method, also known as Monte-Carlo method, was chosen is that it is a robust algorithm to optimize the 'estimation' of each parameter [START_REF] Doucet | An overview of sequential monte carlo methods for parameter estimation in general state-space models[END_REF].

Generating initial conditions

For each model and each growth function, initial conditions for substrate and biomass were also drawn from a Uniform distribution, ranging from the minimal initial concentration (0.01) and a chosen maximal inoculation value, inferior to the total volume of the reactor. For the first model, a combination of two values was drawn while three for the second model and five for the last model. This was repeated a number of times (n = 10 000) in order to build a list of initial conditions.

Simulations

Each model was simulated for the list of initial conditions using an already implemented differential equation system solver in R (package deSolve).

For simplicity and convenience regarding calculation time, it was more practical to study the sign of each variable's derivative between two roots. The objective was to describe the system's transitions by successions of monotonies of the state variables' derivatives.

An already implemented function was used to detect asymptotic behaviour and avoid false changes in the sign of the derivative for each set of initial conditions. If the slope between the two chosen time steps is considered inferior to a certain threshold (1e-10), it is considered null.

At each switch in monotonic behavior behavior tendencies, the sign of the slope (1 if positive, 0 if negative) of all state variables were coupled (Fig. 4).

A specific threshold to induce a change in a state of the system could also have been chosen, as done in the majority of qualitative approaches could have been chosen, yet this is another source of difficulty [START_REF] Chung | Theoretical choice of the optimal threshold for possibilistic linear model with noisy input[END_REF].

Coupling of the signs

Since the derivatives of an ODE system vary in parallel, the sign of the derivatives were coupled for each simulation.

Since the trajectories were transformed from continuous to binary, depending on the sign of the slope of the state variables (+ or 1 if positive, -or 0 if negative), a different number of combinations was obtained for each of the three models. and the state that she is going through (positive or negative).

In the example above, the successions of monotonies of the trajectories of the two derivatives can be described as follows :

ds 1,1 --→ ds + , ds + (4) db 1,0 --→ db + , ds - (5) 
When the trajectories are coupled, the system can be described by a qualitative rule, expressing its transition from one state to another :

ds + , db + - → ds + , db - (6) 
State 1 State 2 (7)

Binary transition matrix

The previous example was specific to a set of initial conditions of the simple model.

In order to summarize the observed transitions for the entire set of initial conditions, a binary transition matrix, representing the presence and absence of a transition by '1' and '0' respectively. The vertical states represent the condition needed to produce an outcome (Fig. 5).

Fig. 5. Schematic representation of a transition matrix confronting conditions (coupled states of each state variable) and possible outcomes (coupled states of each state variable). When a transition is encountered among the simulated trajectories, '1' is added to the corresponding row i and column j. This process is irreversible and cumulative and is repeated with as many initial conditions as possible.

As an additional tool to obtain information about the occurrence of an observed transition, meaning if it is rare or not, the transitions were accumulated and normalized in relation to the total number of transitions, as a percentage. However, this constitutes ongoing work that was not fully resumed.

Boolean Networks: Translating transitions into generic rules

It was then possible to use the binary transition matrix to build an interaction graph (package igraph).

For a reminder, according to this approach, a node is a set of states (ex.: 'ds + ,db + ' in which 'biomass and substrate increase'). The transition between two nodes is represented by edges, or rules.

Verification step with Jupyter EDEN interface

So far, the model simulations and the transition rules have been obtained using RStudio. A previously implemented tool was used in order to obtain further information.

Interaction networks were thus also generated in parallel using Python in a Jupyter interface since the code itself can be quite tedious to handle [START_REF] Cansino-Loeza | Snakes: A flexible high-level petri nets library (tool paper)[END_REF]. This platform aims to model ecosystems qualitatively with any given set of rules. The chosen EDEN approach can be characterized by (1) its non-deterministic nature since trajectories are not declared and the outcome will depend on the rules [START_REF] Carpentier | Discrete-event models for conservation assessment of integrated ecosystems[END_REF] but also by (2) its asynchronous nature, which can be beneficial since simultaneous changes from one node to the next can be multiple [START_REF] Thomas | Regulatory networks seen as asynchronous automata: A logical description[END_REF]. Whenever a node has no possible following node, it is said to be a deadlock or a state with no possible outcome.

After uploading the rules obtained in R with a specific notation to this platform, the possibilistic networks could also be built. Since this platform is able to return a transition matrix, an algorithm was created to import it back into R and compare it to the original matrix, just to verify that the approaches are analogous.

This was done by altering the Jupyter matrix to obtain the same format and then performing a matrix subtraction. This part will mostly serve for the continuation of the project after the internship is over. The resulting networks are visible in the Appendix.

Results

Interaction networks were built for the three models. As a reminder, the objectives were to (1) Simulate a theoretic chemostat under different growth assumptions, (2)

Translate this system into a network of discrete events, (3) Test it on well-known models easy to analyse and (4) Explore more intricate models.

One species and one substrate

(1) Graphic Network : No differences were found between Monod and Contois (Fig. 6) in the number of transitions (n=4 ) and two supplementary transitions were found for Haldane (n=6 ).

(2) Rules : Two supplementary rules were found for Haldane, in comparison with the two other growth functions (Fig. 6).

This model can be qualitatively studied by a phase portrait (Figs. 6a, 6b, 6c).

Since qualitative states and transitions can be deduced from it, it is possible to represent it by using a boolean network (Figs. 6d, 6e, 6f). Each of the transitions is recapitulated as lists of rules (see Appendix).

The list of trajectories was identical for Monod and Contois (Fig. 7). Four of those trajectories were also observed for Haldane ('01', '11-01', '01-00-10', '10-11-01'), yet a specific transition was observed solely in this case ('01-11')(see Appendix, Fig. 10). 

Two species and one substrate

(1) Graphic network and rules: When a supplementary species is added, the interactions differ between the three growth functions (Fig. 8). Also, the rules are increasingly specific when one species is added. Configurations according to the value of D with respect to the maximum growth rate of each species.

Two species and three substrates

(1) Graphic network and rules: When a supplementary species is added, the interactions differ between the three growth functions, as shown in the transition matrix. Also, the rules are increasingly specific when one species is added. 

Verification with Jupyter EDEN server

The transition rules were extracted from the transition matrix using R. These rules were then uploaded to the Jupyter platform, where the algotithm attributes a rule to each transition (see Appendix).

Discussion

Important remarks

(1) It is interesting to see that for the model with one species and one substrate, Monod and Contois growth functions seem to behave similarly until the model becomes complex. Haldane's growth function shares 4 of their trajectories but has a trajectory that is largely present . This means that in half of the transitions, biomass still increases even if the substrate is decreasing. This could be a lag phase in which bacterial growth is still metabolizing the substrate right before inhibition. However, it could also be a mistake due to the chosen way to describe a system with the sign of the derivatives.

(2) The most striking feature of this study is that a possibilistic network is that it is possible to know how many times a transition is encountered, which makes possible networks more informative for models with more than two dimensions. This is why it is necessary to complete it with a cumulative frequency for each transition. Some of these frequencies are sometimes very close to 0. This is likely to be a numerical calculation problem. However, it might be one of those rare shifts observed in intricate biological systems.

(3) Furthermore, the frequencies can yield information analogous to the size of the basins of attraction. Said otherwise, the size of the area between the axis and the nullclines of a phase portrait could be translated to the number of times a trajectory ends up in a particular state (for example leaching). In this regard, it could be interesting to repeat the sampling several times in order to create thresholds, so that it becomes possible to differentiate between a rare transition and a numeric artefact, linked to oscillations when asymptotic behaviour is encountered. This means that if after a large number of samples, the transition is encountered in a small number of cases, it is most likely not an observable transition.

(4) The fourth most striking feature is that if the understanding of the frequencies improves, it might become viable to revert back to the configuration of the phase portrait and thus have more accurate estimations of the parameters of a model based on experimental data. This is useful since more often than not, parameters are drawn from discrete measurements for the most part, but also fitted theoretically [START_REF] Lillacci | Parameter estimation and model selection in computational biology[END_REF],

which can cause uncertainty when trying to build predictions. This could also reduce the impact of overfitting and ill-conditioning, a small error when choosing the set of parameters can lead to magnified errors in the conclusions [START_REF] Gábor | Robust and efficient parameter estimation in dynamic models of biological systems[END_REF].

(5) Haldane's growth functions have fewer possible successions of transitions than Contois and Monod in the simple model. If confronted with experimental data, this could be the most interesting result since when a certain variation in a time series (i.e. fluctuations of substrate or biomass), is observed it would be possible to state that these can not be found in 'Monod' and 'Contois', not to say that the microbial species is likely to follow a transition that can only be seen if there is an inhibitory effect.

(5) The approach is also partially verified for the three-dimensional model, since leaching and equilibrium are still well represented in the qualitative networks. However, the model of the nitrifying chemostat is not only too complex to interpret when it comes to its rules but is also demanding in calculation time. Thus, the number of initial conditions had to be smaller in comparison to the other tested models. This is why this model served to test the approach on five-dimensional models but not to withdraw conclusions.

Did the discretization choice allow for a faithful translation?

As expected, the qualitative network reflected the transitions seen in the phase portrait. Nevertheless, a finite list of trajectories was found due to the translation of the system. As expected, the number of transitions between states increases with the complexity of each model. It is however remarkable that given the number of simulations and the degree of nestedness, it is still possible to simplify the whole system to a finite number of rules.

Practicality of rule-based approaches in biology

Even if the resulting EDEN networks seem hardly intuitive to read at first sight, the recapitulation of the list of rules as well as its verbal explanation could be very useful for biologists and other experts. Indeed, rule-based modelling languages have proved useful for people who are not necessarily familiar with the mathematical formalisms of a model [START_REF] Rybacki | Rule-based multi-level modeling of cell biological systems[END_REF]. Most experimental biologists are still not familiarized with software and modelling tools [START_REF] James R Faeder | Toward a comprehensive language for biological systems[END_REF]. In addition, because it is based on graphical formalisms, it can yield a source of simplification for biochemical networks, which can more often than not imply unbearable combinatorial complexity ( [START_REF] James R Faeder | Toward a comprehensive language for biological systems[END_REF]). Indeed, some interpretations can be made for each of the rules (see Appendix), yet this becomes almost impossible for the nitrifying chemostat model.

Perspectives: Limits and necessary improvements

The possibilistic approach provides a qualitative simple approach. However, further work needs to be done to confirm the veracity of the transition rules. The simulation of parameters using Monte-Carlo methods is robust, but calibration seems to be a crucial stage when working with parameter-sensitive models.

Also, when retrieving the slopes, if the slope's value was within a threshold value, non-null values were rounded to 0. This can be a source of bias since the entire method is based on the transitions of states for each variable within all trajectories. Furthermore, Monod's growth function is mainly empirical and not at all mechanistic, which could substantially alter the results [START_REF] Liu | Overview of some theoretical approaches for derivation of the monod equation[END_REF]. Most importantly, the way in which the space of states is explored was through simulated groups of initial conditions, depending on the number of state variables. These conditions are sensitive to the combinations made, but also to the size of the time step. Altogether, these assumptions could alter the result, given the sensitivity to parameter fluctuations of ODE approaches. The major issue is the strong dependence on the discretization step size. Indeed, fake transitions are found when the step is too large. Even if this approach allows for complexity modelled with insufficient information it has non-negligible limitations since (1) the space of states can easily increase in complexity [START_REF] Bowden | A brief survey and synthesis of the roles of time in petri nets[END_REF] (2) transitions between states are also highly dependent on the chosen time bounds since when too large, they might become obsolete [START_REF] Bowden | A brief survey and synthesis of the roles of time in petri nets[END_REF].

In additional measurements which were not presented in this report, the possibilistic approach is still however sensitive to parameter fluctuation, since a small change in a single parameter (< 0.5) can cause bigger or smaller changes depending on the nature of the parameter. The most drastic changes occur for small variations in K s and K i for the two least complex models, even if the rest of the parameters remain fixed. It could be possible however to make a global stability analysis, in order to build a larger network which illustrates the ramifications when the system is not parameterized, leading to a more generic approach. The predicted rules will differ, but it is still interesting to have generic rules in a parameterized system. However, this made the testing on theoretical data more difficult, because when generated randomly and analyzed, the qualitative network could be associated with a certain growth function, but not with certainty, since the same growth function would yield different results if parameters were changed.

Conclusion

Overall, the goal was to find an alternative method to navigate the states of the system, in this case, a theoretical chemostat. This method was intended to serve as a simplifying tool. This algorithm is now able to perform an automatic translation of a system of dynamical equations (quantitative) to a Boolean network (qualitative). In the first case, variations are assumed to be synchronous. In the latter case, variations are supposed to follow transition rules. These transitions can be described in order to have a better grasp of rare and systematic variations. However, this method is applicable but not yet verifiable, since it has not been confronted with empirical data properly. Also, further testing of the effect of parameter variation needs to be done, since it is not generic, due to its dependence on parameter values. 

B.2 Haldane trajectory
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  s, b A and b B stand for the concentration of (g/L) of substrate and biomass of species A and B respectively, and µ A and µ B indicate the specific growth function of each species (b A and b B respectively) in (1/h).

Fig. 3 .

 3 Fig. 3. Example of one simulation of two trajectories of the chemostat with initial conditions b 0 = 10, s 0 = 5. Time series of b (microorganism concentration) and s (substrate concentration) evolving over time using the Haldane growth function. It is possible to see that after optimal concentration, microorganism growth is inhibited, as is assumed by the Haldane growth function (parameters: D = 0.40; µ max = 5; Sin = 100; KI = 4; Ks = 50; s 0 = 5; b 0 = 10).

For the simple model, 4 Fig. 4 .

 44 Fig.4. Schematic illustration of the coupling of monotonic behaviour behaviour of the trajectories for a given example. It is possible to see the name of the variable, in this case s and b), and the state that she is going through (positive or negative).

( a )Fig. 6 .

 a6 Fig.6. Comparison between the qualitative well-known method of phase portraits (upper row) and qualitative networks (middle). Comparison between quantitative and qualitative approaches of the simple model. (2a) Phase portrait qualitatively summarizing the possible transitions of a simple chemostat with one species growing with a substrate. It is possible to observe the four states of the system ('-', '+-', '++', '-+'). (2b) The first and second characters stand for ds and db, respectively. The bottom row shows the frequency of transitions.

Fig. 7 .

 7 Fig. 7.Trajectories of substrate and biomass as a function of time representing the 8 possible successions of states found for the simple model. Note that some states are rare and some states lead systematically to other states.

Fig. 8 .

 8 Fig. 8. Possibilistic networks representing all the possible state transitions of the system for the model, where two species share a substrate. Each network corresponds to one of the three tested growth functions.

Fig. 9 .

 9 Fig. 9. Possibilistic network of the states of the system. The characters correspond to db A , db B , ds 1 , ds 2 and ds 3 respectively.

Fig. 10 .

 10 Fig. 10. Trajectory specific to Haldane Growth function.

Fig. 12 .

 12 Fig.12. Possibilistic networks extracted from the Jupyter EDEN platform, already implemented before the internship, representing the possible state transitions of the system for the model with two species and a substrate. Each node corresponds to a state of the system, connected by rules. If the state is 'nan', there are no increasing variables.

  

  

  

  Qualitative variables: ds 1 , ds 2 , ds 3 , db A , db B -State of the variable: ds + 1 , ds - 1 , ds + 2 , ds - 2 , ds + 3 , ds - 3 , db + A , db -

-Qualitative variables: ds, db -State of the variable: ds + , ds -, db + , db - -Combination of initial conditions: s 0 , b 0 -Model: Two species, one substrate -Qualitative variables: ds, db A , db B -State of the variable: ds + , ds -, db + A , db - A , db + B , db - B -Combination of initial conditions: s 0 , b A 0 , b B 0 -Model: Two species, three substrates -B -Combination of initial conditions:

  ds -, db + → db - If biomass decreases and substrate increases, substrate can decrease because of consumption (asynchronous). R2 : ds -, db -→ ds + If biomass is increasing and the substrate is decreasing because of consumption, biomass can eventually decrease too. R3 : ds + , db -→ db + If substrate is decreasing and biomass is decreasing, substrate can increase because of lack of consumption. R4 : ds + , db + → ds - If substrate is increasing and biomass is stable, biomass can start growing again.

	Haldane growth function
	R1 :

R5 : ds + , db + → ds - If substrate is decreasing and biomass increases, substrate can still continue to increase (asynchronous).

R6 : ds + , db + → ds - If substrate and biomass are both increasing, substrate can decrease because of consumption.
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A Appendix

B Chemostat equations

where b i is the biomass of species i, µ i its specific growth rate, D the dilution rate and S in is the substrate inflow. The constants represent a concentration (mass/volume) except for the dilution rate (mass/volume/time).

B.1 Simple model: one species and one substrate B.1.1 Rules

Monod and Contois growth function R1 : ds -, db + → db - If biomass is increasing and the substrate is decreasing due to consumption, biomass can eventually decrease too. R2 : ds -, db -→ ds + If the substrate is decreasing and biomass is decreasing, the substrate can increase due to lack of consumption.
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C Supplementary materials about the models C.1 Model with two species and one substrate

C.2.2 State combinations for the model with two species and three substrates

As a reminder, the five state variables are the three substrates (s