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Introducing Clapoti(s): Evaluating the isogeny class group action in polynomial time

) ) operations to compute the class group action 𝐸 ↦ 𝐸 𝔞 ≃ 𝐸/𝐸 [𝔞].

Introduction

Let 𝐸/𝔽 𝑞 , 𝑞 = 𝑝 𝑒 , be an elliptic curve with an effective primitive orientation by a quadratic imaginary order 𝑅 ⊂ End(𝐸), and 𝔞 be an invertible ideal in 𝑅. In this short note, we explain how to compute the class group action by 𝔞 in polynomial time.

Although specific instantiations of the full class group action (rather than a restricted action) are known [BKV19; FFK+23; CL23], as explained by Lorenz Panny in https://yx7.cc/blah/2023-04-14.html none of them is asymptotically polynomial. By contrast, Clapoti is a polynomial time algorithm that applies to any orientation.

We use the now standard trick of going to higher dimension, initially introduced in the SIDH attacks [CD23; [START_REF] Maino | A direct key recovery attack on SIDH[END_REF][START_REF] Robert | Breaking SIDH in polynomial time[END_REF]. For this, we need to extend the class group action Cl(𝑅) on 𝐸 to higher dimension. In [START_REF] Page | Clapotis: Evaluating the isogeny class group action in polynomial time[END_REF], we build an anti-equivalence of categories between unimodular hermitian torsion free 𝑅-modules and 𝑁-similitudes on one hand, and principally polarised 𝑅-oriented (not necessarily primitively) abelian varieties 𝐴 isogeneous to 𝐸 𝑛 and oriented 𝑁-isogenies on the other hand (with the restriction that the 𝑅-action on differentials 𝜌 𝐴 on 𝐴 has to be equivalent to 𝜌 𝑛 𝐸 when 𝑝 is inert in 𝑅, owing to the fact that in this case the Frobenius map 𝜋 𝑝 ∶ 𝐸 → 𝐸 (𝑝) is not represented by an ideal). This equivalence of categories is an extension to the oriented setting of an equivalence of categories proved in the non oriented setting in [START_REF] Jordan | Abelian varieties isogenous to a power of an elliptic curve[END_REF][START_REF] Kirschmer | Spanning the isogeny class of a power of an elliptic curve[END_REF]. The isogeny 𝜙 𝔞 ∶ 𝐸 → 𝐸 𝔞 of kernel 𝐸[𝔞] corresponds under this equivalence to the module map (𝔞, 𝒩(⋅)/ 𝒩(𝔞)) → (𝑅, 𝒩(⋅)), with 𝒩(⋅) the norm form. This representation does not requires 𝔞 to be invertible, and can therefore also be used to represent going up isogenies (by taking 𝔞 to be the conductor ideal); hence even in dimension 1 it is more general than the class group action.

We then build an 𝑁-similitude (𝔞, 𝒩(⋅)/ 𝒩(𝔞)) ⊕ (𝔞, 𝒩(⋅)/ 𝒩(𝔞)) → (𝑅, 𝒩(⋅)) ⊕ (𝑅, 𝒩(⋅)) for a "nice" 𝑁 (e.g. smooth), which we translate back to a 𝑁-isogeny 𝐸 × 𝐸 → 𝐸 𝔞 × 𝐸 𝔞 . By the converse of Kani's lemma [START_REF] Kani | The number of curves of genus two with elliptic differentials[END_REF], such an isogeny also comes from an isogeny diamond in dimension 1. This allows us to give a simplified (but potentially slower) version Clapoti (CLass group Action in POlynomial TIme) of Clapotis (CLass group Action in POlynomial TIme via Sesquilinear forms), bypassing the equivalence of categories (see Proposition 2.1).

The algorithm

Let 𝐸/𝑘, 𝑘 = 𝔽 𝑞 , be an elliptic curve, and 𝑅 ⊂ End 𝑘 (𝐸) be a primitive orientation on 𝐸 by a quadratic imaginary order of discriminant Δ 𝑅 . We will assume that the orientation is effective, meaning that we can evaluate an explicit non trivial endomorphism 𝛿 (of polynomial norm) of 𝑅 on 𝐸 in polynomial time; such an efficient isogeny representation always exist by [START_REF] Robert | Evaluating isogenies in polylogarithmic time[END_REF]. (By polynomial time, we always mean in term of log Δ 𝑅 and log 𝑞, and by polynomial norm we always mean in term of Δ 𝑅 .) All other endomorphisms are of the form 𝑎+𝑏𝛿 𝑓 and can be evaluated in polynomial time too (if they have polynomial norm) by the division algorithm of [START_REF] Robert | Some applications of higher dimensional isogenies to elliptic curves (overview of results)[END_REF].

Let 𝐾 = Frac 𝑅, and let 𝔞 be an integral invertible ideal in 𝑅 (of polynomial norm, which we can always assume by reducing 𝔞 first if necessary). The ideal class group action gives an isogeny 𝜙 𝔞 ∶ 𝐸 → 𝐸 𝔞 of kernel 𝐸[𝔞]. We say that the 𝑁-torsion of 𝐸 is accessible if the primary parts of 𝐸[𝑁] lie in small extensions, i.e., extensions of polynomial degree in 𝑂(log 𝑞).

Proposition 2.1. Let 𝔟, 𝔠 be two explicit integral ideals equivalent to 𝔞 of polynomial norm such that 𝒩(𝔟) + 𝒩(𝔠) = 𝑁. Then there is a 𝑁-isogeny 𝐹 ∶ 𝐸 × 𝐸 → 𝐸 𝔞 × 𝐸 𝔞 , whose kernel can be efficiently computed provided that 𝒩(𝔟) is coprime to 𝒩(𝔠) and the 𝑁-torsion is accessible.

Proof. Since 𝔟 is equivalent to 𝔞, there exists 𝛽 ∈ 𝐾 * such that 𝔟 = 𝛽𝔞; since 𝔟 is integral and 𝔞𝔞 = 𝒩(𝔞), we have 𝛽 = 𝛾 𝑏 / 𝒩(𝔞) for some 𝛾 𝑏 ∈ 𝔞 of norm 𝒩(𝛾 𝑏 ) = 𝒩(𝔟) 𝒩(𝔞). Conversely, given 𝛾 𝑏 ∈ 𝔞, the ideal 𝔟 = 𝛾 𝑏 / 𝒩(𝔞) ⋅ 𝔞 is an integral ideal equivalent to 𝔞 of norm 𝒩(𝛾 𝑏 )/ 𝒩(𝔞). Furthermore, since 𝔟𝔞 = (𝛾 𝑏 ), the element 𝛾 𝑏 can be efficiently computed as the smallest element the lattice 𝔟𝔞. Likewise, fix a 𝛾 𝑐 ∈ 𝔞 inducing the equivalent ideal 𝔠.

Since 𝔞 lies in the class -1 of the class group, we have that 𝔠𝔟 is a principal ideal, and in fact 𝔠𝔟 = (𝛾 𝑐 𝛾 𝑏 / 𝒩(𝔞)). We remark that 𝛾 𝑐 𝛾 𝑏 is in 𝔞𝔞 = (𝒩(𝔞)), so 𝛾 ≔ 𝛾 𝑐 𝛾 𝑏 / 𝒩(𝔞) is a well defined endomorphism on 𝐸.

Now consider the following isogeny diamond:

𝐸 𝐸 𝔞 𝐸 𝔞 𝐸 𝜙 𝔟 𝜙 𝔠 𝜙 𝔠 𝜙 𝔟
which is commutative because 𝜙 𝔠 ∘ 𝜙 𝔟 = 𝜙 𝔟 ∘ 𝜙 𝔠 = 𝛾 = 𝛾 𝑐 𝛾 𝑏 / 𝒩(𝔞). Kani's lemma then gives an 𝑁-isogeny

𝐹 ∶ 𝐸 × 𝐸 → 𝐸 𝔞 × 𝐸 𝔞 , 𝐹 = ( 𝜙 𝔟 φ 𝔠 -𝜙 𝔠 φ𝔟 ) . If 𝒩(𝔟) is coprime to 𝒩(𝔠), the kernel of 𝐹 is given by {(𝒩(𝔟)𝑃, 𝛾𝑃) | 𝑃 ∈ 𝐸[𝑁]}.
Corollary 2.2. Let 𝔟, 𝔠 be two integral ideals equivalent to 𝔞 of coprime norms such that 𝒩(𝔟) + 𝒩(𝔠) = 𝑁 is smooth and the 𝑁-torsion is accessible. Then 𝐸 𝔞 can be recovered in polynomial time.

Proof. By Proposition 2.1, we have an explicit 𝑁-isogeny 𝐹 ∶ 𝐸 × 𝐸 → 𝐸 𝔞 × 𝐸 𝔞 , which can be computed in polynomial time.

We now need to distinguish between 𝐸 𝔞 and 𝐸 𝔞 . The first copy of 𝐸 has an isogeny of degree 𝒩(𝔟) to 𝐸 𝔞 and an isogeny of degree 𝒩(𝔠) to 𝐸 𝔞 , and this relationship is reversed for the second copy of 𝐸. Taking a small ℓ such that these norms are different modulo ℓ, we can use the Weil pairing on the ℓ-torsion to distinguish the two isogenies.

Remark 2.3. When 𝒩(𝔟) is not coprime to 𝒩(𝔠), we still have an isogeny diamond. The description of the kernel of a general isogeny diamond is given in [Kan97, Corollary 2.11], but it is a priori not obvious how we might recover the kernel of 𝐹 without knowing the action of 𝜙 𝔟 , 𝜙 𝔠 on 𝐸[𝑁] first. However, in Proposition 2.1, 𝐹 comes from a module map, and in [START_REF] Page | Clapotis: Evaluating the isogeny class group action in polynomial time[END_REF], we explain how to recover the kernel associated with an arbitrary module map, so in that case we can recover the kernel of 𝐹 even if the coprimality condition of Proposition 2.1 and Corollary 2.2 is not satisfied.

Let us explain the case of the specific isogeny 𝐹 to illustrate the usefulness of the module representation. We have 𝔟 = 𝛾 𝑏 𝒩(𝔞) 𝔞, so the multiplication map 𝛾 𝑏 / 𝒩(𝔞) ∶ (𝔞, 𝒩(⋅)/ 𝒩(𝔞)) → (𝔟, 𝒩(⋅)/ 𝒩(𝔟)) is an isomorphism 𝛼 𝑏 of unimodular Hermitian modules. The isogeny 𝜙 𝔟 ∶ 𝐸 → 𝐸 𝔞 corresponds from the module point of view to the post-composition of 𝛼 𝑏 with the natural 𝒩(𝔟)-similitude given by the inclusion (𝔟, 𝒩(⋅)/ 𝒩(𝔟)) → (𝑅, 𝒩(⋅)).

Likewise, the isogeny 𝐹 from Proposition 2.1 corresponds to a 𝑁-similitude 𝜓 ∶ (𝔞, 𝒩(⋅)/ 𝒩(𝔞))⊕(𝔞, 𝒩(⋅)/ 𝒩(𝔞)) → (𝑅, 𝒩(⋅)) ⊕ (𝑅, 𝒩(⋅)).

The anti-equivalence of categories is exact, so the kernel of 𝐹 corresponds to the cokernel of 𝜓. Fix two generators of 𝔞, these generators induce surjective maps 𝑅 2 ↠ 𝔞, 𝑅 2 ↠ 𝔞. Pre-composing 𝜓 with these epimorphisms, we get a module map ψ ∶ 𝑅 4 → 𝑅 2 , whose cokernel is exactly the cokernel of 𝜓. The map ψ is given by a 4 × 2 matrix of elements of 𝑅, hence of endomorphisms on 𝐸, and corresponds on the abelian variety side to a morphism Φ ∶ 𝐸 2 → 𝐸 4 . By exactness, the cokernel coker ψ = coker 𝜓, which as we have seen corresponds to Ker 𝐹, is given by Ker Φ which we can explicitly compute since the orientation by 𝑅 is effective on 𝐸.

Remark 2.4. Using 𝜙 𝔟 , we can transfer the effective orientation on 𝐸 to an effective orientation on 𝐸 𝔞 by using the division algorithm of [START_REF] Robert | Some applications of higher dimensional isogenies to elliptic curves (overview of results)[END_REF], as explained in [START_REF] Merdy | The supersingular endomorphism ring problem given one endomorphism[END_REF]Lemma 6.11].

It remains to find ideals 𝔟, 𝔠 satisfying the conditions of Corollary 2.2. First we handle the coprimality condition.

Lemma 2.5. Given 𝔞 ⊂ 𝑅 an invertible ideal, it is possible to find in randomized polynomial time two equivalent integral ideals 𝔟, 𝔠 whose norms are polynomial in Δ 𝑅 and coprime to each other.

Proof. Let 𝔥 be an integral ideal of polynomial norm, we explain how to find in polynomial an ideal equivalent to 𝔞 and coprime to 𝔥.

Given an element 𝑎 in 𝔞 -1 , then 𝑎𝔞 is integral, and it is coprime to 𝔥 iff for each of the finitely many prime ideals 𝔥 ⊂ 𝔭 𝑖 ⊂ 𝑅 containing 𝔥, 𝑎 ∉ 𝔭 𝑖 𝔞 -1 . By the CRT, 𝜋 ∶ 𝔞 -1 → ∏ 𝔞 -1 /𝔭 𝑖 𝔞 -1 is surjective, and any 𝑎 ∈ 𝔞 -1 such that 𝜋 𝑖 (𝑎) ≠ 0 for all 𝑖 gives an ideal 𝑎𝔞 coprime to 𝔥. If the primes above 𝔥 are known, we can find a suitable 𝜋(𝑎) in the codomain by linear algebra, and then lift it to 𝔞 -1 .

Otherwise, we turn to a randomized algorithm. Fix a bound 𝐵 large enough (but still polynomial) so that the image of 𝜋 restricted to the ball of radius 𝐵 is close to uniform, and sample uniformly in 𝔞 -1 with bound 𝐵 (e.g. using [DLRW23, Lemma 4.2.1]) to obtain our required 𝑎 in random average polynomial time. (As an optimisation: failed random samples, i.e. samples 𝑎 ∈ 𝔞 -1 such that 𝑎𝔞 is not coprime to 𝔥 give informations on the primes above 𝔥, which we can use to refine the sampling.)

We apply this algorithm to 𝔥 = 𝒩(𝔞), and take 𝔟 = 𝔞, 𝔠 = 𝑎𝔞.

Remark 2.6. In Lemma 2.5, we need 𝔞 to be invertible. If 𝔣 = 𝔣 is the conductor ideal, all elements in 𝔣 have norm divisible by 𝒩(𝔣) 2 , so using Proposition 2.1 with 𝔞 = 𝔣, we can only build 𝑁-isogenies with 𝒩(𝔣) | 𝑁.

We now need to adjust 𝔟, 𝔠 so that 𝒩(𝔟) + 𝒩(𝔠) is nice. In this note, we are not looking for an efficient algorithm, just a provably polynomial time one, so we sidestep this problem by going to dimension 8 as in [START_REF] Robert | Breaking SIDH in polynomial time[END_REF].

Proposition 2.7. Let 𝔟, 𝔠 two integral ideals equivalent to 𝔞 of norm coprime to each other. Let 𝑁 be any integer 𝑁 ≥ 𝒩(𝔟) 𝒩(𝔠). Then, possibly replacing 𝑁 by 4𝑁, there exists an 𝑁-isogeny 𝐹 ∶ 𝐸 8 → 𝐸 4 𝔞 × 𝐸 4 𝔞 . Proof. Since 𝒩(𝔟) is coprime to 𝒩(𝔠), every integer 𝑁 is an integral linear combination 𝑁 = 𝑢 𝒩(𝔟) + 𝑣 𝒩(𝔠). If 𝑁 ≥ 𝒩(𝔟) 𝒩(𝔠), we may find 𝑢, 𝑣 positive by the pigeonhole principle. Let 𝑥 be an element of the Lipschitz quaternion order whose norm is 𝑢 and 𝑦 an element whose norm is 𝑣. (By [START_REF] Pollack | Finding the Four Squares in Lagrange's Theorem[END_REF], 𝑥 and 𝑦 can be found by a randomized polynomial time algorithm.) We identify 𝑥, 𝑦 with their 4 × 4 integral matrix, hence with endomorphisms of 𝐸 4 that commute with 𝜙 𝔟 and 𝜙 𝔠 .

Let 𝑧 = 𝑦𝑥, by metacommutation we can write 𝑧 = 𝑥 ′ 𝑦 ′ where 𝒩(𝑥 ′ ) = 𝒩(𝑥), 𝒩(𝑦 ′ ) = 𝒩(𝑦), but 𝑥 ′ , 𝑦 ′ may live in the Hurwitz quaternionic order. The Hurwitz order has an Euclidean division (for both sides), so all ideals are principals and finding a generator can be done efficiently by the Euclidean algorithm. If 𝑢 = 𝒩(𝑥), 𝑣 = 𝒩(𝑦) are coprime, we can compute 𝑥 ′ as the left gcd of 𝑧 and 𝒩(𝑥) and set 𝑦 ′ = 𝑥 ′-1 𝑧; the coprimality condition ensures that 𝒩(𝑥 ′ ) = 𝒩(𝑥),

Since the Liptschitz order is of index 2 inside the maximal Hurwitz order, replacing 𝑥 ′ , 𝑦 ′ by 2𝑥 ′ , 2𝑦 ′ if necessary (hence also multiplying 𝑥, 𝑦 by 2 and 𝑢, 𝑣, 𝑁 by 4), we can assume that 𝑥 ′ , 𝑦 ′ are also given by integral coefficients, i.e. live in the Lipschitz order.

Consider the isogeny diamond:

𝐸 4 𝐸 4 𝔞 𝐸 4 𝔞 𝐸 4 𝑥𝜙 𝔟 𝑦 ′ 𝜙 𝔠 𝑦𝜙 𝔠 𝑥 ′ 𝜙 𝔟
From the diamond in Proposition 2.1 and the construction of 𝑥, 𝑦, 𝑥 ′ , 𝑦 ′ , we do have commutativity, hence Kani's lemma yields a 𝑁-isogeny.

Theorem 2.8. The isogeny 𝜙 𝔞 ∶ 𝐸 → 𝐸 𝔞 can be computed in randomized polynomial time.

Proof. Use Lemma 2.5 to sample 𝔟, 𝔠 of coprime norms. Take 𝑁 > 𝒩(𝔟) 𝒩(𝔠) coprime to each and such that 𝑁 is smooth and the 𝑁-torsion is accessible (e.g. take 𝑁 powersmooth).

Replacing 𝑁 by a divisor of it if necessary, we can assume that the 𝑢, 𝑣 of the proof of Proposition 2.7 are coprime to each other, and so also to 𝑁, hence in particular that 𝑢 𝒩(𝔟) is coprime to 𝑣 𝒩(𝔠).

Assume first that we do not need to change 𝑁 by 4𝑁 in Proposition 2.7. With the notations of Propositions 2.1 and 2.7, the composition 𝑦𝜙 𝔠 ∘ 𝑥𝜙 𝔟 = 𝑦𝑥 diag(𝛾) in the isogeny diamond is explicit. Thus we can recover the kernel of 𝐹 as in the proof of Proposition 2.1, evaluate 𝐹 and recover 𝐸 𝔞 , 𝐸 𝔞 , and distinguish the two by using pairings as in Corollary 2.2.

Since we know how to evaluate 𝐹 and F , we know how to evaluate 𝑥𝜙 𝔟 , 𝑦 ′ 𝜙 𝔠 and their duals, hence some explicit integer multiple of 𝜙 𝔟 , 𝜙 𝔠 and their duals, hence the isogenies 𝜙 𝔟 , 𝜙 𝔠 and their duals by the division algorithm of [START_REF] Robert | Some applications of higher dimensional isogenies to elliptic curves (overview of results)[END_REF]. The isogeny 𝜙 𝔞 differ from 𝜙 𝔟 by the non integral endomorphism 𝛾 𝑏 / 𝒩(𝔞) ∈ 𝐾, so we can also evaluate 𝜙 𝔞 on suitable torsion points, hence recover 𝜙 𝔞 by [START_REF] Robert | Evaluating isogenies in polylogarithmic time[END_REF]. Now in the case where we need to change 𝑁 by 4𝑁 in Proposition 2.7, in the isogeny diamonds we have isogenies of degrees whose gcd is 4. Assume for simplicity that our original 𝑁 was odd, then we can still recover the odd part of the kernel Ker 𝐹, and we only miss Ker 𝐹 [4].

By Remark 2.3, using our module description of 𝐹 we can still recover its full kernel. In our current simplified description, a solution is to simply try all 𝑂(1) possible kernels Ker 𝐹[4] until a splitting isogeny is found. We then verify that the splitting is correct as follows (heuristically there will be only one splitting among all our choices anyway). By the above reasoning, we know how to evaluate 𝜙 𝔠 and 𝜙 𝔟 . The decomposition is correct if and only if the composition 𝜙 𝔠 ∘ 𝜙 𝔟 gives the endomorphism 𝛾 defined in the proof of Proposition 2.1. Remark 2.9 (An heuristic algorithm in dimension 4). Assume that 𝔟, 𝔠 are of coprime norm.

We can work in dimension 4 in Proposition 2.7 whenever we can find positive 𝑢, 𝑣 such that 𝑁 = 𝑢 𝒩(𝔟)+𝑣 𝒩(𝔠) and 𝑢, 𝑣 are sums of two squares. In this case we can find 𝑥, 𝑦 ∈ ℤ[𝑖] (the Gaussian integers) of norm 𝒩(𝔟), 𝒩(𝔠) (efficiently if these norms are prime) and represent them by 2 × 2-integral matrices (that commute with each other). Taking 𝑁 to be coprime to 𝒩(𝔟) and 𝒩(𝔠), we can assume as in Theorem 2.8 the degrees 𝑢 𝒩(𝔟) and 𝑣 𝒩(𝔠) to be coprime, so the kernel of the isogeny 𝐹 associated with the corresponding diamond is easy to describe via the endomorphism 𝑦𝑥 diag(𝛾). (Like in Remark 2.3, we could also relax the coprimality condition by using the module representation.)

Heuristically, we expect 𝑢 to be a prime congruent to 1 modulo 4 with probability Ω(1/ log 𝑁), and both 𝑢, 𝑣 to satisfy these conditions with probability Ω(1/ log 2 𝑁). There are at least 𝑁 𝒩(𝔟) 𝒩(𝔠) possible couples (𝑢, 𝑣), so we expect heuristically to find a solution as soon as 𝑁 = Ω(𝒩(𝔟) 𝒩(𝔠) log 2 (𝒩(𝔟) 𝒩(𝔠))).

If we cannot find suitable 𝑢, 𝑣 for given 𝑁, 𝔟, 𝔠, we can simply tweak 𝑁 or (if we want to find 𝑁 as small as possible) rerandomize 𝔟, 𝔠 until a suitable solution is found. By Minkowski's bound, we know that there exists two linearly independent elements 𝑤 1 , 𝑤 2 in 𝔞 such that ‖𝑤 1 ‖‖𝑤 2 ‖ ≤ 𝒩(𝔞)Δ 1/2 𝑅 . Taking ‖𝑤 1 ‖ ≤ ‖𝑤 2 ‖, and using the fact that 𝒩(𝑥) = ‖𝑥‖ 2 and that if 𝑥 ∈ 𝔞, 𝒩(𝑥) ≥ 𝒩(𝔞), we find that ‖𝑤 1 ‖ ≤ 𝒩(𝔞) 1/2 Δ 1/4 𝑅 and ‖𝑤 2 ‖ ≤ 𝒩(𝔞) 1/2 Δ 1/2 𝑅 . So the reduced (i.e. the minimal) ideal equivalent to 𝔞 is of norm ≤ Δ 1/2 𝑅 . And there are many equivalent ideals of norm 𝑂(Δ 𝑅 ), so we can expect to find 𝔟, 𝔠 of coprime norm such that 𝒩(𝔟) 𝒩(𝔠) = 𝑂(Δ 3/2 𝑅 ), hence embed the isogeny 𝐸 → 𝐸 𝔞 into a dimension 4 𝑁-isogeny whenever 𝑁 ≈ Δ 3/2 𝑅 log 2 Δ 𝑅 . If the lattice 𝔞 is not too skewed (so that ‖𝑤 2 ‖ ≈ ‖𝑤 1 ‖), we can even expect to find two ideals 𝔟, 𝔠 of coprime norm ≈ Δ 1/2 𝑅 , which lowers 𝑁 to 𝑁 ≈ Δ 𝑅 log 2 Δ 𝑅 . Remark 2.10. A similar strategy as in Theorem 2.8 applies whenever we can find two isogenies 𝑓 , 𝑔 ∶ 𝐸 1 → 𝐸 2 of coprime degrees 𝑁 1 , 𝑁 2 such that the endomorphism 𝛾 = g ∘ 𝑓 on 𝐸 1 is known. As in Proposition 2.1, we use the isogeny diamond associated with the pushforward square

𝐸 𝐸 2 𝐸 ′ 2 𝐸 𝑓 𝑔 ′ g f ′ where 𝑔 ′ ∶ 𝐸 → 𝐸 ′
2 is the isogeny with kernel 𝑓 -1 (Ker g ), and Ker f ′ = 𝑔 ′ (Ker g ∘ 𝑓 ). Then for any 𝑁 > 𝑁 1 𝑁 2 , we can embed 𝑓 , 𝑔 into an 𝑁 or 4𝑁-isogeny 𝐹 in dimension 8 as in Proposition 2.7 (or possibly dimension 4 as in Remark 2.9), whose kernel 𝐾 can be recovered (or at least a subgroup 𝐾 ′ ⊂ 𝐾 such that 𝐾/𝐾 ′ is of exponent 4) from the action of 𝛾 on 𝐸 [𝑁].

A situation where this might be useful is, as a variant to the KLPT algorithm, to compute the Deuring correspondence from an ideal 𝐼 to an isogeny 𝜙 𝐼 ∶ 𝐸 1 → 𝐸 2 between two supersingular curves over 𝔽 𝑝 2 , when we have an effective representation of End 𝔽 𝑝 2 (𝐸 1 ). We sample two ideals 𝐽 1 , 𝐽 2 equivalent to 𝐼 of coprime reduced norms as in Lemma 2.5 and embed 𝜙 𝐼 into a 𝑁-isogeny 𝐹 of dimension 8 via the isogeny diamond associated with the decomposition 𝐽 2 𝐽 1 = 𝐽 ′ 1 𝐽 ′ 2 for some ideals 𝐽 ′ 1 , 𝐽 ′ 2 of reduced norm 𝒩(𝐽 1 ), 𝒩(𝐽 2 ) respectively. Compared to [START_REF] Wesolowski | The supersingular isogeny path and endomorphism ring problems are equivalent[END_REF], this gives a proven polynomial time version of an IdealToIsogeny algorithm without GRH (at the cost of going to dimension 8 instead of staying in dimension 1).

Heuristically, we can expect to find 𝐽 1 , 𝐽 2 of norm 𝑁 1 , 𝑁 2 ≈ √𝑝, and compute 𝜙 𝐼 via a 𝑁-isogeny in dimension 8 with 𝑁 ≈ 𝑝 (resp. of dimension 4 with 𝑁 ≈ 𝑝 log 2 𝑝).

(As in the 𝑅-oriented case, the isogeny 𝐹 is represented by an explicit module map, so we can compute its full kernel 𝐾 even in the non coprime degrees case. Thus we can relax the coprimality condition on 𝐽 1 , 𝐽 2 at the expense that 𝑁 will need to be divisible by the gcd of the reduced norms of 𝐽 1 , 𝐽 2 .)

The full algorithm

The algorithm presented in these notes (at least the dimension 8 version) is impractical. The full Clapotis algorithm several improvements.

First, there is no real need to go to dimension 8 as in Proposition 2.7; the endomorphism order 𝑅 in End(𝐸) is of rank 2 (which we do not even exploit in Proposition 2.7), which is already large enough to devise an algorithm to find suitable ideals 𝔟, 𝔠 for Corollary 2.2 encoding a 𝑁-isogeny (for 𝑁 large enough). This allows us to work in dimension 2. For instance, for CSIDH-1024 [START_REF] Castryck | CSIDH: an efficient post-quantum commutative group action[END_REF], taking a random prime 𝑝 ≡ 3 mod 4 of 1024 bits and a random prime ideal 𝔞 of 512 bits, our algorithm implemented in Pari/GP finds a 𝐵-powersmooth isogeny in dimension 2 computing the action of 𝔞 with 𝐵 = 2591.

Still, a 2591-isogeny in dimension 2 is of very large degree 6713281. So for practical specific instantiations of Clapotis, it would be convenient to be able to choose 𝑁 = 2 𝑚 a large power of 2, and a CSIDH-prime 𝑝 with some accessible 2 𝑡 torsion (and extra accessible smooth torsion), and decompose the isogeny 𝐹 into blocks of 2 𝑡 -isogenies a la SQISign [DKLPW20; DLW22]. As a first step for this decomposition, we need a way to describe the intermediate abelian surfaces; this is where we can leverage our equivalence of categories described in Section 1. Indeed, we can describe the intermediate principally polarised abelian surfaces as explicit submodules of rank 2 inside the Hermitian module (𝑅, 𝒩(⋅)) ⊕ (𝑅, 𝒩(⋅)).
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