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Abstract—Due to development and broad availability of high-
quality printing and scanning devices, the number of coun-
terfeited products and documents is dramatically increasing.
Therefore, different security elements have been suggested to
prevent this socioeconomic plague. One of the most promising
and cheap solutions is the use of Copy Detection Pattern
(CDP), a maximum entropy image, generated using a secret key.
This pattern takes full advantage of information loss principle
during printing-and-digitization process to detect copies. Such an
unpredictable pattern is highly sensitive to distortions occurring
inevitably during production (printing), verification (digitization)
and reproduction (duplication) processes. Initially, the detection
of counterfeited CDP was devoted to evaluating the level of
information loss using Pearson correlation. However, the security
of CDP based authentication system was shown to be vulnerable
to estimation attacks based on neural network that can infer
a CDP after scanning. In this paper, we study how to increase
the performance of a detector using a similarity metric learning
approach.

Index Terms—copy detection pattern, similarity metric learn-
ing, fake detection

I. INTRODUCTION

The number of counterfeits increases each year due to the

accessibility of editing software and printing and digitization
devices. Counterfeits have a significant impact on our health
or safety and due to growing number of fakes, people lose
the trust on medicines and product quality. The majority
of existing security elements (holograms, watermarks, sticky
labels, specific inks) cannot be easily verified by the common
users.
One of the promising solutions is the use of printable unclon-
able codes [10], [17] that has easy integration and verification
processes. Copy Detection Pattern (CDP) [10] is the most
commonly used printable unclonable code. It is a black-and-
white maximum entropy image generated with a secret key,
illustrated in Fig. 1.a.

Fig. 1. Example of CDP from Indigo dataset [3]: a) an original random binary
image before printing and b) its degraded version by P&D.

The security of CDP is based on the information loss principle
[10], which applies to each printing and digitization process.
The stochastic nature of Print-and-Digitization (P&D) process
[9] impacts both the structure and the image quality of any
CDP as illustrated in Fig. 1.b. Thanks to the stochastic nature
of P&D process, the CDP was supposed to be unclonable.
Nevertheless, recently high quality fakes, known as estimation
attacks, were generated using neural networks [14], [19], [21].
The classical detectors based on Pearson correlation have
become ineffective against estimation attack. It was shown
that the detector can be improved using some pre-processing
techniques [7]. However, more recent estimation attacks [3]
are very precise and the known similarity metrics (Pearson
correlation, Hamming distance and Jaccard metric) cannot
separate them from original CDP, even with pre-processing
techniques.

As shown in [11], the noise altering a CDP is difficult to char-
acterize as each printer and scanner has its own characteristics
[5], [8]. Therefore, in this paper, we explore the possibility to
detect the fakes using the differences of printer signatures and
the metric learning approach [6]. The contributions of this
paper are the following:

e We propose the metric learning approach based on
Siamese neural network to identify the printer used for
CDP production. The idea behind this task is to extract
printer forensic features that can precisely separate the
original CDP (printed using a known printer) from coun-
terfeits (printed by unknown printer).

o« We explore the different configurations of input and
outputs layers for similarity metric learning.

« We propose a similarity based detector that can efficiently
distinguish the originals from seen and unseen fakes.

The rest of the paper is organized as follows. We start by
describing the related work on estimation attacks and detectors
in Section II. The proposed similarity metric learning approach
(CDP-Sim), as well as the proposed detector are presented in
Section II. The experimental results are shown in Section IV.
Finally, in Section V we summarize our conclusions and
discuss the future work.

II. SECURITY ASPECTS OF CDP

In this section, we discuss the CDP security aspects focusing
both on new challenges brought by the deep learning based
attacks and on the proposed countermeasures to detect the fake
CDP produced by these estimation attacks.



A. Estimation attacks

The CDP authentication systems based on Pearson corre-
lation were robust against duplication attack and naive image
processing (Otsu thresholding, unsharp masking) attacks [15],
[16]. Nevertheless, the estimation attacks based on deep learn-
ing approach have shaken up the CDP based authentication
systems. During the last 4 years a big amount of estimation
attacks have been developed using different deep learning
architectures. The first architectures used for estimation attacks
were bottleneck deep neural network [14], selectional auto-
encoders [20], super resolution generative adversarial network
[19], among others. The majority of fakes produced by these
estimations attacks can be detected using image processing
techniques that improve the detector based on Pearson corre-
lation values [7].
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Fig. 2. Correlation values calculated to whole samples of Indigo dataset.

However, a novel publicly available dataset, named Indigo [3],
was published recently. On this dataset, the classical similarity
metrics underperform. Fig. 2 illustrates the distribution of
normalized correlation values calculated between the template
CDP and printed version of CDP (both originals and fakes).
One can note that it is impossible to identify an authentication
threshold that can efficiently separate the original CDP (red
and blue curves in Fig. 2) from fake CDP (illustrated using
magenta, yellow, cyan and green curves in Fig. 2). Therefore,
it is urgent to find novel detectors to counter high quality fakes.

B. Authentication detectors

The high accessibility of deep learning models adds new
challenges to CDP security system as the classical detectors
that were used to identify the duplicated CDP [10] are inef-
ficient against estimation attacks. Therefore, novel detectors
were proposed [1], [12], [18].

In the first approach, the authors [12] proposed a machine
learning based authentication system that uses only the CDP
templates. It can identify the originals and accurately locate

the anomalies in the fake CDP.

The second detector uses a mathematical model of P&D
process based on local statistics to train a one-class classifier to
identify the originals and reject the fakes [18]. The proposed
detector works well while using for authentication uniquely
the symbols with low probability of bit-error on the training
set.

Another approach consists to simulate the P&D process using
an encoder-decoder architecture [1]. The authors believe that
these synthetic CDP generated using the proposed model can
allow them to build a new classifier capable of detecting
unseen fakes.

These results show us that the construction of powerful de-
tector is a challenging problem that is still an open issue. In
this paper, we want to explore another approach for detector
construction trying to characterize the printer used to produce
authentic CDP samples.

III. PROPOSED AUTHENTICATION APPROACH

The studied pipeline is illustrated in Fig. 3. The manufacture
produces a genuine physical object with CDP. Some printed
samples are fed to the detector to learn the printer characteris-
tics (the deep learning model and detector are detailed bellow).
This detector is accessible to a final user to authenticate the
physical object. The verification stage consists in digitization
of physical object and calculation of the similarity between
captured image and reference detector dataset (a set of images
used as reference for similarity comparison).

All the forgeries are created between printing and digitization
processes. An opponent has access to the printed genuine
physical object. He should digitize the object and forge the
CDP using estimation attack. After the forging process, the
fake CDP is printed by opponent device and sent to the market.
The forged and authentic physical objects will be analyzed
by the same verification system. The aim of authentication
detector is to identify the difference between genuine and fake

physical objects and reject the fakes.
Detector
dataset

Original CDP
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3 — | Printing —— > Digitization | —= | CDP-Sim —>
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Fig. 3. Studied pipeline depicting an authentic and an opponent production
channel.

In this paper, we propose CDP-Sim, a method to learn a non-
linear, similarity metric learning distance that can separate
original and fake examples of CDP. The proposed method
is composed of a Siamese neural network (SNN) and a CDP
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Fig. 4. Adopted Siamese Neural Network architecture [13].

binary detector. The SNN model [2], [4] learns to minimize the
distance between original examples of CDP, and to maximize
their distance with respect to fakes. The CDP binary detector
uses the learned SNN module to classify CDP images into
original and fakes, based on the measured distance between
an unknown example and a set of reference, positive examples.

A. Siamese neural network

An SNN architecture can be viewed as two identical,
parallel models sharing the same weight set [4]. The SNN
models project each input into a feature vector of fixed length.
The feature vectors can be then compared using a distance
metric to measure their similarity using as a basis the projected
space learned by the SNN. In practice, we may use the same
neural network model for both inputs, hence enforcing the
shared weights aspect. The CDP-SIM method follows the
described approach and adopts the architecture [13] as its
basis. The adopted architecture is the following (Fig. 4): The
first convolution layer is composed of 96 squared kernels of
11x11 with a stride of 4. This layer is followed by a ReLU
(Rectified Linear Unit) activation function and max pooling
layer (kernel size of 2, stride of 2). The second convolution
layer is composed of 256 squared kernels of size 5 and stride
of 1, and it is also followed by a ReLU activation layer
and max pooling layer with the same hyperparameters as the
previous max pooling layer. The third convolution layer adopts
384 squared kernels of size 8, with a stride of 1, and it is
also followed by a ReLU activation layer. The next layers
are fully connected layers of dimensions 1024, 256, and m,
respectively. The term m defines the size of the output feature
vector. We study the influence of this therm in the experimental

section. Fig. 4 illustrates the overall architecture of the deep
neural network adopted and the dimensions of the output
volume of each layer. We adopted the contrastive divergence
loss [4], as the pair-wise loss function to train CDP-Sim.

B. Detector

The SNN architecture described measures the distance

between two samples of CDP. In this section, we describe
the detection algorithm we adopt to classify CDP examples
in true or false class. The proposed detection algorithm is
inspired on nearest neighbor algorithm. During training phase,
we randomly choose NN positive examples of CDP from our
training dataset. The selected examples constitute the reference
subset D.
During test time, we compute the distance between a tested
example I and all examples D;,i = 1,... N in the reference
set using the learned SNN model. Each reference example
classifies the new example as true/fake, using a pre-defined
threshold th. The new example [ is considered authentic if
more than N/2 reference examples vote as such. Otherwise,
the test CDP image [ is rejected as a fake.

IV. EXPERIMENTAL RESULTS

In this section we will discuss the dataset preparation, the
accuracy of the CDP-Sim as well as the detector results in the
simulated real-world use case.

A. Dataset preparation

In this work, we use the most recent publicly available
dataset - Indigo 1x1 [3], that contains originals and fake
CDP patterns. The fake CDP were obtained using machine
learning based estimation attack which has an accuracy score



of 94% [3].

Indigo dataset consists of 720 CDP templates of size 684 x 684
pixels that were printed by two printers (HP55 and HP76) and
digitized by the same scanner. Then the printed CDP were
used for estimation attack. The estimated CDP were printed
again by the same printers, that gives 4 types of fakes (F55/55,
F55/76, F16/55, F76/76).

In this work, we use only a subset from the Indigo dataset:
719 images per printer (HP55 and HP76), 719 fakes F55/55
and 719 fakes F55/76. This subset is used for two use cases:
known-fakes use case and real-world use case, as illustrated
in Table 1.

The known-fake use case simulates the situation when the
manufacture has information about the originals and the fakes
that could be found in the market. We will use this use case
in Section IV-C to identify best configuration of the adopted
architecture.

The real-world use case is used in the CDP-Sim detector
evaluation. We simulate the scenario, when a manufacture
train the detector using original CDP and possible fakes that
s/he creates by himself. Nevertheless, the tests are done using
the known and unknown fakes as in real life the manufacture
cannot predict all the possible fake types.

Scenario Training dataset Testing dataset
Original Fake Original Fake
Known-fakes use case HP55 F55/55 HP55 F55/55
Real-world use case HP55 F55/55 HP 55 F55/55
F55/76
HP76
TABLE T

USED SUBSET OF INDIGO DATASET FOR TWO STUDIED SCENARIO.

The dataset is split into training (60%), validation (20%) and
testing (20%) sets: 431 originals and 431 fakes for training,
144 originals and 144 fakes for validation and the same
quantity for test.

To train the SNN model, we construct pairs of images to
maximize the distance between original and fakes examples
(dissimilar images), and to minimize the distance between the
examples of the original class (similar images). We constructed
the CDP pairs for training and validation using the following
rules:

« the first image of the pair is always randomly picked from
the original class,

o the second image is 50% of the time randomly selected
from the class of originals (but cannot be the same CDP),
and the 50% of the time from class of fakes.

For CDP-Sim accuracy evaluation (see Section IV-C), the CDP
pairs used during testing were created following the same
rules.

In the case of real-world use case (see Section IV-D), for each
CDP image in the test set we create N pairs with images from
the detector dataset.

B. Model training and evaluation

All model weights have been initialized randomly using
Xavier uniform distribution. We used Adam algorithm for

model weights optimization with a learning rate of 5 x 10~%.
All SNN models are trained for 100 epochs on the training
set.

To evaluate the variation of model accuracy across training,
we have used a fixed threshold, set to 0.5. By the end of
the training we have computed the best threshold using the
validation set, and defined it as the authentication threshold
th.

C. SNN evaluation

To evaluate the proposed network, we have used the known-
fake use case dataset. We have tested the network models
with different input and output sizes to identify the best
configuration for our problem. Table II presents the accuracy
of the SNN models for different input and output sizes.

Input size
Output size | 171 x 171 x 16 | 684 x 684 x 3 | 171 x 171 x 3
2x1 64% 94% 89%
32x1 61% 95% 90%
64 x 1 68% 96 % 89%
128 x 1 62% 91% 86%
TABLE I

SNN ACCURACY FOR DIFFERENT INPUT AND OUTPUT SIZES.

One can note that the best accuracy is obtained while the input
is of size 684 x 684 x 3. We use this input configuration for
the detector implementation. The results for different sizes of
output are quite similar, thus, we have decided to keep the
smallest output size.
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Fig. 5. Optimization of authentication threshold ¢h in validation dataset.

The authentication threshold is defined on the validation set.
We can note in Fig. 5 that the best authentication threshold
for our dataset is nearly 1. We will use this authentication
threshold value in the detector implementation.

D. Proposed detector

We evaluate the performance of the proposed detector on
real-world use case. The detector is trained uniquely on origi-
nals (HP55) and fakes produced using these originals (F55/55).



This scenario simulates the situation where a manufacturer
tries to produce the fakes using known estimation attacks,
but using the known production devices (printer and scanner),
which is the hardest case for detector. During the test phase,
the CDP images may come from 4 different sets:

« Originals - Known HP Indigo printer (HP55)

o Fakes - Known fakes used to train the detector (F55/55)

o Fakes - Unknown fakes (F55/76)

o Fakes - Unknown HP Indigo printer (HP76)

In the studied scenario, the CDP printed using HP76 are
considered as fakes, as they were printed using unknown (non-
authorized) printer.

This real-world use case is a challenging task for the detector
based on Pearson correlation. As shown in Fig. 6, the distri-
butions of correlation values overlaps, what complicates the
choice of an authentication threshold.

[ Original HPISS

[0 Fake HPISS_EHPISS

[0 Fake HPISS_EHPIT6
Original HPI76

15

Density

10

0475 0525 0.550 0575 0.600 0625 0.650

Normalized Correlation

Fig. 6. Distribution of correlation values of 4 labels data set.

We have simulated the detector based on the correlation:
the training and validation dataset were used to find the
threshold that separates optimally the originals (HP55) from
fakes (F55/55). Than, this threshold was used for test dataset
to detect the originals and fakes. The confusion matrix in
Table III illustrates the results of this state-of-the-art detector.

Predicted
Actual Original | Fake
HP55 82% 18%
F'55/55 17% 83%
HP76 76% 24%
F55/76 12% 88%
ABLE TIT

CONFUSION MATRIX OF SAMPLES AUTHENTICATION COMPUTED BASED
ON PEARSON CORRELATION METRIC.

We note that this detector can identify fakes that come from
estimation attacks, but it accepts nearly 15% of fake samples.
We can also observe that the majority of CDP printed by
unknown printer are detected as original CDP, even though we
would expect them to be detected as fakes. This observation
indicates that if the opponent guesses the CDP structure, the

fake codes will be accepted as originals. We can note that
18% of originals (HP55) are considered as fakes. This value
of false positives is quite high for a CDP detector.

To address this limitation we propose to use the CDP-Sim
detector to better separate the seen originals (printed using
known printer) from unseen originals and fakes. The training
process was performed as described in Section IV-A. In test
phase, we evaluated three setups with N = {5,15,25}. It is
worth to mention that in all three setups the results are very
similar. We have hence chosen to comment only on the results
obtained for NV = 5.

Fig. 7 illustrates the distribution of mean Euclidean distances
calculated between the feature vector of CDP images from the
detector dataset and the feature vector of test CDP samples.
We can note an almost perfect separation between the originals
(represent the similar pairs) and fakes (represent dissimilar
pairs).

@@ similar images testing
[ dissimilar images testing

100 A

Density

Fig. 7. Distribution of Euclidean distances on test dataset.

For the calculation of CDP-Sim accuracy, we have used the
optimal authentication threshold defined on the validation set.
In this particular test, the optimal authentication threshold is
equal to th = 1.009.

Predicted
Actual Original | Fake
HP55 97% 3%
F55/55 0% 100%
HP76 0% 100%
F55/76 0% 100%
ABLE TV

CONFUSION MATRIX OF DETECTOR RESULTS ON THE TEST SET.

The detection results are presented in Table IV. We note that
the optimal threshold choice allows us to accurately separate
the samples between original and fake classes. The accuracy
of the proposed CDP-Sim detector is 99%, which means that
the proposed detector can be a good solution to detect fakes
created by estimation attacks. It is worth to mention that the



presented results are obtained for one particular use case.
The main drawback of the proposed solution is that we do
not consider the CDP template in the authentication stage.
By consequence, any CDP printed on the same printer
will be considered as authentic by our CDP-Sim detector.
Nevertheless, it is quite unreal that the opponent will have
the possibility to print the fake CDP in the same printing
company. Another direction of work will be to acquire
another dataset that is larger and depicts real-world condition
such as CDP captured by smartphones.

V. CONCLUSIONS

In this paper, we investigated a similarity metric learning
approach on the printer forensic task to separate the profiles
of authentic and counterfeited printing devices. We proposed
a novel authentication method named CDP-Sim that is able to
distinguish the fake CDP produced by high quality estimation
attacks. We have simulated a real-world use case, and the pro-
posed detector can successfully detect all the fakes produced
by estimation attacks, and even CDP printed by an unknown
printer.

In future work, we plan to evaluate the performance of
proposed detector in other datasets and to consider the CDP
templates in training stage of the proposed model to increase
its robustness in less favorable setting. For instance, the
situation where the forger has an access to the known printer.
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