
HAL Id: hal-04327333
https://hal.science/hal-04327333v3

Preprint submitted on 27 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faster Treewidth-based Approximations for Wiener
Index

Giovanna K Conrado, Amir K Goharshady, Pavel Hudec, Pingjiang Li,
Harshit J Motwani

To cite this version:
Giovanna K Conrado, Amir K Goharshady, Pavel Hudec, Pingjiang Li, Harshit J Motwani. Faster
Treewidth-based Approximations for Wiener Index. 2024. �hal-04327333v3�

https://hal.science/hal-04327333v3
https://hal.archives-ouvertes.fr


Faster Treewidth-based Approximations for1

Wiener Index2

Giovanna Kobus Conrado #�3

Amir Kafshdar Goharshady #�4

Pavel Hudec # �5

Pingjiang Li #�6

Harshit Jitendra Motwani #�7

Department of Computer Science and Engineering8

Department of Mathematics9

Hong Kong University of Science and Technology (HKUST)10

Clear Water Bay, New Territories, Hong Kong11

Abstract12

The Wiener index of a graph G is the sum of distances between all pairs of its vertices. It is a13

widely-used graph property in chemistry, initially introduced to examine the link between boiling14

points and structural properties of alkanes, which later found notable applications in drug design.15

Thus, computing or approximating the Wiener index of molecular graphs, i.e. graphs in which every16

vertex models an atom of a molecule and every edge models a bond, is of significant interest to the17

computational chemistry community.18

In this work, we build upon the observation that molecular graphs are sparse and tree-like and19

focus on developing efficient algorithms parameterized by treewidth to approximate the Wiener index.20

We present a new randomized approximation algorithm using a combination of tree decompositions21

and centroid decompositions. Our algorithm approximates the Wiener index within any desired22

multiplicative factor (1 ± ϵ) in time O(n ⋅ log n ⋅ k3
+
√

n ⋅ k/ϵ2
), where n is the number of vertices of23

the graph and k is the treewidth. This time bound is almost-linear in n.24

Finally, we provide experimental results over standard benchmark molecules from PubChem and25

the Protein Data Bank, showcasing the applicability and scalability of our approach on real-world26

chemical graphs and comparing it with previous methods.27

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact28

algorithms29

Keywords and phrases Computational Chemistry, Treewidth, Wiener Index30

Digital Object Identifier 10.4230/LIPIcs.SEA.2024.1831

Acknowledgements The research was partially supported by the Hong Kong Research Grants Council32

ECS Project Number 26208122. G.K. Conrado and P. Hudec were supported by the Hong Kong33

PhD Fellowship Scheme (HKPFS). Authors are ordered alphabetically.34

1 Introduction35

Motivation. The Wiener index of a graph G is the sum of the distances between all pairs36

of vertices in G. Besides being a natural problem to compute, it is also a well-studied graph37

invariant with applications in computational chemistry and biology. Indeed, it is one of38

computational chemistry’s oldest and most important topological indices [60].39

History. In chemistry, the Wiener index was first considered by Harry Wiener in [63].40

It was initially studied to establish connections between alkanes’ boiling points and the41

underlying graphs’ structural properties. This study later motivated the development of other42

topological indices in computational chemistry. Further development of QSAR (Quantitative43

© Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Pavel Hudec, Pingjiang Li and Harshit
Jitendra Motwani;
licensed under Creative Commons License CC-BY 4.0

22nd International Symposium on Experimental Algorithms (SEA 2024).
Editor: Leo Liberti; Article No. 18; pp. 18:1–18:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gkc@connect.ust.hk
https://orcid.org/0000-0001-9474-6505
mailto:goharshady@cse.ust.hk
https://orcid.org/0000-0003-1702-6584
mailto:phudec@connect.ust.hk
https://orcid.org/0000-0003-1983-8009
mailto:pliav@connect.ust.hk
https://orcid.org/0009-0006-2792-9938
mailto:csemotwani@ust.hk
[https://orcid.org/0000-0002-2142-4254]
https://doi.org/10.4230/LIPIcs.SEA.2024.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 Faster Treewidth-based Approximations for Wiener Index

Structure-Activity Relationship) and QSPR (Quantitative Structure-Property Relationship)44

models led to the discovery of positive correlations of even more chemical and physical45

properties to the Wiener index [48, 60, 61, 65]. Due to its simplicity and usefulness, the46

Wiener index was also studied by computer scientists and mathematicians [31, 57]. The use47

of neural networks in chemical graph theory has led to a renewed interest in topological48

indices and their application in molecular mining, toxicity detection, and computer-aided49

drug discovery. Several studies have been conducted on this topic, such as [10, 30, 32, 44, 64].50

Given the significance of the Wiener index for chemists and the abundance of large molecules,51

it is imperative to develop faster algorithms for computing it. Indeed, there are many previous52

works in this direction [12, 22, 29, 40, 50].53

Parameterized Algorithms. Parameterized algorithms aim to tackle computationally-54

intractable problems and identify subsets of instances that can be solved efficiently [26]. In55

parameterized complexity, we consider an additional parameter k along with the input size56

n for measuring the runtime. This is in contrast to classical complexity theory, which only57

considers the input size of the problem. Many parameterized algorithms focus on NP-hard58

problems and provide runtime bounds that depend polynomially on the size of the problem59

but have non-polynomial dependence on the parameter k. If we know that k is small in60

real-world instances, this leads to solutions that are effectively polynomial-time, i.e. they61

take polynomial time on all the real-world instances where this parameter is small.62

Fixed-Parameter Tractable (FPT). Given an input of size n and a parameter k, an63

algorithm with a running time of O(f(k) ⋅ nc), for some constant c and computable function64

f , is called Fixed-Parameter Tractable (FPT) [26]. The intuition is the same as above. If the65

parameter k is small in all real-world instances of the problem, then the algorithm would66

in practice have a polynomial runtime. Crucially, the degree c of this polynomial does not67

depend on either k or n.68

Treewidth. Treewidth is one of the most important structural parameters of graphs and has69

been extensively studied in combinatorics and graph theory. Intuitively speaking, it measures70

the tree-likeness of a graph [9]. Trees and forests have a treewidth of 1 and cliques on n71

vertices have treewidth n − 1. The main advantage of treewidth in algorithm design arises72

when we are designing parameterized algorithms for NP-hard problems by considering it as73

the parameter of the problem. Many families of commonly-studied graphs, such as trees, cacti,74

series-parallel graphs, outer-planar graphs, control-flow graphs of structured programs, and75

conflict graphs of Bitcoin transactions have bounded treewidth [7, 9, 26, 18, 59, 13, 49, 25].76

This allows efficient dynamic programming techniques using the tree decomposition of the77

graph [7, 37, 17, 3, 2, 39, 24]. See Section 2 for a formal definition.78

Treewidth of Molecules. Extending this idea, computational chemists and biologists79

have also explored the treewidth of various important classes of molecules [66, 68]. In our80

experimental results (Section 4), we observe that a significant majority of molecules in the81

PubChem repository [34] have a treewidth of at most 10. Even large proteins from the82

Protein Data Bank [54] are observed to have a treewidth of at most 5. Since a significant83

fraction of molecules have bounded treewidth, exploring and designing treewidth-based84

parameterized algorithms for computational problems in chemistry and biology is a natural85

step. In fact, the same has been done in several works in the literature [4, 12, 23, 62, 67].86

We extend this line of research by presenting significantly faster treewidth-based approaches87

for approximating the Wiener index.88

Our Contribution. In this paper, we introduce a novel randomized algorithm that89

approximates the Wiener index of a graph using its tree decomposition. The unique aspect90



G.K. Conrado, A.K. Goharshady, P. Hudec, P. Li and H.J. Motwani 18:3

of our algorithm is the incorporation of both tree and centroid decompositions. This idea91

significantly enhances efficiency in answering distance queries within the graph. This is then92

plugged directly into an established randomized algorithm to approximate the Wiener index,93

obtaining the same approximation guarantees by an asymptotically faster method. Both94

theoretical analysis and experimental results demonstrate that our algorithm outperforms95

current methods in calculating the Wiener index for molecular graphs, which are commonly96

encountered in computational chemistry and biology.97

Comparison with Previous Results. Table 1 compares the runtime complexity of our98

algorithm with previous methods. Here, n is the number of vertices in the graph, k is the99

treewidth, and ϵ is the error in the approximation, i.e. we are reporting the runtime for a100

(1 ± ϵ)-approximation of the Wiener index. We refer to Section 4 for a detailed experimental101

evaluation of our algorithm on datasets from PubChem [34] and the Protein Data Bank [54].102

The most classical approach to compute the Wiener index is simply performing an all-pairs103

shortest path computation using Floyd-Warshall and then summing up the distances. This104

will lead to a time complexity of O(n3). In [12], the authors provided the first parameterized105

algorithm for the Wiener index based on treewidth. Their algorithm is a divide-and-conquer106

method based on orthogonal range searching and repeatedly finds small cuts using the tree107

decomposition. They achieve a runtime bound of O(n ⋅ logk−1 n). Note that this is not108

FPT. In [21], an FPT algorithm was provided based on dynamic programming on the tree109

decomposition. This algorithm has a quadratic dependence on n. For unweighted graphs,110

given that a graph with n vertices and treewidth k has O(n ⋅ k) edges, running a BFS from111

each vertex would lead to a total runtime of O(n2 ⋅ k). Finally, [40] provides an algorithm on112

general graphs, not using any parameters, that approximates the average pairwise distance113

within a factor of (1 ± ϵ) with a probability of at least 2/3 by taking a random sample of114

the distances between pairs of vertices. Note that the Wiener index is n2 times the average115

distance. Thus, this algorithm is directly applicable to our setting, as well. Our algorithm116

builds upon the classical approximation of [40] and uses a tree decomposition and a centroid117

decomposition to speed up the sampling.118

Similar Works. Our distance query results are similar to those of [53, 41, 6, 1, 15, 19, 20,119

14, 16]. However, unlike previous works that obtain a balanced tree decomposition, i.e. a tree120

decomposition with height O(log n), our approach looks at the centroid decomposition of a121

tree decomposition. This centroid decomposition is not necessarily a valid tree decomposition122

of the original graph, but it has the same set of bags as the tree decomposition. Hence,123

unlike several previous works, our approach does not increase the width in order to obtain a124

balanced tree.125

2 Preliminaries126

In this section, we introduce the Wiener index and define some basic concepts of parameterized127

complexity. We refer to [26] for more details. This is followed by a short presentation of the128

classical approximation algorithm of [40], which forms the basis of our approach.129

Wiener Index [63]. The Wiener Index of an undirected graph G = (V, E) is defined as the
all-pairs sum of distances among vertices of the graph. Formally,

W (G) ∶= ∑
u,v∈V

d(u, v).

Additionally, we define the average distance between pairs of vertices in G as d(G) ∶=130

W (G)/n2.131

SEA 2024



18:4 Faster Treewidth-based Approximations for Wiener Index

Table 1 Comparison of Different Algorithms for Computing the Wiener Index. Here, n denotes
the number of vertices, k denotes the treewidth, and ϵ represents the error of approximation.

Algorithm Time Complexity Type Ref.
Floyd-Warshall O(n3

) Exact [33]

Orthogonal Range Searching O(n ⋅ logk−1 n)
Exact

Parameterized [12]

Treewidth-based
Dynamic Programming O(n2

⋅ k2
)

Exact
Parameterized [21]

BFS O(n2
⋅ k)

Exact
Parameterized [51, 69]

Classical Approximation O(n5/2
/ϵ2
)

Randomized
Approximation [40]

Our Algorithm O(n ⋅ log n ⋅ k3
+
√

n ⋅ k/ϵ2
)

Parameterized
Randomized

Approximation
Sec. 3

▶ Remark 1. In this work we assume that our graphs are connected, unweighted, and132

undirected. In the context of molecular graphs, all types of covalent bonds—be they single,133

double, or triple—are represented as a single undirected edge in the corresponding graph.134

For a disconnected graph, the Wiener index is simply +∞. However, in some applications,135

the Wiener index of a disconnected graph is defined as the sum of the Wiener indices of its136

connected components. In such cases, each connected component can be processed separately.137

Our algorithm can easily be extended to weighted graphs, as well.138

Tree Decomposition (TD) [43, 55, 56]. A tree decomposition of a given graph G = (V, EG)139

is a tree T = (B, ET ) satisfying the following conditions:140

Every node b ∈ B of T , which is called a bag, contains a subset of vertices Vb ⊆ V .141

The bags cover the entire vertex set V of G, i.e. ⋃b∈B Vb = V. In other words, every vertex142

appears in at least one bag.143

For every edge in the original graph G, there exists a bag that contains both endpoints144

of the edge. More formally, for every e = {u, v} ∈ EG, there is a bag b ∈ B, s.t. u, v ∈ Vb.145

Every vertex v ∈ V appears in a connected subtree of T , meaning that the set Bv =146

{b ∈ B ∣ v ∈ Vb} forms a connected subgraph of T .147

▶ Remark 2. An equivalent statement of the last condition above is that for every three bags148

b1, b2, b3 ∈ B, if b3 is on the unique path from b1 to b2 in T , then Vb1 ∩ Vb2 ⊆ Vb3 .149

Treewidth [55]. The width of a tree decomposition T is defined as w(T ) ∶=maxb∈B ∣Vb∣ − 1,150

i.e. the size of the largest bag minus one. Furthermore, the treewidth of the graph G, denoted151

as tw(G), is defined as the minimum width amongst all possible tree decompositions of G.152

Intuitively speaking, treewidth measures the structural likeness of a graph to a tree.153

Specifically, the smaller the treewidth of a graph, the more tree-like it appears, in the sense154

that a graph of treewidth k can be decomposed into small parts (bags), each of size at most155

k + 1, which are connected to each other in a tree-like manner T . Figure 1 showcases an156

illustration containing two distinct tree decompositions of a graph G, each having a different157

width. Since only forests have treewidth of 1, the tree decomposition on the right is optimal,158

and tw(G) = 2.159

Treewidth is a parameter indicating graph sparsity, providing an upper bound on the160

number of edges. Specifically, in a graph with n vertices and treewidth k, the number of edges161

is O(n ⋅k). More precisely, the number of edges is less than or equal to n ⋅k−k ⋅ (k+1/2) [52].162

Additionally, we have the following ubiquitous lemma:163



G.K. Conrado, A.K. Goharshady, P. Hudec, P. Li and H.J. Motwani 18:5

A

B

C D

E F G
–

A,B

B,C,D,F

C,E,F D,F,G

A

B

C D

E F G
–

A,B

B,C,D

C,D,F

C,E,F D,F,G

Figure 1 A Graph G and Two Tree Decompositions of G of Width 3 (left) and 2 (right).

▶ Lemma 3 (Cut Lemma [26]). Let T = (B, ET ) be a tree decomposition of G = (V, EG).164

Consider two vertices u, v ∈ V and two arbitrary bags bu, bv ∈ B such that u ∈ bu and v ∈ bv. If165

b ∈ B is a bag on the unique path from bu to bv in T, then any path from u to v in G will166

intersect Vb. Additionally, if e = {b1, b2} ∈ ET is an edge on the unique path from bu to bv in167

T, then any path from u to v in G will intersect Vb1 ∩ Vb2 .168

Computing Tree Decompositions. In general, computing the treewidth of a given169

graph is an NP-hard problem. However, for small values of k, it is well-known that we170

can decide whether the treewidth of a given graph is at most k and also compute as an171

optimal tree decomposition with O(n) bags by a linear-time FPT algorithm (parameterized172

by the treewidth itself and depending exponentially on k) [8]. Additionally, there are many173

well-optimized tools for this task. Thus, in the sequel, we assume without loss of generality174

that an optimal tree decomposition of our graph is given as a part of the input.175

Centroid [45]. Consider a tree T = (VT , ET ) with n vertices. We define a centroid node of176

T as a node whose removal breaks the tree down into several subtrees such that no resulting177

subtree has a size greater than n/2. In other words, a centroid is a 1/2-separator of T . It is178

well-known that every tree has at least one centroid node, which can be obtained in linear179

time by dynamic programming.180

Centroid Decomposition (CD) [11, 27]. A centroid decomposition of T is another tree181

T ′ on the same set of vertices as T , recursively defined as follows:182

When ∣VT ∣ = 1, we simply have T ′ = T .183

For a more complex tree, we first identify a centroid node r of T , then position this node184

as the root of T ′.185

Once we have selected a centroid node r and removed it from T , we end up separating186

the original tree into several connected subtrees. Let us denote these as T1, T2, . . . , Tm.187

For each subtree Ti, we find a centroid decomposition T ′i with a root ri. We make each188

ri a child of r.189

Figure 2 shows the steps of computing a centroid decomposition. Each color corresponds190

to a distinct layer of the centroid decomposition, with the node representing the centroid191

of the similarly colored dotted subtree. In this illustration, the node 4 is identified as the192

centroid of the initial tree. Following the removal of node 4, nodes 2, 7, and 12 are selected193

as the centroids of each resulting subtree. Subsequent centroids are determined in a recursive194

manner. The final centroid decomposition is shown in Figure 3.195

SEA 2024



18:6 Faster Treewidth-based Approximations for Wiener Index

1

2 3 4

5 6 7 8

9 10 11 12

13 14 15

1

2 3 4

5 6 7 8

9 10 11 12

13 14 15

1

2 3

5 6 7 8

9 10 11 12

13 14 15

1

3

5 6 8

9 10 11

13 14 15

Figure 2 A Graph G and the Steps of Building its Centroid Decomposition. Each step highlights
the centroid vertex of each of the current components of the graph.

4

2 7 12

5 6 1 11 8 13 14 15

39 10

Figure 3 The Resulting Centroid Decomposition of G.

Properties of CDs. The height of a CD is bounded by O(log n), where n is the number196

of vertices in the original tree. This is because with every new layer added to the centroid197

decomposition, each connected component splits into several parts, each no larger than 1/2198

the size of the original component. Consequently, we can append at most O(log n) layers to199

the centroid decomposition. Additionally, CDs satisfy the following useful lemma:200

▶ Lemma 4 (Proof in Appendix A). Let u, v ∈ VT be two vertices of the original tree T and l be201

their lowest common ancestor in the centroid decomposition T ′. The unique path connecting202

u and v in T must visit l.203

Computing Centroid Decompositions. Given a tree T with n vertices, there are a204

variety of algorithms in the literature that compute a centroid decomposition T ′ of T in205

O(n). Examples include [11, 27].206

Lowest Common Ancestor Queries. Consider a rooted tree T with n vertices. Suppose207

we have q offline queries, each providing two vertices u, v ∈ T and asking for their lowest208

common ancestor. The classical algorithm of Gabow and Tarjan [35] solves this problem and209

answers all queries in O(n + q).210

Approximation Algorithm of [40]. The work [40] provides an elegant and simple211

approximation algorithm for the average distance d(G) between pairs of vertices. Since the212

Wiener index is simply n2 ⋅ d(G), the same algorithm can be reused for our problem. Given213

a graph G and an error bound ϵ as the input, the algorithm in [40] works as follows:214

1. Uniformly select Θ(
√

n/ϵ2) pairs of vertices.215

2. Find the distance between each selected pair of vertices.216

3. Output the average of the computed distances.217



G.K. Conrado, A.K. Goharshady, P. Hudec, P. Li and H.J. Motwani 18:7

Surprisingly, this algorithm provides a (1 ± ϵ)-approximation of d(G) with probability 2/3.218

▶ Theorem 5 ([40], Theorem 5.1). Given G and ϵ as input, the algorithm above outputs a219

(1 ± ϵ)-approximation of d(G) with probability at least 2/3.220

As a direct corollary, a (1 ± ϵ)-approximation of the Wiener index can be computed in the221

same time complexity by simply multiplying the result of this algorithm by n2.222

Complexity Analysis. For general graphs, each distance query can take O(n2) time.223

Thus, the total runtime of the algorithm above is O(n5/2/ϵ2). However, if the underlying224

graph G is guaranteed to have small treewidth k, then it can have at most O(n ⋅ k) edges.225

Thus, each distance query can be answered in O(n ⋅ k) by a BFS. This reduces the runtime226

to O(n3/2 ⋅ k/ϵ2).227

In this work, we build upon this simple and classical randomized algorithm and use the228

treewidth to obtain a faster algorithm for distance queries. This allows us to reduce the229

runtime dependence on n to almost-linear.230

3 Our Algorithm231

In this section, we present our treewidth-based algorithm. Our algorithm follows the same232

steps as the approximation algorithm of [40], except that we exploit the tree decomposition233

to perform distance queries faster. Our main novel idea is to look not only at a tree234

decomposition of the underlying graph but also at a centroid decomposition of this tree235

decomposition. Thus, our algorithm exploits the desirable properties of both types of236

decomposition, as formalized by the lemma below:237

▶ Lemma 6. Let G = (V, EG) be a graph, T = (B, ET ) a tree decomposition of G and238

T ′ = (B, ET ′) a centroid decomposition of T. Consider two vertices u, v ∈ V and arbitrary239

bags bu, bv ∈ B such that u ∈ bu and v ∈ bv. Let l be the lowest common ancestor of bu and bv240

in the centroid decomposition T ′. Any path that goes from u to v in G intersects Vl.241

Proof. Consider a path πT from bu to bv in the tree decomposition T. By Lemma 4, we have242

l ∈ πT . By Lemma 3, any bag in πT intersects every path from u to v in G. This is illustrated243

in Figure 4. ◀244

Based on the lemma above, if we precompute the distances from each vertex appearing
in a bag l of the centroid decomposition T ′ to the vertices appearing in descendants of l in
T ′, then we can answer distance queries in O(k). In other words, to find the distance from u

to v, we first find two bags bu and bv containing them, then compute l = lca(bu, bv). Now, we
know that every path from u to v has to go through l, thus

dG(u, v) = min
w∈Vl

(dG(u, w) + dG(w, v)) .

Here, dG denotes the distance in our graph G.245

Our Algorithm for Wiener Index. Based on the discussion above, given ϵ > 0, a graph246

G = (V, EG) and a tree decomposition T = (B, ET ) of G with width k, our algorithm turns247

G into a weighted graph and takes the following steps:248

Step 1 (Centroid Decomposition). Compute a centroid decomposition T ′ of the tree249

decomposition T.250

Step 2 (Local Precomputation). For every two vertices u, v ∈ V, if there is a bag b ∈ B251

that contains both of them, i.e. u, v ∈ Vb, then compute the distance dG(u, v) and add a252

direct edge with weight dG(u, v) between u and v.253

SEA 2024



18:8 Faster Treewidth-based Approximations for Wiener Index

1
2

3
4

5

6
7

8

9

10

11

12

(a) A Graph G and Two Vertices
u = 1 and v = 11.

1,2,3

2,3,7

3,7,8

3,8,9 7,12

1,3,6

6, 10 3,5,6

3,4,5

4,11

(b) A Tree Decomposition T of
G. We choose bu = {1, 3, 6} and
bv = {4, 11}.

1,2,3

3,5,6

6, 10

1,3,6

3,4,5

4,11

3,7,8

2,3,7 3,8,9 7,12

(c) A Centroid Decomposition
T ′ of T. The lowest common
ancestor of bu and bv in T ′ is
l = {3, 5, 6}.

1,2,3

2,3,7

3,7,8

3,8,9 7,12

1,3,6

6, 10 3,5,6

3,4,5

4,11

(d) The path from bu to bv in T
goes through l.

1
2

3
4

5

6
7

8

9

10

11

12

(e) Every path from u to v in G
must intersect Vl.

1
2

3
4

5

6
7

8

9

10

11

12

(f) Every path from u to v in G
must intersect Vl.

Figure 4 An Illustration of Lemma 6.

Step 3 (Ancestor-Descendant Precomputation). Let b1, b2 ∈ B be two bags such254

that b1 is an ancestor of b2 in the centroid decomposition T ′. For every u ∈ Vb1 and v ∈ Vb2 ,255

compute the distance dG(u, v) and add a direct edge with weight dG(u, v) between u and256

v.257

Step 4 (Sampling). Uniformly select Θ(
√

n/ϵ2) pairs of vertices of G as in the algorithm258

of [40].259

Step 5 (Distance Queries). For each pair of vertices (u, v) ∈ V 2 selected in the260

previous step, compute dG(u, v).261

Step 6 (Output). Output the average of all the distances obtained in the previous step.262

For Step 1, we can rely on previous algorithms that compute centroid decompositions,263

such as [11, 27]. Steps 4 and 6 are straightforward. We now provide details of Steps 2, 3,264

and 5, followed by correctness proofs and runtime analyses.265

Details of Step 2. This step is inspired by and similar to [21, 5, 36, 38]. Given the graph266

G = (V, EG) and its tree decomposition T = (B, ET ), our goal is to create shortcut edges267

between any pair of vertices that appear in the same bag. We provide a recursive procedure268

as follows:269

i. Choose a leaf bag ℓ of the tree decomposition T.270

ii. Perform an all-pairs shortest-path algorithm, such as Floyd-Warshall, in G[Vℓ], i.e. only271

on the vertices and edges in ℓ. If a path of length d is found between u and v, add a272

direct {u, v} edge with weight d to G.273

iii. Let T ∗ = T − ℓ and G∗ = G − {v ∈ Vℓ ∣ /∃ b ∈ B b ≠ ℓ ∧ v ∈ Vb}. In other words, we are274

removing the leaf bag ℓ from our tree decomposition and also removing any vertex that275

appeared only in this bag from the graph G.276

iv. Run the algorithm recursively on (G∗, T ∗). This causes more shortcut edges to be added277

in G.278



G.K. Conrado, A.K. Goharshady, P. Hudec, P. Li and H.J. Motwani 18:9

1,2,3

2,3,7

3,7,8

3,8,9 7,12

1,3,6

6, 10 3,5,6

3,4,5

4,11

(a) We choose the leaf bag ℓ =
{3, 8, 9}.

3
8

9

(b) Shortest paths are found
within G[Vℓ]. Dashed lines rep-
resent newly added edges.

1,2,3

2,3,7

3,7,8

7,12

1,3,6

6, 10 3,5,6

3,4,5

4,11

(c) Bag ℓ is removed from T to
form T∗.

1
2

3
4

5

6
7

8

10

11

12

(d) G∗ is formed by remov-
ing vertex 9 from G, since
it only appears in bag ℓ in
T .

1
2

3
4

5

6
7

8

10

11

12

9

(e) After recursively run-
ning the algorithm on
(G∗, T∗), new edges are ad-
ded to G.

1
2

3
4

5

6
7

8

10

11

12

9

(f) Shortest paths are again
found within G[Vℓ] and any
new edges found are added
to G. In this example, no
new edges were found.

Figure 5 An Example of Step 2 on the Graph and Decomposition of Figure 4.

v. Repeat Step ii, i.e. perform another all-pairs shortest-path in G[Vℓ] and add the resulting279

shortcut edges to G.280

Figure 5 provides an example of this step.281

▶ Lemma 7 (Proof in Appendix B). The procedure above runs in time O(n ⋅ k3). After its282

execution, T is still a valid tree decomposition of G, and for every pair of vertices u, v ∈ V, if283

there exists a bag b ∈ B containing both of them, then there is a direct (shortcut) edge from u284

to v with weight dG(u, v).285

▶ Remark 8. Throughout our algorithm, we always keep at most one edge, i.e. the edge with286

minimum weight, between every pair {u, v} of vertices.287

Details of Step 3. In this step, we process our centroid decomposition T ′ in a bottom-up
manner. For every bag b ∈ B, we consider the subtree T ′b of the centroid decomposition T ′,
consisting of b and all of its descendants in T ′. Let Gb be the induced subgraph of G that
contains all the vertices in T ′b, i.e.

Gb = G

⎡⎢⎢⎢⎢⎣
⋃

b′∈T ′
b

Vb′

⎤⎥⎥⎥⎥⎦
.

For every vertex v ∈ Vb that appears in the bag b, our algorithm runs a shortest-path288

computation, such as Dijkstra’s algorithm [28], from b in the graph Gb and finds its distances289

to all other vertices of Gb, adding the corresponding shortcut edges. See Figure 6 for an290

example.291

SEA 2024



18:10 Faster Treewidth-based Approximations for Wiener Index

1,2,3

3,5,6

6, 10

1,3,6

3,4,5

4,11

3,7,8

2,3,7 3,8,9 7,12

(a) Let b = {3, 7, 8}. The subtree T ′b of T ′

is highlighted.

2

3

7

8

12

9

(b) The figure above shows
Gb. We now run Dijkstra’s
algorithm from vertices in
{3, 7, 8}.

2

3

7

8

12

9

(c) After running Dijk-
stra’s algorithm in Gb, we
add the new shortcut edges
picutred above to G.

Figure 6 An Example of Step 3 on the Graph and Decompositions of Figure 4.

▶ Lemma 9. The procedure above runs in O(n ⋅ log n ⋅ k3) time. After its execution, for292

every two bags b1, b2 ∈ B such that b1 is an ancestor of b2 in the centroid decomposition T ′293

and every two vertices u ∈ Vb1 and v ∈ Vb2 , we have a shortcut edge from u to v with weight294

dG(u, v).295

Proof. Let αb and δb be the number of ancestors and descendants of b in T ′, respectively.296

The graph Gb has O(δb ⋅ k) vertices and thus O(δb ⋅ k2) edges. Moreover, we perform O(k)297

Dijkstras over this graph, one for each vertex in the bag b. Our graph is weighted at this298

point, but all edge weights and distances are non-negative integers less than n. Thus, Dijkstra299

runs in linear time on the number of vertices and edges. Intuitively, instead of keeping a300

priority queue of vertices in our Dijkstra, we can simply keep an array A[n] of queues where301

A[i] contains all vertices of distance i to the source. When we find that a particular vertex302

has distance i to the source, we simply add it to A[i]. We then process the vertices in each303

A[i] in the order of increasing i and make sure not to process a vertex more than once.304

Based on the points above, our total runtime is

∑
b∈B

O(δb ⋅ k3) = ∑
b∈B

O(αb ⋅ k3) = O(n ⋅ log n ⋅ k3).

The latter equality is because every vertex has O(log n) ancestors.305

For the second part, consider a shortest path π from u to v in G. Let πT be the path306

from b1 to b2 in the tree decomposition T. By Lemma 3, π intersects the vertices of every307

bag b in πT . Without loss of generality, we can assume that π stays in these bags, i.e. it only308

visits vertices in ⋃b∈πT
Vb. Note that if π leaves πT , then it has to reenter it, but the exit and309

entry vertices are in the same bag and, by Lemma 7, there is already a shortcut edge between310

them. Additionally, since b1 is an ancestor of b2 in the centroid decomposition T ′, there was a311

point in the construction of T ′ when b1 was chosen as the centroid of a connected component312

containing b2. Thus, all the bags in πT were also in the same connected component. Hence,313

every b is a descendant of b1. Therefore, the entire path π is included in Gb and the Dijkstra314

from u finds the shortest path to v and adds the corresponding shortcut edge. ◀315

Details of Step 5. Suppose our goal is to compute dG(u, v). We first pick two bags bu

and bv such that u ∈ bu and v ∈ bv. We then find the lowest common ancestor l = lca(bu, bv).
By Lemma 4, every path from u to v has to intersect Vl. Thus, we compute

dG(u, v) = min
w∈Vl

(dG(u, w) + dG(w, v)) .

Note that since l is an ancestor of both bu and bv, we have the distances needed on the RHS316

as weights of direct shortcut edges. This is illustrated in Figure 7317



G.K. Conrado, A.K. Goharshady, P. Hudec, P. Li and H.J. Motwani 18:11

1
2

3
4

5

6
7

8

9

10

11

12

(a) Let u = 5 and v = 7.

1,2,3

3,5,6

6, 10

1,3,6

3,4,5

4,11

3,7,8

2,3,7 3,8,9 7,12

(b) We select bu = {3, 4, 5} and bv =
{3, 7, 8}. Their lowest common an-
cestor l in T ′ is {1, 2, 3}, thus any
shortest path from 5 to 7 has to go
through vertices 1, 2, or 3.

1
2

3
4

5

6
7

8

9

10

11

12

(c) Since l is an ancestor of bu

and bv, the vertices u and v
have shortcut edges to every
vertex in l.

Figure 7 An Example of Step 5 on the Graph and Decompositions of Figure 4.

▶ Lemma 10. The procedure above returns the correct distances in time O(n + k ⋅
√

n/ϵ2).318

Proof. Correctness is already argued above. Since the centroid decomposition T ′ has O(n)319

bags, preprocessing and answering offline lowest common ancestor queries takes O(n +320 √
n/ϵ2) [35]. For each of the

√
n/ϵ2 queries generated in Step 4, we should compute the321

minimum of O(k) values since ∣Vl∣ ≤ k + 1. ◀322

Finally, the following is our main theorem in this work:323

▶ Theorem 11. Given an ϵ > 0, an undirected unweighted graph G = (V, EG) with n vertices324

and a tree decomposition T = (B, ET ) of G with O(n) bags and width k, our algorithm runs325

in time O(n ⋅ log n ⋅ k3 +
√

n ⋅ k/ϵ2) and produces a (1 ± ϵ)-approximation of the Wiener index326

W (G) with probability at least 2/3.327

Proof. Correctness of the approximation ratio and success probability follows from Theorem 5328

since our algorithm is the same as [40] except for how we answer distance queries. Step 1 takes329

O(n) using well-known algorithms such as [11, 27]. Step 2 takes O(n ⋅k3) based on Lemma 7.330

Step 3 takes O(n ⋅ log n ⋅ k3) as shown in Lemma 9. Step 4 simply takes O(
√

n/ϵ2) samples331

from the uniform distribution and Step 5 takes O(n + k ⋅
√

n/ϵ2) time as per Lemma 10.332

Finally, Step 6 takes O(
√

n/ϵ2) time. Summing these up leads to the desired asymptotic333

time complexity. ◀334

4 Experimental Results335

In this section, we present our experimental results, comparing the runtimes of our algorithm336

with previous approaches. We implemented the main algorithms in C++ and provided the337

same inputs, i.e. graph G, tree decomposition T and ϵ = 0.1 to all of them. To obtain this338

input, we first used pysmiles [46], RDKit [47] and NetworkX [42] for preprocessing molecular339

data and turning them into graphs. We employed the FlowCutter algorithm [58] for tree340

decompositions, limiting iterations to 20 + log n, and obtained results in under 1 second. All341

our experiments were conducted on an Intel Core i5 (2.3 GHz, Quad-core) Machine with 8342

GB of RAM running MacOS. We enforced a time limit of 1000 seconds per instance.343

Benchmarks. We used the following datasets for our experiments: (i) PubChem [34] and344

(ii) Protein Data Bank (PDB). Specifically, we report results on 1049 randomly-selected345

protein molecules from the PDB database and 1, 311, 229 molecules from PubChem.346

SEA 2024



18:12 Faster Treewidth-based Approximations for Wiener Index

Table 2 Statistics of the PDB Benchmarks

Minimum Maximum Average

Number of Vertices 132 90507 6651
Number of Edges 134 98828 6820
Treewidth 2 5 3.13

Table 3 Statistics of the PubChem Benchmarks

Metric Minimum Maximum Average

Number of Vertices 2 568 21
Number of Edges 1 643 22
Treewidth 1 16 1.8

PDB. The Protein Data Bank (PDB) [54] is an extensive repository of three-dimensional347

structural data for large biological molecules, including proteins, DNA and RNA. We randomly348

selected 1049 protein molecules from this database. Table 2 shows some statistics about these349

molecules. We observed that even the large molecules in this dataset have small treewidth.350

PubChem. PubChem [34] is an open chemistry database of the National Institutes of Health351

(NIH). It includes information on chemical structures, identifiers, chemical and physical352

properties, and biological activities of small molecules. As benchmarks, we took the following353

datasets from PubChem: Common Chemistry CAS, Nature Catalysis, Wikipedia, Nature354

Communications, Wiley, Springer Nature, Nature Chemistry, Nature Portfolio Journals,355

Springer Materials, Drug and Medication, Nature Synthesis, Nature Chemical Biology,356

KEGG, DrugBank. Collectively, these datasets contained 1, 311, 229 molecules at the time of357

writing. See Table 3 for the statistics over this set of benchmarks.358

Treewidth of the Molecules. As mentioned in Tables 2 and 3, we observed that the359

chemical compounds in both benchmark suites exhibit small treewidth. Figure 8 provides a360

histogram for each benchmark suite. Notably, the vast majority of PubChem compounds361

have a treewidth of less than 10, with very few molecules having treewidths of up to 16. In362

addition, the large molecules in the PDB dataset also have bounded treewidths of at most 5.363

Results. Figure 9 compares the performance of our algorithm and previous methods over the364

PDB dataset, whereas Table 4 provides the same comparison for PubChem. Our approach’s365

better asymptotic complexity leads to significant gains in efficiency when considering the366

large graphs in PDB. However, no benefit is observed over the PubChem molecules, since367

they are all small and every algorithm can handle them in under 1 ms.368

5 Conclusion369

In this work, we considered the problem of computing the Wiener index, i.e. sum of all370

pairwise vertex distances, of a graph with n vertices and treewidth k. We provided a371

novel algorithm using a combination of tree decompositions and centroid decompositions,372

which achieves an almost-linear FPT runtime of O(n ⋅ log n ⋅ k3 +
√

n ⋅ k/ϵ2) and outputs a373

(1 ± ϵ)-approximation of the Wiener index with probability at least 2/3. To the best of our374

knowledge, this is the first sub-quadratic time FPT algorithm for this problem. We also375

showed that many real-world molecular graphs have small treewidth and thus our algorithm376

is applicable in practice.377



G.K. Conrado, A.K. Goharshady, P. Hudec, P. Li and H.J. Motwani 18:13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Treewidth

100

101

102

103

104

105

106

Nu
m

be
r o

f M
ol

ec
ul

es

(a) PubChem (y-axis is in logarithmic scale)

2 3 4 5
Treewidth

0

200

400

600

800

Nu
m

be
r o

f M
ol

ec
ul

es

(b) PDB

Figure 8 Treewidth Distribution in Our Benchmarks

102 103 104 105

Graph Size (number of vertices)

0

200

400

600

800

1000

Ru
nt

im
e 

(s
) Our Algorithm

Approximation Algorithm
DP on Tree Decomposition
Floyd-Warshall
Orthogonal Range Searching
BFS

Figure 9 Runtime Comparison of the Algorithms of Table 1 over PDB Benchmarks. Each dot
corresponds to one benchmark molecule.

Table 4 Runtime Comparison of the Algorithms of Table 1 over PubChem Benchmarks. All
times are in milliseconds.

Algorithm Maximum Minimum Average

Our Algorithm 1.425 0.187 0.296454
Approximation Algorithm 1.283 0.203 0.297342
DP on Tree Decomposition 1.256 0.192 0.296152
Floyd-Warshall 2.261 0.199 0.288638
Orthogonal Range Searching 1.121 0.199 0.292404
BFS 1.097 0.205 0.290523

SEA 2024



18:14 Faster Treewidth-based Approximations for Wiener Index

References378

1 Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato Fonseca F. Werneck. A379

hub-based labeling algorithm for shortest paths in road networks. In SEA, volume 6630, pages380

230–241, 2011.381

2 Ali Ahmadi, Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer,382

Roodabeh Safavi, and Ðorde Zikelic. Algorithms and hardness results for computing cores of383

markov chains. In FSTTCS, volume 250, pages 29:1–29:20, 2022.384

3 Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis. Efficient385

approximations for cache-conscious data placement. In PLDI, pages 857–871, 2022.386

4 Tatsuya Akutsu and Hiroshi Nagamochi. Comparison and enumeration of chemical graphs.387

Computational and structural biotechnology journal, 5(6):e201302004, 2013.388

5 Ali Asadi, Krishnendu Chatterjee, Amir Kafshdar Goharshady, Kiarash Mohammadi, and389

Andreas Pavlogiannis. Faster algorithms for quantitative analysis of mcs and mdps with small390

treewidth. In ATVA, pages 253–270, 2020.391

6 Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner. Search-space size in392

contraction hierarchies. Theor. Comput. Sci., 645:112–127, 2016.393

7 Hans L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In ICALP,394

volume 317, pages 105–118, 1988.395

8 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.396

SIAM J. Comput., 25(6):1305–1317, 1996.397

9 Hans L Bodlaender et al. A tourist guide through treewidth. 1992.398

10 Danail Bonchev. Chemical graph theory: introduction and fundamentals, volume 1. CRC Press,399

1991.400

11 Gerth Stølting Brodal, Rolf Fagerberg, Christian N. S. Pedersen, and Anna Östlin. The401

complexity of constructing evolutionary trees using experiments. In ICALP, volume 2076,402

pages 140–151, 2001.403

12 Sergio Cabello and Christian Knauer. Algorithms for graphs of bounded treewidth via404

orthogonal range searching. Computational Geometry, 42(9):815–824, 2009.405

13 Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Ehsan Kafshdar Goharshady. The406

treewidth of smart contracts. In SAC, pages 400–408, 2019.407

14 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Prateesh Goyal, Rasmus Ibsen-Jensen,408

and Andreas Pavlogiannis. Faster algorithms for dynamic algebraic queries in basic rsms with409

constant treewidth. ACM Trans. Program. Lang. Syst., 41(4):23:1–23:46, 2019.410

15 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and Andreas411

Pavlogiannis. Algorithms for algebraic path properties in concurrent systems of constant412

treewidth components. In POPL, pages 733–747, 2016.413

16 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and Andreas414

Pavlogiannis. Optimal and perfectly parallel algorithms for on-demand data-flow analysis. In415

ESOP, volume 12075, pages 112–140, 2020.416

17 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Nastaran Okati, and Andreas Pavlogiannis.417

Efficient parameterized algorithms for data packing. Proc. ACM Program. Lang., 3(POPL):53:1–418

53:28, 2019.419

18 Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Andreas Pavlogiannis. JTDec: A420

tool for tree decompositions in soot. In ATVA, pages 59–66, 2017.421

19 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Amir Kafshdar Goharshady, and Andreas422

Pavlogiannis. Algorithms for algebraic path properties in concurrent systems of constant423

treewidth components. ACM Trans. Program. Lang. Syst., 40(3):9:1–9:43, 2018.424

20 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. Optimal tree-425

decomposition balancing and reachability on low treewidth graphs. 2014.426

21 Shiva Chaudhuri and Christos D Zaroliagis. Shortest paths in digraphs of small treewidth.427

part i: Sequential algorithms. Algorithmica, 27:212–226, 2000.428



G.K. Conrado, A.K. Goharshady, P. Hudec, P. Li and H.J. Motwani 18:15

22 Victor Chepoi and Sandi Klavžar. The wiener index and the szeged index of benzenoid systems429

in linear time. Journal of chemical information and computer sciences, 37(4):752–755, 1997.430

23 Giovanna K Conrado, Amir K Goharshady, Harshit J Motwani, and Sergei Novozhilov.431

Parameterized algorithms for topological indices in chemistry. arXiv preprint arXiv:2303.13279,432

2023.433

24 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Kerim Kochekov, Yun Chen Tsai, and434

Ahmed Khaled Zaher. Exploiting the sparseness of control-flow and call graphs for efficient and435

on-demand algebraic program analysis. Proc. ACM Program. Lang., 7(OOPSLA2):1993–2022,436

2023.437

25 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, and Chun Kit Lam. The bounded438

pathwidth of control-flow graphs. Proc. ACM Program. Lang., 7(OOPSLA2):292–317, 2023.439

26 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin440

Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015.441

27 Davide della Giustina, Nicola Prezza, and Rossano Venturini. A new linear-time algorithm for442

centroid decomposition. In SPIRE, pages 274–282, 2019.443

28 E Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,444

1:269–271, 1959.445

29 Andrey A Dobrynin, Ivan Gutman, Sandi Klavžar, and Petra Žigert. Wiener index of hexagonal446

systems. Acta Applicandae Mathematica, 72:247–294, 2002.447

30 Alexander G Dossetter, Edward J Griffen, and Andrew G Leach. Matched molecular pair448

analysis in drug discovery. Drug Discovery Today, 18(15-16):724–731, 2013.449

31 Roger C Entringer, Douglas E Jackson, and DA Snyder. Distance in graphs. Czechoslovak450

Mathematical Journal, 26(2):283–296, 1976.451

32 Ernesto Estrada and Eugenio Uriarte. Recent advances on the role of topological indices in452

drug discovery research. Current Medicinal Chemistry, 8(13):1573–1588, 2001.453

33 Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962.454

34 National Center for Biotechnology Information. Pubchem database. https://pubchem.ncbi.455

nlm.nih.gov.456

35 Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of457

disjoint set union. In STOC, pages 246–251, 1983.458

36 Amir Kafshdar Goharshady. Parameterized and Algebro-geometric Advances in Static Program459

Analysis. PhD thesis, Institute of Science and Technology Austria, Klosterneuburg, Austria,460

2020.461

37 Amir Kafshdar Goharshady, Mohammad Reza Hooshmandasl, and M. Alambardar Meybodi.462

[1, 2]-sets and [1, 2]-total sets in trees with algorithms. Discret. Appl. Math., 198:136–146,463

2016.464

38 Amir Kafshdar Goharshady and Fatemeh Mohammadi. An efficient algorithm for computing465

network reliability in small treewidth. Reliab. Eng. Syst. Saf., 193:106665, 2020.466

39 Amir Kafshdar Goharshady and Ahmed Khaled Zaher. Efficient interprocedural data-flow467

analysis using treedepth and treewidth. In VMCAI, volume 13881, pages 177–202, 2023.468

40 Oded Goldreich and Dana Ron. Approximating average parameters of graphs. Random469

Structures & Algorithms, 32(4):473–493, 2008.470

41 Siddharth Gupta, Adrian Kosowski, and Laurent Viennot. Exploiting hopsets: Improved471

distance oracles for graphs of constant highway dimension and beyond. In ICALP, volume472

132, pages 143:1–143:15, 2019.473

42 Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and474

function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos,475

NM (United States), 2008.476

43 Rudolf Halin. S-functions for graphs. Journal of geometry, 8:171–186, 1976.477

44 Christoph Helma. Predictive toxicology. CRC Press, 2005.478

45 Camille Jordan. Sur les assemblages de lignes. Journal für die reine und angewandte Mathem-479

atik, 70:185–190, 1869.480

SEA 2024

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov


18:16 Faster Treewidth-based Approximations for Wiener Index

46 Peter C Kroon. pysmiles: A python library for parsing smiles strings. https://pypi.org/481

project/pysmiles/.482

47 Gregory Landrum. Rdkit: Open-source cheminformatics. https://www.rdkit.org.483

48 Jerzy Leszczynski. Handbook of computational chemistry, volume 3. Springer Science &484

Business Media, 2012.485

49 Mohsen Alambardar Meybodi, Amir Kafshdar Goharshady, Mohammad Reza Hooshmandasl,486

and Ali Shakiba. Optimal mining: Maximizing bitcoin miners’ revenues from transaction fees.487

In Blockchain, pages 266–273, 2022.488

50 Bojan Mohar and Tomaž Pisanski. How to compute the wiener index of a graph. Journal of489

mathematical chemistry, 2(3):267–277, 1988.490

51 Edward F Moore. The shortest path through a maze. In Proc. of the International Symposium491

on the Theory of Switching, pages 285–292, 1959.492

52 Jaroslav Nešetřil and Patrice Ossona De Mendez. Structural properties of sparse graphs. In493

Building Bridges: Between Mathematics and Computer Science, pages 369–426. Springer, 2008.494

53 Dian Ouyang, Dong Wen, Lu Qin, Lijun Chang, Xuemin Lin, and Ying Zhang. When hierarchy495

meets 2-hop-labeling: efficient shortest distance and path queries on road networks. VLDB J.,496

32(6):1263–1287, 2023.497

54 RCSB. Protein data bank. https://www.rcsb.org.498

55 Neil Robertson and Paul D Seymour. Graph minors. iii. planar tree-width. Journal of499

Combinatorial Theory, Series B, 36(1):49–64, 1984.500

56 Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width.501

Journal of algorithms, 7(3):309–322, 1986.502

57 L’ubomír Šoltés. Transmission in graphs: a bound and vertex removing. Mathematica Slovaca,503

41(1):11–16, 1991.504

58 Ben Strasser and KIT algorithms group. Flowcutter: Software for computing flow-based505

balanced graph cuts. https://github.com/kit-algo/flow-cutter-pace17.506

59 Mikkel Thorup. All structured programs have small tree width and good register allocation.507

Information and Computation, 142(2):159–181, 1998.508

60 Nenad Trinajstic. Chemical graph theory. Routledge, 2018.509

61 Stephan Wagner and Hua Wang. Introduction to chemical graph theory. CRC Press, 2018.510

62 Pengfei Wan, Jianhua Tu, Shenggui Zhang, and Binlong Li. Computing the numbers of511

independent sets and matchings of all sizes for graphs with bounded treewidth. Applied512

Mathematics and Computation, 332:42–47, 2018.513

63 Harry Wiener. Structural determination of paraffin boiling points. Journal of the American514

chemical society, 69(1):17–20, 1947.515

64 Jun Xu and Arnold Hagler. Chemoinformatics and drug discovery. Molecules, 7(8):566–600,516

2002.517

65 Ling Xue and Jurgen Bajorath. Molecular descriptors in chemoinformatics, computational518

combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput519

screening, 3(5):363–372, 2000.520

66 Atsuko Yamaguchi, Kiyoko F Aoki, and Hiroshi Mamitsuka. Graph complexity of chemical521

compounds in biological pathways. Genome Informatics, 14:376–377, 2003.522

67 Atsuko Yamaguchi, Kiyoko F Aoki, and Hiroshi Mamitsuka. Finding the maximum common523

subgraph of a partial k-tree and a graph with a polynomially bounded number of spanning524

trees. Information Processing Letters, 92(2):57–63, 2004.525

68 Atsuko Yamaguchi and Kiyoko F Aoki-Kinoshita. Chemical compound complexity in biological526

pathways. Quantitative Graph Theory: Mathematical Foundations and Applications, page 471,527

2014.528

69 Konrad Zuse. Der plankalkül. 1972.529

https://pypi.org/project/pysmiles/
https://pypi.org/project/pysmiles/
https://pypi.org/project/pysmiles/
https://www.rdkit.org
https://www.rcsb.org
https://github.com/kit-algo/flow-cutter-pace17


G.K. Conrado, A.K. Goharshady, P. Hudec, P. Li and H.J. Motwani 18:17

A Proof of Lemma 4530

Proof. We prove this lemma through induction on the size n of the tree. If n is at most 3,531

the lemma holds trivially. Now assume that the lemma holds for all trees with a size less532

than n. Let us consider a general tree of size n. In the first step, we identify a centroid node533

of T , denoted as c. Removing c breaks T into several connected components. If any two534

vertices u, v ∈ VT are in the same connected component Ti, then in the corresponding centroid535

decomposition T ′, they will appear in T ′i as per the definition of centroid decomposition. By536

the induction hypothesis, their path must cross their lowest common ancestor in T ′i . In case537

they belong to different connected components, say T ′i and T ′j , any path from T ′i and to T ′j538

must traverse the node c. In this scenario, their lowest common ancestor would be the root539

c, as the remaining nodes on the path from u to v are either in Ti or Tj and, hence, cannot540

be a common ancestor. ◀541

B Proof of Lemma 7542

u v

G∗

u v

G∗

(a) When u and v appear in G∗,
a shortcut edge will be calculated
during the recursive call on G∗.

u w v

G∗

u w

G∗

u w v

G∗

(b) If v is not in G∗, its path to u must contain a vertex w that
is in the same bag ℓ as u and v and that also appears in G∗. A
shortcut edge from u to w will be added during the processing of
G∗ and thus the path from u to v can be calculated in Step v.

Figure 10 An Illustration of Lemma 7.

Proof. We run the Floyd-Warshall algorithm twice on each bag of the tree decomposition,543

once in Step ii and once in v. Since each bag has k + 1 vertices and the tree decomposition544

has O(n) bags, the total runtime is O(n ⋅ k3). The procedure above adds new shortcut edges545

only between pairs of vertices that were already in the same bag, thus the tree decomposition546

remains valid.547

We prove the last property by induction on ∣B∣. If ∣B∣ = 1, then the first Floyd-Warshall548

in Step ii adds all the necessary shortcut edges. Otherwise, let u, v ∈ Vℓ be two vertices that549

appear in the leaf bag ℓ and let p ∈ B be the parent of ℓ in T. If there is a path between u550

and v that is entirely within Vℓ, then Step ii adds a shortcut edge summarizing this path.551

Thus, if u′, v′ ∈ G∗, then dG∗(u, v) = dG(u, v). Moreover, both u and v have to appear in p,552

since they each appear in a connected subtree. Hence, by induction hypothesis, the recursive553

call in Step iv adds the required shortcut edge between u and v. Now consider the case554

where either u or v (or both) are not in G∗. Take a shortest path π from u to v in G. If π555

is entirely within Vℓ, then Step ii adds the shortcut edge. Otherwise, we use Lemma 3 to556

break π down as π = π1 ⋅w1 ⋯ w2 ⋅ π2 where π1 is the longest prefix of π that only contains557

vertices from Vℓ ∖Vp and π2 is the longest such suffix. By Lemma 3, we have w1, w2 ∈ Vℓ ∩Vp.558

Since they are both in Vp ⊆ VG∗ , Step iv adds a shortcut edge from w1 to w2. Hence, Step v559

adds a shortcut edge from u to v with the correct weight. Finally, if u and v are vertices560

that appear in the same bag b ≠ ℓ, then the recursive call on (G∗, T ∗) adds a shortcut edge561

between them. ◀562

SEA 2024


	1 Introduction
	2 Preliminaries
	3 Our Algorithm
	4 Experimental Results
	5 Conclusion
	A Proof of Lemma 4
	B Proof of Lemma 7

