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Abstract12

The Wiener index of a graph G is the sum of distances between all pairs of its vertices. It is a13

widely used graph property in chemistry, initially introduced to examine the link between boiling14

points and structural properties of alkanes, which later found notable applications in drug design.15

Thus, computing or approximating the Wiener index of molecular graphs, i.e. graphs in which every16

vertex models an atom of a molecule and every edge models a bond, is of significant interest to the17

computational chemistry community.18

In this work, we build upon the observation that molecular graphs are sparse and tree-like and19

focus on developing efficient algorithms parameterized by treewidth to approximate the Wiener index.20

We present a new randomized approximation algorithm using a combination of tree decompositions21

and centroid decompositions. Our algorithm approximates the Wiener index within any desired22

multiplicative factor (1 + ε) in time O(n ⋅ logn ⋅ k3
+
√
n ⋅ k/ε2

), where n is the number of vertices of23

the graph and k is the treewidth. This time bound is almost-linear in n.24

Finally, we provide experimental results over standard benchmark molecules from PubChem and25

the Protein Data Bank, showcasing the applicability and scalability of our approach on real-world26

chemical graphs and comparing it with previous methods.27
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1 Introduction32

Motivation. The Wiener index of a graph G is the sum of the distances between all pairs33

of vertices in G. Besides being a natural problem to compute, it is also a well-studied graph34

invariant with applications in computational chemistry and biology. Indeed, it is one of35

computational chemistry’s oldest and most important topological indices [37].36

History. In chemistry, the Wiener index was first considered by Harry Wiener in [40].37

It was initially studied to establish connections between alkanes’ boiling points and the38

underlying graphs’ structural properties. This study later motivated the development of other39

topological indices in computational chemistry. Further development of QSAR (Quantitative40

Structure-Activity Relationship) and QSPR (Quantitative Structure-Property Relationship)41

models led to the discovery of positive correlations of even more chemical and physical42

properties to the Wiener index [28, 37, 38, 42]. Due to its simplicity and usefulness, the43

Wiener index was also studied by computer scientists and mathematicians [16, 35]. The use44
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of neural networks in chemical graph theory has led to a renewed interest in topological45

indices and their application in molecular mining, toxicity detection, and computer-aided46

drug discovery. Several studies have been conducted on this topic, such as [5, 15, 17, 24, 41].47

Given the significance of the Wiener index for chemists and the abundance of large molecules,48

it is imperative to develop faster algorithms for computing it. Indeed, there are many previous49

works in this direction [7, 9, 14, 21, 29].50

Parameterized Algorithms. Parameterized algorithms aim to tackle computationally51

intractable problems and identify subsets of instances that can be solved efficiently [11]. In52

parameterized complexity, we consider an additional parameter k along with the input size53

n for measuring the runtime. This is in contrast to classical complexity theory, which only54

considers the input size of the problem. Many parameterized algorithms focus on NP-hard55

problems and provide runtime bounds that depend polynomially on the size of the problem56

but have non-polynomial dependence on the parameter k. If we know that k is small in57

real-world instances, this leads to solutions that are effectively polynomial-time, i.e. they58

take polynomial time on all the real-world instances where this parameter is small.59

Fixed-Parameter Tractable (FPT). Given an input of size n and a parameter k, an60

algorithm with a running time of O(f(k) ⋅ nc), for some constant c and computable function61

f , is called Fixed-Parameter Tractable (FPT) [11]. The intuition is the same as above. If the62

parameter k is small in all real-world instances of the problem, then the algorithm would63

in practice have a polynomial runtime. Crucially, the degree c of this polynomial does not64

depend on either k or n.65

Treewidth. Treewidth is one of the most important structural parameters of graphs and66

has been extensively studied in combinatorics and graph theory. Intuitively speaking, it67

measures the tree-likeness of a graph [4]. Trees and forests have a treewidth of 1 and cliques68

on n vertices have treewidth n − 1. The main advantage of treewidth in algorithm design69

arises when we are designing parameterized algorithms for NP-hard problems by considering70

it as the parameter of the problem. Many families of commonly-studied graphs, such as71

trees, cacti, series-parallel graphs, outer-planar graphs, and control-flow graphs of structured72

programs, have bounded treewidth [2, 4, 11]. This allows efficient dynamic programming73

techniques using the tree decomposition of the graph [2]. See Section 2 for a formal definition.74

Treewidth of Molecules. Extending this idea, computational chemists and biologists75

have also explored the treewidth of various important classes of molecules [43, 45]. In our76

experimental results (Section 4), we observe that a significant majority of molecules in the77

PubChem repository [19] have a treewidth of at most 10. Even large proteins from the78

Protein Data Bank [32] are observed to have a treewidth of at most 5. Since a significant79

fraction of molecules have bounded treewidth, exploring and designing treewidth-based80

parameterized algorithms for computational problems in chemistry and biology is a natural81

step. In fact, the same has been done in several works in the literature [1, 7, 10, 39, 44]. We82

extend this line of research by presenting significantly faster treewidth-based approaches for83

approximating the Wiener index.84

Our Contribution. In this paper, we introduce a novel randomized algorithm that85

approximates the Wiener index of a graph using its tree decomposition. The unique86

aspect of our algorithm is the incorporation of tree and centroid decompositions. This87

idea significantly enhances efficiency in answering distance queries within the graph. This88

is then plugged directly into an established randomized algorithm to approximate the89

Wiener index, obtaining the same approximation guarantees by an asymptotically faster90

method. Both theoretical analysis and experimental results demonstrate that our algorithm91
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Table 1 Comparison of Different Algorithms for Computing the Wiener Index. Here, n denotes
the number of vertices, k denotes the treewidth, and ε represents the error of approximation.

Algorithm Time Complexity Type Ref.
Floyd-Warshall O(n3

) Exact [18]

Orthogonal Range Searching O(n ⋅ logk−1 n)
Exact

Parameterized [7]

Treewidth-based
Dynamic Programming O(n2

⋅ k2
)

Exact
Parameterized [8]

BFS O(n2
⋅ k)

Exact
Parameterized [30, 46]

Classical Approximation O(n5/2
/ε2
)

Randomized
Approximation [21]

Our Algorithm O(n ⋅ logn ⋅ k3
+
√
n ⋅ k/ε2

)

Parameterized
Randomized

Approximation
Sec. 3

outperforms current methods in calculating the Wiener index for molecular graphs, which92

are commonly encountered in computational chemistry and biology.93

Comparison with Previous Results. Table 1 compares the runtime complexity of our94

algorithm with previous methods. Here, n is the number of vertices in the graph, k is the95

treewidth, and ε is the error in the approximation, i.e. we are reporting the runtime for a96

(1 + ε)-approximation of the Wiener index. We refer to Section 4 for a detailed experimental97

evaluation of our algorithm on datasets from PubChem [19] and the Protein Data Bank [32].98

The most classical approach to compute the Wiener index is simply performing an all-pairs99

shortest path computation using Floyd-Warshall and then summing up the distances. This100

will lead to a time complexity of O(n3). In [7], the authors provided the first parameterized101

algorithm for the Wiener index based on treewidth. Their algorithm is a divide-and-conquer102

method based on orthogonal range searching and repeatedly finds small cuts using the tree103

decomposition. They achieve a runtime bound of O(n ⋅ logk−1 n). Note that this is not104

FPT. In [8], an FPT algorithm was provided based on dynamic programming on the tree105

decomposition. This algorithm has a quadratic dependence on n. For unweighted graphs,106

given that a graph with treewidth k has O(n ⋅ k) vertices, running a BFS from each vertex107

would lead to a total runtime of O(n2 ⋅ k). Finally, [21] provides an algorithm on general108

graphs, not using any parameters, that approximates the average pairwise distance within a109

factor of (1+ ε) with a probability of at least 2/3 by taking a random sample of the distances110

between pairs of vertices. Note that the Wiener index is n2 times the average distance. Thus,111

this algorithm is directly applicable to our setting, as well. Our algorithm builds upon the112

classical approximation of [21] and uses a tree decomposition and a centroid decomposition113

to speed up the sampling.114

2 Preliminaries115

In this section, we introduce the Wiener index and define some basic concepts of parameterized116

complexity. We refer to [11] for more details. This is followed by a short presentation of the117

classical approximation algorithm of [21], which forms the basis of our approach.118

Wiener Index [40]. The Wiener Index of an undirected graph G = (V,E) is defined as the
all-pairs sum of distances among vertices of the graph. Formally,

W (G) ∶= ∑u,v∈V d(u, v).

SEA 2024
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Additionally, we define the average distance between pairs of vertices in G as d(G) ∶=119

W (G)/n2.120

I Remark 1. In this work we assume that our graphs are connected, unweighted, and121

undirected. In the context of molecular graphs, all types of covalent bonds—be they single,122

double, or triple—are represented as a single undirected edge in the corresponding graph.123

For a disconnected graph, the Wiener index is simply +∞. However, in some applications,124

the Wiener index of a disconnected graph is defined as the sum of the Wiener indices of its125

connected components. In such cases, each connected component can be processed separately.126

Tree Decomposition (TD) [23, 33, 34]. A tree decomposition of a given graphG = (V,EG)127

is a tree T = (B,ET ) satisfying the following conditions:128

Every node b ∈ B of T , which is called a bag, contains a subset of vertices Vb ⊆ V .129

The bags cover the entire vertex set V of G, i.e. ⋃b∈B Vb = V. In other words, every vertex130

appears in at least one bag.131

For every edge in the original graph G, there exists a bag that contains both endpoints132

of the edge. More formally, for every e = {u, v} ∈ EG, there is a bag b ∈ B, s.t. u, v ∈ Vb.133

Every vertex v ∈ V appears in a connected subtree of T , meaning that the set Bv = {b ∈134

B ∣ v ∈ Vb} forms a connected subgraph of T .135

I Remark 2. An equivalent statement of the last condition above is that for every three bags136

b1, b2, b3 ∈ B, if b3 is on the unique path from b1 to b2 in T , then Vb1 ∩ Vb2 ⊆ Vb3 .137

Treewidth [33]. The width of a tree decomposition T is defined as w(T ) ∶= maxb∈B ∣Vb∣ − 1,138

i.e. the size of the largest bag minus one. Furthermore, the treewidth of the graph G, denoted139

as tw(G), is defined as the minimum width amongst all possible tree decompositions of G.140

Intuitively speaking, treewidth measures the structural likeness of a graph to a tree.141

Specifically, the smaller the treewidth of a graph, the more tree-like it appears, in the sense142

that a graph of treewidth k can be decomposed into small parts (bags), each of size at most143

k + 1, which are connected to each other in a tree-like manner T . Figure 1 showcases an144

illustration containing two distinct tree decompositions of a graph G, each having a different145

width. Since only forests have treewidth of 1, the tree decomposition on the right is optimal,146

and tw(G) = 2.147

A

B

C D

E F G
–

A,B

B,C,D,F

C,E,F D,F,G

A

B

C D

E F G
–

A,B

B,C,D

C,D,F

C,E,F D,F,G

Figure 1 A Graph G and Two Tree Decompositions of G of Width 3 (left) and 2 (right).

Treewidth is a parameter indicating graph sparsity, providing an upper bound on the148

number of edges. Specifically, in a graph with n vertices and treewidth k, the number of edges149

is O(n ⋅k). More precisely, the number of edges is less than or equal to n ⋅k−k ⋅ (k+1/2) [31].150

Additionally, we have the following ubiquitous lemma:151

I Lemma 3 (Cut Lemma [11]). Let T = (B,ET ) be a tree decomposition of G = (V,EG).152

Consider two vertices u, v ∈ V and two arbitrary bags bu, bv ∈ B such that u ∈ bu and v ∈ bv. If153
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b ∈ B is a bag on the unique path from bu to bv in T, then any path from u to v in G will154

intersect Vb. Additionally, if e = {b1, b2} ∈ ET is an edge on the unique path from bu to bv in155

T, then any path from u to v in G will intersect Vb1 ∩ Vb2 .156

Computing Tree Decompositions. It is well-known that the treewidth of a graph, as157

well as an optimal tree decomposition with O(n) bags, can be computed by a linear-time158

FPT algorithm (parameterized by the treewidth itself) [3]. Additionally, there are many159

well-optimized tools for this task. Thus, in the sequel, we assume without loss of generality160

that an optimal tree decomposition of our graph is given as a part of the input.161

Centroid [25]. Consider a tree T = (VT ,ET ) with n vertices. We define a centroid node of162

T as a node whose removal breaks the tree down into several subtrees such that no resulting163

subtree has a size greater than n/2. In other words, a centroid is a 1/2 separator of T . It is164

well-known that every tree has at least one centroid node, which can be obtained in linear165

time by dynamic programming.166

Centroid Decomposition (CD) [6, 12]. A centroid decomposition of T is another tree T ′167

on the same set of vertices as T , recursively defined as follows:168

When ∣VT ∣ = 1, we simply have T ′ = T .169

For a more complex tree, we first identify a centroid node r of T , then position this node170

as the root of T ′.171

Once we have selected a centroid node r and removed it from T , we end up separating172

the original tree into several connected subtrees. Let us denote these as T1, T2, . . . , Tm.173

For each subtree Ti, we find a centroid decomposition T ′i with a root ri. We make each174

ri a child of r.175

1

2 3 4

5 6 7 8

9 10 11 12

13 14 15

1

2 3 4

5 6 7 8

9 10 11 12

13 14 15

1

2 3

5 6 7 8

9 10 11 12

13 14 15

1

3

5 6 8

9 10 11

13 14 15

Figure 2 A Graph G and the Steps of Building its Centroid Decomposition. Each step highlights
the centroid vertex of each of the current components of the graph.

4

2 7 12

5 6 1 11 8 13 14 15

39 10

Figure 3 The Resulting Centroid Decomposition of G.
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Figure 2 shows the steps of computing a centroid decomposition. Each color corresponds176

to a distinct layer of the centroid decomposition, with the node representing the centroid177

of the similarly colored dotted subtree. In this illustration, the node 4 is identified as the178

centroid of the initial tree. Following the removal of node 4, nodes 2,7, and 12 are selected179

as the centroids of each resulting subtree. Subsequent centroids are determined in a recursive180

manner. The final centroid decomposition is shown in Figure 3.181

Properties of CDs. The height of a CD is bounded by O(logn), where n is the number182

of vertices in the original tree. This is because, with every new layer added to the centroid183

decomposition, each connected component splits into several parts, each no larger than 1/2184

the size of the original component. Consequently, we can append at most O(logn) layers to185

the centroid decomposition. Additionally, CDs satisfy the following useful lemma:186

I Lemma 4 (Proof in Appendix A). Let u, v ∈ VT be two vertices of the original tree T and l be187

their lowest common ancestor in the centroid decomposition T ′. The unique path connecting188

u and v in T must visit l.189

Computing Centroid Decompositions. Given a tree T with n vertices, there are a190

variety of algorithms in the literature that compute a centroid decomposition T ′ of T in191

O(n). Examples include [6, 12].192

Lowest Common Ancestor Queries. Consider a rooted tree T with n vertices. Suppose193

we have q offline queries, each providing two vertices u, v ∈ T and asking for their lowest194

common ancestor. The classical algorithm of Gabow and Tarjan [20] solves this problem and195

answers all queries in O(n + q).196

Approximation Algorithm of [21]. The work [21] provides an elegant and simple197

approximation algorithm for the average distance d(G) between pairs of vertices. Since the198

Wiener index is simply n2 ⋅ d(G), the same algorithm can be reused for our problem. Given199

a graph G and an error bound ε as the input, the algorithm in [21] works as follows:200

1. Uniformly select Θ(
√
n/ε2) pairs of vertices.201

2. Find the distance between each selected pair of vertices.202

3. Output the average of the computed distances.203

Surprisingly, this algorithm provides a (1 + ε)-approximation of d(G) with probability 2/3.204

I Theorem 5 ([21], Theorem 5.1). Given G and ε as input, the algorithm above outputs a205

(1 + ε)-approximation of d(G) with probability at least 2/3.206

As a direct corollary, a (1 + ε)-approximation of the Wiener index can be computed in the207

same time complexity by simply multiplying the result of this algorithm by n2.208

Complexity Analysis. For general graphs, each distance query can take O(n2) time.209

Thus, the total runtime of the algorithm above is O(n5/2/ε2). However, if the underlying210

graph G is guaranteed to have small treewidth k, then it can have at most O(n ⋅ k) vertices.211

Thus, each distance query can be answered in O(n ⋅ k) by a BFS. This reduces the runtime212

to O(n3/2 ⋅ k/ε2).213

In this work, we build upon this simple randomized algorithm and use the treewidth214

to obtain a faster algorithm for distance queries. This allows us to reduce the runtime215

dependence on n to almost-linear.216

3 Our Algorithm217

In this section, we present our treewidth-based algorithm. Our algorithm follows the same218

steps as the approximation algorithm of [21], except that we exploit the tree decomposition219
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to perform distance queries faster. Our main novel idea is to look not only at a tree220

decomposition of the underlying graph but also at a centroid decomposition of this tree221

decomposition. Thus, our algorithm exploits the desirable properties of both types of222

decomposition, as formalized by the lemma below:223

I Lemma 6. Let G = (V,EG) be a graph, T = (B,ET ) a tree decomposition of G and224

T ′ = (B,ET ′) a centroid decomposition of T. Consider two vertices u, v ∈ V and arbitrary225

bags bu, bv ∈ B such that u ∈ bu and v ∈ bv. Let l be the lowest common ancestor of bu and bv226

in the centroid decomposition T ′. Any path that goes from u to v in G intersects Vl.227

Proof. Consider the path πT from bu to bv in the tree decomposition T. By Lemma 4, we228

have l ∈ πT . By Lemma 3, any bag in πT intersects every path from u to v in G. This is229

illustrated in Figure 4. J230

1
2

3
4

5

6
7

8

9

10

11

12

(a) A GraphG and Two Vertices
u = 1 and v = 11.

1,2,3

2,3,7

3,7,8

3,8,9 7,12

1,3,6

6, 10 3,5,6

3,4,5

4,11

(b) A Tree Decomposition T of
G. We choose bu = {1, 3, 6} and
bv = {4, 11}.

1,2,3

3,5,6

6, 10

1,3,6

3,4,5

4,11

3,7,8

2,3,7 3,8,9 7,12

(c) A Centroid Decomposition
T ′ of T. The lowest common
ancestor of bu and bv in T ′ is
l = {3, 5, 6}.

1,2,3

2,3,7

3,7,8

3,8,9 7,12

1,3,6

6, 10 3,5,6

3,4,5

4,11

(d) The path from bu to bv in T
goes through l.

1
2

3
4

5

6
7

8

9

10

11

12

(e) Every path from u to v in G
must intersect Vl.

1
2

3
4

5

6
7

8

9

10

11

12

(f) Every path from u to v in G
must intersect Vl.

Figure 4 An Illustration of Lemma 6.

Based on the lemma above, if we precompute the distances from each vertex appearing
in a bag l of the centroid decomposition T ′ to the vertices appearing in descendants of l in
T ′, then we can answer distance queries in O(k). In other words, to find the distance from u

to v, we first find two bags bu and bv containing them, then compute l = lca(bu, bv). Now, we
know that every path from u to v has to go through l, thus

dG(u, v) = min
w∈Vl

(dG(u,w) + dG(w, v)) .

Here, dG denotes the distance in graph G.231

Our Algorithm for Wiener Index. Based on the discussion above, given ε > 0, a graph232

G = (V,EG) and a tree decomposition T = (B,ET ) of G with width k, our algorithm turns233

G into a weighted graph and takes the following steps:234
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Step 1 (Centroid Decomposition). Compute a centroid decomposition T ′ of the tree235

decomposition T.236

Step 2 (Local Precomputation). For every two vertices u, v ∈ V, if there is a bag b ∈ B237

that contains both of them, i.e. u, v ∈ Vb, then compute the distance dG(u, v) and add a238

direct edge with weight dG(u, v) between u and v.239

Step 3 (Ancestor-Descendant Precomputation). Let b1, b2 ∈ B be two bags such240

that b1 is an ancestor of b2 in the centroid decomposition T ′. For every u ∈ Vb1 and v ∈ Vb2 ,241

compute the distance dG(u, v) and add a direct edge with weight dG(u, v) between u and242

v.243

Step 4 (Sampling). Uniformly select Θ(
√
n/ε2) pairs of vertices of G as in the algorithm244

of [21].245

Step 5 (Distance Queries). For each pair of vertices (u, v) ∈ V 2 selected in the246

previous step, compute dG(u, v).247

Step 6 (Output). Output the average of all the distances obtained in the previous step.248

For Step 1, we can rely on previous algorithms that compute centroid decompositions,249

such as [6, 12]. Steps 4 and 6 are straightforward. We now provide details of Steps 2, 3, and250

5, followed by correctness proofs and runtime analyses.251

Details of Step 2. This step is inspired by [8]. Given the graph G = (V,EG) and its tree252

decomposition T = (B,ET ), our goal is to create shortcut edges between any pair of vertices253

that appear in the same bag. We provide a recursive procedure as follows:254

i. Choose a leaf bag ` of the tree decomposition T.255

ii. Perform an all-pairs shortest-path algorithm, such as Floyd-Warshall, in G[V`], i.e. only256

on the vertices and edges in `. If a path of length d is found between u and v, add a257

direct {u, v} edge with weight d to G.258

iii. Let T ∗ = T − ` and G∗ = G − {v ∈ V` ∣ /∃ b ∈ B b ≠ ` ∧ v ∈ Vb}. In other words, we are259

removing the leaf bag ` from our tree decomposition and also removing any vertex that260

appeared only in this bag from the graph G.261

iv. Run the algorithm recursively on (G∗, T ∗). This causes more shortcut edges to be added262

in G.263

v. Repeat Step ii, i.e. perform another all-pairs shortest-path in G[V`] and add the resulting264

shortcut edges to G.265

Figure 5 provides an example of this step.266

I Lemma 7 (Proof in Appendix B). The procedure above runs in time O(n ⋅ k3). After its267

execution, T is still a valid tree decomposition of G, and for every pair of vertices u, v ∈ V, if268

there exists a bag b ∈ B containing both of them, then there is a direct (shortcut) edge from u269

to v with weight dG(u, v).270

I Remark 8. Throughout our algorithm, we always keep at most one edge, i.e. the edge with271

minimum weight, between every pair {u, v} of vertices.272

Details of Step 3. In this step, we process our centroid decomposition T ′ in a bottom-up
manner. For every bag b ∈ B, we consider the subtree T ′b of the centroid decomposition T ′,
consisting of b and all of its descendants in T ′. Let Gb be the induced subgraph of G that
contains all the vertices in T ′b, i.e.

Gb = G
⎡⎢⎢⎢⎢⎣
⋃
b′∈T ′

b

Vb′

⎤⎥⎥⎥⎥⎦
.
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(a) We choose the leaf bag ` =
{3, 8, 9}.

3
8
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(b) Shortest paths are found
within G[V`]. Dashed lines rep-
resent newly added edges.
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4,11

(c) Bag ` is removed from T to
form T∗.
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(d) G∗ is formed by remov-
ing vertex 9 from G, since
it only appears in bag ` in
T .

1
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7
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11

12

9

(e) After recursively run-
ning the algorithm on
(G∗, T∗), new edges are ad-
ded to G.

1
2

3
4

5

6
7

8

10

11

12

9

(f) Shortest paths are again
found within G[V`] and any
new edges found are added
to G. In this example, no
new edges were found.

Figure 5 An Example of Step 2 on the Graph and Decomposition of Figure 4.

For every vertex v ∈ Vb that appears in the bag b, our algorithm runs a shortest-path273

computation, such as Dijkstra’s algorithm [13], from b in the graph Gb and finds its distances274

to all other vertices of Gb, adding the corresponding shortcut edges. See Figure 6 for an275

example.276

1,2,3

3,5,6

6, 10

1,3,6

3,4,5

4,11

3,7,8

2,3,7 3,8,9 7,12

(a) Let b = {3, 7, 8}. The subtree T ′b of T ′
is highlighted.

2

3

7

8

12

9

(b) The figure above shows
Gb. We now run Dijkstra’s
algorithm from vertices in
{3, 7, 8}.

2

3

7

8

12

9

(c) After running Dijk-
stra’s algorithm in Gb, we
add the new shortcut edges
picutred above to G.

Figure 6 An Example of Step 3 on the Graph and Decompositions of Figure 4.

I Lemma 9. The procedure above runs in O(n ⋅ logn ⋅ k3). After its execution, for every two277

bags b1, b2 ∈ B such that b1 is an ancestor of b2 in the centroid decomposition T ′ and every278

two vertices u ∈ Vb1 and v ∈ Vb2 , we have a shortcut edge from u to v with weight dG(u, v).279

Proof. Let αb and δb be the number of ancestors and descendants of b in T ′, respectively.
The graph Gb has O(δb ⋅ k) vertices and thus O(δb ⋅ k2) edges. Moreover, we perform O(k)
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Dijkstras∗ over this graph, one for each vertex in the bag b. Thus, our total runtime is

∑b∈BO(δb ⋅ k3) = ∑b∈BO(αb ⋅ k3) = O(n ⋅ logn ⋅ k3).

The latter equality is because every vertex has O(logn) ancestors.280

For the second part, consider a shortest path π from u to v in G. Let πT be the path281

from b1 to b2 in the tree decomposition T. By Lemma 3, π intersects the vertices of every282

bag b in πT . Without loss of generality, we can assume that π stays in these bags, i.e. it only283

visits vertices in ⋃b∈πT
Vb. Note that if π leaves πT , then it has to reenter it, but the exit and284

entry vertices are in the same bag and, by Lemma 7, there is already a shortcut edge between285

them. Additionally, since b1 is an ancestor of b2 in the centroid decomposition T ′, there was a286

point in the construction of T ′ when b1 was chosen as the centroid of a connected component287

containing b2. Thus, all the bags in πT were also in the same connected component. Hence,288

every b is a descendant of b1. Therefore, the entire path π is included in Gb and the Dijkstra289

from u finds the shortest path to v and adds the corresponding shortcut edge. J290

Details of Step 5. Suppose our goal is to compute dG(u, v). We first pick two bags bu
and bv such that u ∈ bu and v ∈ bv. We then find the lowest common ancestor l = lca(bu, bv).
By Lemma 4, every path from u to v has to intersect Vl. Thus, we compute

dG(u, v) = min
w∈Vl

(dG(u,w) + dG(w, v)) .

Note that since l is an ancestor of both bu and bv, we have the distances needed on the RHS291

as weights of direct shortcut edges. This is illustrated in Figure 7292
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(a) Let u = 5 and v = 7.

1,2,3

3,5,6

6, 10

1,3,6

3,4,5

4,11

3,7,8

2,3,7 3,8,9 7,12

(b) We select bu = {3, 4, 5} and bv =
{3, 7, 8}. Their lowest common an-
cestor l in T ′ is {1, 2, 3}, thus any
shortest path from 5 to 7 has to go
through vertices 1, 2, or 3.

1
2

3
4

5

6
7

8

9

10

11

12

(c) Since l is an ancestor of bu

and bv, the vertices u and v
have shortcut edges to every
vertex in l.

Figure 7 An Example of Step 5 on the Graph and Decompositions of Figure 4.

I Lemma 10. The procedure above returns the correct distances in O(n + k ⋅
√
n/ε2).293

Proof. Correctness is already argued above. Since the centroid decomposition T ′ has O(n)294

bags, preprocessing and answering offline lowest common ancestor queries takes O(n +295 √
n/ε2) [20]. For each of the

√
n/ε2 queries generated in Step 4, we should compute the296

minimum of O(k) values since ∣Vl∣ ≤ k + 1. J297

∗Our graph is weighted at this point, but all edge weights and distances are non-negative integers less
than n. Thus, Dijkstra runs in linear time on the number of vertices and edges. Intuitively, instead of
keeping a priority queue of vertices in our Dijkstra, we can simply keep an array A[n] of lists where A[i]
contains all vertices of distance i to the source.
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Finally, the following is our main theorem in this work:298

I Theorem 11. Given an ε > 0, an undirected unweighted graph G = (V,EG) with n vertices299

and a tree decomposition T = (B,ET ) of G with O(n) bags and width k, our algorithm runs300

in time O(n ⋅ logn ⋅ k3 +
√
n ⋅ k/ε2) and produces a (1 + ε)-approximation of the Wiener index301

W (G) with probability at least 2/3.302

Proof. Correctness of the approximation ratio and success probability follows from Theorem 5303

since our algorithm is the same as [21] except for how we answer distance queries. Step 1 takes304

O(n) using well-known algorithms such as [6, 12]. Step 2 takes O(n ⋅ k3) based on Lemma 7.305

Step 3 takes O(n ⋅ logn ⋅ k3) as shown in Lemma 9. Step 4 simply takes O(
√
n/ε2) samples306

from the uniform distribution and Step 5 takes O(n + k ⋅
√
n/ε2) time as per Lemma 10.307

Finally, Step 6 takes O(
√
n/ε2) time. Summing these up leads to the desired asymptotic308

time complexity. J309

4 Experimental Results310

In this section, we present our experimental results, comparing the runtimes of our algorithm311

with previous approaches. We implemented the main algorithms in C++ and provided312

the same inputs, i.e. graph G, tree decomposition T and ε = 0.1 to all of them. To obtain313

this input, we first used pysmiles [26], RDKit [27] and NetworkX [22] for preprocessing314

molecular data and turning them into graphs. We also used FlowCutter [36] to compute315

tree decompositions. All our experiments were conducted on an Intel Core i5 (2.3 GHz,316

Quad-core) Machine with 8 GB of RAM running MacOS. We enforced a time limit of 1000317

seconds per instance.318

Benchmarks. We used the following datasets for our experiments: (i) PubChem [19] and319

(ii) Protein Data Bank (PDB). Specifically, we report results on 100 randomly-selected protein320

molecules from the PDB database and 1,311,229 molecules from PubChem.321

PDB. The Protein Data Bank (PDB) [32] is an extensive repository of three-dimensional322

structural data for large biological molecules, including proteins, DNA and RNA. We randomly323

selected 100 protein molecules from this database. Table 2 shows some statistics about these324

molecules. We observed that even the large molecules in this dataset have small treewidth.325

Table 2 Statistics of the PDB Benchmarks

Minimum Maximum Average

Number of Vertices 682 80652 9027
Number of Edges 743 82055 9240
Treewidth 2 5 2.95

PubChem. PubChem [19] is an open chemistry database of the National Institutes of Health326

(NIH). It includes information on chemical structures, identifiers, chemical and physical327

properties, and biological activities of small molecules. As benchmarks, we took the following328

datasets from PubChem: Common Chemistry CAS, Nature Catalysis, Wikipedia, Nature329

Communications, Wiley, Springer Nature, Nature Chemistry, Nature Portfolio Journals,330

Springer Materials, Drug and Medication, Nature Synthesis, Nature Chemical Biology,331

KEGG, DrugBank. Collectively, these datasets contained 1,311,229 molecules at the time of332

writing. See Table 3 for the statistics over this set of benchmarks.333
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Table 3 Statistics of the PubChem Benchmarks

Metric Minimum Maximum Average

Number of Vertices 2 568 21
Number of Edges 1 643 22
Treewidth 1 16 1.8

Treewidth of the Molecules. As mentioned in Tables 2 and 3, we observed that the334

chemical compounds in both benchmark suites exhibit bounded treewidth. Figure 8 provides335

a histogram for each benchmark suite. Notably, the vast majority of PubChem compounds336

have a treewidth of less than 10, with very few molecules having treewidths of up to 16. In337

addition, the large protein molecules in the PDB dataset also have bounded treewidths of at338

most 5.339
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Figure 8 Treewidth Distribution in Our Benchmarks

Results. Figure 9 compares the performance of our algorithm and previous methods over the340

PDB dataset, whereas Table 4 provides the same comparison for PubChem. Our approach’s341

better asymptotic complexity leads to significant gains in efficiency when considering the342

large graphs in PDB. However, no benefit is observed over the PubChem molecules, since343

they are all small and every algorithm can handle them in under 1 ms.344

Table 4 Runtime Comparison of the Algorithms of Table 1 over PubChem Benchmarks. All
times are in milliseconds.

Algorithm Maximum Minimum Average

Our Algorithm 1.425 0.187 0.296454
Approximation Algorithm 1.283 0.203 0.297342
DP on Tree Decomposition 1.256 0.192 0.296152
Floyd-Warshall 2.261 0.199 0.288638
Orthogonal Range Searching 1.121 0.199 0.292404
BFS 1.097 0.205 0.290523
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Figure 9 Runtime Comparison of the Algorithms of Table 1 over PDB Benchmarks. Each dot
corresponds to one benchmark molecule.

5 Conclusion345

In this work, we considered the problem of computing the Wiener index of a graph with346

n vertices and treewidth k. We provided a novel algorithm using a combination of tree347

decompositions and centroid decompositions, which achieves an almost-linear FPT runtime348

of O(n ⋅ logn ⋅ k3 +
√
n ⋅ k/ε2) and outputs a (1 + ε)-approximation of the Wiener index with349

probability at least 2/3. To the best of our knowledge, this is the first sub-quadratic time350

FPT algorithm for this problem. We also showed that many real-world molecular graphs351

have small treewidth and thus our algorithm is applicable in practice.352
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A Proof of Lemma 4447

Proof. We prove this lemma through induction on the size n of the tree. If n is at most 3,448

the lemma holds trivially. Now assume that the lemma holds for all trees with a size less449

than n. Let us consider a general tree of size n. In the first step, we identify a centroid450

node of T , denoted as c. The node c fragments T into several connected components. If451

any arbitrary vertices u, v ∈ VT exist in the same connected component Ti, then in the452

corresponding centroid decomposition T ′, they will appear in T ′i as per the definition of453

centroid decomposition. According to the inductive hypothesis, their path must cross their454

lowest common ancestor in T ′i . In case they belong to different connected components, say455

T ′i and T ′j , any path originating from T ′i and terminating at T ′j must traverse the node c.456

This is because c separates Ti and Tj . In this scenario, their lowest common ancestor would457

be the root c, as the remaining nodes on the path from u to v are either in Ti or Tj and,458

hence, cannot serve as the common ancestor. J459

B Proof of Lemma 7460

u v

G∗

u v

G∗

(a) When u and v appear in G∗,
a shortcut edge will be calculated
during the recursive call on G∗.

u w v

G∗

u w

G∗

u w v

G∗

(b) If v is not in G∗, its path to u must contain a vertex w that
is in the same bag ` as u and v and that also appears in G∗. A
shortcut edge from u to w will be added during the processing of
G∗ and thus the path from u to v can be calculated in Step v.

Figure 10 An Illustration of Lemma 7.

Proof. We run the Floyd-Warshall algorithm twice on each bag of the tree decomposition,461

once in Step ii and once in v. Since each bag has k + 1 vertices and the tree decomposition462

has O(n) bags, the total runtime is O(n ⋅ k3). The procedure above adds new shortcut edges463

only between pairs of vertices that were already in the same bag, thus the tree decomposition464

remains valid.465

We prove the last property by induction on ∣B∣. If ∣B∣ = 1, then the first Floyd-Warshall466

in Step ii adds all the necessary shortcut edges. Otherwise, let u, v ∈ V` be two vertices that467

appear in the leaf bag ` and let p ∈ B be the parent of ` in T. If there is a path between u468

and v that is entirely within V`, then Step ii adds a shortcut edge summarizing this path.469

Thus, if u′, v′ ∈ G∗, then dG∗(u, v) = dG(u, v). Moreover, both u and v have to appear in p,470

since they each appear in a connected subtree. Hence, by induction hypothesis, the recursive471

call in Step iv adds the required shortcut edge between u and v. Now consider the case472

where either u or v (or both) are not in G∗. Take a shortest path π from u to v in G. If π473

is entirely within V`, then Step ii adds the shortcut edge. Otherwise, we use Lemma 3 to474

break π down as π = π1 ⋅w1 ⋯ w2 ⋅ π2 where π1 is the longest prefix of π that only contains475

vertices from V` ∖Vp and π2 is the longest such suffix. By Lemma 3, we have w1,w2 ∈ V` ∩Vp.476

Since they are both in Vp ⊆ VG∗ , Step iv adds a shortcut edge from w1 to w2. Hence, Step v477

adds a shortcut edge from u to v with the correct weight. Finally, if u and v are vertices478

that appear in the same bag b ≠ `, then the recursive call on (G∗, T ∗) adds a shortcut edge479

between them. J480
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