
HAL Id: hal-04327333
https://hal.science/hal-04327333v1

Preprint submitted on 6 Dec 2023 (v1), last revised 27 Apr 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faster Treewidth-based Approximations for Wiener
Index

Giovanna K Conrado, Amir K Goharshady, Pavel Hudec, Pingjiang Li,
Harshit J Motwani

To cite this version:
Giovanna K Conrado, Amir K Goharshady, Pavel Hudec, Pingjiang Li, Harshit J Motwani. Faster
Treewidth-based Approximations for Wiener Index. 2023. �hal-04327333v1�

https://hal.science/hal-04327333v1
https://hal.archives-ouvertes.fr

Faster Treewidth-based Approximations for Wiener Index

Giovanna K. Conrado1, Amir K. Goharshady1, Pavel Hudec1, Pingjiang Li1, and
Harshit J. Motwani1

1Department of Computer Science and Engineering, Hong Kong University of
Science and Technology, Hong Kong

December 6, 2023

Abstract
The Wiener index of a graph G is the sum of distances between all pairs of its vertices.

It is a widely-used graph property in chemistry, initially discovered to examine the link be-
tween the boiling points and structural properties of alkanes, but later found notable appli-
cations in drug design. Thus, computing or approximating the Wiener index of molecular
graphs, i.e. graphs in which every vertex models an atom of a molecule and every edge
models a bond, is of significant interest to the computational chemistry community.

In this work, we build upon the observation that molecular graphs are sparse and tree-
like and focus on developing efficient algorithms, parameterized by treewidth, to approx-
imate the Wiener index. We present a new randomized approximation algorithm using a
combination of tree decomposition and centroid decomposition. Our algorithm approxi-
mates the Wiener index within a multiplicative factor of (1+ ϵ) in time O(n ⋅ log n ⋅ k3 +

√
n ⋅

log n ⋅ (log log n + k)/ϵ2), where n is the number of vertices of the graph, k is the treewidth,
and ϵ is the error of approximation. Note that the time bound is almost-linear in n.

Finally, we provide experimental results over the standard benchmark molecules from
PubChem and the Protein Data Bank, showcasing the applicability and scalability of our
approach on real-world chemical graphs and comparing it with the previous state-of-the-
art methods.

1 Introduction

MOTIVATION. The Wiener index of a graph G is the sum of the distances between all pairs
of vertices in G. Besides being a natural problem to compute, it is also a well-studied graph
invariant with applications in computational chemistry and biology. Indeed, it is one of com-
putational chemistry’s oldest and most important topological indices [1].

In chemistry, the Wiener index was first considered by Harry Wiener in [2]. It was initially
studied to establish the connection between alkanes’ boiling points and the underlying graphs’
structural properties. This study later motivated the development of other topological indices
in computational chemistry. Further development of QSAR (quantitative structure-activity
relationship) and QSPR (quantitative structure-property relationship) models led to the dis-
covery of positive correlations of even more chemical and physical properties to the Wiener
index [3, 1, 4, 5]. Due to its simplicity and usefulness, the Wiener index was also studied by
computer scientists and mathematicians [6, 7].

Although discovered almost 75 years ago, the Wiener index is still relevant in computa-
tional chemistry today. The use of neural networks in chemical graph theory has led to a
renewed interest in topological indices and their application in molecular mining, toxicity de-
tection, and computer-aided drug discovery. Several studies have been conducted on this
topic, such as [8, 9, 10, 11, 12].

1

Given the significance of the Wiener index for chemists and the abundance of large molecules,
it is imperative to develop faster algorithms for computing it. Indeed, there are many previous
works in this direction [13, 14, 15, 16, 17].

Our goal in this paper is to contribute to the ongoing effort of creating faster algorithms for
calculating the Wiener index. Our focus has been on developing a randomized approximation
algorithm that utilizes the tree and centroid decomposition of the graph.
PARAMETERIZED ALGORITHMS. Parameterized algorithms are principally aimed at tackling
computationally intractable problems [18]. These algorithms consider an additional parameter
k along with the input size for measuring the runtime, unlike the classical algorithms, which
only consider the input size of the problem. Most parameterized algorithms focus on NP-
hard problems. In particular, an efficient parameterized algorithm for such problems would
have a polynomial dependence on the size of the problem and non-polynomial dependence
on the parameter k. This leads to solutions that are effectively polynomial-time, i.e. they take
polynomial time on all the real-world instances where this parameter is small.
FIXED-PARAMETER TRACTABLE. Given an input of size n and a parameter k, an algorithms
with a running time of O(f (k) ⋅ nc), for some constant c and computable function f , is called
fixed-parameter tractable (FPT) [18]. The intuition is the same as above. If the parameter k is
small in all real-world instances of the problem, then the algorithm would in practice have a
polynomial runtime. Crucially, the degree of this polynomial should not depend on either k or
n.
TREEWIDTH. Treewidth is one of the most important structural parameters of graphs that has
been extensively studied in combinatorics and algorithms. Intuitively speaking, it measures
the tree-likeness of the graph [19]. Trees and forests have a treewidth of 1, and cliques on n
vertices have treewidth n − 1. The main advantage of treewidth in algorithm design arises
when we are designing parameterized algorithms for NP-hard problems by considering it as
the parameter of the problem. Many families of commonly-studied graphs, such as trees, cacti,
series-parallel graphs, outer-planar graphs, and control-flow graphs of structured programs
have bounded treewidth [20, 19, 18]. This allows for the development of efficient dynamic
programming techniques using the tree decomposition of the graph [20].
TREEWIDTH OF MOLECULES. Extending this idea, chemists and biologists have also explored
the treewidth of various important classes of molecules [21, 22]. In our own experimental re-
sults (Section 5), we observe that a significant fraction of molecules in the PubChem repository
[23] (nearly 99.9%) have a treewidth of at most 10. Even large proteins from the Protein Data
Bank [24] are observed to have a treewidth of 3. Since a significant fraction of molecules has
bounded treewidth, exploring and designing treewidth-based parameterized algorithms for
computational problems in chemistry and biology is a natural step. In fact, the same has been
done in several works in the literature [25, 13, 26, 27, 28]. We continue on this line of research
by developing faster treewidth-based approximations for computing the Wiener index.
OUR CONTRIBUTION. In this paper, we introduce a novel randomized algorithm that approx-
imates the Wiener index of a graph using its tree decomposition. The unique aspect of our al-
gorithm is the incorporation of centroid decomposition into the tree decomposition, which sig-
nificantly enhances efficiency in answering distance queries within the graph. This method is
subsequently integrated with an established randomized algorithm to approximate the Wiener
index.

Both theoretical analysis and experimental results demonstrate that our algorithm outper-
forms current methods in calculating the Wiener index for molecular graphs, which are com-
monly encountered in computational chemistry and biology. The observed speed improve-
ments with our methodology indicates that the techniques presented herein have promising
applications in the fields of computational chemistry and biology.

Table 1 compares the runtime complexity of our algorithm with previous methods. Here, n

2

Algorithm Time Complexity Type Ref.
Floyd-Warshall O(n3

) Exact [29]
Ortho. Range Searching O(n ⋅ logk−1 n) Exact [13]

DP on Tree Decomp. O(n2
⋅ k2
) Exact [30]

Breadth-first Search (BFS) O(n2
⋅ k) Exact [31]

Classical Approximation O(n3/2
⋅ k/ϵ2

) Randomized Approx. [16]
Our Algorithm O(n ⋅ log n ⋅ k3

+

√

n ⋅ log n ⋅ (log log n + k)/ϵ2
) Randomized Approx. Sec. 4

Table 1: Comparison of different algorithms for computing the Wiener index. Here, n denotes
the number of vertices, k denotes the treewidth, and ϵ represents the error of approximation.

is the number of vertices in the graph, k is the treewidth, and ϵ is the error in the approximation.
We refer to Section 5 for a detailed experimental evaluation of our algorithm on datasets from
PubChem [23] and the Protein Data Bank [24].
ORGANIZATION. In Section 2, we formalize the problem and introduce the parameters. In Sec-
tion 3, we give a brief overview of the previous algorithms used to compute the Wiener Index
of a graph. Section 4 presents our algorithm. Finally, in Section 5, we present the experimental
results.

2 Preliminaries

In this section, we first define the Wiener Index along with its related terminology. We then
define tree decompositions and treewidth. Finally, we provide a short overview of the concept
of centroid decomposition. For the purpose of our discussion in this section, we have only
included the essential information. For a more thorough exposition of these topics, we refer
the reader to [18].
WIENER INDEX. The Wiener Index of a graph G = (V, E) is defined as the all-pairs sum of
shortest paths in the graph. Formally,

W(G) ∶= ∑
u,v∈V

d(u, v).

Remark 1. We will assume, without loss of generality, that our graphs are connected, unweighted,
and undirected. It is pertinent to mention that in the context of molecular graphs, all types of covalent
bonds—be they single, double, or triple—are represented as a single undirected edge in the correspond-
ing graph. For a disconnected graph, the Wiener index is simply +∞. However, in some applications,
the Wiener index of a disconnected graph is defined as the sum of Wiener indices of its connected com-
ponents. In such cases, each connected component can be processed separately.

Remark 2. We will use the definition of the Wiener Index without the 1/2 factor multiplied before
taking the summation, which mainly occurs in undirected graphs as d(u, v) = d(v, u).

TREE DECOMPOSITIONS. A tree decomposition of a given graph G = (V, EG) is a tree T = (B, ET)
such that it satisfies the following conditions:

• Every node b ∈ B of T, which is called a bag, contains a subset of vertices Vb ⊆ V.
• The bags cover the entire vertex set V of G, i.e. ⋃b∈BVb = V. In other words, every vertex

appears in at least one bag.
• For every edge in the original graph G, there exists a bag that contains both endpoints of

the edge. More formally, for every e = (u, v) ∈ EG, there is a bag b ∈ B, s.t. u, v ∈ Vb
• Every vertex v ∈ V appears in a connected subtree of T, meaning that the set Bv = {b ∈
B ∣ v ∈ Vb} forms a connected subgraph of T.

3

Remark 3. An equivalent statement of the last condition above is that for every three bags b1, b2, b3 ∈ B,
if b3 is on the unique path from b1 to b2 in T, then Vb1 ∩Vb2 ⊆ Vb3 .

TREEWIDTH. The width of a tree decomposition T of G is defined as w(T) ∶= maxb∈B ∣Vb∣ − 1,
i.e. the size of the largest bag minus one. Furthermore, the treewidth of the graph G, denoted as
tw(G), is defined as the minimum width amongst all possible tree decompositions of G.

Figure 1 showcases an illustration containing two distinct tree decompositions of a graph
G, each having a different width. Since only forests have a treewidth of 1, the tree decomposi-
tion on the right is optimal and tw(G) = 2.

A

B

C D

E F G
–

A,B

B,C,D,F

C,E,F D,F,G

A

B

C D

E F G
–

A,B

B,C,D

C,D,F

C,E,F D,F,G

Figure 1: A graph G and two tree decompositions of G of width 3 (left) and 2 (right).

Intuitively speaking, treewidth measures the structural likeness of a graph to a tree. Specif-
ically, the smaller the treewidth of a graph, the more tree-like it appears. A graph of treewidth
k can be decomposed into small parts (bags), each of size at most k + 1, which are connected to
each other in a tree-like manner T.

Treewidth is a parameter indicating graph sparsity, in that it provides an upper bound on
the number of edges. Specifically, in a graph with n vertices and treewidth k, the number of
edges is O(k ⋅ n). More precisely, the number of edges is less than or equal to n ⋅ k − k ⋅ (k +
1/2) [32].
CENTROID DECOMPOSITIONS. Consider a tree T = (VT, ET) with n vertices. We define a cen-
troid node of T as a node whose removal breaks the tree down into several subtrees such that
no resulting subtree has a size of more than n/2. In other words, a centroid is a 1/2 separator of
T. It is well-known that every tree has at least one centroid node, which can be obtained easily
by a dynamic programming on its BFS tree.

A centroid decomposition of T is another tree T′ on the same set of vertices as T, recursively
defined as follows:

• When ∣VT ∣ = 1, we simply have T′ = T.
• For a more complex tree, we first identify a centroid node r of T, then position this node

as the root of T′.
• Once we have selected a centroid node r and removed it from T, we end up separating

the original tree into several connected subtrees. Let us denote these as T1, T2, . . . , Tm. For
each subtree Ti, we find a centroid decomposition T′i and add the root of Ti as a child of
r.

As an example, Figure 2 shows the steps of computing a centroid decomposition. Each
color corresponds to a distinct layer of the centroid decomposition, with the node representing
the centroid of the similarly colored dotted subtree. In this illustration, node 4 is identified as
the centroid of the initial tree. Following the removal of node 4, nodes 2, 7 and 12 are selected
as the centroids of each resulting subtree. Subsequent centroids are determined in a recursive
manner.

The height of a centroid decomposition is bounded by O(log n). This is because with every
new layer added to the centroid decomposition, a connected component splits into several

4

1

2 3 4

5 6 7 8

9 10 11 12

13 14 15

1

2 3 4

5 6 7 8

9 10 11 12

13 14 15

1

2 3

5 6 7 8

9 10 11 12

13 14 15

1

3

5 6 8

9 10 11

13 14 15

Figure 2: A graph G and the steps of building its centroid decomposition. Each step highlights
the centroid vertex of each of the current components of the graph.

4

2 7 12

5 6 1 11 8 13 14 15

39 10

Figure 3: Resulting centroid decomposition of G.

parts, each no larger than 1/2 the size of the original component. Consequently, we can append
at most O(log n) layers to the centroid decomposition, thus limiting its height to O(log n).
Additionally, centroid decompositions satisfy the following useful lemma:

Lemma 1. Let u, v ∈ VT be two vertices of the original tree T and l be their lowest common ancestor in
the centroid decomposition T′. The unique path connecting u and v in T must visit l.

Proof. We will prove this lemma through induction based on the size of tree. If the tree size is
at most 3, the lemma holds trivially.

Now will assume that the lemma holds for all trees with a size less than n, let’s consider a
general tree of size n. In the first step, we identify a centroid node of T, denoted as c. The node
c fragments T into several connected components. For any arbitrary vertices u, v ∈ VT, if they
exist in the same connected component, let’s say Ti, then in the corresponding centroid decom-
position T′, they will appear in T′i as per the definition of centroid decomposition. According
to the inductive hypothesis, their path must cross their lowest common ancestor in T′i .

In case they belong to different connected components, say T′i and T′j , any path originating
from T′i and terminating at T′j must traverse the node c. This is because c separates Ti and Tj.
In this scenario, their lowest common ancestor would be the root c, as the remaining nodes on
the path from u to v are either in Ti or Tj, and hence, cannot serve as the common ancestor.
Therefore, the lemma also holds in this case, hence completing the proof.

3 Existing Approaches

In this section, we provide an overview of previously-known algorithms for computing the
Wiener index of a graph. Of course, the most trivial approach is to compute all-pairs distances
using the Floyd-Warshall algorithm and then simply sum up the distances. This leads to cubic

5

runtime of O(n3), which is not desirable for large molecules. We thus introduce more efficient
approaches from the literature that utilize tree decompositions to improve this runtime using
parameterization, approximation and randomization. The techniques discussed in this section
are incorporated into our own algorithm, which is explained in Section 4.

3.1 Orthogonal Range Searching on Tree Decompositions

We briefly mention the key ideas of the algorithm for computing the Wiener index based on
orthogonal range searching on tree decomposition from [13, Section 3].

The authors presented a divide and conquer algorithm that utilizes tree decomposition
to compute the Wiener index in O(n ⋅ logk−1 n) time. Note that this time is not FPT, since the
dependence on the treewidth appears in the exponent. The main idea of the algorithm is to find
small separators in the graph and then recursively compute the Wiener index of the subgraphs
induced by the removing the separators. One of the algorithm’s crucial components is using
orthogonal range searching to handle and represent distances in the graph efficiently.

The basic process of performing the divide and conquer task is that in each iteration, we
try to divide the vertices into two balanced subsets. We denote these subsets by A and B and
their intersection is called a “portal” and denoted as S. Formally, every path from A ∖ B to
B ∖ A should intersect S. We can recursively compute the Wiener indices of A and B. Then, if
S is small, we can find the distances from every vertex in S to every vertex in A and B. Finally,
for every b ∈ B ∖ A and a ∈ A ∖ B, the path from b to a has to intersect S. Thus, we can find
the sum of distances from b to all vertices in A by an orthogonal range query of dimension ∣S∣.
Hence, we need to ensure that (i) our portal ∣S∣ is small, and (ii) removing it breaks the graph
into connected components with no more than n/2+O(1) vertices.

Assuming we have bounded treewidth, we rely on our tree decomposition to find small
cuts that break the graph into parts that are each no larger than n/2 +O(1). A well-known
property of the tree decompositions is the following: Let e = (b1, b2) be an edge in the tree de-
composition T of the graph G. Removing the edge e breaks T into two connected components
T1 and T2, containing b1 and b2 respectively. Let S = Vb1 ∩Vb2 . The set S is a portal (cut) in G that
separates A ∶= VT1 = ⋃b∈T1 Vb and B ∶= VT2 = ⋃b∈T2 Vb. Note that we can also choose any bag Vb
as our set S since replacing a bag with two copies of itself keeps the tree decomposition valid.

Ideally, we would like each resulting connected component after removing S to be no larger
than half the size of our original graph, so that our recursion depth is logarithmic. In order to
make the two vertex sets A and B balanced, we can use a centroid decomposition. We first
find a centroid bag c. We then remove Vc from the graph G and let A be the largest connected
component in the resulting graph. Similarly, we let B be the rest of the graph and add Vc to
both A and B. We first compute the Wiener index of A and each connected component of B.
Now, we can use the orthogonal range searching technique to calculate the distance sum. Let
S = {s1, . . . , sk}. For every vertex in b ∈ B and si ∈ S, we want to find the number of vertices a ∈ A
such that the shortest path from b to a goes through the vertex si. This is where the orthogonal
range search takes place. Since we need to compare the distance difference for every vertex in
S, the dimension is of size k, and therefore, the runtime has the factor O(logk−1 n). We have to
also be mindful of double-counting. See [13] for details. The total runtime of this approach is
O(n ⋅ logk−1 n).

3.2 Dynamic Programming Algorithm based on Tree Decomposition

In this section, we highlight a well-established dynamic programming algorithm, which uti-
lizes tree decomposition for calculating the Wiener index. This algorithm, originally detailed
in [30], serves as a foundational reference for our exposition. We provide a thorough analysis
of its steps, focusing on the key components that are integral to understanding and adapting

6

the methodology for our algorithm’s context. We denote the initial graph as G = (V, E) and
the tree decomposition of minimum width as T(B, ET), with w(T) = tw(G).

The algorithm is as follows:

1. Initialize Variables and Data Structures:

• Let the initial graph be G(V, E).
• Obtain the tree decomposition of minimum width, denoted as T(B, ET), where

w(T) = tw(G).
• Create a stack for reverse order processing.

2. Preprocessing Phase:

• Select an arbitrary leaf bag, b, from the set B.

• Apply the Floyd-Warshall Algorithm within the bag b to compute the all-pair short-
est distances treating the vertices within this bag as an entire vertex set.

• Mark the bag b as processed and remove it from B.

• Push the bag b into the stack for reverse processing later.

• Repeat the above steps until all bags have been processed.

• Process each bag again in the reverse order (by popping from the stack) and execute
the Floyd-Warshall algorithm to update distance values considering vertices from
other bags.

3. Updating Distance Values:

• For every leaf bag b and vertices u, v ∈ b, check if the shortest path exists within bag
b or traverses through other bags.

• If the shortest path is within the bag, add a direct edge between u and v with weight
equal to the shortest path distance.

4. Computing Final Distances After Preprocessing:

• After the preprocessing phase is complete, iterate through all the vertices in the
graph.

• For each vertex vi, initiate a Breadth-First Search (BFS) from a bag containing vi and
spread out across the tree decomposition T.

• Each time a bag b is encountered during BFS, compute dis(vi, vj) for every vertex
vj ∈ b by comparing it with dis(vi, vk)+dis(vk, vj) for all vk ∈ Vb, and assign dis(vi, vj)
as the minimum value amongst these.

DETAILED EXPLANATION OF ALGORITHMIC STEPS. The first step is to preprocess to achieve
the all-pair shortest distances within each bag. We initially select an arbitrary leaf bag, b from
the set B and apply the Floyd-Warshall algorithm to compute in-bag distances, treating the
vertices within this bag as the entire vertex set. Subsequently, the bag b is marked as processed
and removed. This procedure continues until all bags have been handled. Ultimately, we
execute the Floyd-Warshall algorithm once more within each bag, but this time, in the reversed
order of the previous sequence in which the bags were chosen.

The fundamental concept deriving from this preprocessing step is that every path from ver-
tex u to vertex v, represented as P = ⟨u, ..., v⟩, corresponds to a path in T. This path begins from
a bag containing u and terminates at a bag containing v, encountering the intermediate vertices
in the same sequence as the original path. This fact can be straightforwardly established via
the definition of tree decomposition and inductive reasoning.

7

Hence, for every leaf bag b and vertices u, v ∈ b, the shortest path must either exist within
bag b itself or traverse through other bags before eventually returning to b. If the former
scenario is valid, we add a direct edge connecting vertices u and v, assigning it a weight equal
to the calculated shortest path distance. This addition process is effectively an update to the
distance value in the context of the Floyd-Warshall Algorithm.

When we temporarily remove such a leaf bag, we effectively eliminate the vertices that only
appear in that specific leaf bag. Suppose there is an arbitrary vertex s of this kind that appears
later in the shortest path from vertex r to t. This path must follow the form ⟨r, ..., s1, s, s2, ..., t⟩,
where s1, s2 are two neighbors of s. Here, the path ⟨s1, s, s2⟩ represents the shortest distance
path from s1 to s2, and we handle this and update dis(s1, s2) when we process the leaf bag.
Consequently, removing the leaf bag doesn’t impact the correctness of the following steps.

We perform the Floyd-Warshall Algorithm a second time because, when initially process-
ing a bag, we might not know the shortest distance between two vertices as they may intersect
vertices in another bag. However, when we process for the second time in reverse order, we
update the corresponding distance values as necessary.

Once we complete the preprocessing phase, we will have all the distance values for vertices
that reside within a common bag. Subsequently, we iterate through all the vertices. For each
vertex vi, we initiate a Breadth-First Search (BFS) from a bag and spread out across T. Each
time we encounter a bag b, we compute dis(vi, vj) for every vertex vj ∈ b. This computation is
achieved by comparing it with dis(vi, vk)+dis(vk, vj) for all vk ∈ b, and we assign dis(vi, vj) as
the minimum value amongst these.
PROOF OF CORRECTNESS. To prove the correctness of this approach, we need to demonstrate
that for every edge edge(bi, bj) ∈ ET, the intersection of bi and bj is nonempty, i.e., bi ∩ bj ≠ ∅.
Suppose, for the sake of contradiction, that there exists an edge edge(bi, bj) where bi ∩ bj = ∅.
Upon removing this edge, T would be divided into two connected components that share no
common vertex. If they did share a common vertex, based on the definition of tree decompo-
sition, this vertex would have to appear in a connected component of T and be present in both
bi and bj, as edge(bi, bj) is the sole edge connecting the two components. This contradicts our
initial assumption that our graph G is connected. Therefore, we can conclude that bi ∩ bj ≠ ∅.

Let bu be a bag containing u. By above argument, we can prove that for every neighboring
bag of bu, a vertex v must exist in bu and its neighboring bag, this can be used to calculate
dis(u, v). Through induction, we can correctly compute all other distance values, thereby val-
idating the correctness of the algorithm.
RUNTIME ANALYSIS. Given that for any graph with n vertices, a tree decomposition exists
with O(n) bags of minimum width, we can conclude that for an n-vertex graph G with a
treewidth tw(G) = k, the preprocessing step can be executed in O(n ⋅ k3) time, which is in linear
FPT. The computation phase can be performed in O(n2 ⋅ k2). Therefore, the overall runtime is
bounded by O(n2 ⋅ k2). While an O(n2) runtime is not yet satisfactory, we do have a linear FPT
preprocessing stage, which will be a crucial step for our own algorithm in Section 4.

3.3 Breadth-first Search (BFS)

We revisit the breadth-first search (BFS) method for computing the Wiener index of a graph. It
is a well-established fact that BFS requires O(n+m) time to calculate the shortest path distances
from a given source vertex to all other vertices in a graph, with n and m representing the
number of vertices and edges, respectively. Consequently, we can execute BFS from each vertex
in the graph and sum the distances to compute the Wiener index. This method requires O(n2 +
n ⋅m) time, which, in the worst case, is cubic. However, for graphs with bounded treewidth,
the number of edges m is bounded by O(n ⋅ k), where k denotes the treewidth, as discussed in
Section 2. Hence, the runtime for this approach is O(n2 ⋅ k).

8

3.4 An Approximation Algorithm

In this section, we briefly explain the key points of the approximation algorithm used to com-
pute the Wiener index as presented in [16]. The algorithm randomly selects Θ(

√
n/ϵ2) pairs of

distance queries, calculates the average distances among these pairs and uses this value as an
approximation for the average value between all vertex pairs. The Wiener index is then scaled
by n2.

The algorithm is as follows:

1. Initialization of Variables and Data Structures:

• Let the initial graph be G(V, E).
• Let ϵ be the desired approximation ratio.

2. Computation of Wiener Index:

• Select uniformly and at random Θ(
√

n
ϵ2) pairs of vertices in V. Let the set of these

pairs be S.

• For every pair (v1, v2) ∈ S, compute their distance in G using a Breadth-first search,
in O(n ⋅ k) time.

• Compute the average distance between the pairs and return the result multiplied
by n2.

The running time of the algorithm is the total time required to compute all distances be-
tween pairs of vertices in the set S. This equates to Θ (

√
n

ϵ2) instances of an O(n ⋅ k) algorithm,

resulting in a final running time of O (n3/2⋅k
ϵ2).

The authors of [16] proved that their method yields a (1+ ϵ)-approximation with a proba-
bility of at least 2

3 . Naturally, repeating the algorithm increases the success probability arbitrar-

ily close to 1. A significant feature of their technique is the requirement of only Θ (
√

n
ϵ2) distance

queries. However, they address general graphs without parameterizing by treewidth, thereby
not leveraging tree decomposition for distance queries. Instead, each query is answered us-
ing Breadth-First Search (BFS). This leaves room for further optimization for graphs that have
small treewidth.

4 Our Algorithm

We are now prepared to present our algorithm, which integrates concepts from the algorithms
discussed in the previous section and enhances distance query speed through centroid decom-
position.

First, we provide an overview of the algorithm’s steps, followed by a detailed explanation
of each step. The algorithm is outlined as follows:

1. Compute all-pairs distances for each bag in the tree decomposition T of G. Specifically,
for every pair (u, v) of vertices that appear in the same bag, add a direct shortcut edge
from u to v whose weight is the distance from u to v.

2. Compute the centroid decomposition T′ of T.

3. For every vertex v ∈ V of the original graph G, consider the highest bag b in T′ that
contains v. Compute distance values from v to all vertices appearing in the descendants
of b in T′.

9

4. Select Θ(
√

n/ϵ2) pairs of vertices uniformly at random and compute their distance values
based on the precomputed distances in the previous steps. Return the average distance
multiplied by n2 as the result.

DETAILED EXPLANATION OF ALGORITHMIC STEPS. The first step is to compute all-pairs short-
est paths within each bag using the preprocessing step of the algorithm described in Sec-
tion 3.2.

For the next step, we compute a centroid decomposition T′ of our tree decomposition
T = (B, ET). We need to find the centroid root for every sub-tree for centroid decomposi-
tion. Suppose T has n bags and for each bag b ∈ B, we calculate the size for the subtree rooted
at b in the following procedure.

• If b is a leaf bag, then size(b) = 1
• Otherwise, size(b) = 1+∑ size(ci), where ci are children of b.
In order to check whether b is a centroid bag, we check that (i) the size of all the subtrees

rooted at its children are less than n/2, and (ii) the size of the subtree rooted at b is at least
n/2. The second condition is checking whether, after removing b, the size of the component
containing its ancestors is at most n/2. The running time for finding the centroid node is linear
in the subtree size by our procedure because we can run a BFS to get to the leaf node and
calculate the size backward. Suppose every layer has b1, ..., bi nodes and each corresponds to
the centroid of T1, ..., Ti subtree. All those subtrees are pairwise disjoint based on the property
of centroid decomposition, and based on previous analysis, we have the whole running time

for finding b1 to bi is
i
∑
j=1

O(size(Ti)) = O(n). Therefore, each layer takes O(n) time to construct,

and as the centroid decomposition can have at most O(log n) layers, the overall running time
is O(n ⋅ log n).

The next step is to compute distances based on the centroid decomposition. For every bag
b and vertex v ∈ Vb, we compute all the distance values from v to the vertices appearing in any
of the bags in the subtree of the centroid decomposition T′ rooted at b.

For example, in Figure 3, we calculate the distance between vertices in bag 12 and all the
vertices that appear in any of the bags 8, 13, 14 and 15.

Consider the way our centroid decomposition T′ is constructed. At each step, we find a
centroid bag c, put it as the root of T′ and remove it from the tree decomposition T. This breaks
T into several connected components T1, T2, . . . , Tm. Let V(Ti) be the set of vertices in G that
appear in any of the bags in Ti. Since T is a tree decomposition, Vc is a cut in G separating
the V(Ti)’s. In other words, if u, v ∈ V(Ti) ∪Vc then the shortest path from u to v never exits
V(Ti) ∪Vc. Moreover, since we have added shortcut edges to our graph, if u, v ∈ V(Ti), then
there is a shortest path from u to v that never exits V(Ti).

Based on observations above, we can compute the distance in a bottom-up fashion on T′.
Suppose we want to find the distance from v ∈ Vc to a vertex u ∈ V(Ti) ∪Vc. If u ∈ Vc, then we
already have a shortcut edge that gives us the distance. Otherwise, let bi be the bag in Ti that is
connected to c in T. The path from v to u has to intersect Vbi ∩Vc. So, for every w in Vbi ∩Vc, we
compute dis(v, w) +dis(w, u) and take the minimum. Here, dis(v, w) is known since v and w
appear in the same bag c and dis(w, u) can be found by a recursive distance query (see below)
on Ti since the shortest path from w to u does not leave Ti.

In the final step of our algorithm, we perform the randomized algorithm discussed in Sec-
tion 3.4. More precisely, we randomly select Θ(

√
n/ϵ2) different pairs of vertices and query

their distance values with the help of our centroid decomposition. Note that the same query
mechanism is also used in our preprocessing above:

Lemma 2. Given a pair (u, v) of vertices, the running time to answer a distance query from u to v is
O(log log n + k), where n is the number of vertices in G and k is the width of the tree decomposition.

10

Proof. Let us consider any pair of vertices (u, v). The initial step is to identify the highest bags
bu, bv in the centroid decomposition T′ containing them. We can precompute and keep this
information.

Based on the cut property of tree decompositions, it is evident that any path from vertex
u to vertex v must traverse through the vertices that are present in the bags lying on the path
between the highest bags containing u and v, denoted as bu and bv respectively.

Referring to Lemma 1, this path will pass through the lowest common ancestor of bu and
bv, which we will denote by lca(bu, bv)within T′.

After determining the distances from every vertex w in the bag lca(bu, bv) to u and v,
our objective is to calculate dis(u, v). This can be computed through the formula dis(u, v) =
minw∈lca(bu,bv)(dis(u, w)+ dis(w, v)).

This computation can be completed in O(k) time. For the remainder of the proof, we will
demonstrate that it is possible to find lca(bu, bv) in O(log log n) time.

To find the lowest common ancestor efficiently, we will do further preprocessing on our
centroid decomposition. For every bag b in the centroid decomposition, we define a vector
called anc(b), which holds the ancestor information of b. Formally, anc(b) is defined as follows:

• anc(b)[0] is set to the parent of the bag b, denoted as Pb. However, if b is the root bag in
the centroid decomposition, anc(b)[0] is set to -1.

• For i > 0, anc(b)[i] is defined recursively as anc(anc(b)[i − 1])[i − 1]. This means that
anc(b)[i] stores the ancestor of bag b that is 2i steps away.

We can construct the anc vector by using a dynamic programming approach. Initially, we
compute the ancestor that is 20 steps away, then iteratively use the information about the 2i−1-
th ancestor to compute the 2i-th ancestor. Given that the centroid decomposition has at most
O(log n) levels, we only need to calculate O(log log n) values for anc.

This construction process should be completed prior to executing the distance query. It is
worth noting that the construction of anc vectors takes O(n ⋅ log log n) time.

We now focus on finding the lowest common ancestor of bu and bv, denoted as lca(bu, bv).
The first step involves ensuring that bu and bv are at the same height in the centroid decompo-
sition. Let us assume that bu is closer to the root than bv, and let the difference in distances from
bu and bv to the root bag be d. We can replace bv with its d-th ancestor. Utilizing the anc infor-
mation, this can be accomplished through binary search, which takes O(log d) = O(log log n)
time since d ≤ log n. For the rest of the discussion, we will assume that bu and bv are at the
same level, meaning they are equidistant from the root bag in T′.

The main idea of the algorithm lies in iterating through anc(bu) and anc(bv) until the first
common ancestor at the same index is found. In other words, we need to find the minimum
index i such that anc(bu)[i] = anc(bv)[i]. We can use a binary search to determine such i, hence
finding the lca(bu, bv). The running time for this step is bounded by log log n

Therefore, combining this with the time taken to iterate through every vertex in the bag,
the total running time is O(log log n + k).

An additional aspect of consideration is that the aforementioned randomized algorithm
has a 2/3 probability of achieving a (1 + ϵ)-approximation result. Consequently, to reduce
the probability of failure to O(1/n), we can execute the algorithm Θ(log n) times, selecting
the median of the results as the final output. It follows from the standard techniques using
Chernoff bounds and properties of median that the likelihood of not getting a result within a
(1+ ϵ)-approximation ratio is O(1/n).
RUNTIME ANALYSIS. Let us examine the time it takes for the entire algorithm to run. It takes
O(n ⋅ k3) time during the preprocessing to get all-pairs distances in each bag. Additionally, it
takes O(n ⋅ log n) time to get the centroid decomposition of T, and O(n ⋅ log n ⋅ k3) to calculate
the distance from the bag to all other bags in its subtree in centroid decomposition T′. When

11

it comes to distance queries, we perform Θ(
√

n ⋅ log n/ϵ2) distance queries in total, and each
query takes O(log log n+ k) time to calculate. Therefore, the distance query takes O(

√
n ⋅ log n ⋅

(log log n + k)/ϵ2) time. Finding the median is simple, as we only have Θ(log n) amount of
data to sort and grab the median, taking O(log n ⋅ log log n) time, which is negligible compared
to other parts. Our runtime is O(n ⋅ log n ⋅ k3 +

√
n ⋅ log n ⋅ (log log n + k)/ϵ2), which is almost

linear FPT treating both k and 1/ϵ as parameters.

5 Experimental Results

In this section, we present our experimental results, comparing the runtimes of our algorithm
with previous approaches. We have used the following datasets for our experiments:

• PubChem Dataset [23].

• Protein Data Bank (PDB) Dataset [24].

In recent studies [26], it has been observed that the chemical compounds in the PubChem
database exhibit bounded treewidth. Notably, more than 99.9% of these compounds have
a treewidth of less than 10, with very rare compounds having treewidth of around 20. In
addition to this, we have observed that large protein molecules in the PDB dataset also have
bounded treewidth of 3. These discoveries are intriguing and suggest a promising direction
for future research in parameterized algorithms for chemical graph theory.

In Figure 4, we have presented a comparison of the performances of algorithms on well-
known large protein molecules. We present a comparison of running time concerning the
number of vertices in the molecule. This experimentation result serves as a proof of concept
of the theory presented in the earlier section and supports our claim of using parameterized
algorithms for proteins and molecules arising in computational chemistry and biology.

Note that we have set the cutoff time to be 1000 seconds in the experimentation.
In Figure 5, we showcase a comparative analysis of algorithmic performances on molecules

derived from the handpicked important data sources in PubChem database. This comparison
evaluates the running time relative to the number of vertices of molecules. We present two
versions of the data: the original raw dataset and a smoothed counterpart. A near-uniform
performance across all algorithms was observed for molecules on the smaller end of the spec-
trum. The timings are captured in milliseconds, so they are susceptible to minor fluctuations.
To enhance clarity and mitigate noise, we employ a rolling median on vertex size, using a win-
dow of size 5. Furthermore, we focus on molecules with vertex counts surpassing 300 to keep
our visualizations pertinent and legible.

In Figure 6, we provide the distribution of treewidth for the PubChem datasets we are
using. Most molecules have a treewidth less than 10, with only a small fraction having a
treewidth around 15. This observation is consistent with the findings reported in [26].

To ensure accurate comparisons, we have selected different values for epsilon based on the
dataset source. Specifically, we have set epsilon to 0.3 for the Protein Data Bank dataset and
0.1 for the PubChem dataset. Additionally, timing measurements are reported in milliseconds
for small molecules and seconds for large molecules, with the median time calculated across
all observations.

Based on our experimental results, it is apparent that our algorithm exhibits superior per-
formance for large molecules. Moreover, compared to alternative algorithms, its performance
remains competitive when applied to small molecules. Specifically, the orthogonal range
searching is the only algorithm whose runtime is competitive with our algorithm. It is worth
noting that while the orthogonal range searching operates as an exact algorithm, it does not
offer fixed-parameter tractable (FPT) time. Contrarily, our methodology utilizes a randomized
approximation approach while maintaining FPT time.

12

EXPERIMENTATION SPECIFICS. We implemented above mentioned algorithms in C++. For the
preprocessing of molecular data, we integrated certain Python libraries, notably pysmiles [33]
and RDKit [34]. Our initial step involved acquiring molecular data from the PDB (Protein Data
Bank) and PubChem databases. Subsequently, we employed the mentioned Python libraries
to transform this molecular data into graphs utilizing NetworkX [35]. Later, we transitioned
these graphs into the conventional .gr format, which is compatible with tree-decomposition
solvers. For the computation of tree-decompositions of these graphs, we selected FlowCutter
[36]. We conducted experiments on the system with the following configuration: Intel Core i5
machine with 8GB of RAM running MacOS Version 10.13.6.

0 10000 20000 30000 40000 50000 60000 70000 80000
Graph Size (number of vertices)

0

200

400

600

800

1000

Ti
m

in
g

(s
)

Performance of Algorithms on PDB Dataset

algorithm
Our Algorithm
Approximation Algorithm
DP on Tree Decomposition
Floyd-Warshall
Orthogonal Range Searching
BFS

Figure 4: Performance on Protein Data Bank (PDB) Dataset with cuttoff time of 1000 seconds

0 100 200 300 400 500
Graph Size (number of vertices)

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

in
g

(m
s)

Raw Performance of Algorithms on Molecules from PubChem
algorithm

Our Algorithm
Approximation Algorithm
Orthogonal Range Searching
DP on Tree Decomposition
BFS
Floyd-Warshall

(a) Algorithm timings vs. graph size (original data).

300 350 400 450 500
Graph Size (number of vertices)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

in
g

(m
s)

Smoothed Performance of Algorithms on Molecules from PubChem
algorithm

Approximation Algorithm
BFS
DP on Tree Decomposition
Floyd-Warshall
Orthogonal Range Searching
Our Algorithm

(b) Smoothed algorithm timings vs. graph size.

Figure 5: Performance Comparison on PubChem Dataset: Timing vs. Number of Vertices.
The left graph displays original data, while the right graph shows data with a rolling median
applied for clarity.

6 Conclusion

We presented a novel randomized approximation algorithm for computing the Wiener index
of a graph. Our algorithm is based on tree and centroid decomposition, achieving a runtime
of O(n ⋅ log n ⋅ k3 +

√
n ⋅ log n ⋅ (log log n + k)/ϵ2), which is a significant improvement over the

existing algorithms. We have also provided experimental evidence supporting our claim on

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Treewidth

100

101

102

103

104

105

106

Lo
g

Fr
eq

ue
nc

y

Histogram of Treewidth

Figure 6: Treewidth Distribution of PubChem Datasets

molecules from well-known chemical data repositories like PubChem and the Protein Data
Bank.

References

[1] N. Trinajstic, Chemical graph theory, Routledge, 2018.

[2] H. Wiener, Structural determination of paraffin boiling points, Journal of the American
chemical society 69 (1) (1947) 17–20.

[3] J. Leszczynski, Handbook of computational chemistry, Vol. 3, Springer Science & Business
Media, 2012.

[4] S. Wagner, H. Wang, Introduction to chemical graph theory, CRC Press, 2018.

[5] L. Xue, J. Bajorath, Molecular descriptors in chemoinformatics, computational combinato-
rial chemistry, and virtual screening, Combinatorial chemistry & high throughput screen-
ing 3 (5) (2000) 363–372.

[6] R. C. Entringer, D. E. Jackson, D. Snyder, Distance in graphs, Czechoslovak Mathematical
Journal 26 (2) (1976) 283–296.

[7] L. Šoltés, Transmission in graphs: a bound and vertex removing, Mathematica Slovaca
41 (1) (1991) 11–16.

[8] D. Bonchev, Chemical graph theory: introduction and fundamentals, Vol. 1, CRC Press,
1991.

[9] A. G. Dossetter, E. J. Griffen, A. G. Leach, Matched molecular pair analysis in drug dis-
covery, Drug Discovery Today 18 (15-16) (2013) 724–731.

[10] E. Estrada, E. Uriarte, Recent advances on the role of topological indices in drug discovery
research, Current Medicinal Chemistry 8 (13) (2001) 1573–1588.

[11] C. Helma, Predictive toxicology, CRC Press, 2005.

[12] J. Xu, A. Hagler, Chemoinformatics and drug discovery, Molecules 7 (8) (2002) 566–600.

[13] S. Cabello, C. Knauer, Algorithms for graphs of bounded treewidth via orthogonal range
searching, Computational Geometry 42 (9) (2009) 815–824.

14

[14] V. Chepoi, S. Klavžar, The wiener index and the szeged index of benzenoid systems in
linear time, Journal of chemical information and computer sciences 37 (4) (1997) 752–755.

[15] A. A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems, Acta
Applicandae Mathematica 72 (2002) 247–294.

[16] O. Goldreich, D. Ron, Approximating average parameters of graphs, Random Structures
& Algorithms 32 (4) (2008) 473–493.

[17] B. Mohar, T. Pisanski, How to compute the wiener index of a graph, Journal of mathemat-
ical chemistry 2 (3) (1988) 267–277.

[18] M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
S. Saurabh, Parameterized algorithms, Springer, 2015.

[19] H. L. Bodlaender, et al., A tourist guide through treewidth (1992).

[20] H. L. Bodlaender, Dynamic programming on graphs with bounded treewidth, in: ICALP,
Vol. 317, 1988, pp. 105–118.

[21] A. Yamaguchi, K. F. Aoki, H. Mamitsuka, Graph complexity of chemical compounds in
biological pathways, Genome Informatics 14 (2003) 376–377.

[22] A. Yamaguchi, K. F. Aoki-Kinoshita, Chemical compound complexity in biological path-
ways, Quantitative Graph Theory: Mathematical Foundations and Applications (2014)
471.

[23] N. C. for Biotechnology Information, Pubchem database, https://pubchem.ncbi.nlm.
nih.gov, [Online; accessed [29-June-2023]] (Accessed in [2023]).

[24] RCSB, Protein data bank, https://www.rcsb.org, [Online; accessed [29-June-2023]] (Ac-
cessed in [2023]]).

[25] T. Akutsu, H. Nagamochi, Comparison and enumeration of chemical graphs, Computa-
tional and structural biotechnology journal 5 (6) (2013) e201302004.

[26] G. K. Conrado, A. K. Goharshady, H. J. Motwani, S. Novozhilov, Parameterized algo-
rithms for topological indices in chemistry, arXiv preprint arXiv:2303.13279 (2023).

[27] P. Wan, J. Tu, S. Zhang, B. Li, Computing the numbers of independent sets and matchings
of all sizes for graphs with bounded treewidth, Applied Mathematics and Computation
332 (2018) 42–47.

[28] A. Yamaguchi, K. F. Aoki, H. Mamitsuka, Finding the maximum common subgraph of
a partial k-tree and a graph with a polynomially bounded number of spanning trees,
Information Processing Letters 92 (2) (2004) 57–63.

[29] R. W. Floyd, Algorithm 97: shortest path, Communications of the ACM 5 (6) (1962) 345.

[30] S. Chaudhuri, C. D. Zaroliagis, Shortest paths in digraphs of small treewidth. part i: Se-
quential algorithms, Algorithmica 27 (2000) 212–226.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, MIT press,
2022.

[32] J. Nešetřil, P. O. De Mendez, Structural properties of sparse graphs, in: Building Bridges:
Between Mathematics and Computer Science, Springer, 2008, pp. 369–426.

15

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://www.rcsb.org

[33] pysmiles: A python library for parsing smiles strings, https://pypi.org/project/
pysmiles/, accessed: [29-June-2023].

[34] Rdkit: Open-source cheminformatics, https://www.rdkit.org, accessed: [29-June-2023].

[35] A. Hagberg, P. Swart, D. S Chult, Exploring network structure, dynamics, and function
using networkx, Tech. rep., Los Alamos National Lab.(LANL), Los Alamos, NM (United
States) (2008).

[36] Flowcutter: Software for computing flow-based balanced graph cuts, https://github.
com/kit-algo/flow-cutter-pace17, accessed: [29-June-2023].

Authors’ addresses:

Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong

Giovanna K. Conrado: gkc@connect.ust.hk
Amir K. Goharshady: goharshady@cse.ust.hk
Pavel Hudec: phudec@connect.ust.hk
Pingjiang Li: pliav@connect.ust.hk
Harshit J. Motwani: csemotwani@ust.hk

16

https://pypi.org/project/pysmiles/
https://pypi.org/project/pysmiles/
https://www.rdkit.org
https://github.com/kit-algo/flow-cutter-pace17
https://github.com/kit-algo/flow-cutter-pace17

	Introduction
	Preliminaries
	Existing Approaches
	Orthogonal Range Searching on Tree Decompositions
	Dynamic Programming Algorithm based on Tree Decomposition
	Breadth-first Search (BFS)
	An Approximation Algorithm

	Our Algorithm
	Experimental Results
	Conclusion

