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Abstract. Few-Shot Learning (FSL) algorithms have made substantial
progress in learning novel concepts with just a handful of labelled data.
To classify query instances from novel classes encountered at test-time,
they only require a support set composed of a few labelled samples. FSL
benchmarks commonly assume that those queries come from the same
distribution as instances in the support set. However, in a realistic set-
ting, data distribution is plausibly subject to change, a situation referred
to as Distribution Shift (DS). The present work addresses the new and
challenging problem of Few-Shot Learning under Support/Query Shift
(FSQS) i.e., when support and query instances are sampled from related
but different distributions. Our contributions are the following. First, we
release a testbed for FSQS, including datasets, relevant baselines and a
protocol for a rigorous and reproducible evaluation. Second, we observe
that well-established FSL algorithms unsurprisingly suffer from a con-
siderable drop in accuracy when facing FSQS, stressing the significance
of our study. Finally, we show that transductive algorithms can limit
the inopportune effect of DS. In particular, we study both the role of
Batch-Normalization and Optimal Transport (OT) in aligning distribu-
tions, bridging Unsupervised Domain Adaptation with FSL. This results
in a new method that efficiently combines OT with the celebrated Pro-
totypical Networks. We bring compelling experiments demonstrating the
advantage of our method. Our work opens an exciting line of research
by providing a testbed and strong baselines. Our code is available at
https://github.com/ebennequin/meta-domain-shift.

Keywords: Few-Shot Learning - Distribution Shift - Adaptation - Op-
timal Transport.
1 Introduction

In the last few years, we have witnessed outstanding progress in supervised
deep learning . As the abundance of labelled data during training is rarely
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(a) Standard FSL (b) FSL under Support / Query Shift

Fig. 1. [llustration of the FSQS problem with a 5-way 1-shot classification task sampled
from the minilmageNet dataset . In (a), a standard FSL setting where support and
query sets are sampled from the same distribution. In (b), the same task but with
shot-noise and contrast perturbations from applied on support and query sets
(respectively) that results in a support-query shift. In the latter case, a similarity
measure based on the Euclidean metric may become inadequate.

encountered in practice, ground-breaking works in Few-Shot Learning (FSL)
have emerged , particularly for image classification. This paradigm
relies on a straightforward setting. At test-time, given a set of not seen during
training and few (typically 1 to 5) labelled examples for each of those classes, the
task is to classify query samples among them. We usually call the set of labelled
samples the support set, and the set of query samples the query set. Well-adopted
FSL benchmarks commonly sample the support and query sets from
the same distribution. We stress that this assumption does not hold in most
use cases. When deployed in the real-world, we expect an algorithm to infer on
data that may shift, resulting in an acquisition system that deteriorates, lighting
conditions that vary, or real world objects evolving .

The situation of Distribution Shift (DS) i.e., when training and testing dis-
tributions differ, is ubiquitous and has dramatic effects on deep models [16], mo-
tivating works in Unsupervised Domain Adaptation , Domain Generalization
or Test-Time Adaptation . However, the state of the art brings insuffi-
cient knowledge on few-shot learners’ behaviours when facing distribution shift.
Some pioneering works demonstrate that advanced FSL algorithms do not han-
dle cross-domain generalization better than more naive approaches [5]. Despite
its great practical interest, FSL under distribution shift between the support and
query sets is an under-investigated problem and attracts a very recent attention
. We refer to it as Few-Shot Learning under Support/Query Shift (FSQS)
and provide an illustration in Figure[I] It reflects a more realistic situation where
the algorithm is fed with a support set at the time of deployment and infers con-
tinuously on data subject to shift. The first solution is to re-acquire a support
set that follows the data’s evolution. Nevertheless, it implies human intervention
to select and annotate data to update an already deployed model, reacting to
a potential drop in performances. The second solution consists in designing an
algorithm that is robust to the distribution shift encountered during inference.
This is the subject of the present work. Our contributions are:

1. FewShiftBed: a testbed for FSQS available at https://github.com/ebennequin/
meta-domain-shift. The testbed includes 3 challenging benchmarks along
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with a protocol for fair and rigorous comparison across methods as well as
an implementation of relevant baselines, and an interface to facilitate the
implementation of new methods.

2. We conduct extensive experimentation of a representative set of few-shot
algorithms. We empirically show that Transductive Batch-Normalization [3]
mitigates an important part of the inopportune effect of FSQS.

3. We bridge Unsupervised Domain Adaptation (UDA) with FSL to address
FSQS. We introduce Transported Prototypes, an efficient transductive algo-
rithm that couples Optimal Transport (OT) [23] with the celebrated Proto-
typical Networks [28]. The use of OT follows a long-standing history in UDA
for aligning representations between distributions |2} [13]. Our experiments
demonstrate that OT shows a remarkable ability to perform this alignment
even with only a few samples to compare distributions and provide a simple
but strong baseline.

In Section [2] we provide a formal statement of FSQS, and we position this new
problem among existing learning paradigms. In Section[3] we present FewShiftBed.
We detail the datasets, the chosen baselines, and a protocol that guarantees a
rigorous and reproducible evaluation. In Section [4] we present a method that
couples Optimal Transport with Prototypical Networks [28]. Finally, in Section
we conduct an extensive evaluation of baselines and our proposed method
using the testbed.

2 The Support-Query Shift problem

2.1 Statement

Notations. We consider an input space X, a representation space Z C R? (d > 0)
and a set of classes C. A representation is a learnable function from X to Z
and is noted ¢(+;0) with § € © for © a set of parameters. A dataset is a set
A(C,D) defined by a set of classes C and a set of domains D i.e., a domain
D € D is a set of IID realizations from a distribution noted pp. For two domains
D,D’ € D, the distribution shift is characterized by pp # pps. For instance, if
the data consists of images of letters handwritten by several users, D can consist
of samples from a specific user. Referring to the well known UDA terminology
of source / target [22], we define a couple of source-target domains as a couple
(Ds, Dy) with pp, # pp,, thus presenting a distribution shift. Additionally, given
C C Cand D € D, the restriction of a domain D to images with a label that
belongs to C is noted D€.

Dataset splits. We build a split of A(C, D), by splitting D (respectively C) into
Dirain and Dyest (respectively Cipain and Ciesy) such that Dipain N Diesy = 0 and
Dtrain U Dtest = D (feSpeCtiVely Ctrain N thst = () and Ctrain U thst = C)
This gives us a train/test split with the datasets A¢rain = A(Ctrain, Dirain) and
Atest = A(Ciest, Dtest). By extension, we build a validation set following the
same protocol.
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Train-Time Test-Time Support / Query shift
pp, # Pp,
New classes

Ctrain ﬂ Ctest = @

New shifts

Dtrain ﬂ Dtest: @

Fig. 2. During meta-learning (Train-Time), each episode contains a support and a
query set sampled from different distributions (for instance, illustrated by noise and
contrasts as in Figure[L(b)) from a set of training domains (Derain), reflecting a situation
that may potentially occurs at test-time. When deployed, the FSL algorithm using a
trained backbone is fed with a support set sampled from new classes. As the algorithm
is subject to infer continuously on data subject to shift (Test-Time), we evaluate the
algorithm on data with an unknown shift (Dtest). Importantly, both classes (Cerain N
Ciest = 0) and shifts (Dirain N Dest = @) are not seen during training, making the FSQS
a challenging problem of generalization.

Few-Shot Learning under Support-Query Shift (FSQS). Given:

- D € {Dtrairu Dtest} and C’ € {Ctraina Ctest}7

— a couple of source-target domains (D, D;) from D’,

— a set of classes C C C';

— a small labelled support set S = (;, yi)z‘:l,...,|s\ (named source support set)

such that for all 4, y; € C and =; € D, i.e., S C DS;
— an unlabelled query set Q = (;),_; 10| (named target query set) such that

for all i, y; € C and z; € Dy i.e., Q C Dtc.

The task is to predict the labels of query set instances in C. When |C| = n
and the support set contains k labelled instances for each class, this is called
an n-way k-shot FSQS classification task. Note that this paradigm provides an
additional challenge compared to classical Few-shot classification tasks, since
at test time, the model is expected to generalize to both new classes and new
domains while support set and query set are sampled from different distributions.
This paradigm is illustrated in Figure 2]

Episodic training. We build an episode by sampling some classes C C Cipain,
and a source and target domain Dy, D; from Dipain. We build a support set

S = (Iivyi)i:1...\3| of instances from source domain D¢, and a query set Q =

(@is Yi)iz|s| 41, s|+|o ©Of instances from target domain DY, such that Vi €
[1,|S|+19Q|], i € C. Using the labelled examples from S and unlabelled in-
stances from Q, the model is expected to predict the labels of Q. The parameters
of the model are then trained using a cross-entropy loss between the predicted
labels and ground truth labels of the query set.
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2.2 Positioning and Related Works

To highlight FSQS’s novelty, our discussion revolves around the problem of in-
ferring on a given Query Set provided with the knowledge of a Support Set. We
refer to this class of problems as SQ problems. Intrinsically, FSL falls into the
category of SQ problems. Interestingly, Unsupervised Domain Adaptation [22)
(UDA), defined as labelling a dataset sampled from a target domain based on
labelled data sampled from a source domain, is also a SQ problem. Indeed, in
this case, the source domain plays the role of support, while the target domain
plays the query’s role. Notably, an essential line of study in UDA leverages the
target data distribution for aligning source and target domains, reflecting the
importance of transduction in a context of adaptation |2, [13] i.e., performing
prediction by considering all target samples together. Transductive algorithms
also have a special place in FSL [10} |21} |25] and show that leveraging a query
set as a whole brings a significant boost in performances. Nevertheless, UDA
and FSL exhibit fundamental differences. UDA addresses the problem of distri-
bution shift using important source data and target data (typically thousands
of instances) to align distributions. In contrast, FSL focuses on the difficulty of
learning from few samples. To this purpose, we frame UDA as both SQ problem
with large transductivity and Support / Query Shift, while Few-Shot Learning is
a SQ problem, eventually with small transductivity for transductive FSL. Thus,
FSQS combines both challenges: distribution shift and small transductivity. This
new perspective allows us to establish fruitful connections with related learning
paradigms, presented in Table [1} that we review in the following. A thorough
review is available in Appendix Aﬂ

Adaptation. Unsupervised Domain Adaptation (UDA) requires a whole target
dataset for inference, limiting its applications. Recent pioneering works, referred
to as Test-Time Adaptation (TTA), adapt at test-time a model provided with a
batch of samples from the target distribution. The proposed methodologies are
test-time training by self-supervision [29], updating batch-normalization statis-
tics |27] or parameters [32], or meta-learning to condition predictions on the
whole batch of test samples for an Adaptative Risk Minimization (ARM) [33].
Inspired from the principle of invariant representations [2, 13|, the seminal work
[7] brings Optimal Transport (OT) 23] as an efficient framework for aligning
data distributions. OT has been recently applied in a context of transductive
FSL [17] and our proposal (TP) is to provide a simple and strong baseline fol-
lowing the principle of OT as it is applied in UDA. In this work, following [3],
we also study the role of Batch-Normalization for SQS, that points out the role
of transductivity. Our conviction was that the batch-normalization is the first
lever for aligning distributions [27] 32].

Few-Shot Classification. We usually frame Few-Shot Classification methods [5]
as either metric-based methods [31} 28], or optimization-based methods that
learn to fine-tune by adapting with few gradient steps [12]. A promising line of

! mttps://arxiv.org/abs/2105.11804
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SQ problems Train-Time Test-Time
Support Query Support Query New | New
Size Labels|Size Labels| Size Labels|Transductivity|classes|domains
g FSL l28‘712i Few v |Few V Few v Point-wise v X
0 TransFSL |25‘ 21i Few Vv |Few V' Few v Small v X
Zo CDFSL |5] Few vV |Few V Few v Point-wise v v
UDA l24 22] Large v Large
n TTA [29‘ 27 32: Large v Small v
@ ARM [33 Large v |[Few Small v
¥ Ind FSQS Fow « |Few v |Few v | Point-wise v v
Trans FSQS Few v |Few V Few v Small v v

Table 1. An overview of SQ problems. We divide SQ problems into two categories,
presence or not of Support-Query shift; No SQS vs SQS. We consider three classes of
transductivity: point-wise transductivity that is equivalent to inductive inference, small
transductivity when inference is performed at batch level (typically in [32} [33]), and
large transductivity when inference is performed at dataset level (typically in UDA).
New classes (resp. new domains) describe if the model is evaluated at test-time on novel
classes (resp. novel domains). Note that we frame UDA as a fully test-time algorithm.
Notably, Cross-Domain FSL (CDFSL) [5] assumes that the support set and query set
are drawn from the same distribution, thus No SQS.

study leverages transductivity (using the query set as unlabelled data while in-
ductive methods predict individually on each query sample). Transductive Prop-
agation Network [21] meta-learns label propagation from the support to query
set concurrently with the feature extractor. Transductive Fine-Tuning [10] mini-
mizes the prediction entropy of all query instances during fine-tuning. Evaluating
cross-domain generalization of FSL (FSCD), i.e., a distributional shift between
meta-training and meta-testing, attracts the attention of a few recent works [5].
Zhao et al. propose a Domain-Adversarial Prototypical Network [34] in order
to both align source and target domains in the feature space while maintaining
discriminativeness between classes. Sahoo et al. combine Prototypical Networks
with adversarial domain adaptation at the task level [26]. Notably, Cross-Domain
Few-Shot Learning [5| (CDFSL) addresses the distributional shift between meta-
training and meta-testing assuming that the support set and query set are drawn
from the same distribution, not making it a SQ problem with support-query shift.
Concerning the novelty of FSQS, we acknowledge the very recent contribution of
Du et al. [11] which studies the role of learnable normalization for domain gener-
alization, in particular when support and query sets are sampled from different
domains. Note that our statement is more ambitious: we evaluate algorithms on
both source and target domains that were unseen during training, while in their
setting the source domain has already been seen during training.

Benchmarks in Machine Learning Releasing benchmark has always been an
important factor for progress in the Machine Learning field, the most outstand-
ing example being ImageNet [9] for the Computer Vision community. Recently,
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DomainBed [14] aims to settle Domain Generalization research into a more rig-
orous process, where FewShiftBed takes inspiration from it. Meta-Dataset [30]
is an other example, this time specific to FSL.

3 FewShiftBed: A Pytorch testbed for FSQS

3.1 Datasets

We designed three new image classification datasets adapted to the FSQS prob-
lem. These datasets have two specificities.

1. They are dividable into groups of images, assuming that each group corre-
sponds to a distinct domain. A key challenge is that each group must contain
enough images with a sufficient variety of class labels, so that it is possible
to sample FSQS episodes.

2. They are delivered with a train/val/test split (A¢rain, Aval, Atest ), along both
the class and the domain axis. This split is performed following the principles
detailed in Section [2| Therefore, these datasets provide true few-shot tasks
at test time, in the sense that the model will not have seen any instances
of test classes and domains during training. Note that since we split along
two axes, some data may be discarded (for instance images from a domain
in Dirain with a label in Ciegt). Therefore it is crucial to find a split that
minimizes this loss of data.

Meta-CIFAR100-Corrupted (MC100-C). CIFAR-100 |19] is a dataset of 60k
three-channel square images of size 32 x 32, evenly distributed in 100 classes.
Classes are evenly distributed in 20 superclasses. We use the same method used
to build CIFAR-10-C [16], which makes use of 19 image perturbations, each one
being applied with 5 different levels of intensity, to evaluate the robustness of a
model to domain shift. We modify their protocol to adapt it to the FSQS prob-
lem: (i) we split the classes with respect to the superclass structure, and assign
13 superclasses (65 classes) to the training set, 2 superclasses (10 classes) to the
validation set, and 5 superclasses (25 classes) to the testing set; (ii) we also split
image perturbations (acting as domains), following the split of [33]. We obtain
2,184k transformed images for training, 114k for validation and 330k for testing.
The detailed split is available in the documentation of our code repository.

minilmageNet-Corrupted (mIN-C). minilmageNet |31] is a popular benchmark
for few-shot image classification. It contains 60k images from 100 classes from
the ImageNet dataset. 64 classes are assigned to the training set, 16 to the
validation set and 20 to the test set. Like MC100-C, we build mIN-C using the
image perturbations proposed by [16] to simulate different domains. We use the
original split from [31] for classes, and use the same domain split as for MC100-
C. Although the original minilmageNet uses 84 x 84 images, we use 224 x 224
images. This allows us to re-use the perturbation parameters calibrated in [16)
for ImageNet. Finally, we discard the 5 most time-consuming perturbations. We
obtain a total of 1.2M transformed images for training, 182k for validation and
228k for testing. The detailed split in the documentation of our code repository.
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FEMNIST-FewShot (FEMNIST-FS). EMNIST [6] is a dataset of images of
handwritten digits and uppercase and lowercase characters. Federated-EMNIST

[4] is a version of EMNIST where images are sorted by writer (or user). FEMNIST-
F'S consists in a split of the FEMNIST dataset adapted to few-shot classification.

We separate both users and classes between training, validation and test sets.

We build each group as the set of images written by one user. The detailed split

is available in the code. Note that in FEMNIST, many users provide several

instances for each digits, but less than two instance for most letters. Therefore

it is hard to find enough samples from a user to build a support set or a query

set. As a result, our experiments are limited to classification tasks with only one

sample per class in both the support and query sets.

3.2 Algorithms

We implement in FewShiftBed two representative methods of the vast litera-
ture of FSL, that are commonly considered as strong baselines: Prototypical
Networks (ProtoNet) [28] and Matching Networks (MatchingNet) [31]. Be-
sides, for transductive FSL, we also implement with Transductive Propagation
Network (TransPropNet) [21] and Transductive Fine-Tuning (FTNet) [10].
We also implement our novel algorithm Transported Prototypes (TP) which is
detailed in Section [l FewShiftBed is designed for favoring a straightforward
implementation of a new algorithm for FSQS. To add a new algorithm, we only
need to implement the set_forward method of the class AbstractMetalLearner.
We provide an example with our implementation of the Prototypical Network
[28] that only requires few line of codes:
class ProtoNet (AbstractMetaLearner):
def set_forward(self, support_images, support_labels, query_images):
z_support, z_query = self.extract_features(support_images, query_images)

z_proto = self.get_prototypes(z_support, support_labels)
return - euclidean_dist(z_query, z_proto)

3.3 Protocol

To prevent the pitfall of misinterpreting a performance boost, we draw three
recommendations to isolate the causes of improvement rigorously.

— How important is episodic training? Despite its wide adoption in meta-
learning for FSL, in some situation episodic training does not perform better
than more naive approaches [5]. Therefore we recommend to report both the
result obtained using episodic training and standard ERM (see the docu-
mentation of our code repository).

— How does the algorithm behave in the absence of Support-Query
Shift? In order to assess that an algorithm designed for distribution shift
does not provide degraded performance in an ordinary concept, and to pro-
vide a top-performing baseline, we recommend reporting the model’s perfor-
mance when we do not observe, at test-time, a support-query shift. Note that
it is equivalent to evaluate the performance in cross-domain generalization,
as firstly described in [5].
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Fig. 3. Overview of Transported Prototypes. (1) A support set and a query set are fed
to a trained backbone that embeds images into a feature space. (2) Due to the shift
between distributions, support and query instances are embedded in non-overlapping
areas. (3) We compute the Optimal Transport from support instances to query in-
stances to build the transported support set. Note that we represent the transport
plan only for one instance per class to preserve clarity in the schema. (4) Provided
with the transported support, we apply the Prototypical Network i.e., L* similar-
ity between transported support and query instances.

— Is the algorithm transductive? The assumption of transductivity has
been responsible of several improvements in FSL while it has been
demonstrated in [3] that MAML benefits strongly from the Transductive
Batch-Normalization (TBN). Thus, we recommend specifying if the method
is transductive and adapting the choice of the batch-normalization accord-
ingly (Conventional Batch Normalization and Transductive Batch Nor-
malization for inductive and transductive methods, respectively) since trans-
ductive batch normalization brings a significant boost in performance [3].

4 Transported Prototypes: A baseline for FSQS

4.1 Overall idea

We present a novel method that brings UDA to FSQS. As aforementioned, FSQS
presents new challenges since we no longer assume that we sample the support
set and the query set from the same distribution. As a result, it is unlikely that
the support set and query sets share the same representation space region (non-
overlap). In particular, the L? distance, adopted in the celebrated Prototypical
Network , may not be relevant for measuring similarity between query and
support instances, as presented in Figure |1} To overcome this issue, we develop
a two-phase approach that combines Optimal Transport (Transportation Phase)
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and the celebrated Prototypical Network (Prototype Phase). We give some back-
ground about Optimal Transport (OT) in Section and the whole procedure
is presented in Algorithm

4.2 Background

Definition. We provide some basics about Optimal Transport (OT). A thorough
presentation of OT is available at |23]. Let ps and p; be two distributions on X,
we note I1(ps, p:) the set of joint probability with marginal ps and p; i.e., Vr €
H(ps,pt),Vo € X, w(-,z) = ps,n(x,-) = ps. The Optimal Transport, associated
to cost ¢, between pg and p; is defined as:

We(ps,pe) == min E(ﬂ:s,wt)Nﬂ [c(xs, z¢)] (1)
w€Il(ps,pt)
with ¢(+,-) any metric. We note 7*(ps,p:) the joint distribution that achieves
the minimum in equation [I} It is named the transportation plan from ps to p;.
When there is no confusion, we simply note 7*. For our applications, we will
use as metric the euclidean distance in the representation space obtained from
a representation ¢(+;0) i.e., co(xs, z¢) := ||p(zs;0) — p(24;0)]]2.

Discrete OT. When ps and p; are only accessible through a finite set of samples,
respectively (zs1,....Tsn,) and (241, ..., Tt n,) We introduce the empirical distri-
butions ps := Y11 Wy i0s, ,, Pt = Z;“:l Wy, 05, ,, where wg; (wy ;) is the mass
probability put in sample z,; (z;) i.e., Y o ws; =1 (Z;L;l wy; = 1) and &,
is the Dirac distribution in z. The discrete version of the OT is derived by intro-
ducing the set of couplings II(ps, p;) := {Tr eR™X g1, =pgm 1, = pt}
where ps = (Ws.1, -+, Wsm,), Pt = (We,1, -+ ,W1n,), and 1, (respectively 1,,)
is the unit vector with dim n, (respectively n;). The discrete transportation plan
75 is then defined as:

7y = argmin (m,Cy)p (2)

7E€II(ps,pt)

where Cy(i,j) := co(xs,;,xs;) and (-,-)p is the Frobenius dot product. Note
that 7} depends on both p, and p;, and € since Cp depends on §. In practice,
we use Entropic regularization [8] that makes OT easier to solve by promoting
smoother transportation plan with a computationally efficient algorithm, based
on Sinkhorn-Knopp’s scaling matrix approach (see the Appendix C).

4.3 Method

Transportation Phase. At each episode, we are provided with a source support
set S and a target query set Q. We note respectively S and Q their represen-
tations from a deep network ¢(-; ) i.e., z5 € S is defined as z; := p(x5;6) for
xs € S, respectively z, € Q is defined as z, := ¢(x4; 0) for x4, € Q. As these two
sets are sampled from different distributions, S and Q are likely to lie in different
regions of the representation space. In order to adapt the source support set S
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Algorithm 1 Transported Prototypes. Blue lines highlight the OT’s contri-
bution in the computational graph of an episode compared to the standard
Prototypical Network [28].

Input: Support set S := (Zs,i,Ys,i)1<i<n,, query set Q := (Tq,5,¥q,j)1<j<n,, classes C,
backbone g.

Output: Loss £(0) for a randomly sampled episode.

1 2o, 2q,5 < P(Ts,;0), o(xq,5;0), for i, > Get representations.
2: Co(i,]) + ||2s,s — 2q,5]|%, for i, j > Cost-matrix.
3: my « Solve Equation > Transportation plan.
4 75 (i, J) < w5 (i,7)/ >0 w51, ), for i, j > Normalization.
5. S = (2s,:)i + Given by Equation > Get transported support set.
6: ¢ +— @ quesk Zs, for k € C. > Get transported prototypes.
7: po(y|zq,;) < From Equation [4] for j

8: Return: £(0) == ;- 37", —logpe(Yq,|a.;)-

to the target domain, which is only represented by the target query set Q, we
follow [7] to compute S the barycenter mapping of S, that we refer to as the
transported support set, defined as follows:

S:=#;Q (3)

where 7rj is the transportation plan from S to Q and 7} := 7} (¢, )/ Z?;l 5 (4, 7).

The transported support set S is an estimation of labelled examples in the target
domain using labelled examples in the source domain. The success relies on the
fact that transportation conserves labels, i.e., a query instance close to Z5 € S
should share the same label with x,, where Z; is the barycenter mapping of
zs € S. See step (3) of Figure [3| for a visualization of the transportation phase.

Prototype Phase. For each class k € C, we compute the transported prototypes

Cp = ﬁ Zéseék Zs (where S, is the transported support set with class k£ and
C are classes of current episode). We classify each query x, with representation

zq = p(x4; 0) using its euclidean distance to each transported prototypes;

_exp (llzg —all?)
Y owee €xXp (—[lzg — ew[|?)

po(y = klzg) : (4)
Crucially, the standard Prototypical Networks [28] computes euclidean distance
to each prototypes while we compute the euclidean to each transported proto-
types, as presented in step (4) of Figure [3| Note that our formulation involves
the query set in the computation of (¢)rec-

Genericity of OT. FewShiftBed implements OT as a stand-alone module that
can be easily plugged into any FSL algorithm. We report additional baselines in
Appendix B where other FSL algorithms are equipped with OT. This technical
choice reflects our insight that OT may be ubiquitous for addressing FSQS and
makes its usage in the testbed straightforward.
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Meta-CIFAR100-C minilmageNet-C FEMNIST-FS

1-shot 5-shot 1-shot 5-shot 1-shot
ProtoNet [28] 30.02 4+ 0.40 42.77 £ 0.47 | 36.37 & 0.50 47.58 + 0.57 | 84.31 + 0.73
MatchingNet [31] 30.71 + 0.38 41.15 £ 0.45 | 35.26 = 0.50 44.75 £+ 0.55 | 84.25 + 0.71
TransPropNetf [21]|34.15 + 0.39 47.39 + 0.42 | 24.10 £ 0.27 27.24 + 0.33 | 86.42 + 0.76
FTNett [10] 28.91 + 0.37 37.28 £+ 0.40 | 39.02 + 0.46 51.27 + 0.45 | 86.13 £ 0.71
TPt (ours) 34.00 + 0.46 49.71 + 0.47(40.49 + 0.54 59.85 + 0.49| 93.63 + 0.63
TP w/o OT ¢ 32.47 + 0.41 48.00 £ 0.44 | 40.43 + 0.49 53.71 £ 0.50 | 90.36 &+ 0.58
TP w/o TBN { 33.74 + 0.46 49.18 £ 0.49 | 37.32 + 0.55 55.16 = 0.54 | 92.31 + 0.73
TP w. OT-TT 7 32.81 + 0.46 48.62 £+ 0.48 [44.77 + 0.57 60.46 + 0.49| 94.92 + 0.55
TP w/o ET 35.94 + 0.45 48.66 + 0.46 | 42.46 + 0.53 54.67 £ 0.48 | 94.224+ 0.70
TP w/o SQS 85.67 £ 0.26 88.52 + 0.17|64.27 £ 0.39 75.22+ 0.30| 99.72 £ 0.07

Table 2. Top-1 accuracy of few-shot learning models in various datasets and numbers
of shots with 8 instances per class in the query set (except for FEMNIST-FS: 1 instance
per class in the query set), with 95% confidence intervals. The top half of the table is
a comparison between existing few-shot learning methods and Transported Prototypes
(TP). The bottom half is an ablation study of TP. OT denotes Optimal Transport,
TBN is Transductive Batch-Normalization, OT-TT refers to the setting where Optimal
Transport is applied at test time but not during episodic training, and ET means
episodic training i.e., w/o ET refers to the setting where training is performed through
standard Empirical Risk Minimization. TP w/o SQS reports model’s performance in
the absence of support-query shift. | flags if the method is transductive. For each
setting, the best accuracy among existing methods is shown in bold, as well as the
accuracy of an ablation if it improves TP.

5 Experiments

We compare the performance of baseline algorithms with Transported Prototypes
on various datasets and settings. We also offer an ablation study in order to
isolate the source to the success of Transported Prototypes. Extensive results are
detailed in Appendix B. Instructions to reproduce these results can be found in
the code’s documentation.

Setting and details. We conduct experiments on all methods and datasets im-
plemented in FewShiftBed. We use a standard 4-layer convolutional network for
our experiments on Meta-CIFAR100-C and FEMNIST-FewShot, and a ResNet18
for our experiments on minilmageNet. Transductive methods are equipped with
a Transductive Batch-Normalization. All episodic training runs contain 40k
episodes, after which we retrieve model state with best validation accuracy. We
run each individual experiment on three different random seeds. All results pre-
sented in this paper are the average accuracies obtained with these random
seeds.

Analysis. The top half of Table [2| reveals that Transported Prototypes (TP)
outperform all baselines by a strong margin on all datasets and settings. Impor-
tantly, baselines perform poorly on FSQS, demonstrating they are not equipped
to address this challenging problem, stressing our study’s significance. It is also
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interesting to note that the performance of transductive approaches, which is
significantly better in a standard FSL setting |21} [L0], is here similar to in-
ductive methods (notably, TransPropNet [21] fails loudly without Transductive
Batch-Normalization showing that propagating label with non-overlapping sup-
port/query can have a dramatic impact, see Appendix B). Thus, FSQS deserves
a fresher look to be solved. Transported Prototypes mitigate a significant part
of the performance drop caused by support-query shift while benefiting from the
simplicity of combining a popular FSL method with a time-tested UDA method.
This gives us strong hopes for future works in this direction.

Ablation study. Transported Prototypes (TP) combines three components: Op-
timal Transport (OT), Transductive Batch-Normalization (TBN) and episode
training (ET). Which of these components are responsible for the observed gain?
Following recommendations from Section [3.3] we ablate those components in the
bottom half of Table[2] We observe that both OT and TBN individually improve
the performance of ProtoNet for FSQS, and that the best results are obtained
when the two of them are combined. Importantly, OT without TBN performs
better than TBN without OT (except for 1-shot mIN-C), demonstrating the su-
periority of OT compared to TBN for aligning distributions in the few samples
regime. Note that the use of TaskNorm [3] is beyond the scope of the papeﬂ
we encourage future work to dig into that direction and we refer the reader to
the very recent work [11]. We observe that there is no clear evidence that using
OT at train-time is better than simply applying it at test-time on a ProtoNet
trained without OT. Additionally, the value of Episodic Training (ET) compared
to standard Empirical Risk Minimization (ERM) is not obvious. For instance,
simply training with ERM and applying TP at test-time is better than adding
ET on 1-shot MC100-C, 1-shot mIN-C and FEMNIST-FS, making it an another
element to add to the study [20] who put into question the value of ET. Under-
standing why and when we should use ET or only OT at test-time is interesting
for future works. Additionally, we compare TP with MAP [17] which imple-
ments an OT-based approach for transductive FSL. Their approach includes a
power transform to reduce the skew in the distribution, so for fair comparison
we also implemented it into Transported Prototypes for these experimentsﬂ We
also used the OT module only at test-time and compared with two backbones,
respectively trained with ET and ERM. Interestingly, our experiments in Table
show that MAP is able to handle SQS. Finally, in order to evaluate the perfor-
mance drop related to Support-Query Shift compared to a setting with support
and query instances sampled from the same distribution, we test Transported
Prototypes on few-shot classification tasks without SQS (TP w/o SQS in Table
7 making a setup equivalent to CDFSL. Note that in both cases, the model is
trained in an episodic fashion on tasks presenting a Support-Query Shift. These
results show that SQS presents a significantly harder challenge than CDFSL,
while there is considerable room for improvements.

2 These normalizations are implemented in FewShiftBed for future works.
3 Therefore results in Table [3| differ from results in Table
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Meta-CIFAR100-C minilmageNet-C FEMNIST-FS
1-shot 5-shot 1-shot 5-shot 1-shot
TP* (36.17 4 0.47 50.45 + 0.47|45.41 + 0.54 57.82 4+ 0.48| 93.60 + 0.68
MAP*|35.96 + 0.44 49.55 + 0.45|43.51 + 0.47 56.10 + 0.43| 92.86 + 0.67
TPT [32.13 + 0.45 46.19 + 0.47[45.77 + 0.58 59.91 + 0.48] 94.92 + 0.56
MAPT(32.38 4+ 0.41 45.96 + 0.43[43.81 + 0.47 57.70 + 0.43| 87.15 + 0.66

Table 3. Top-1 accuracy with 8 instances per class in the query set when applying
Transported Prototypes and MAP on two different backbones: x is standard ERM (i.e.,
without Episodic Training) and { is ProtoNet [28]. Transported Prototypes performs
equally or better than MAP [17]. Here TP includes power transform in the feature
space.

6 Conclusion

We release FewShiftBed, a testbed for the under-investigated and crucial prob-
lem of Few-Shot Learning when the support and query sets are sampled from
related but different distributions, named FSQS. FewShiftBed includes three
datasets, relevant baselines and a protocol for reproducible research. Inspired
from recent progress of Optimal Transport (OT) to address Unsupervised Do-
main Adaptation, we propose a method that efficiently combines OT with the
celebrated Prototypical Network [28]. Following the protocol of FewShiftBed,
we bring compelling experiments demonstrating the advantage of our proposal
compared to transductive counterparts. We also isolate factors responsible for
improvements. Our findings suggest that Batch-Normalization is ubiquitous, as
described in related works [3], [L1], while episodic training, even if promising on
paper, is questionable. As a lead for future works, FewShiftBed could be im-
proved by using different datasets to model different domains, instead of using
artificial transformations. Since we are talking about domain adaptation, we also
encourage the study of accuracy as a function of the size of the target domain,
i.e., the size of the query set. Moving beyond the transductive algorithm, as
well as understanding when meta-learning brings a clear advantage to address
FSQS remains an open and exciting problem. FewShiftBed brings the first step
towards its progress.
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A Extended positioning

Few-Shot Classification. Methods to solve the Few-Shot Classification prob-
lem [23| are usually put into one of these three categories [8]: metric-based,
optimization-based, and hallucination-based. Most metric-learning methods are
built on the principle of Siamese Networks [22], while also exploiting the meta-
learning paradigm: they learn a feature extractor across training tasks [42]. Pro-
totypical Networks [39] classify queries from their euclidean distances to one pro-
totype embedding per class. Relation Networks [41] add an other deep network
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on top of Prototype Networks to replace the euclidean distance. Optimization-
based methods use an other approach: learning to fine-tune. MAML [15] and
Reptile [31] learn a good model initialization, i.e. model parameters that can
adapt to a new task (with novel classes) in a small number of gradient steps.
Other methods such as Meta-LSTM [35] and Meta-Networks [29] replace stan-
dard gradient descent by a meta-learned optimizer. Hallucination-based methods
aim at augmenting the scarce labeled data, by hallucinating feature vectors [19],
using Generative Adversarial Networks [1], or meta-learning [44]. Recent works
also suggest that competitive results in Few-Shot Classification can be achieved
with more simple methods based on fine-tuning [8] [17].

Transductive Few-Shot Classification. Some methods aim at solving few-shot
classification tasks by using the query set as unlabeled data. Transductive Prop-
agation Network [26] meta-learns label propagation from the support to query
set concurrently with the feature extractor. Antoniou & Storkey [2] proposed to
use a meta-learned critic network to further adapt a classifier on the query set in
an unsupervised setting. Ren et al. [36] extend Prototypical Networks in order to
use the query set in the prototype computation. Transductive Information Max-
imization [5] aims at maximizing the mutual information between the features
extracted from the query set and their predicted labels. Finally, Transductive
Fine-Tuning |14] augments standard fine-tuning using the classification entropy
of all query instances.

Unsupervised Domain Adaptation. UDA has a long standing story (33} [34]. The
analysis of the role of representations from [3] has led to wide literature based
on domain invariant representations |16} 28]. Outstanding progress have been
towards learning more domain transferable representations by looking for do-
main invariance. The tensorial product between representations and prediction
promotes conditional domain invariance [27], the use of weights [7] 47, (6, [10]
has dramatically improved the problem of label shift theoretically described in
[49], hallucinating consistent target samples [25], penalizing high singular values
of batch of representations [9] or by enforcing the favorable inductive bias of
consistence through various data augmentation in the target domain [32]. Re-
cent works address the problem of adaptation without source data |24, 46]. The
seminal work [12], followed by [11] 4], brings Optimal Transport (OT) to UDA
by transporting source samples in the target domain.

Test-Time Adaptation. Test-time Adaptation (TTA) is the subject of recent pio-
neering works. In [40], adaptation is performed by test-time training of represen-
tations through a self-supervision task which consists in predicting the rotation of
an image. This leads to a successful adaptation when the gradient of fine-tuning
procedure is correlated with the gradient of the cross-entropy between the pre-
diction and the label of the target sample, which is not available. Inspired from
UDA methods based on domain invariance of representations, a line of works |30,
38| aims to align the mean and the variance of train and test distribution of repre-
sentations. This is simply done by updating statistics of the batch-normalization
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layer. In a similar spirit of leveraging the batch-normalization layer for adapta-
tion, [43] suggests to minimize prediction entropy on a batch of test samples, as
suggested in semi-supervised learning [18]. As pointed by authors of [43], updat-
ing the whole network is inefficient and exposes to a risk of test batch overfit.
To adress this problem, authors suggest to only update batch-normalization pa-
rameters for minimizing prediction’s entropy. The paradigm of Adaptative Risk
Minimization (ARM) is introduced in [48]. ARM aims to adapt a classifier at
test-time by conditioning its prediction on the whole batch of test samples (not
only one sample). Authors demonstrate that such classifier is meta-trainable as
long as the training data exposes a structure of group. Consequently, [48] is
closer work to ours, while we have more ambitious perspectives as we address
the problem of few-shot learning i.e., few-shot are available per class while new
classes are discovered at test-time.

Few-Shot Classification under Distributional Shift. Recent works on few-shot
classification tackle the problem of distributional shift between the meta-training
set and the meta-testing set. Chen et al. [8] compare the performance of state-
of-the-art solutions to few-shot classification on a cross-domain setting (meta-
training on minilmageNet [42] and meta-testing on Caltech-UCSD Birds 200
[45]). Zhao et al. propose a Domain-Adversarial Prototypical Network [50] in
order to both align source and target domains in the feature space and maintain
discriminativeness between classes. Considering the problem as a shift in the
distribution of tasks (i.e. training and testing tasks are drawn from two distinct
distributions), Sahoo et al. combine Prototypical Networks with adversarial do-
main adaptation at task level [37]. While these works address the key issue of
distributional shift between meta-training and meta-testing, they assume that
for each task, the support set and query set are always drawn from the same
distribution. We find that this assumption rarely holds in practice. In this work
we consider a distributional shift both between meta-training and meta-testing
and between support and query set.

B

All experimental results

In this section we present the extended results of our experiments. Prototypi-
cal Networks, Matching Networks and Transductive Propagation Networks have
been declined in 10 distinct versions:

Original algorithms: episodic training, with Conventional Batch-Normalization
(CBN) and not Optimal Transport (Vanilla);

Episodic training and CBN, with Optimal Transport applied at test time
(OT-TT);

Episodic training and CBN, with Optimal Transport integrated into the
algorithm both during training and testing (OT);

Episodic training, with Transductive Batch-Normalization (TBN) and
not Optimal Transport (Vanilla);

Episodic training and TBN, with OT-TT;
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— Episodic training and TBN, with OT;
— Standard Empirical Risk Minimization (ERM) instead of episodic training,

with CBN and not Optimal Transport (Vanilla);

— ERM with CBN and OT;
— ERM with TBN and no Optimal Transport (Vanilla);
— ERM with TBN and OT.

Transductive Fine-Tuning (FTNet) is not compatible with episodic training.
Also the integration of Optimal Transport into this algorithm is non trivial.
Therefore we only applied FTNet with ERM and without OT.

Every result presented in the following tables is the average over three runs
with three random seeds (1, 2 and 3). For clarity, we do not report the 95%
confidence interval for each result. Keep in mind that this interval is different
for each result, but we found that it is always greater than & 0.2% and smaller
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than + 0.8%.
Details of the experiments and instructions to reproduce them are available
in the code.
Meta-CIFAR100-C 1-shot 8-target
Episodic training Standard ERM
CBN TBN CBN TBN

Vanilla w. OT-TT w. OT|Vanilla w. OT-TT w. OT|Vanilla w. OT|Vanilla w. OT
ProtoNet 30.02 32.11 33.74 | 32.47 32.81 34.00 | 29.10 35.48 | 29.79 35.4
MatchingNet| 30.71 32.85 34.48 | 32.97 32.78 35.11 | 33.50 36.13| 33.67 35.87
PropNet 30.26 28.70 26.87 | 34.15 29.48 27.68 | 23.33 31.08 | 22.55 31.20
FTNet 28.91 28.75

Table 4. Ablation for Meta-CIFAR100-C 1-shot 8-target.

Meta-CIFAR100-C 1-shot 16-target
Episodic training Standard ERM
CBN TBN CBN TBN

Vanilla w. OT-TT w. OT|Vanilla w. OT-TT w. OT|Vanilla w. OT|Vanilla w. OT
ProtoNet 29.98 32.24 35.63 | 32.52 31.72 36.20| 29.02 35.89 | 29.61 35.94
MatchingNet| 31.1 30.94 35.53 | 33.08 33.28 36.36| 33.49 36.61| 33.64 36.54
PropNet 30.82 32.39 31.15 | 34.83 33.53 31.33 | 26.81 33.9 | 27.92 34.10
FTNet 29.01 28.86

Table 5. Ablation for Meta-CIFAR100-C 1-shot 16-target.

C Training details

Entropic regularization for Optimal Transport was proposed in |13] and makes
OT easier to solve. It is defined as 7} (ps, Pr) := argminger(m, Co)p + 92(m)
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Meta-CIFAR100-C 5-shot 8-target
Episodic training Standard ERM
CBN TBN CBN TBN
Vanilla w. OT-TT w. OT|Vanilla w. OT-TT w. OT|Vanilla w. OT|Vanilla w. OT
ProtoNet 42.77 47.54 48.37 | 48.00 48.62 49.71| 44.89 48.61 | 46.59 48.66
MatchingNet| 41.15 43.90 44.55 | 45.05 44.86 45.78 | 43.00 45.35| 43.51 45.10
PropNet 39.13 40.60 25.68 | 47.39 4047  27.29| 29.32 39.82 | 29.50 29.82
FTNet 37.28 37.40
Table 6. Ablation of Meta-CIFAR100-C 5-shot 8-target.
Meta-CIFAR100-C 5-shot 16-target
Episodic training Standard ERM
CBN TBN CBN TBN
Vanilla w. OT-TT w. OT|Vanilla w. OT-TT w. OT|Vanilla w. OT|Vanilla w. OT
ProtoNet 42.07 48.26 48.25 | 46.49 48.71 49.94| 44.67 48.61 | 46.48 48.89
MatchingNet| 41.74 44.51 45.71 | 44.91 44.71 47.37 | 42.97 46.06 | 46.22 46.37
PropNet 38.73 39.25  37.22 43.91 40.62  40.02 | 33.06 40.03 | 33.93 40.03
FTNet 37.51 37.66
Table 7. Ablation of Meta-CIFAR100-C 5-shot 16-target.
FEMNIST-FewShot 1-shot 1-target
Episodic training Standard ERM
CBN TBN CBN TBN
Vanilla[w. OT-TT[W. oT Vanilla[w. OT-TT[W. oT Vanilla[w. oT Vanilla[w. oT
ProtoNet 84.31 94.00 92.31 | 90.36 94.92 93.63 | 80.20 94.30 | 86.22 94.22
MatchingNet| 84.25 93.66 92.73 | 91.05 95.37 93.62 | 85.04 94.34 | 87.19 94.26
PropNet 31.30 40.60 79.30 | 86.42 93.08  87.52| 45.36 73.64 | 47.34 79.50
FTNet 86.13 85.92

Table 8. Ablation of FEMNIST-FewShot 1-shot 1-target.
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Meta-CIFAR100-C|minilmageNet-C|FEMNIST-FS
1-shot 5-shot 1-shot 5-shot 1-shot
MAP 36.58 49.37 43.38 56.25 92.94
TP (ours)| 36.51 50.60 45.38 61.46 93.63

Table 9. Top-1 accuracy of MAP [20] compared to Transported Prototypes (ours).
Both methods incorporate Optimal Transport into Few-Shot Learning. MAP [20] is
originally designed for standard transductive FSL. Interestingly, MAP and TP per-
form quite similarly demonstrating that OT is a powerful tool for addressing FSQS.
Note that MAP leverages a Power-Transform that we also plug in TP for comparison,
resulting in a boost of performance. Understanding which learners operate best with
Optimal Transport is an exciting question. In particular, by proposing TP, we have
shown that we result in a strong, interpretable and theoretically motivated method by
following principles when applying OT in UDA.

with € > 0 and () = 3315 7 (4, j) log (i, j) is the negative entropy. It pro-
motes smoother transportation plan while allowing to derive a computationally
efficient algorithm, based on Sinkhorn-Knopp’s scaling matrix approach [21]. In
our experiment, we set ¢ = 0.05, but it is possible to tune it, eventually meta-

learning it.
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