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Gif-sur-Yvette, France

2 Sidetrade, 114 Rue Gallieni, 92100, Boulogne-Billancourt, France
3 Lend-Rx, 24 Rue Saint Dominique, 75007, Paris, France

4 Alan, 117 Quai de Valmy, 75010 Paris, France,
vbouvier@sidetrade.com, philippe.very@lend-rxtech.com, clement.chastagnol@alan.eu, firstname.name@centralesupelec.fr

Abstract

Unsupervised Domain Adaptation (UDA) aims to bridge the
gap between a source domain, where labelled data are avail-
able, and a target domain only represented with unlabelled
data. If domain invariant representations have dramatically
improved the adaptability of models, to guarantee their good
transferability remains a challenging problem. This paper ad-
dresses this problem by using active learning to annotate a
small budget of target data. Although this setup, called Ac-
tive Domain Adaptation (ADA), deviates from UDA’s stan-
dard setup, a wide range of practical applications are faced
with this situation. To this purpose, we introduce Stochastic
Adversarial Gradient Embedding (SAGE), a framework that
makes a triple contribution to ADA. First, we select for anno-
tation target samples that are likely to improve the represen-
tations’ transferability by measuring the variation, before and
after annotation, of the transferability loss gradient. Second,
we increase sampling diversity by promoting different gradi-
ent directions. Third, we introduce a novel training procedure
for actively incorporating target samples when learning in-
variant representations. SAGE is based on solid theoretical
ground and validated on various UDA benchmarks against
several baselines. Our empirical investigation demonstrates
that SAGE takes the best of uncertainty vs diversity samplings
and improves representations transferability substantially.

Introduction
When provided with a large amount of labelled data, deep
neural networks have dramatically improved the state-of-
the-art for both vision (Krizhevsky, Sutskever, and Hinton
2012) and language tasks (Vaswani et al. 2017). However,
deploying machine learning models for real-world applica-
tions requires to generalize on data which may slightly differ
with the training data (Amodei et al. 2016; Marcus 2020).
Quite surprisingly, deep models do not meet this require-
ment and often show a weak ability to generalize out of
the training distribution (Beery, Van Horn, and Perona 2018;
Geva, Goldberg, and Berant 2019; Arjovsky et al. 2019).

Deep nets can learn data transferable representations to
new tasks or new domains if some labelled data from the
new distribution are available (Oquab et al. 2014; Yosin-
ski et al. 2014). Acquiring a sufficient amount of labeled
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data is laborious, and large scale annotation is often cost-
prohibitive. Unlabelled data are much more convenient to
obtain. This observation has motivated the field of Unsuper-
vised Domain Adaptation (Pan and Yang 2009; Quionero-
Candela et al. 2009) for bridging the gap between a labelled
source domain and an unlabelled target domain.

Learning domain Invariant Representations has led to sig-
nificant progress towards learning domain transferable rep-
resentations with deep neural networks (Ganin and Lempit-
sky 2015; Long et al. 2015, 2018). By fooling a discrimi-
nator trained to separate the source from the target domain,
the feature extractor removes domain-specific information
in representations (Ganin and Lempitsky 2015). Therefore,
a classifier trained from those representations with source
labelled data is expected to perform reasonably well in the
target domain (Ben-David et al. 2007, 2010).

However, those methods perform significantly worse than
their fully supervised counterparts. Practical applications of-
ten offer the possibility of annotating a fixed budget of target
data; a paradigm referred to as Active Learning (AL). De-
spite its great practical interest, there are, to our knowledge,
only a few previous works which address the problem of Ac-
tive Domain Adaptation (ADA) (Chattopadhyay et al. 2013;
Rai et al. 2010; Saha et al. 2011; Su et al. 2020). In particu-
lar, the work of Su et al., proposed recently, is the first that
brings active learning to domain adversarial learning.

Our insight is to reserve the annotation budget for the data
that will have the most impact on the representations’ trans-
ferability. Promoting class-level domain invariance (Long
et al. 2018; Bouvier et al. 2020) makes it possible to assess
this impact precisely. Indeed, class-level invariance consists
of using predicted target labels for soft-class conditioning in
the domain adversarial loss. Involving an oracle, which pro-
vides the ground-truth, enables to change the contribution of
a target sample from soft to hard-class conditioning. There-
fore, we measure the impact of annotation by estimating the
variation of the domain adversarial loss gradient (see Fig. 1).
Thus, in this paper,

• We present Stochastic Adversarial Gradient Embedding
(SAGE), an embedding of target samples suited for active
learning of domain invariant representations. This embed-
ding is obtained by measuring the variation, before and
after annotation, of the domain adversarial loss gradient.
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Figure 1: Illustration of the effect of annotation of a target sample selected by SAGE (best viewed in colors). Binary classifica-
tion problem (• vs ?) where source samples are blue and target samples are orange. Before annotation, the class-level alignment
is not satisfactory leading to a potential negative transfer (poorly aligned target samples tagged as 1, 2 and 3). We estimate
which sample should be annotated as a priority by measuring the variation, before and after annotation, of the gradient of the
representations’ transferability. We observe the highest variation is obtained for target sample 3, which is sent to an oracle. The
oracle annotation returns class ?, validating the suspicion of negative transfer. This leads to an update of the decision boundary
which pushes 1, 2 and 3 into class ?, resulting of a better class-level alignment of representations.

SAGE has the following properties:
1. It takes into account the uncertainty on a target sample

label by considering the gradient as a stochastic vector.
Since annotation removes uncertainty, it allows us to
estimate its expected variation due to the annotation.

2. The higher the gradient variation norm, the more signif-
icant is the impact of annotation on the transferability
of representations.

• We follow (Ash et al. 2019) for increasing sampling di-
versity by promoting target samples for which SAGE span
on diverse directions using the k-means++ initialization
(Arthur and Vassilvitskii 2006).

• We develop a novel training procedure to incorporate ac-
tive target samples when learning domain invariant repre-
sentations. It is split into two steps. The first step, called
inductive step, aims to update the classifier smoothly to
reflect the annotation. A second step, called the transfer
step, leverages the classifier update for learning new class-
level invariance.

• We conduct an empirical analysis on well-adopted bench-
marks of UDA. It demonstrates that our approach im-
proves the state-of-the-art significantly in Active Ad-
versarial Domain Adaptation (Su et al. 2020) on these
datasets. All other things being equal, SAGE performs
similarly or better than entropy-based uncertainty sam-
pling or random sampling, making it a credible research
direction for the design of new active DA algorithms.
The rest of the paper is organized as follows. First, we

provide a brief overview of Domain Adversarial Learning
for UDA. Importantly, we expose a soft-class conditioning
adversarial loss, which reflects the transferability error of
domain invariant representations (Bouvier et al. 2020). Sec-
ond, we motivate the use of Active Learning for enhancing
their transferability. Third, we present the details of Stochas-
tic Adversarial Gradient Embedding. Finally, we conduct an
empirical investigation on several benchmarks.

Background
Notations. Let us consider three random variables; X the
input data, Z the representations and Y the labels, defined
on spaces X , Z ⊂ Rd where d is the dimension of the rep-
resentation, and Y , respectively. We note realizations with
lower cases, x, z and y, respectively. Those random variables
may be sampled from two and different distributions: the
source distribution pS(X,Z, Y ) i.e., data where the model
is trained and the target distribution pT (X,Z, Y ) i.e., data
where the model is evaluated. Labels are one-hot encoded
i.e., y ∈ [0, 1]c with

∑
i yi = 1 where c is the number of

classes. We use the index notation S and T to differentiate
source and target quantities. We define the hypothesis class
H as a subset of functions from X to Y which is the com-
position of a representation class Φ (mappings from X to
Z) and a classifier class F (mappings from Z to Y) i.e.,
h := fϕ := f ◦ ϕ ∈ H where f ∈ F and ϕ ∈ Φ. For
D ∈ {S, T} and an hypothesis h ∈ H, we introduce the
risk in domain D, εD(h) := ED[`(h(X), Y )] where ` is the
L2 loss `(y, y′) = ||y − y′||2 and h(x)i is the probability
of x to belong to class i. We note the source domain data
(xSi , y

S
i )1≤i≤nS

and the target domain data (xTi )1≤i≤nT
.

Domain Adversarial Learning. The seminal works from
(Ganin and Lempitsky 2015; Ganin et al. 2016; Long et al.
2015), and their theoretical ground (Ben-David et al. 2007,
2010), have led to a wide variety of methods based on
domain invariant representations (Long et al. 2016, 2017,
2018; Liu et al. 2019; Chen et al. 2019a; Combes et al.
2020). A representation ϕ and a classifier f are learned by
achieving a trade-off between source classification error and
domain invariance of representations by fooling a discrimi-
nator trained to separate the source from the target domain:

L(ϕ, f) := Lc(ϕ, f)− λ · inf
d∈D
Linv(ϕ, d) (1)

where Lc(ϕ, f) := Ex,y∼pS [−y · log(fϕ(x))] is the
cross-entropy loss in the source domain, Linv(ϕ, d) :=



Ex∼pS [log(1−d(ϕ(x)))]+Ex∼pT [log(d(ϕ(x))] is the ader-
sarial loss and D is the set of discriminators i.e. mapping
from Z to [0, 1]. In practice, infd∈D is approximated using
a Gradient Reversal Layer (Ganin and Lempitsky 2015).

Transferability loss for class-level invariance. Promot-
ing class-level domain invariance improves transferability of
representations (Long et al. 2018). Recently, Bouvier et al.
introduce the transferability loss, noted Ltsf , which per-
forms class-conditioning in the adversarial loss by comput-
ing a scalar product between labels y and a class-level dis-
criminator d defined as a mapping from Z to [0, 1]c. Since
labels are not available in the target domain at train time,
predicted labels ŷ := fϕ(x) are used. This approach is re-
ferred to as soft-class conditioning:

L(ϕ, f) := Lc(ϕ, f)− λ · inf
d∈D
Ltsf(ϕ, ŷ, d) (2)

where Ltsf(ϕ, ŷ, d) := E(y,x)∼pS [y · log(1 − d(ϕ(x)))] +
E(ŷ,x)∼pT [ŷ · log(d(ϕ(x))] is the transferability loss and D
is the the set of class-level discriminators i.e. mappings from
Z to [0, 1]c. In this work, we explore the role of active an-
notation of a small subset of the target domain in order to
improve the transferability of representations.

Theoretical Analysis
Naive active classifier. We consider A ⊂ X a measurable
subset ofX with probability b := pT (X ∈ A). The subsetA
is given to an oracle which provides the ground-truth: y ∼
Oracle(x) where x ∈ A. In concrete terms, b reflects our
annotation budget. Given a hypothesis h ∈ H, we introduce
a naive classifier hA that returns the predicted label h(x) if
x is not annotated and the Oracle annotation if x is in the
subset A. Thus,

hA(x) = Oracle(x) if x ∈ A, h(x) otherwise. (3)

To measure the quality of the active set A, we introduce
the notion of purity. In particular, we are interested in the
amount of information coming from the Oracle. The purity
is thus defined as π := pT (h(X) 6= Oracle(X)|X ∈ A)
and reflects our capacity to identify misclassified target sam-
ples. With this notion, we observe the naive classifier im-
proves the target error:

εT (hA) ≤ εT (h)− bπ (4)

The higher the budget of annotation b and the higher the
purity π, the lower the target error of the naive classifier.

The naive classifier as a Transferability Inductive Bias.
We now show how the target error of the naive classifier
εT (hA) is related to the source error of a classifier trained
on source labelled data εS(h), the annotation budget b, the
purity of the annotated subset π, and the transferability of
representations τ . We build on the work of Bouvier et al. by
interpreting the naive classifier as an inductive bias. More
precisely, the naive classifier’s target error is bounded as fol-
lows (see supplemental material for the proof):

εT (hA) ≤
(

1

bπ
− 1

)
(εS(h) + 8τ + η) (5)

where τ := supf∈F{Ex∼pT [hA(x) · f(ϕ(x))]−Ex,y∼pS [y ·
f(ϕ(x))]} is the transferability error, F is the set of
continuous functions from Z to [−1, 1]C and η :=
inf f∈F εT (fϕ). It is important to note that the transferabil-
ity loss Ltsf(ϕ, ŷA,d) is a domain adversarial proxy of the
transferability error τ where ŷA = hA(x) (Bouvier et al.
2020). Interestingly, target labels are only involved in π and
η where the latter is an incompressible error that we assume
to be small. The target error of the active classifier is a de-
creasing function of both the purity and the annotation bud-
get and an increasing function of the transferability error.

Proposed Method
We first expose our motivations to embed target samples
using the gradient of the transferability loss. Indeed, this
quantity allows to assess the impact of annotation on rep-
resentations transferability. Second, we define the Stochas-
tic Adversarial Gradient Embedding (SAGE), an embedding
where the norm quantifies this impact efficiently. Third, we
increase the diversity of sampling in this space, as described
in (Ash et al. 2019). Finally, we detail the procedure for the
active learning of domain invariant representations.

Motivations
As shown in the theoretical section, the budget b, the purity π
and the transferability of representations τ are levers to im-
prove the naive classifier target error. The budget b must be
considered as a cost constraint and not as a parameter to be
optimized. The purity of π is not tractable since it involves
labels in the target domain. Therefore, we focus our efforts
on understanding the role of active annotation in improving
transferability error τ . Given a target sample x ∼ pT (X)
with representation z := ϕ(x) ∈ Rd, we expose the effect
of annotating the sample x on the gradient descent update of
Eq. (2). To conduct the analysis, we introduce the adversar-
ial gradient gx of sample x as the gradient of the discrimi-
nator loss with respect to the representation z:

gx := −∂ log(d(z))

∂z
∈ Rc×d, where d(z) ∈ [0, 1]c (6)

Following the expression of the transferability loss Ltsf , the
contribution of a sample x to the gradient update (Eq. (2)),
before and after its annotation, is:{
θ ← θ − α∂z

∂θ
· (ŷ · gx)

}
︸ ︷︷ ︸

Before annotation

−→
{
θ ← θ − α∂z

∂θ
· (y · gx)

}
︸ ︷︷ ︸

After annotation
y∼Oracle(x)

where ∂z/∂θ is the jacobian of the representations with re-
spect to the deep network parameters θ i.e., z := ϕθ(x),
ŷ := gϕθ(x) is the current label estimation and α is some
scaling parameter. Before the annotation, the gradient vector
can be written as a weighted sum of gx i.e., ŷ · gx ∈ Rd, re-
flecting the class probability of x. Annotating the sample x
has the effect of setting, once and for all, a direction in Rc of
the gradient (y ·gx). Based on this observation, we can mea-
sure the annotation procedure’s ability to learn more trans-
ferable representation by its tendency to change the path of
the gradient descent i.e., how y · gx may differ with ŷ · gx.
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ŷ = (p1, p2)

g1
x

g2
x

� |g1
x · gx|

||gx||2 gx

� |g2
x · gx|

||gx||2 gx

g̃2
x

g̃1
x p

p1g̃
1
x

p
p
2 g̃ 2

x

(b) SAGE
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ŷ = (0.25, 0.25, 0.5)

(c) Poor local minimum

Figure 2: (a) The positive orthogonal projection cancels the gradient when the annotation agrees with the prediction. It doubles
its norm when the annotation disagrees with the prediction. (b) Visualisation of SAGE(x) = (

√
p1g̃

1
x,
√
p2g̃

2
x). Here g̃2

x ⊥ g2
x
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(c) Illustration of a case where the transferability loss is close to a local minimum (ŷ · gx ≈ 0), but the stochastic gradients (gyx
for y ∈ {1, 2, 3}) have a high norm. Here, the annotation chooses one of the gradients resulting in a strong update of the model.

Positive orthogonal projection
The adversarial gradient gx := ∂ log(d(z))/∂z ∈ Rc×d
embodies the uncertainty on the true labels in the first di-
mension Rc. In the rest of the paper, we now consider
gx as a stochastic vector of Rd with realizations lying
in a discrete support Gx := {g1

x, ...,g
c
x} where gix =

(∂ log(d(z))/∂z)i. When provided the label through an or-
acle i.e., y ∼ Oracle(x), we obtain gyx ∈ Gx, a realization
of gx. Before annotation, the direction of the gradient is the
mean of gx where Gx is provided with a probability measure
given by the classifier h(x) i.e., p(g̃x = g̃ix) = h(x)i:

Eh[gx] := Ey∼h(x) [gyx] ∈ Rd (7)
Therefore, the tendency to modify the direction of the gra-
dient is reflected by a high discrepancy between Eh[gx] and
gyx for y ∼ Oracle(x). To quantify this discrepancy, we con-
sider variations in both direction and magnitude:
• Direction: A simple way to learn a new model by gradi-

ent descent is to find samples which modify the gradient’s
direction drastically.

• Magnitude: The higher the norm of the gradient, the
stronger the update of the model.

To find a good trade-off between direction and magnitude,
we remove the mean direction of the gradient Eh[gx] to gx
by computing a positive orthogonal projection:

g̃x := gx − λEh[gx] (8)
where λ := |gx ·Eh[gx]|/||Eh[gx]||2. Note that we use |gx ·
Eh[gx]|, rather than gx · Eh[gx] for the standard orthogonal
projection, hence its name of positive orthogonal projection.

On the one hand, if the annotation provides a gradient
with the same direction as the expected gradient i.e., the an-
notation reinforces the prediction, g̃x is null. On the other
hand, if the annotation provides a gradient with an opposite
direction to the expected gradient i.e., the annotation con-
tradicts the prediction, the norm of g̃x increases. Therefore,
target samples x for which we expect the highest impact on
the transferability, are those with the highest norm of g̃x. An
illustration is provided in Fig. 2(a). Since g̃x is random, we
need additional tools to define a norm operator properly on
it, leading to our core contribution.

Stochastic Adversarial Gradient Embedding
A simple way to define the norm of g̃x would be to con-
sider ||g̃x||h := (Ey∼h(x)

[
||g̃yx||2

]
)1/2 i.e., the expected

norm of g̃x. This leads to a ”distance” defined as fol-
lows (Ey1∼h(x1),y2∼h(x2)

[
||gy1x1

− gy2x2
||2
]
)1/2. However, it

is straightforward to observe such a ”distance” between g̃x
and itself is not null if h(x) is not a one-hot vector; not mak-
ing it, in fact, a proper distance.

To address this issue, we suggest to embed, through a
mapping named Stochastic Adversarial Gradient Embed-
ding (SAGE), the coupling (h, g̃) in a vectorial space by
considering the following tensorial product:

SAGE(x) := (
√
h(x)1g̃

1
x, ...,

√
h(x)cg̃

c
x) ∈ Rc×d (9)

Importantly, the choice of using
√
h is motivated by the ob-

servation that ||SAGE(x)|| = ||g̃x||h leading to a proper
distance between x1 and x2:

∆h(x1, x2) := ||SAGE(x1)− SAGE(x2)|| (10)

Crucially, both the norm and the distance computed on
SAGE do not involve the target labels, making it relevant
in the UDA setting where target labels are unknown. An il-
lustration of SAGE is provided in Fig. 2(b).

Increasing Diversity of SAGE
As aforementioned, the higher the norm of ||SAGE(x)||,
the greater the expected impact of annotating sample x on
the transferability of representations. A naive strategy of an-
notation would be simply to rank target samples by their
SAGE norm (||SAGE(x)||). However, this strategy ignores
the crucial problem of diversity when running active anno-
tation (Settles 2009). Embedding target samples offers the
opportunity to increase sampling diversity by selecting sam-
ples with high expected norms and various directions (Ash
et al. 2019). The k-means++ initialization is known to se-
lect diverse and high norm vectors. Roughly speaking, the
algorithm starts by selecting the vectors v with the highest
norm and the second, v′, such that v′ − v has the highest
norm, and so on. The procedure is detailed in Algorithm 1.



Algorithm 1 diverse SAGE((xTi )1≤i≤nT
, f, ϕ, d, b)

Input: Target samples (xTi )1≤i≤nT
, classifier f , representa-

tion ϕ, discriminator d, budget b:
1: A ← [ arg max1≤i≤nT

||g̃xT
i
||h]

2: while len(A) < b do

3: A.append
(

arg max
1≤i≤nt

min
a∈A

∆fϕ(xTi , x
T
a )

)
4: end while
5: Return A

Training procedure
The training procedure is described in Algorithm 2. First,
we train the model by UDA (Bouvier et al. 2020). Second,
for a given number of iterations, we select by SAGE b sam-
ples to send to the Oracle. Then, we perform two steps: an
inductive step and a transfer step. The former updates the
current classifier, for learning an active classifier, by incor-
porating the knowledge provided by annotated samples. The
latter updates the representations for achieving class-level
invariance where the predictions of the active classifier are
used in the target domain. This procedure is repeated for the
r annotation rounds. In the following, we note ha ∈ H an
active classifier i.e., a classifier that takes into account an-
notations provided by the Oracle (e.g., the naive classifier).

Transfer step. Based on our theoretical analysis, the rep-
resentations transferability is improved when ha is intro-
duced into the transferability loss:

Ltsf(ϕ, ha, d) := E(y,x)∼pS [y · log(1− d(ϕ(x)))]

+ Ex∼pT [ha(x) · log(d(ϕ(x))] (11)

The active classifier is involved in the target domain to com-
pute the transferability loss. Therefore, we introduce the
Transfer step which consists in the following stochastic gra-
dient descent update:

transfer(f, ϕ, ha) :=(f, g)− α∇(f,g){Lc(ϕ, f)

− λ · inf
d∈D
Ltsf(ϕ, ha, d)} (12)

where infd∈D is in practice a gradient reversal layer (Ganin
and Lempitsky 2015), α is scaling parameter, λ varies
smoothly from 0 to 1 during training as described in (Long
et al. 2018) and losses are computed on batches of samples.

Inductive step. We now focus our attention on the design
of the active classifier ha, referred to as the Inductive step,
as described in (Bouvier et al. 2020). Our theoretical analy-
sis from Eq. (5) holds for the naive classifier (it outputs the
oracle annotation if the target sample is annotated and the
current prediction otherwise). However, given two samples
x1 and x2 close in the representation space i.e., z1 ≈ z2,
such that x1 is annotated, y1 ∼ Oracle(x1), one can as-
sume that the probability of observing y1 = Oracle(y2) is
high. However, the design of the naive classifier does not re-
flect this inductive bias since hA(x2) = h(x2) (see Fig. 3).

�↵rhLA(h)

3

1

Decision boundaries

Naive classifier

Balance

ha := arg min
h2H

�Lc(h)

+(1� �)LA(h)

Inductive (ours)

ha := h� ↵rhLA(h)

ha(x) = Oracle(x) if x 2 A,
h(x) otherwise.

2

Figure 3: Illustration of the decision boundary update when
varying the inductive design of the active classifier. Sample
2 is sent to an Oracle providing annotation ? when the cur-
rent classifier h predicts •. Based on this annotation, one can
assume strongly that 1 is a ?. Here, the naive classifier pre-
dicts • for 1. Both 1 and 2 are close to the balance classifier’s
decision boundary due to a • source sample 3 resulting in an
uncertain predictions, thus a poor class-conditioning in the
transferability loss. Our inductive step allows to obtain con-
fident predictions for both 1 and 2. The active classifier mis-
classifies 3 enforcing the model to learn a better-suited rep-
resentation for 3, improving the representation alignment.

Algorithm 2 Training procedure
Input: Target samples (xTi )1≤i≤nT

, annotation budget b, an-
notation rounds r, iterations nit:

1: f, ϕ← UDA pretraining, A ← [ ].
2: for r rounds of annotations do
3: A.append(diverse SAGE((xTi )1≤i≤nT

, f, ϕ, d, b))
# Annotate target samples selected by diverse SAGE.

4: for nit iterations do
5: ha ← inductive(fϕ,A) # Inductive step: an-

notations are incorporated in the active classifier.
6: (f, ϕ) ← transfer(f, ϕ, ha) # Transfer step:

representation and classifier update for aligning
with the feedback of the active classifier.

7: end for
8: end for

Therefore, we suggest to train an active classifier based on
the annotation provided by the Oracle to spread the infor-
mation in the representation space neighborhood of x1. We
propose to use a simple loss that incorporates both the er-
ror in the source domain and the error in target annotated
samples as follows:

ha := arg min
h∈H

γLc(h) + (1− γ)LA(h) (13)

where LA(h) = Ex∈A[−Oracle(x) · log(h(x))] and γ ∈
(0, 1) is a trade-off parameter. On the one hand, when the
annotated samples have high importance to learn ha i.e., γ
tends to 0, we are exposed to a high risk of high variance
of such classifier since |A| � nS . On the other hand, when
the source samples have a high importance to learn ha i.e., γ
tends to 1, knowledge provided by the annotation is poorly
learned by the active classifier. Therefore, calibrating prop-
erly γ is a challenging problem. We overcome this issue by
smoothly updating the classifier h as follows:

inductive(h,A) := h− α∇hLA(h) (14)



(a) A→W (b) W→A (c) A→D (d) D→A (e) VisDA(b = 10) (f) VisDA(b = 100)

Figure 4: SAGE outperforms the baselines for the six tasks. Annotation of target samples improves the transferability of domain
invariant representations drastically. If uncertainty-based selection (Entropy) performs better than diversity-based selection
(Random) for the Office31 dataset, the opposite is observed for the VisDA dataset. For both datasets, SAGE performs better
than both uncertainty and diversity-based selections, demonstrating its capacity to take the best of the two worlds.

The design of inductive aims not to forget knowledge
acquired in the source domain while integrating the knowl-
edge provided by the annotation of the target samples.

Experiments
Datasets. We evaluate our approach on Office-31 (Saenko
et al. 2010) and VisDA-2017 (Peng et al. 2017). Office-
31 contains 4,652 images classified in 31 categories across
three domains: Amazon (A), Webcam (W), and DSLR (D).
We explore tasks A → W, W → A, A → D and D → A.
We do not report results for tasks D → W and W → D
since these tasks have already nearly perfect results in UDA
(Long et al. 2018). For VisDA, we explore Synthetic: 3D
models with different lightning conditions and different an-
gles; Real: real-world images. We explore the Synthetic→
Real task. The standard protocol in UDA uses the same tar-
get samples during train and test phases. In the context of ac-
tive learning, this induces an undesirable effect where sam-
ple annotation mechanically increases the accuracy; at train
time, the model has access to input and label of annotated
samples which are also present at test time. We suggest in-
stead to split the target domain into a train target domain
(samples used for adaptation and pool of data used for anno-
tation) and test target domain (samples used for evaluating
the model) with a ratio of 1/2. Therefore, samples from the
test target domain have never been seen at train time.

Setup. For classification, we use the same hyperparame-
ters than (Long et al. 2018) and adopt ResNet-50 (He et al.
2016) as a base network pre-trained on ImageNet dataset
(Deng et al. 2009). Our code is based on official implemen-
tations of Bouvier et al. derived from (Long et al. 2018). For
all experiments, we have fixed r = 10 rounds of annotations.
For Office31, we have fixed a budget of b = 2% of annota-
tion of the train target domain i.e., 20% of the train target
domain is annotated at the end of the 10 rounds. For VisDA,
we have explored two budgets: b = 10 or 100 samples. We
report average results obtained with 6 random experiments.
We perform 10k iterations of SGD for the UDA pre-training
while, between each annotation round, we perform 5k iter-
ations of SGD. One experiment lasts about ∼12 hours on
a single NVIDIA V100 GPU with 32GB memory. The full
implementation is provided in the supplemental material.

Baselines. AADA (Su et al. 2020) is the closest algorithm
to SAGE and the most interesting to compare. AADA learns
domain invariant representations by fooling a domain dis-
criminator d trained to output 1 for source data and 0 for
target data (Ganin and Lempitsky 2015) and scores tar-
get samples x; s(x) := H(ŷ)w(z) where H(ŷ) is the en-
tropy of predictions ŷ and w(z) = (1 − d(z))/d(z). H(ŷ)
brings information about uncertainty while w(z) brings di-
versity to the score. We have reproduced the implemen-
tation of AADA. SAGE starts active learning with a seri-
ous advantage to AADA as the pre-training procedures dif-
fer significantly. In order to get a fairer comparison with
SAGE, we have therefore chosen to report a modified ver-
sion of AADA that we call AADA++. AADA++ is free
of charge as long as the performance is below the UDA
baseline (Bouvier et al. 2020) (UDA). In our view, this
should essentially eliminate AADA’s structural disadvan-
tage. In practical terms, we translate AADA to the left of
the graph (Annotation round,Target accuracy) until ac-
curacy at request 0 is higher than UDA, explaining why
annotation rounds of AADA++ do not reach 10. We also
report Entropy (uncertainty-based sampling which selects
samples with the highest entropy) and Random (diversity-
based sampling which selects samples randomly). For both
Entropy and Random baselines, the training procedure of
Algorithm 2 is followed, except for line 3 where SAGE is
replaced by entropy sampling (Wang and Shang 2014) or
random sampling.

Results. We report the results of experiments in Fig. 4.
Approximately 110 days of GPU time are necessary for re-
producing the results. First, active annotation brings sub-
stantial improvements to UDA for both datasets. This val-
idates the effort and the focus that should be put on active
domain adaptation in our opinion. For the six tasks, SAGE
outperforms the baselines (AADA in particular) with a com-
fortable margin. More precisely, the saturation regime for
AADA for A→W, D→A and VisDA tasks is significantly
below than the saturation regime of SAGE. Even when pro-
vided with free annotation rounds, AADA++ is less accurate
than SAGE, except for task W→A, demonstrating the sig-
nificant improvement made by SAGE. In addition, we ob-
serve that AADA is unstable when only few data are an-



notated (VisDA(b = 10)), while SAGE remains robust in
this regime. Finally, uncertainty-based sampling (Entropy)
performed better than diverse-based sampling (Random) for
the Office31 dataset, while the contrary is observed for the
VisDA dataset. Interestingly, SAGE performs better than
both Entropy and Random, showing that SAGE takes the
best of both worlds (uncertainty vs diversity).

Ablation study. We conduct an ablation study to com-
pare the inductive step described in Eq. (14) with a step
based on Eq. (13) (Balance with γ = 0.5) or based on
Eq. (3) (Naive). We report results for tasks A→W, W→A
and both tasks of VisDA(b = 100). We observe that both
Balance and Inductive improve significantly performances
compared to the Naive classifier, demonstrating the impor-
tance of the inductive step. For both tasks A→W and W→A,
Inductive is slightly better than Balance, confirming our
belief that smooth updating the classifier (as described in
Eq. (14)) improves performances. Interestingly, Inductive
performed better than Balance when few data are annotated
(e.g., VisDA with b = 10, VisDA with b = 100 for rounds
lower than 3), while the contrary was observed when more
data is annotated. This findings tend to show that Induc-
tive is more adapted in the low annotation regime. All things
considered, the difference between Balance and Inductive
remains small compared to the improvement provided by
SAGE compared to AADA. Nevertheless, the inductive step
remains an important step in SAGE and deserves a deeper
understanding. More ablation is provided in the Appendix.

(a) A→W (b) W→A

(c) VisDA(b = 10) (d) VisDA(b = 100)

Figure 5: Both Inductive and Balance improve the ac-
tive learning compared with the Naive classifier. Inductive
seems to provide better guarantees compared with the Bal-
ance classifier when only few data are annotated. This re-
mark opens the way to interesting future work in ADA.

We demonstrate the effectiveness of k-means++
(Arthur and Vassilvitskii 2006) in SAGE. Additionally to re-
port SAGE (SAGE with k-means++), we also reports re-
sults of Active Domain Adaptation when target samples are

selected with respect to their SAGE norm (||SAGE||), thus
not taking in account directions of gradients. Results are pre-
sented in Fig. 6 for tasks A→W, W→A and both tasks of
VisDA(b = 10 and 100).

(a) A→W (b) W→A

(c) VisDA(b = 10) (d) VisDA(b = 100)

Figure 6: For the four tasks selected for the ablation study,
the k-means++ initialization brings substantial improv-
ments especially for tasks W→A and VisDA for b = 10
and 100.

Related works
Transferability of Invariant Representations. Recent
works warn that domain invariance may deteriorate transfer-
ability of invariant representations (Johansson, Sontag, and
Ranganath 2019; Zhao et al. 2019). Prior works enhance
their transferability with multi-linear conditioning of repre-
sentations with predictions (Long et al. 2018), by introduc-
ing weights (Cao et al. 2018; Bouvier et al. 2019; You et al.
2019; Zhang et al. 2018; Combes et al. 2020), by penaliz-
ing high singular value of representations batch (Chen et al.
2019b), by hallucinating consistent target samples for bridg-
ing the domain gap (Liu et al. 2019) or by enforcing target
consistency through augmentations which conserve the se-
mantic of the input (Ouali et al. 2020).

Active Learning. There is an extensive literature on Ac-
tive Learning (Settles 2009) that can be divided into two
schools; uncertainty and diversity. The first aims to annotate
samples for which the model has uncertain prediction e.g.,
samples are selected according to their entropy (Wang and
Shang 2014) or prediction margin (Roth and Small 2006),
with some theoretical guarantees (Hanneke et al. 2014; Bal-
can, Beygelzimer, and Langford 2009). The second focuses
on annotating a representative sample of the data distribution
e.g., the Core-Set approach (Sener and Savarese 2017) se-
lects samples that geometrically cover the distribution. Sev-
eral approaches also propose a trade-off between uncertainty
and diversity, e.g., (Hsu and Lin 2015) that is formulated as



a bandit problem. Recently, Ash et al. introduced BADGE,
a gradient embedding, which, like SAGE, takes the best of
uncertainty and diversity. Our work is inspired by BADGE
and adapts the core ideas in the context of learning domain
invariant representations.

Active Domain Adaptation. Despite its great practical in-
terest, only a few previous works address the problem of Ac-
tive Domain Adaptation. (Chattopadhyay et al. 2013) anno-
tates target samples by importance sampling while ALDA
(Rai et al. 2010; Saha et al. 2011) annotates samples with
high discrepancy with source samples based on the predic-
tion of a domain discriminator. However, those strategies do
not fit modern adaptation with deep nets. To our knowledge,
AADA (Su et al. 2020) is the only prior work that learns
actively domain invariant representations and achieves the
state-of-the-art for Active Domain Adaptation. Thus, AADA
is the most relevant work to compare with SAGE.

Conclusion
We have introduced SAGE, an efficient method for active
adversarial domain adaptation. SAGE is an embedding suit-
able for identifying target samples that are likely to improve
representations’ transferability when annotated. It relies on
three core components; a stochastic embedding of the gra-
dient of the transferability loss, a k-means++ initialization
which guarantees that each annotation round annotates a di-
verse set of target samples, and a two-step learning proce-
dure that incorporates efficiently active target samples when
learning invariant representations. Through various experi-
ments, we have demonstrated the effectiveness of SAGE for
improving the transferability of representations and its ca-
pacity to take the best of uncertainty and diversity sampling.
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This work was performed using HPC resources from
the “Mésocentre” computing center of CentraleSupélec
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Proof of the theoretical analysis
The naive classifier’s target error is bounded as follows:

εT (hA) ≤
(

1

bπ
− 1

)
(εS(h) + 8τ + η) (15)

where τ := supf∈F{Ex∼pT [hA(x) · f(ϕ(x))]−Ex,y∼pS [y ·
f(ϕ(x))]} is the transferability error, F is the set of continu-
ous functions from Z to [−1, 1]C and η := inf f∈F εT (fϕ).

Proof. First, we observe that :

εT (hA) ≤ βεT (h) (16)

with β = 1− bπ
εT (h) . Then;

ρ :=
β

1− β =
εT (h)

bπ
− 1 ≤ 1

bπ
− 1 (17)

We apply Bound 4 from (Bouvier et al. 2020) where the in-
ductive classifier is the active classifer hA. Then we bound
the invariance error using the transferability error (Proposi-
tion 3, item 1 from (Bouvier et al. 2020)) to obtain 6τ+2τ =
8τ , leading to the announced result.


