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Abstract

In this paper, a flocculation model is considered in a chemostat with a single resource and one
species in two forms: planktonic and aggregated bacteria. The removal rates are distinct and include
the specific death rates. Considering distinct yield coefficients with a large class of growth rates,
we present a mathematical analysis of the model by establishing the necessary and sufficient con-
ditions of the existence and local asymptotic stability of all steady states. From these conditions,
we first determine theoretically the operating diagram describing the asymptotic behavior of the
system according to the two operating parameters. The bifurcations analysis shows a rich behav-
ior: transcritical, saddle-node, Hopf, and homoclinic bifurcations. Using the numerical method with
MATCONT software, we detect other types of two-parameter bifurcations such as Bogdanov-Takens
and Cusp bifurcations. Our analysis shows that the flocculation process promotes the coexistence
of isolated and attached bacteria around a stable limit cycle or a positive steady state. These
theoretical messages explain and reinforce the experimental observations about the positive effect
of flocculation on the maintenance of species coexistence and the protection of the most relevant
species among microbial ecosystems.

Keywords: Bifurcations theory, Coexistence, Flocculation, Hopf bifurcation, Limit cycle
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1 Introduction

The chemostat is an important laboratory apparatus used for experiments on the controlled growth
of microorganisms in microbiology and ecology. It has played an important role in many fields, such
as the wastewater treatment process, biomass energy recovery, and biotechnologies in a broad sense.
Mathematical models of competition on a single limiting nutrient in a chemostat have played a central
role in microbial ecology, microbiology, and evolutionary and applied biology. The mathematical study
of the classical chemostat model of several species competing on the same limiting resource can be found
in the monograph by Smith and Waltman [42]. They have shown that only the most competitive species
that consumes less substrate to reach its steady state (or that has the lowest break-even concentration)
survives the competition of several species on a single nutrient while all other species are excluded.
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This result is well known as the Competitive Exclusion Principle (CEP) which states that two species
competing for identical limited resource cannot coexist indefinitely. However, the CEP contradicts the
biodiversity observed in nature and microbial ecosystems.

In order to reconcile the mathematical results of the classical chemostat model asserting the CEP
and the experimental results and nature showing the biodiversity of microbial species, various recent
studies have revised the mathematical modeling of the competition of several microbial species com-
peting on a single resource. More specifically, a lot of research has tried to understand and explain
the biodiversity in microbial ecosystems by analyzing the various types of interactions favoring the
coexistence of microbial species. In [35], the constant input of some species in a chemostat of n
species competing on a single nutrient can lead to coexistence. In the literature, we can cite these
various mechanisms of coexistence: flocculation [15, 17–20], intra- and interspecific interference [1, 9],
density-dependence [16, 25, 27, 28, 31, 32], presence of internal or external inhibitors [2, 10–12, 48],
predator-prey interaction [3, 4], simple or complex food web [5, 24, 46], and the references therein.

In this paper, we consider a flocculation model of one microbial species that is decomposed into
isolated (or planktonic) bacteria and attached (or aggregate) bacteria with a single nutrient S in a
chemostat. Moreover, isolated bacteria can aggregate with isolated bacteria or flocs to form new flocs,
with a rate a(u+ v)u, while flocs can split and liberate isolated bacteria, with a rate bv. The model is
given by the following three-dimensional system of ordinary differential equations

Ṡ = D(Sin − S)− 1
yu
f(S)u− 1

yv
g(S)v

u̇ = [f(S)−Du]u− a(u+ v)u+ bv
v̇ = [g(S)−Dv]v + a(u+ v)u− bv

(1)

where S(t) is the concentration of the substrate at time t; f(S) and g(S) represent, respectively, the
growth rates of isolated and attached bacteria; D and Sin are, respectively, the dilution rate and the
concentration of the substrate in the feed device; Du and Dv represent, respectively, the disappearance
rates of planktonic and attached bacteria; yu and yv are “yield” constants reflecting the conversion of
nutrient to planktonic and aggregated bacteria, respectively.

This model was studied in [23, 34] in the case where the yields are equal and the removal rates
are equal to the dilution rate. In this case, the yields can be normalized to 1, and the system can
be reduced to a planar system. Moreover, because of the structure of model (1), when the yields are
distinct, they cannot be normalized to 1 by the usual change of variable where u and v are replaced
by u/yu and v/yv, respectively. The model (1) were also studied in [15, 18, 19] in the case where the
yields are equal, and are normalized to 1. However, the consideration of these yield coefficients is very
important in the mathematical models of the chemostat to model reproduction by nutrient uptake
as mentioned in [23, 42]. Consequently, the present work fills this gap by examining the general case,
which is the most relevant from a biological point of view. In this work, we study model (1) where Du

and Dv can be modeled as in [41] by:

Du = αD +mu, Dv = βD +mv

where the non-negative parametersmu andmv representing mortality rate are taken into consideration.
In [18], we have determined the existence and local stability of all steady states of system (1) with
the same yields coefficients yu and yv. The model presents a multiplicity of positive steady states
that can only appear or disappear through saddle-node or transcritical bifurcations. Under the joined
effect of flocculation and mortality, the coexistence steady states may destabilize via a supercritical
Hopf bifurcation with the emergence of a stable limit cycle that can disappear through a homoclinic
bifurcation. However, the study of bifurcations is limited to the one-parameter diagrams by fixing D
and varying Sin. In [19], the theoretical study of the operating diagram of model (1) with the same
yields coefficients shows that the system can exhibit bistability between the washout steady state E0

and the coexistence steady state E1. There may also only be coexistence around the positive steady
state E1. The construction of the operating diagram of model (1) in [19] has omitted the existence of
the region of destabilization of a positive steady state where there can be the emergence of a stable
limit cycle via a Hopf bifurcation for very small values of D as demonstrated in Appendix E.

Indeed, the operating diagram is a very useful tool to visualize and summarize the asymptotic
behavior of a process according to the operating parameters which are the most easily manipulated
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parameters in a chemostat as explained in [23, 42]. In the existing literature, the study of the operating
diagram can be purely numerical. By exploring the set of operating parametersD and Sin with a certain
discretization step, a significant steady state (i.e. with nonnegative components) is determined by
solving numerically algebraic equations giving steady states. Their asymptotic behaviors are established
by solving the characteristic polynomial and the sign of its roots [43]. This method can be applied to
complex processes with a large number of state variables and parameters [22, 26, 44, 45, 47].

Another numerical alternative consists in constructing the boundaries of the various regions of
the operating diagram using a continuation and correction algorithm. Various software packages have
been developed to determine the values of the critical parameters corresponding to the different types
of bifurcations for autonomous dynamic systems. The most used software packages are MATCONT,
CONTENT, AUTO, and XPPAUT (see [13] and the reference therein).

However, the theoretical determination of the operating diagram consists in constructing the bound-
aries of the different regions from the theoretical analysis of the dynamic system. More precisely, using
a scientific numerical platform (like MAPLE [29]), these boundaries are drawn from the conditions of
existence and stability of all steady states according to the operating parameters when all biological
parameters are fixed [1, 2, 6–8, 10–14, 16, 19, 21, 31–33, 36–39, 48]. Note that the single-parameter or
two-parameter bifurcation diagrams obtained with MATCONT [30] allow additional phenomena to be
detected (such as homoclinic, Cusp, and Bogdanov-Takens bifurcations) compared with those obtained
theoretically from the existence and stability conditions.

Our main objective in this paper is to establish an in-depth mathematical study of model (1) by
considering distinct yields and removal rates including the specific death rates. Moreover, we establish
theoretically and numerically the operating diagram of model (1) to describe the asymptotic behavior
of the process according to the two operating parameters Sin and D. The operating diagrams show
the emergence of a region of destabilization of the interior steady state via a Hopf bifurcation with
coexistence around a stable limit cycle. The one- and two-parameter diagrams are also obtained by the
numerical continuation method using MATCONT software [30], which allowed us to detect other types
of bifurcations according to two parameters. Finally, the effect of attachment and detachment on the
operating diagram is analyzed theoretically to show the importance of considering the phenomenon of
flocculation as a coexistence mechanism in the classic chemostat model.

This paper is organized as follows. First, we present in Section 2 a general hypothesis about the
growth functions of the flocculation model (1). Then, we determine the existence and the local stability
conditions of all steady states according to the dilution rate and the input concentration of the sub-
strate. In Section 3, we analyze theoretically the operating diagram. First, in Section 3.1, a simple case
is considered where there is only a Branch Point (BP) and no Limit Point (LP) or Hopf bifurcation.
In Section 3.2, a case with LP and Hopf bifurcations is considered. In Section 3.3, another case with
LP and Hopf bifurcations is considered but a new region of instability of two positive steady states
emerges in the operating diagram. In Section 4, we study numerically the operating diagram and the
bifurcation diagram according to one parameter using the software MATCONT for the two cases in
Sections 3.2 and 3.3. In Section 5, we study the effect of flocculation on the operating diagram for
the set of parameters considered in Sections 3.3 but where a and b are variable. Finally, conclusions
are drawn in the last Section 6. The proof of the existence and local stability conditions of all steady
states are reported in Appendix A. In Appendix B, we show that a stability condition of the positive
steady state holds for the set of parameters considered in Section 3.1. In Appendix C, we illustrate that
this stability condition does not hold for the set of parameters considered in Section 3.2. In Appendix
D, we show the destabilization of a positive steady state and then illustrate the stable limit cycles in
the three-dimensional space (S, u, v) and their disappear via a homoclinic bifurcation for the set of
parameters considered in Section 3.3. In Appendix E, we show that the region of destabilization of the
positive steady state is omitted in the construction of the operating diagram in [19]. All the values of
parameters used throughout this paper are provided in Appendix F.

2 Hypothesis and model analysis

In this paper, we make the following general assumption on the growth functions f(S) and g(S) which
are continuously differentiable (C1).
(H1) f(0) = g(0) = 0 and f ′(S) > 0 and g′(S) > 0 for all S > 0.
Assumption (H1) means that no growth can occur for isolated bacteria u and attached bacteria v
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without the presence of the substrate S. Moreover, the growth rates of isolated and attached bacteria
increase with the concentration of the substrate S.

In this section, we summarize the main results of the existence and stability of all steady states of
system (1). A steady state exists if and only if all its components are nonnegative. This predicts two
types of steady states, labeled as follows:

• E0 (u = 0, v = 0): the washout of planktonic and attached bacteria.
• E1 (u > 0, v > 0): both planktonic and attached bacteria are present.

To determine these steady states, we define the following auxiliary functions

H(S) :=
1

yu
f(S)U(S) +

1

yv
g(S)V (S) (2)

where

U(S) :=
φ(S)(ψ(S)− b)

a[ψ(S)− φ(S)]
and V (S) := − φ2(S)(ψ(S)− b)

a[ψ(S)− φ(S)]ψ(S)
(3)

and
φ(S) := f(S)−Du and ψ(S) := g(S)−Dv. (4)

In addition, we need to define the following interval of existence of the positive steady states:

I =]λu, λv[ if λu < λv, else I =]λv,min(λu, λb)[ (5)

where λu, λv and λb are defined in Table 3. For convenience, we shall use the abbreviation LES for
Locally Exponentially Stable. Any reference to steady state stability should be considered as local
exponential stability, that is to say, the real parts of the eigenvalues of the Jacobian matrix are negative.
To determine the stability of the positive steady state E1 = (S∗, u∗, v∗), we define the Routh–Hurwitz
coefficients by

c1 = m11 +m22 +m33,
c2 = m12m21 +m13m31 −m32a23 +m11m22 +m11m33 +m22m33,

c3 = m11(m22m33 −m32a23) +m21(m12m33 +m32m13) +m31(m12a23 +m13m22)
c4 = c1c2 − c3.

(6)

where 
m11 = D + 1

yu
f ′(S∗)u∗ + 1

yv
g′(S∗)v∗, m12 = 1

yu
f(S∗), m13 = 1

yv
g(S∗),

m21 = f ′(S∗)u∗, m22 = a(2u∗ + v∗)− φ(S∗), a23 = b− au∗,
m31 = g′(S∗)v∗, m32 = a(2u∗ + v∗) and m33 = b− au∗ − ψ(S∗).

(7)

Now, we can state the main result which establishes the components of all steady states of (1) and
their existence and local asymptotic stability conditions.
Theorem 1. Assume that Hypothesis (H1) holds. The steady states of (1) and the necessary and
sufficient conditions of existence and local asymptotic stability are given in Tables 1 and 2, respectively.

Table 1 Steady states of (1). The functions H(S), U(S) and V (S) are
defined by (2) and (3).

S, u, v components
E0 S = Sin, u = 0, v = 0
E1 S∗ solution of equation D(Sin − S) = H(S), u∗ = U(S∗) and v∗ = V (S∗)

Table 2 Necessary and sufficient existence and local stability conditions of steady
states of (1) where c4 is defined by (6).

Existence conditions Stability conditions
E0 always exists Sin < min(λu, λb).

E1
equation D(Sin − S) = H(S)
has a solution S∗ ∈ I

c3 = φ(S∗)(b− ψ(S∗))(D +H′(S∗)) > 0 and
c4 > 0

The proof is given in Appendix A. It was shown in [23] (see also [34]) that when Du = Dv = D,
then the positive steady state E1 exists and is unique and LES if and only if Sin > λu.
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3 Operating diagrams

In this section, we study theoretically the operating diagrams of model (1) to determine the various
qualitative asymptotic behaviors of the process according to the operating parameters which are the
concentration of substrate in the feed bottle Sin and the dilution rate D. Each region of the diagram
is characterized by a different color according to the number of existing steady states and their various
asymptotic behaviors. Except for the operating parameters Sin and D, all the biological parameters
are fixed since they cannot be easily manipulated by the biologist as they depend on the nature of the
organisms and the substrate introduced into the bioreactor.

From definition of λv(D) and λb(D) in Table 3, we have λv(D) < λb(D) for all D ∈ [0, Dv[. To
construct theoretically the operating diagram of system (1) by determining the various curves, we
define the auxiliary functions according to the dilution rate D in Table 3 and the set of curves Γi,
i = {u, v,BP, LP,H} in Table 4, which are the boundaries of different regions of the (Sin, D)-plane. As
in this work, the construction of the operating diagram will be done with the specific growth rates of
Monod-type (8) satisfying hypothesis (H1) and we know that in this case the function S 7→ H(S) is
convex, we can define the functions D 7→ SLP(D) and D 7→ λLP(D) in Table 3 by following [19].

Table 3 Notations, auxiliary functions, and their domains of definition.

Definition

λu(D)
λu(D) = f−1(αD +mu).

It is defined for 0 ≤ D < Du := (f(+∞)−mu)/α.

λv(D)
λv(D) = g−1(βD +mv).

It is defined for 0 ≤ D < Dv := (g(+∞)−mv)/β.

λb(D)
λb(D) = g−1(βD +mv + b).

It is defined for 0 ≤ D < Db := (g(+∞)−mv − b)/β.

λBP(D)
λBP(D) = min(λu(D), λb(D)).

It is defined for 0 ≤ D < max
(
Du, Db

)
.

S = SLP(D)
S = SLP(D) is the unique solution of equation H′(S) = −D on ]λv(D), λBP(D)].

It is defined for D ≤ D < Dv where D is the unique solution in
]
0,max

(
Du, Db

)[
of equation H′(λBP(D)) = −D.

λLP(D)
λLP(D) = H(SLP(D))/D + SLP(D).

It is defined for D ≤ D < Dv .

The passage through the ΓBP curve corresponds to a transcritical bifurcation or Branch Point (BP)
between E0 and E1

1 or between E0 and E2
1 as we will see in the following section. As we shall see

later, passing through the curve ΓLP in the operating plan (Sin, D) gives rise to the two positive steady
states E1

1 and E2
1 via a Limit Points (LP) or saddle-node bifurcation. In addition, the passage through

the curve ΓH corresponds to Hopf bifurcation with the appearance or disappearance of a stable limit
cycle. To illustrate the operating diagram of model (1), we choose the following specific growth rates

Table 4 Definitions of the curves Γi, i = {u, v,BP, LP,H}, and
the corresponding colors where all functions λi and c4 are
defined in Table 3 and (6), resp. The abbreviations BP, LP, and
H mean a Branch Point, Limit Point, and Hopf bifurcations,
respectively.

Curves Color Bifurcation
Γu = {(Sin, D) : Sin = λu(D)} Red BP
Γb = {(Sin, D) : Sin = λb(D)} Blue BP
ΓBP = {(Sin, D) : Sin = λBP(D)} Red or Blue BP
ΓLP = {(Sin, D) : Sin = λLP(D)} Green LP
ΓH = {(Sin, D) : c4(Sin, D) = 0} Magenta H

of Monod-type satisfying hypothesis (H1):

f(S) =
m1S

k1 + S
and g(S) =

m2S

k2 + S
, (8)

where mi is the maximum growth rate and ki is the Michaelis-Menten constant, i = 1, 2. The values
of these biological parameters are provided in Table F1. In addition, the construction of the operating
diagram is similar to any other specific growth rate satisfying hypothesis (H1).
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In the next section, we start with the simplest case where the operating diagram does not present
the regions of destabilization of the positive steady state and the emergence of two positive steady
states. Then, we study the general case with the emergence of the limit cycle and BP bifurcation. Then,
we find these results using the numerical continuation method with the MATCONT software. Finally,
we determine the effect of flocculation on the appearance and disappearance of various regions.

3.1 A case where the positive steady state is unique and stable if it exists

In this section, we consider a case where there is only BP of two steady states and no LP or Hopf
bifurcation. Therefore, the positive steady state E1 is unique and stable if it exists and can only
bifurcate with the washout steady state E0. For this purpose, we consider the biological parameter
values that were used in [18, Fig. 13] (see Table F1, line 1). However, Sin and D are variable and not
fixed as in [18] where Sin = 5 and D = 3.5. With this set of parameters, we have λu(D) < λv(D) for all
D in their definition domain so that the function S 7→ H(S) is defined and increasing on [λu(D), λv(D))
as shown in Fig. B1(a). Moreover, Appendix B shows that the stability condition c4 > 0 holds for all
Sin and D in the existence domain of E1.

From Table 2 providing the existence and local stability conditions of steady states, we can state
the next result determining theoretically the operating diagram in the case of Table F1 (line 1) where
the various functions and the corresponding curves are defined in Tables 3 and 4, respectively.
Proposition 2. For the specific growth rates f1 and f2 defined in (8) and the set of the biological
parameter values in Table F1 (line 1), we have λu(D) < λv(D) for all D ∈

[
0, Du

[
. In addition, the

existence and the local stability of the steady states E0 and E1 of model (1) in the two regions I0 and
I1 of the operating diagram shown in Fig. 1(a) are described in Table 5.

Table 5 Existence and local stability of steady
states according to the regions in the operating
diagram of Fig. 1(a). The letter S [resp. U] means
stable [resp. unstable]. No letter means that the
steady state does not exist.

Condition Region Color E0 E1

Sin < λu(D) I0 Cyan S
Sin > λu(D) I1 Red I S

(a)D

I0

I1

Γu

Sin

(b)D

ΓLP

ΓBP

I0
I2

I1

Sin

(c)D ΓLP

ΓBP

I0
I2

I1

I3Γ1
H

Γ2
H

Sin

Fig. 1 Operating diagram of (1). (a) The case considered in Section 3.1. (b) The case considered in Section 3.2. (c)
Magnification of (b) showing the curve ΓH.

Note that the cyan region I0 in the operating diagram in Fig. 1(a) corresponds to the washout of
isolated and attached bacteria while the red region I1 corresponds to the coexistence of both species
around a steady state. The theoretical study of the operating diagram determines the asymptotic
behavior of the solutions for the set of biological parameters in [18, Fig. 13]. Note that this figure
illustrates the trajectories over time which converge towards the positive steady state E1 for various
initial conditions when the point of the plane (Sin, D) = (5, 3.5) belongs to region I1. Thus, this oper-
ating diagram presents a global vision of the behavior of the solutions according to the two operating
parameters.
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3.2 A case with multiplicity of positive steady states and Hopf bifurcations

In this section, we consider a case where there are LP and Hopf bifurcations. In this example, we can
have two positive steady states, one being stable and the other unstable, and in addition, the stable one
can be destabilized through a Hopf bifurcation. For this purpose, we consider the biological parameter
values that were used in [18, Fig. 12] (see Table F1, line 2). However, Sin and D are variable and not
fixed as in [18] where D = 0.1. With this set of parameters, we have λv(D) < λBP(D) = λb(D) for all
D ∈

[
0, Dv

[
so that the function S 7→ H(S) is defined and decreasing on ]λv(D), λb(D)]. Using Tables

2, 3 and 4, we can state the next proposition determining theoretically the operating diagram.
Proposition 3. For the specific growth rates f1 and f2 defined in (8) and the set of the biological
parameter values in Table F1 (line 2), we have λv(D) < λBP(D) for all D ∈ [0, Dv[. In addition, the
existence and the local stability of the steady states E0, E

1
1 and E2

1 of model (1) in the four regions Ii,
i = 0, . . . , 3 of the operating diagram shown in Fig. 1(b-c) are described in Table 6.

Table 6 Existence and local stability of steady states according to the regions in
the operating diagram of Fig. 1(b-c).

Condition 1 Condition 2 Region Color E0 E1
1 E2

1

Sin < min(λLP(D), λBP(D)) I0 Cyan S
λBP(D) < Sin c4(Sin, D) > 0 I1 Red I S
λLP(D) < Sin < λBP(D) c4(Sin, D) > 0 I2 Green S S I
λBP(D) < Sin c4(Sin, D) < 0 I3 Blue I I

Note that the construction of the operating diagram in Fig. 1(b-c) is obtained by plotting the
various curves Γi, i = {BP, LP,H} defined in Tables 4. They correspond to the existence and stability
conditions of all steady states provided in Table 2. The green region I2 corresponds to the bistability
with either the coexistence around a steady state or the washout of the isolated and attached bacteria
according to the initial condition. The blue region I3 corresponds to the instability of the positive
steady state E1

1 where there can be coexistence around a stable limit cycle.
Note that c4 is a function of S, that is, c4 = c4(S) because it depends on the three state variables S,

u = U(S) and v = V (S) defined in (3). Moreover, c4 is a function of (Sin, D), that is, c4 = c4(Sin, D)
because we can determine S from the equation D(Sin−S) = H(S). With the set of parameters in Table
F1 (line 2), we provide numerical evidence in Appendix C of the change of sign of the function c4(S)
on the existence interval of the positive steady state E1

1 according to D. Indeed, for D < Dmax
H ≈ 0.165

and fixed, the function c4(S) changes sign in ]λv(D), λBP(D)[ so that the equation c4(S) = 0 has two
solutions noted by

S2
H(D) < S1

H(D) < λBP(D).

For all D < Dmax
H , we define the two solutions of the equation c4(Sin, D) = 0 by the following critical

values of Sin which corresponds to a Hopf bifurcation

Sin = SHi
in (D) =

1

D
H

(
Si

H(D)
)
+ Si

H(D), i = 1, 2.

Consequently, the ΓH curve of the equation c4(Sin, D) = 0 is given by the union of the two curves Γ1
H

(on the left of the maximum) of equation Sin = SH1
in (D) and Γ2

H (on the right of the maximum) of
equation Sin = SH2

in (D), see Fig. 1(c).
Remark 1. In Appendix E, we establish the operating diagram with the parameter set in [19]. It is
similar to that in Fig. 1(b-c) where we find the same regions in Table 6 (just λBP(D) is equal to λu(D)
instead of λb(D)). However, the region I3 of destabilization of the positive steady state E1

1 with the
appearance of a stable limit cycle was not detected in [19] because of the order of magnitude of Dmax

H

as demonstrated in Appendix E.

3.3 Another case with multiplicity of positive steady states and Hopf
bifurcations

In the operating diagram of the case considered in Section 3.2, we do not have a region where the two
positive steady states are both unstable, see Table 6. Thus, this section aims to provide an example
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where there is a new region (labeled I4, see Table 7) of instability of the two positive steady states. For
this purpose, we consider the biological parameter values that were used in [18, Fig. 6] (see Table F1,
line 3). However, Sin and D are variable and not fixed as in [18] where D = 0.1. Indeed, the study in
[18] was limited to one parameter bifurcation diagrams according to Sin. With this set of parameters,
we have λv(D) < λBP(D) so that the function S 7→ H(S) is defined and decreasing on (λv(D), λBP(D)]
as shown in Fig. D3. In addition, the two curves Γu and Γb intersect when (Sin, D) = (14.588, 1.147)
so that ΓBP = Γu for all D ∈ [0, 1.147] and ΓBP = Γb for all D ∈

[
1.147, Db

[
. Similarly to the previous

cases, we can state the next result.
Proposition 4. For the specific growth rates f1 and f2 defined in (8) and the set of the biological
parameter values in Table F1 (line 3), we have λv(D) < λBP(D) for all D ∈ [0, Dv[. In addition, the
existence and the local stability of the steady states E0, E

1
1 and E2

1 of model (1) in the five regions Ik,
k = 0, . . . , 4 of the operating diagram shown in Fig. 2 are described in Table 7.

Table 7 Existence and local stability of steady states according to the regions in
the operating diagram of Fig. 2.

Condition 1 Condition 2 Region Color E0 E1
1 E2

1

Sin < min(λLP(D), λBP(D)) I0 Cyan S
λBP(D) < Sin c4(Sin, D) > 0 I1 Red I S
λLP(D) < Sin < λBP(D) c4(Sin, D) > 0 I2 Green S S I
λBP(D) < Sin c4(Sin, D) < 0 I3 Blue I I
λLP(D) < Sin < λBP(D) c4(Sin, D) < 0 I4 Yellow S I I

(a)D

ΓLP

Γb

Γu

ΓH

I0

I2

I1
I3

��	 Sin

(b)D ΓLP Γu

ΓH

I0

I2

I4

I1

I3

Sin

(c)D ΓLP ΓH

Γu

I0

I2

I4

I1 I3
Sin

Fig. 2 Operating diagram of (1). (a) The case considered in Section 3.3. (b-c) Magnifications of (a) showing the curve
ΓH.

Fig. 2(a) illustrates the operating diagram of model (1) while Figs. 2(b-c) illustrate magnifications
of regions I1, I3 and I4. The operating diagram in Fig. 2 is divided into five regions. The blue region
I3 corresponds to the instability of the positive steady state. The yellow region I4 corresponds to the
instability of the two positive steady states E1

1 and E2
1 where the system can exhibit bistability with

either coexistence around a stable limit cycle or the washout of the isolated and attached bacteria.
In Fig. D3, we give the justification that the operating diagram is the one shown in Fig. 2. Indeed,

it illustrates the functions H(S) and c4(S) for D fixed at D∗ = 0.1 to see the change of the sign of
c4(S). The solutions S1

H and S2
H of the equation c4(S) = 0 correspond to the critical values SH1

in and
SH2
in which are the intersections of the horizontal line of equation D = D∗ in the (Sin, D)-plane of the

operating diagram in Fig. 2.

4 Operating diagrams and bifurcations diagrams in
MATCONT

In this section, we use MATCONT [30] to numerically analyze the one- and two-parameter diagrams
of model (1) and to detect two-parameter bifurcations that cannot be established theoretically. It also
allows us to validate our theoretical results. In fact, MATCONT is a MATLAB numerical continuation
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package used to analyze the different types of bifurcations of the continuous and discrete parameterized
systems of ODEs. It allows to trace the trajectories over time according to the initial condition and
the bifurcation diagrams with a single parameter or two parameters. More precisely, it allows one to
visualize the curves of steady states according to a parameter by determining their local asymptotic
behavior thanks to the calculation of the eigenvalues of the Jacobian matrix evaluated at the steady
state. Moreover, it also allows one to determine the stable or unstable limit cycles by calculation of
the sign of the First Lyapunov coefficient. Thanks to test functions, MATCONT detects all types of
bifurcations such as the transcritical bifurcation or Branch Points (BP), saddle-node or Limit Points
(LP) bifurcation, Cusp (CP) bifurcation, Hopf (H) bifurcation, Limit Point of Cycles (LPC) or fold
bifurcation points of limit cycles, period-doubling bifurcation points of limit cycles.

From these critical bifurcation points, MATCONT can determine the various curves in the operating
diagram according to two parameters by numerical continuation. These curves of objects of a given
type (e.g. steady states, limit cycle, Hopf bifurcation points, homoclinic orbits, etc.) are calculated
under variation of one or more system parameters. The reader is addressed to the relevant paper of
Dhooge et al. [13] for more on this interesting subject.

4.1 Operating diagram in the case considered in Section 3.2, obtained with
MATCONT

In this section, we determine the one and two-parameter bifurcation diagrams in Fig. 3 using MAT-
CONT for the set of the biological parameter values in [18, Fig. 12] where the one bifurcation diagram
is obtained using SCILAB. The corresponding set of the parameters are provided in Table F1 (line 2).
The intersection point between Γb and ΓLP is a two parameters bifurcation of type Cusp (CP) while
the intersection points between ΓH and Γb with the D = 0 axis is of type Bogdanov-Takens (BT).
These types of bifurcation are not detected in the theoretical study of the operating diagram obtained
in Section 3.2. Table 8 summarizes the critical operating parameters, the state, and the normal form
coefficient for BT and CP bifurcations. Fig. 3(c) illustrates the one-parameter bifurcation diagram in

Table 8 Operating parameters, state, normal form coefficient values (θ1, θ2)
[resp. θ3] for BT [resp. CP], at the bifurcation points in Fig. 3. The abbreviation
BP [resp. CP] means a Bogdanov-Takens point [resp. Cusp] bifurcation.

Bifurcation Parameter (Sin, D) State (S, u, v) Normal form coefficient
BT (2,0) (2,0,0) (θ1, θ2) = (1.03 10−6,−0.6)
CP (2.204,0.130) (2.204,0,0) θ3 = −0.523
BT (2.236,0) (2,0,0) (θ1, θ2) impossible

(a)D
ΓLP

Γb

ΓH

I0

I2

I1
I3

��	 Sin

(b)D ΓLP

Γb

ΓH

I0
I2

I1

I3 Sin

(c)S

E0

E0

E1

E1
E1

Sin

Fig. 3 MATCONT: (a) operating diagram of (1) in the case considered in Section 3.2. (b) Magnification of (a) showing
the curve ΓH. (c) The corresponding one-parameter bifurcation diagram in variable S when D = 0.1.

variable S when D is fixed at D = 0.1 in the case considered in Section 3.2. It reveals the appearance
and the disappearance of stable limit cycles via two Hopf bifurcations.
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4.2 Operating diagram in the case considered in Section 3.3, obtained with
MATCONT

Fig. 4 illustrates the operating diagram obtained numerically using MATCONT. It is identical to
the operating diagram obtained theoretically in Fig. 2. However, MATCONT detects the nature of
bifurcations at the intersection points between the curves Γu and ΓLP which is of Cusp (CP) type
and between the curves Γu and ΓH with the Sin-axis which are Bogdanov-Takens points (BT). The
critical operating parameters, the state, and the normal form coefficient for BT and CP bifurcations
are summarized in Table 9.

(a)D
ΓLP

Γb

Γu

ΓH

I0

I2

I1
I3

��	 Sin

(b)D ΓLP Γu

ΓH

I0

I2

I4

I1

I3

Sin

(c)D ΓLP ΓH

Γu

I0

I2

I4

I1
I3

Sin

Fig. 4 MATCONT: (a) operating diagram of (1) in the case considered in Section 3.3. (b-c) Magnifications of (a)
showing the curve ΓH.

Table 9 Operating parameters, state, normal form coefficient values (θ1, θ2) [resp.
θ3] for BT [resp. CP], at the bifurcation points in Fig. 4. The abbreviation BP
[resp. CP] means a Bogdanov-Takens point [resp. Cusp] bifurcation.

Bifurcation Parameter (Sin, D) State (S, u, v) Normal form coefficient

BT (3.714,0) (3.714,0,0) (θ1, θ2) =
(
3.23 10−8,−0.306

)
CP (3.819,0.032) (3.819,0,0) θ3 = −0.483
BT (3.823,0) (3.714,0,0) (θ1, θ2) =

(
2.38 10−6,−0.306

)
BT (14.588,1.147) (14.588,0,0) (θ1, θ2) = (2.019,−1.127)

4.3 Bifurcation diagram with respect to Sin, corresponding to D = 0.1 in
the case considered in Section 3.3

In what follows, we will analyze the various types of bifurcation by crossing one region to another in
the operating diagram of Fig. 2 or Fig. 4. Using Prop. 4, the nature of all the bifurcations by passing
through the various curves Γi defined in Table 4 is described in the following result.
Proposition 5. Let f1 and f2 be the specific growth rates defined in (8). Let the set of the biological
parameter values be in Table F1 (line 3). The nature of all the bifurcations of model (1) by crossing
the different regions of the operating diagram in Fig. 2 is provided in Table 10.

Table 10 Nature of all the bifurcations of system
(1) by passing the different curves Γi,
i = {BP, LP,H} defined in Table 4.

Transition Curve Bifurcation Steady states
I0 to I2 ΓLP LP E1

1 = E2
1

I0 to I1 Γu BP E0 = E1
1

I2 to I1 ΓBP BP E2
1 = E0

I2 to I4 ΓH H E1
1

I1 to I3 ΓH H E1
1

I4 to I3 Γu BP E2
1 = E0
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Let D be fixed at D = D∗ = 0.1. Next, we analyze the one-parameter bifurcation diagram with
respect to Sin as the bifurcating parameter to show the nature of bifurcations by crossing various
boundaries between the different regions in the operating diagram. Note that the one-parameter bifur-
cation diagram in D can be obtained in the same way. Using MATCONT, we illustrate in Fig. 5
the one-parameter bifurcation diagram in Sin, with S on the y-axis. Similarly, we can obtain the
one-parameter bifurcation diagram for the concentrations of isolated and attached bacteria, u and v,
respectively. Note that the two-parameter bifurcation diagram does not show the disappearance of the
limit cycle like the one-parameter bifurcation diagram.

(a)S

E0

E0

E1
1

Sin

(b)S
E0

E0

E2
1

E1
1

Sin

(c)S
E0

E2
1

E1
1 E1

1

Sin

Fig. 5 MATCONT: one parameter bifurcation diagram of (1) in variable S in the case considered in Section 3.3. (b) a
magnification of two homoclinic bifurcations when Sin ∈ [3.83, 4.08]; (c) a magnification of supercritical Hopf bifurcation
when Sin ∈ [3.835, 3.85].

In the following, we present the step-by-step approach to obtain the one-parameter bifurcation
diagram in the variable S using MATCONT. Increasing Sin from zero, the bifurcation diagram in Fig.
5(a) illustrates the BP bifurcation occurring at Sin = σ5 ≈ 4.061 between E0 and E2

1 . Increasing Sin

further, the washout steady state E0 changes stability and becomes unstable (see Fig. 5(a-b)). Starting
from this BP bifurcation and counting backward, E2

1 emerges at Sin = σ5 unstable by decreasing Sin.
A first close-up is illustrated in Fig. 5(b) and a second close-up is illustrated in Fig. 5(c).

Next, there is a LP between E1
1 and E2

1 at Sin = σ1 ≈ 3.837 when S ≈ 3.492, u ≈ 996 10−5 and
v ≈ 107 10−5 so that these two interior steady states disappear by decreasing Sin further. Inversely,
increasing Sin from LP, E1

1 and E2
1 appear LES and unstable, respectively. After that, increasing

Sin further, a Hopf (H) bifurcation occurs at E1
1 when Sin = σ2 ≈ 3.842, S ≈ 3.422, u ≈ 0.012

and v ≈ 1.5 10−3. A stable limit cycle emerges through a supercritical Hopf bifurcation where the
first Lyapunov coefficient is given by −0.430. Moreover, E1

1 changes stability and becomes unstable.
Increasing Sin further, once again a Hopf bifurcation occurs at E1

1 when Sin = σ6 ≈ 8.179, S ≈ 1.963,
u ≈ 0.140 and v ≈ 0.139. A stable limit cycle disappears through a supercritical Hopf bifurcation
where the first Lyapunov coefficient is given by −34 10−3. Moreover, E1

1 changes stability and becomes
LES. Fig. D4 shows the stable limit cycles in the three-dimensional space (S, u, v) for different values
of Sin between σ4 and σ6. Starting from the first Hopf bifurcation at σ2 and increasing Sin, the
radius of the stable limit cycle increases until his disappearance through a homoclinic bifurcation when
Sin = σ3 ≈ 3.8477. Fig. D5(a) shows the period of the cycle tends to infinity when Sin tends to σ3.
Starting from the second Hopf bifurcation at σ6 and decreasing Sin, the radius of the stable limit
cycle first increases and then decreases until his disappearance through a homoclinic bifurcation when
Sin = σ4 ≈ 4.03468. Fig. D5(b) shows the period of the cycle tends to infinity when Sin tends to σ4
confirming the homoclinic bifurcation. The analysis of the one-parameter bifurcation diagram in Sin

from the operating diagram in Fig. 2 is summarized in the following result.
Proposition 6. For the specific growth rates f and g defined in (8) and the set of the biological
parameter values in Table F1 (see line 3), the existence and the local stability of all steady states of (1)
according to Sin are described in Table 11 when D = 0.1 is fixed. The critical values σi, i = 1, . . . , 6 of
different bifurcations according to the parameter Sin and the corresponding nature are defined in Table
12.
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Table 11 Existence and stability of all steady
states of (1) according to Sin for the set of
parameter in Fig. 2 when D = 0.1. The critical
values σi, i = 1, . . . , 6 are defined in Table 12.

Interval of Sin E0 E1
1 E2

1
(0, σ1) S
(σ1, σ2) S S U
(σ2, σ3) S U U
(σ3, σ4) S U U
(σ4, σ5) S U U
(σ5, σ6) U U
(σ6,+∞) U S

Table 12 Definitions of the critical values σi, i = 1, . . . , 6 of D and their
corresponding nature of bifurcation when D = 0.1 is fixed. The abbreviations Hom
and T mean homoclinic and T period of solutions, respectively.

Definition Value Bifurcation
σ1 = λLP(D) 3.837 LP
σ2 is the first solution of equation c4(Sin) = 0 3.842 H
σ3: lim

Sin→σ3

T (Sin) = +∞ 3.84770 Hom

σ4 lim
Sin→σ4

T (Sin) = +∞ 4.03468 Hom

σ5 = λBP(D) 4.061 BP
σ6 is the second solution of equation c4(Sin) = 0 8.179 H

5 Effect of flocculation on the operating diagram

In the following, we consider the same parameter values as in Section 3.3 (or in [18, Fig. 6]) except
for the parameters a and b which are variables to see the effects of the attachment and detachment
rates on the asymptotic behavior of the process. Fig. 6(a-c) illustrates the reduction in the size of the
coexistence region I3 by decreasing the rates of attachment a and/or detachment b. In Fig. 6(d-f),
region I3 has disappeared and region I2 is reduced to disappearance in the limiting case a = b = 0
where we obtain the operating diagram of the classic chemostat model. Fig. 7 illustrates the operating
diagrams with the various colors of regions by decreasing the rates of attachment and detachment
where there is a reduction in the size of regions I2 and I3 until their disappearance.

(a)D

ΓLP

Γb

Γu

ΓH Sin

(b)D

ΓLP

Γb

Γu

ΓH

? Sin

(c)D
ΓLP

Γb

ΓH

? Sin

(d)D ΓLP

Γb

Sin

(e)D ΓLP
Γb

Sin

(f)D Γb

Sin

Fig. 6 Operating diagram in the case considered in Section 3.3 when (a) a = 0.5 and b = 2; (b) a = 0.1 and b = 2; (c)
a = 0.5 and b = 1.05; (d) a = 0.01 and b = 0.2; (e) a = 0.01 and b = 0.01; (f) a = 0 and b = 0.
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(a)D

ΓLP

Γb

ΓH

I0 I2

I3
?

I1

Sin

(b)D
ΓLP

Γb

I0
I2

I1

Sin

(c)D
ΓLP
Γb

I0 I2

I1

Sin

(d)D ΓbI0

I1

Sin

Fig. 7 Operating diagram in the case considered in Section 3.3 when (a) a = 0.5 and b = 2; (b) a = 0.5 and b = 1.05;
(c) a = 0.01 and b = 0.01; (d) a = 0 and b = 0.

6 Conclusion

In this work, we have extended our mathematical study in [18] by considering distinct yields in the
flocculation model (1) involving the attachment and detachment dynamics of isolated and aggregated
bacteria in the presence of a single resource in a chemostat. Considering distinct removal rates and
without ignoring the yield coefficients, we have provided a complete analysis of the existence and
local asymptotic stability of all steady states for general monotonic growth rates. Using the necessary
and sufficient conditions of existence and stability, we have studied theoretically and numerically the
operating diagrams of the flocculation model (1) according to the operating parameters which are the
dilution rate D and the input concentration of the substrate Sin.

To have a better understanding of the theoretical study of the operating diagram, we start with
a simple case where the positive steady state is unique and stable if it exists (see Section 3.1). It is
revealed that there can only be two regions: the region I0 of the washout (E0 is the only steady state)
or the region I1 of coexistence of isolated and attached bacteria around the positive steady state (the
only steady states are E0 which is unstable and E1 which is LES).

Next, we have considered a case with the emergence of two positive steady states and the destabi-
lization of one positive steady state via a Hopf bifurcation (see Section 3.2). The operating diagram
shows the emergence of the green region I2 corresponding to the bistability between E0 and E1

1 , and
the blue region I3 corresponding to the destabilization of the positive steady state E1

1 where there can
be coexistence around a stable limit cycle. In Appendix E, we have considered a similar case for the
set of parameter values in [19]. Indeed, we obtain the operating diagram in Fig. 1(b-c) which is similar
to one in Fig. E6. However, the region I3 has not been detected numerically in [19] because of its size
where the maximum value of D is around 10−5. To detect it with good accuracy, we have changed the
default value of “Digits” in MAPLE to 20.

Then, we have considered another case with the emergence of two positive steady states and the
destabilization of one positive steady state via a Hopf bifurcation (see Section 3.3). The operating
diagram is divided into five regions where there can be one more behavior (yellow region I4): the
bistability with either coexistence around a stable limit cycle or the washout of the isolated and
attached bacteria according to the initial condition.

Using the software MATCONT [30], we found numerically the operating diagram obtained theoret-
ically in the case considered in Sections 3.2 and 3.3. However, we have also detected new bifurcations
with two parameters like those of type Bogdanov-Takens (BT) or Cusp (CP). Moreover, the one
bifurcation diagram shows the various types of bifurcations by crossing the different regions in the
two-dimensional plane (Sin, D). Then, the study of the operating diagram with the two control param-
eters (Sin, D) using MATCONT gives a more general vision of the asymptotic behavior of the system
compared to the study of the bifurcation diagram as a function of Sin.

Finally, we analyze the effect of flocculation and deflocculation on the size and shape of various
regions in the operating diagram. Decreasing the rates of attachment and/or detachment, the regions
I2 and I3 are reduced until their disappearance. In the limiting case a = b = 0, we obtain the operating
diagram of the classic chemostat model where the CEP asserts that generically at most one species
can survive the competition. Thus, the flocculation process promotes the coexistence of isolated and
attached bacteria of a microbial species around a limit cycle or positive steady state. This flocculation
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mechanism also favors bistability, where the asymptotic behavior of the solutions depends on the initial
condition.

The behavior of the process in the various regions of the operating diagram of the model with n
species including the mechanism of flocculation is a question of major interest and importance from
the biological and ecological point of view. This question deserves further attention and will be the
object of future work.
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Appendix A Proof of Theorem 1

To determine the existence of the steady states of (1), we set the right-hand sides of equations of this
system equal to zero: 

0 = D(Sin − S)− f(S)u/yu − g(S)v/yv,

0 = [f(S)−Du]u− a(u+ v)u+ bv,

0 = [g(S)−Dv]v + a(u+ v)u− bv.

(A1a)

(A1b)

(A1c)

The equation (A1b) implies v = 0 when u = 0 and inversely, u = 0 when v = 0 from equation (A1c).
Thus, a steady state of exclusion of isolated or aggregated bacteria does not exist.

• For E0, one has u = v = 0. Hence, (A1a) implies that S = Sin. Thus, E0 = (Sin, 0, 0) always exists.
• For E1, one has u > 0, and v > 0. The sum of equations (A1b) and (A1c) results in

φ(S)u+ ψ(S)v = 0,

where φ and ψ are defined in (4). Therefore, u and v are positive if and only if φ(S) and ψ(S) have
opposite signs or equivalently S ∈ (λu, λv) when λu < λv and S ∈ (λv, λu) otherwise. Consequently,
one can write v as a function of S and u such that

v = −φ(S)
ψ(S)

u, (A2)

where ψ(S) ̸= 0 or equivalently S ̸= λv. Using (A2) to replace u in (A1b), leads to

u = U(S), (A3)

where the function S 7→ U is defined in (3). Hence, u is positive if and only if S ∈ I which is defined
by (5). Using (A2) to replace u by (A3), it follows that

v = V (S), (A4)

where v is defined in (3). Replacing u by (A3) and v by (A4) in (A1a) implies that S is a solution
of equation D(Sin − S) = H(S) where the function S 7→ H(S) is defined by (2).
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Now to establish the local asymptotic stability of the two steady states of system (1), we determine
the the Jacobian matrix J at (S, u, v):

J =

−D − f ′(S)u/yu − g′(S)v/yv −f(S)/yu −g(S)/yv
f ′(S)u φ(S)− a(2u+ v) −au+ b
g′(S)v a(2u+ v) ψ(S) + au− b

 . (A5)

• For E0, the three eigenvalues are on the diagonal of J evaluated at (Sin, 0, 0):

−D, φ(Sin), ψ(Sin)− b.

Hence, E0 is LES if and only if the three eigenvalues are negative, that is, if and only if Sin <
min(λu, λb).

• For E1, the Jacobian matrix J evaluated at E1 = (S∗, u∗, v∗) is defined by

J1 =

−m11 −m12 −m13

m21 −m22 a23
m31 m32 −m33

 , (A6)

where the coefficients of J are given by (7) so that all mij are positive for all i, j = 1, . . . , 3 with
(i, j) ̸= (2, 3). Indeed, from (A1b) and (A1c), a straightforward calculation shows that

m22 = au∗ + b
v∗

u∗
> 0, m33 = a

(u∗)2

v∗
> 0.

The characteristic polynomial is

P (λ) = λ3 + c1λ
2 + c2λ+ c3,

where their coefficients are given by (6). Using [18, Lemma A.1], a direct calculation gives

c3 = −det(J1) = −φ(S∗)(ψ(S∗)− b)(D +H ′(S∗)).

From the Routh–Hurwitz criterion, we conclude that E1 is LES if and only if

c3 > 0 and c4 = c1c2 − c3 > 0,

since c1 is positive. This completes the proof.

Appendix B Case of Section 3.1: positivity of the stability
condition c4

In the following, we show that the stability condition c4 > 0 holds for the positive steady state E1 in
the case considered in Section 3.1 so that the curve ΓH corresponding to c4 = 0 does not exist in the
operating diagram of Fig. 1(a) for model (1). Fig. B1 illustrates the positivity of the function c4(S)
for several values of D and the corresponding curves of H(S).

Appendix C Case of Section 3.2: sign of c4

In the section, we show that the stability condition c4 > 0 of the positive steady state E1 is not always
verified, so that c4(S) changes sign in the interval I(D) = ]λv(D), λBP(D)] of the existence of E1. Fig.
C2(a) shows that the equation c4 = 0 has two roots S1

H(D) and S2
H(D) as defined in Section 3.2 for all

D < Dmax
H . Let D be fixed at D = D∗ = 0.142 (the green curve in C2(a)). Fig. C2(b) shows the curve

of the function S 7→ H(S) in red [resp. in blue] when the function S 7→ c4(S) is positive [resp. negative].
More precisely, c4(S) is positive for all S ∈

]
λv, S

2
H

[
∪
]
S1

H, λBP

]
and negative for all S ∈

]
S2

H, S
1
H

[
where
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(a)
c4 H

S

(b)
c4

S

Fig. B1 Case of Section 3.1: (a) curves of the function H(S) and the corresponding curves of c4(S) in their existence
domain when D ∈ {0.01, 0.1, 0.5, 1, 2, 3} corresponding to red, blue, green, magenta, cyan, and grey colors, respectively.
(b) Only the curves of the function c4(S).

λv (D
∗) ≈ 0.078, λBP(D

∗) = λb ≈ 2.222 and the critical values according to S and corresponding to
Hopf bifurcation are given by

S2
H (D∗) ≈ 1.284, S1

H (D∗) ≈ 1.748.

These critical values are equivalent to the following critical values according to Sin,

SH2
in (D∗) ≈ 3.674, SH1

in (D∗) ≈ 2.640, respectively.

By increasing the value of Sin from zero to λBP(D
∗), E1 emerges LES via a Branch Point (BP) with

E0 when S = Sin = λBP(D
∗). Increasing Sin further, E1 destabilizes trough the first Hopf bifurcation

at SH1
in and remains unstable up to the value of SH2

in . Finally, E1 returns LES for all Sin > SH2
in via a

second Hopf bifurcation.

(a)

c4 H

S

(b)

c4

H

H

H S

Fig. C2 Case of Section 3.2: (a) the functions H(S) and c4(S) on the existence domain of E1 when D ∈
{0.09, 0.12, 0.142, Dmax

H , 0.21} (Dmax
H ≈ 0.165) corresponding to red, blue, green, magenta, and cyan colors, respectively.

(b) The function H(S) in red [resp. in blue] when the function c4(S) is positive [resp. negative], for D = D∗ = 0.142.

Appendix D Case of Section 3.3

In this appendix, we give numerical evidence of the change of sign of c4(S) and the appearance of a
stable limit cycle as well as its disappearance by a homoclinic bifurcation for fixed D. Fig. D3 shows
the curve of the function S 7→ H(S) in red [resp. in blue] when the function S 7→ c4(S) is positive [resp.
negative] and D is fixed at D∗ = 0.1. More precisely, c4(S) is positive for all S ∈

]
λv, S

2
H

[
∪
]
S1

H, SLP

]
and negative for all S ∈

]
S2

H, S
1
H

[
where λv (D

∗) ≈ 0.846, and the critical values according to S and
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corresponding to Hopf bifurcation are given by

S2
H (D∗) ≈ 1.963, S1

H (D∗) ≈ 3.422, SLP (D
∗) ≈ 3.492.

These critical values are equivalent to the following critical values according to Sin,

SH2
in (D∗) ≈ 8.179, SH1

in (D∗) ≈ 3.842, λLP (D
∗) ≈ 3.837, respectively.

By increasing the value of Sin from zero to λLP (D
∗), the two positive steady states E1

1 and E2
1 emerge

LES and unstable, respectively, via a Limit Points (LP) bifurcation where S = SLP (D
∗). Increasing

Sin further, E1
1 destabilizes trough the first Hopf bifurcation at SH1

in and remains unstable up to the
value of SH2

in . Finally, E1
1 returns LES for all Sin > SH2

in via a second Hopf bifurcation. In Fig. D3(b),
we have chosen the red color for LES steady states and the blue color for unstable steady states.

(a)
c4

H

S2
H S1

HSLP

S

(b)

E1
1

E2
1

E0

H

δ

c4 S1
H SLP

S

Fig. D3 Case of Section 3.3: (a) the function H(S) and c4(S) when D = D∗ = 0.1 showing the changes of the sign of
c4(S); (b) a magnification for 3.25 < S < λu = 4.061 where Sin = 3.86.

Fig. D4 shows the limit cycles in the three-dimensional phase plot (S, u, v) for various values of
Sin between σ4 and σ6 (defined in Table 12) until their disappear by homoclinic bifurcation at σ4.
Decreasing Sin from the Hopf bifurcation at σ6, the radius of the limit cycle increases (see Fig. D4(a)).
Decreasing again Sin, the radius of the limit cycle decreases until his disappearance by approaching
a homoclinic orbit when Sin = σ4 ≈ 4.03468 (see Fig. D4(b-c)). Fig. D5 reveals the homoclinic

1

2

3

4
0.1

0.2

0.05 0.1 0.15 0.2 0.25

0.3

0.4

0.5

0.6

0.7

0.3

0.20

0.1

0.2

0

0.3

0.4

0.5

0.11

0.6

0.7

0.8

2 3 4 05

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

2.5 0.080.063 0.043.5 0.024

(a)

H•

v

u

S

(b)

v

u
S

(c)

v

uS

Fig. D4 Case of Section 3.3: the three-dimensional space (S, u, v) in MATCONT when D = 0.1: (a) a family of limit
cycles, starting from a Hopf point (H) at σ6 = 8.179 and decreasing Sin until the maximum radius. (b) A family of limit
cycles, starting from the maximum radius and approaching a homoclinic orbit by decreasing Sin. (c) A homoclinic orbit
for Sin = σ4 ≈ 4.03468.

bifurcations at Sin = σ3 and Sin = σ4 where the time period T of the limit cycle solutions of model
(1) tends to +∞ as Sin tends to these critical values.

17



(a)
T

Sin

(b)

T

Sin

Fig. D5 Case of Section 3.3: a plot in MATCONT of time period T of the limit cycle solutions of model (1) for
D = 0.1 starting from the Hopf bifurcation at (a) σ2 [(b) resp. σ6]; homoclinic bifurcation at Sin = σ3 ≈ 3.8477 [resp.
Sin = σ4 ≈ 4.03468].

Appendix E Case of parameter set in Table F1 (line 5)

The main purpose of this appendix is to show that the region of destabilization of the positive steady
state is omitted in the construction of the operating diagram in [19]. With the same set of parameters
in [19], see Table F1 (line 5), we find the operating diagram in Fig. E6 which is similar to that in Fig.
1(b-c) but where λBP(D) = λu(D). Thus, the existence and the local stability of all steady states of
model (1) in the four regions Ii, i = 0, . . . , 3 of the operating diagram shown in Fig. E6 can be obtained
from Table 6. Note that the numbering of the I1 and I2 regions is reversed in [19]. Similarly, for the
regions I3 and I4. Next, we will show that the region I3 corresponds to the emergence of the stable
limit cycle via Hopf bifurcations.

(a)D
ΓLP

Γu

I0
I2

I1

Sin

(b)D

ΓH

I1

I3

Γ1
H

Γ2
H

Sin

Fig. E6 MAPLE: (a) operating diagram of (1) in case of Table F1 (line 5). (b) Magnification on the region I3 and the
curve ΓH = Γ1

H ∪ Γ2
H when D ∈ [0, 0.000035].

Since the order of D can reach 10−10 to plot the curve ΓH, we modified the value of “Digits” in
MAPLE to 20 instead of the default value 10 to avoid the introduction of round-off error. This allows
in particular to have precision in the tracing of the ΓH curve and that of the function c4(S) for fairly
small D.

To give numerical evidence of the Hopf bifurcation occurring through the transition through the
curve ΓH from region I1 to region I3, we determine numerically the eigenvalues of the Jacobian matrix
of system (1) at E1

1 by computing the roots of the characteristic polynomial as we vary the parameter
Sin. Let D be fixed such that D = D∗ = 2.5 10−5. Fig. E7(a) shows that one eigenvalue denoted by
λ1(Sin) is real and remains negative for all Sin ∈ [η⋆, ηf ] where η

⋆ = λu(D
∗) ≈ 0.625 denotes the value

of Sin at which the positive steady state appears and ηf = 100 denotes the final value of the variation
of Sin. Fig. E7(b) shows that the two other eigenvalues λ2(Sin) and λ3(Sin) defined by

λ2,3(Sin) = α2,3(Sin)± iβ2,3(Sin), for all Sin ∈ [η⋆, ηf ]
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are complex-conjugate so that the real part α2,3(Sin) is negative for all Sin ∈ [η⋆, η1) ∪ (η2, ηf ] and
positive for all Sin ∈ (η1, η2). When Sin = ηi, i = 1, 2, the pair λ2,3(ηi) is purely imaginary such that
α2,3(ηi) = 0, with β2,3(ηi) ̸= 0. Moreover, the following transversality condition is checked numerically

dα2,3

dSin
(η1) > 0 and

dα2,3

dSin
(η2) < 0. (E7)

that is, the two complex-conjugate eigenvalues cross the imaginary axis with non-zero speed. Thus, the
positive steady state E1 is destabilized via two Hopf bifurcations with the occurrence or disappearance
of a stable limit cycle when Sin increases and crosses the critical values η1 and η2. This result is
consistent with the numerical simulation in Fig. E8(b) showing the emergence of a stable limit cycle
where the oscillations are sustained.

(a)

η⋆

ηf
Sin

λ1(Sin)

(b)

β(Sin)

α(Sin)

λ2(Sin)
��*

λ3(Sin)

HHj

Fig. E7 Case of the parameter set in Table F1 (line 5): variation of Sin from η⋆ to ηf when D = D∗; (a) the real
eigenvalue λ1(Sin). (b) The pair of complex-conjugate eigenvalues λ2,3(Sin).

Recall that D is fixed at D = D∗ = 2.5 10−5. Fig. E8(a) illustrates the convergence towards E1

in the three-dimensional phase space (S, u, v) when Sin = 1 where the pair of complex-conjugate
eigenvalues have negative real parts. In this case, the point (Sin, D) belongs to region I1 where there
are only two steady states: E0 is unstable while E1 is LES.

Fig. E8(b) illustrates the convergence towards a stable limit cycle when Sin = 48 where the pair
of complex-conjugate eigenvalues have positive real parts. In this case, the point (Sin, D) belongs to
region I3 where there are only two steady states E0 and E1 which are unstable. To solve the problem
of the calculation time of the solution of (1) until convergence to the limit cycle where D is small
enough, we have changed the default solver “ode45” to “ode23 ” in MATCONT.

(a)

v

S
u•

(b)

v

S
u

Fig. E8 Case of the parameter set in Table F1 (line 5): the three-dimensional space (S, u, v) in MATCONT; (a)
convergence to the positive steady state E1 when Sin = 1; (b) convergence to the stable limit cycle when Sin = 48.
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Fig. E9 illustrates the curve of the function S 7→ H(S) in red [resp. in blue] when the function
S 7→ c4(S) is positive [resp. negative] and D is fixed at D∗ = 2.5 10−5 ∈ ]0, Dmax

H [. The solutions
S1

H and S2
H of the equation c4(S) = 0 correspond to the critical values SH1

in and SH2
in . They are the

intersections of the horizontal line of equation D = D∗ with the curves Γ1
H and Γ2

H, respectively,
in the (Sin, D)-plane of the operating diagram in Fig. E6(b). By increasing the value of Sin from
zero to η⋆ = λu (D

∗) ≈ 0.625, E0 becomes unstable by a Branch Point (BP) with E1 that appears
stable until the first Hopf bifurcation at SH1

in ≈ 28.990
(
or equivalently S = S1

H ≈ 0.62398
)
. Then, E1

remains unstable up to the value of SH2
in ≈ 64.878

(
or equivalently S = S2

H ≈ 0.62267
)
, that is, for

all S ∈
]
S2

H, S
1
H

[
. Finally, for Sin > SH2

in

(
or equivalently S ∈

]
λv(D

∗), S2
H

[)
, E1 returns stable via a

second Hopf bifurcation.

(a)

c4H

λu
S

(b)

H

c4 > 0 c4 < 0 c4 > 0

S2
H

S1
H

λu

S

(c)

c4

S2
H S1

H

H

λu

S

Fig. E9 Case of the parameter set in Table F1 (line 5): curve of the function H(S) where c4(S) is positive when
S ∈

[
0.622, S2

H

[
∪

]
S1

H, λu
]

and negative when S ∈
]
S2

H, S
1
H

[
. Magnifications when (b) (S,H(S)) ∈ [0.622, λu] ×[

−5 10−6, 2.1 10−3
]
and (c) (S,H(S)) ∈ [0.620, λu]×

[
−2 10−6, 4 10−5

]
.

Appendix F Parameter values used in numerical simulations

All the parameter values used in the numerical simulations are provided in Table F1.

Table F1 Parameter values used for system (1) when the specific growth rates f and g are given by (8). The
abbreviation Var means Variable.

Parameter m1 k1 m2 k2 a b α β mu mv yu,v D(
h−1

)
(g/l)

(
h−1

)
(g/l) (l/h/g)

(
h−1

) (
h−1

) (
h−1

) (
h−1

)
Figs. 1(a), B1 4.5 1 3 2.7 2 3 0.8 0.5 0.2 0.25 1
Figs. 1(b-c), 3, C2
Figs. 2, 4, 5, D3-D5
Figs. 6, 7

5 2 5 3
4
4
Var

2
2
Var

1
0.9
1
1

3.25
0
1
1

1
0.130
0.032
Var

Figs. E6-E9 3.5 2.5 3 1.5 1 1 1 0.75 0.7 0.4 1 0.460
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