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Abstract:
The ability of humans to create and disseminate culture is often credited as the single most important
factor of our success as a species. In this Perspective, we explore the notion of 'machine culture,'
culture mediated or generated by machines. We argue that intelligent machines simultaneously
transform the cultural evolutionary processes of variation, transmission, and selection. Recommender
algorithms are altering social learning dynamics. Chatbots are forming a new mode of cultural
transmission, serving as cultural models. Furthermore, intelligent machines are evolving as
contributors in generating cultural traits–from game strategies and visual art to scientific results. We
provide a conceptual framework for studying the present and anticipated future impact of machines on
cultural evolution, and present a research agenda for the study of machine culture.

Introduction
The ability of humans to create and disseminate culture is considered the single most important factor
in our species’ dominance on earth 1. The evolution of human culture has been the subject of
extensive study in all of the behavioral sciences, including anthropology 1, psychology 2, cognitive
science 3, biology 4, linguistics 5,6, archaeology 7, sociology 8 and economics 9 (Box 1).

Cultural evolution exhibits key Darwinian properties. Culture is shown to exhibit variation,
transmission, and selection, and evolves through the selective retention of cultural traits, as well as
nonselective processes such as drift 10. Major shifts in any of these three Darwinian properties can
greatly impact cultural evolution. For instance, between 1300 and 1600, European culture experienced
successive major shifts due to increased exposure to Chinese technology such as gunpowder, which
changed the nature of warfare (variation)11; Gutenberg’s invention of the printing press
(transmission)12; and renewed interest in Classical ideas and values, such as Classical ideals of artistic
expression, during the Renaissance (selection)13. When such substantial changes occur, they induce
rapid and major impact on culture.
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Figure 1: Examples of machine culture. A. Generation of novel cultural artifacts through
machines. B. Machine transmits and potentially mutates cultural artifacts. C. Machine selects
between different cultural artifacts. D. Human selects among diverse machines.

While new technologies have always affected the course of cultural evolution, in this article we argue
that intelligent machines will exert a transformative influence on cultural evolution through their
impact on all three Darwinian properties of culture: variation, transmission, and selection (Fig. 1).
This process began in the early days of the Internet with machine-based content ranking by search
engines and social media feed algorithms influencing what information people get from others. More
recently, generative algorithms have begun participating in the creation of cultural traits themselves.
We are not only observing a transformation of human culture but also its evolution into machine
culture—culture mediated or generated by machines. This article aims to provide researchers across
disciplines with a primer and a roadmap for navigating this monumental shift. As the impact of an
increasingly digital society on cultural evolution has been explored elsewhere 14, we specifically focus
on the current and potential impact of intelligent machines on cultural evolution. For the purposes of
this article, we use the terms “intelligent machines” and “artificial intelligence (AI) systems”
interchangeably, with AI referring to the science and technology that allow machines to perform tasks
that typically require human intelligence such as perceiving the environment, planning and executing
actions, and adapting by learning from data or experience 15,16.

Examples of machine-mediated cultural evolution
We begin by presenting empirical evidence of machine cultural evolution, setting the stage for a
detailed exploration through a framework that discusses instances where machines mediate or
generate cultural traits from a cultural evolutionary perspective. Through four pivotal examples, we
illustrate the diverse ways intelligent machines are transforming cultural evolutionary dynamics.
Generative machines, such as text-to-image algorithms, are contributing to the variety of cultural
traits. Models drawing upon reinforcement learning are pushing humans onto novel ground, for
instance in the ancient game of Go and beyond. Large language models (LLMs) are facilitating the
transmission of cultural knowledge and redefining the value of human intellectual skills. Meanwhile,
transmission pathways are rewired by recommender systems selecting what and from whom humans
learn. At first glance, the examples provided might seem to pertain to vastly different technological
areas, and to translate into a collection of unrelated effects. However, even now, machines are
beginning to integrate features from a range of the outlined technologies—reinforcement learning, for
instance, is enhancing generative AI. Furthermore, these technologies are operating on multiple
levels; generative AI not only generates novel ideas but also offers recommendations for their
refinement.
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Box 1: Glossary

Culture: information capable of affecting individuals’ behaviors that are acquired from other
individuals via social transmission
Cultural Evolution: the change of cultural information over time, the key properties for an
evolutionary process are variation, transmission, and selection
Social Learning: learning that is influenced by the observation of another individual or their
products.
AI: the science and technology enabling machines to perform tasks that typically require human
intelligence such as perceiving the environment, planning and executing actions, and adapting by
learning from data or experience.
Machines: intelligent machines. Used interchangeably with AI systems, thus referring to machines
that may possess capabilities to perceive the environment, plan and execute actions, and adapt by
learning from data or experience.
Variation: the existence of different cultural traits within a population. It represents the raw
material on which other processes, like selection and transmission, operate. Humans and machines
add to existing cultural variation through random and guided exploration, as well as recombination
of existing cultural traits.
Transmission: the process by which cultural information, such as knowledge, behaviors, traditions,
or practices, is passed from one individual to another through social learning mechanisms such as
observation or teaching.
Selection: the process by which certain cultural traits, practices, or ideas become more or less
prevalent within a population over time due to differential adoption.

Cultural recombination through generative AI

Generative AI has seen two major waves of innovation in recent years. The inception of Generative
Adversarial Networks (GANs) by Goodfellow et al. in 2014 enabled the algorithmic generation of
high-fidelity images 17. GANs offered capabilities beyond the generation of lifelike images—they also
have the ability to blend or interpolate—giving birth to novel creations such as fantasy lifeforms 18.
Subsequent advancement in 2022 saw the advent of diffusion-based text-to-image generative AI
systems such as DALL·E, Midjourney, and Stable Diffusion. These models substantially enhanced the
recombination power of these early models by generating high-resolution images conditioned on text
descriptions 19–21. The original DALL·E, although now surpassed by other models in terms of image
quality, demonstrated such recombination capabilities impressively 19. For instance, when prompted to
produce ‘an armchair in the shape of an avocado’, it creatively recombined these two distinct concepts
(see Fig. 2).
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Figure 2: Recombination of Visual Concepts. The avocado chair, synthesized by OpenAI's
text-to-image generative AI, DALL·E, exemplifies the early stages of algorithmic cultural
recombination. By seamlessly combining previously learned concepts—avocados and chairs in this
case—the model showcases the ability to create coherent integrations of disparate elements and
demonstrates novelty through recombination.

These models can thus increase cultural variation by helping humans to produce new and relevant
recombinations, which are sometimes recognized as works of art, sold at prestigious auction houses 22.
While recombination oftentimes forms the foundation of human creativity 23, it is still debated how, or
even if, machines can generate relevant content beyond the boundaries of human culture. Even simple
latent representations can disentangle the semantic meaning of linguistic concepts 24. Similarly,
text-to-image models use language as a cognitive tool to disentangle and consequently recombine
visual concepts 25. However, these models build upon concepts harvested from human culture. As
such, text-to-image models may be limited to the concepts defined and demonstrated by humans in the
underlying dataset. However, generative AI models can produce novel "future art" by forecasting
future art movements and by deliberately avoiding classification into established artistic
movements—such creations have been evaluated as more creative than prestigious contemporary
works by human artists 26. When applied to engineering, similar methods can lead to the discovery of
designs that are both novel and superior 27.

Generative AI exemplifies the dual nature of machines as both cultural artifacts and creators thereof.
On the one hand, generative algorithms are increasingly presented and, to some extent, recognized as
authors of art 22. Simultaneously, machines are subjected to cultural processes of comparison,
distribution, modification, and eventual abandonment.

Cultural innovation through reinforcement learning

In 2016, AlphaGo defeated Lee Sedol, the world champion Go player, with a series of four victories
over five games. Remarkably, AlphaGo managed to surprise Sedol with distinctively nonhuman
gameplay. In particular, move 37 in the second game was considered extremely unconventional,
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estimated by AlphaGo itself to have a 1 in 10,000 chance of being made by a human 28 (see Fig. 3.A).
AlphaGo’s unconventional gameplay likely originated in its self-play training: While its training
started with reproducing human gameplay from a large database, AlphaGo also trained through
self-play, selecting promising but uncertain moves and evaluating their success against itself 29.
Thereby, it iteratively improved and developed novel game strategies. It was one of these innovative,
self-trained strategies that took Lee Sedol by surprise. As it turned out, it was not even necessary for
the model to start from learning human gameplay at all. The successor of AlphaGo, named AlphaGo
Zero, ignored all of the accumulated Go knowledge of humankind 29. Starting from a blank slate, it not
only rediscovered human Go strategies but also developed strategies that surpassed those of its human
creators.

Figure 3: Go play before and after the introduction of AlphaGo. A AlphaGo, in its match
against Go world champion Lee Sedol, made a highly unusual and strategic 37th move by placing
its stone further from the edge, towards the center of the board, deviating from the traditional
strategy of securing territory along the periphery during the early stages of the game. With this
unconventional move, AlphaGo not only broke with centuries-old Go traditions but also paved the
way for its ultimate victory in the match. B (reproduction based on 30) Decision quality of
professional Go players as evaluated by an algorithm performing at superhuman level. Decision
quality significantly increased after Lee Sedol was beaten by AlphaGo on March 15, 2016 (shaded
area).

The innovations generated by AlphaGo and AlphaGo Zero soon entered human culture, as shown by
research comparing human gameplay before and after the algorithms’ introduction 30. The decision
quality, as measured by an open-source variant of AlphaGo Zero, showed very little improvement in
human gameplay from 1950 to 2016, followed by a sudden improvement after the introduction of
AlphaGo in March 2016 31,32 (see Fig. 3.B). However, this improvement wasn’t solely due to humans
adopting strategies developed by AlphaGo. It also reflected an unexpected shift, wherein humans
started developing moves that were qualitatively distinct both from previous human moves and from
the novel moves introduced by AlphaGo. In summary, AlphaGo served as an early, quantifiable
exemplar of machine culture, generating novel cultural variations through genuine, nonhuman
innovation. This was followed by a major transition into an even broader range of traits as the result
of humans building on the previous discoveries made by machines. As the methods underpinning
AlphaGo have been generalized to other games and extended to scientific problems, we anticipate a
continued infusion of machine-generated discoveries across diverse domains of human culture 33,34.
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Language models transmit and revalue cultural knowledge

The release of ChatGPT, a widely accessible LLM, has revolutionized how we interact with machines,
using it to learn, brainstorm, and refine ideas. Trained on extensive human text data, both historical
and contemporary, LLMs act as models of human culture 25, facilitating cultural transmission across
individuals and generations. In due course, students began requesting LLMs to complete their
homework 35; knowledge workers used LLMs (at their own peril) to automatically extract and
summarize required content 36; and software developers widely adopted LLMs as powerful
code-writing assistants 37. LLMs not only serve as content creators but also, for better or worse, act as
reservoirs of knowledge and providers of learning opportunities. Thereby, ChatGPT exemplifies
social learning from machines.

As the capabilities and usages of LLMs continue to develop, the value of certain human skills will
shift. Some skills may lose value quickly, especially in language-related and cognitively demanding
occupations such as translation, copywriting, or proofreading 38. Occupations with more creative uses
of language may follow, given that LLMs may soon surpass the creativity of humans as measured by
standardized tests 39. Even though not all occupations will be affected in the short-term, a recent
survey projects that around 20% of the workforce will experience LLMs impacting at least half of
their tasks 38. It is important to note, however, that this projection is an early estimate and as such
inherently uncertain in its accuracy and reliability. Meanwhile, other skills may gain in value — for
instance, skills that allow efficient collaboration with LLMs, such as prompt engineering (i.e., the
skilful writing of instructions to get LLMs to do what we want) 40. Consequently, human creativity is
experiencing a remarkable shift 41. It is not merely focused on generating final outputs but is
increasingly evolving towards interactions with machines, progressing from explicit prompts to more
natural conversations 42. Workers who invest in related skills may outperform workers who do not,
potentially accelerating the adoption of LLMs and further increasing the value of knowing how to
collaborate with them.

Cultural rewiring through recommender systems

The digital age is so data-rich that it has become increasingly hard for humans to navigate available
information. In this abundance, recommender systems that manage and filter information have a silent
but increasingly important role that is easily overlooked given how seamlessly these systems have
integrated into our everyday digital lives. These systems select and prioritize items based on a variety
of explicit and implicit features, including personal interests, control settings, past user behavior, and
the behavior of similar users. While recommender systems do not add variation in cultural traits, they
demonstrably impact the selective retention and transmission of cultural traits.
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Figure 4: Exemplary instances of cultural rewiring. Top panels represent the user interfaces,
bottom panels provide a schematic depiction of the underlying mechanism. A Friendship
recommendation on an online platform (e.g., X or LinkedIn). A new social tie (person A) is
recommended to the green user. B Collaborative filtering for item recommendations. The
recommender system suggests a book to the right user based on the correlations in co-purchases of
other items (movie and music album) by the left user.

By promoting new social ties—such as suggesting who to follow on X (formerly Twitter), to date on
Tinder, or to work with on LinkedIn—recommender systems alter the people to whom we are exposed
to, ultimately changing the structure of our social networks and hence pathways of cultural
transmission 43 (see Fig. 4.A). But recommender systems can also bypass network structures, exerting
an even more direct impact on which cultural content or products we are exposed to. For example,
e-commerce websites and streaming platforms deploy recommender systems to steer customers
through the expansive array of available products based on content and collaborative filtering. Content
filtering matches information about a customer’s consumption history with the attributes of all
available products to make suggestions about related purchases: a customer who has recently
purchased running shoes may receive suggestions for additional running equipment, matched to the
shoes in price and design 44. Meanwhile, collaborative filtering 45 makes recommendations based on
less obvious patterns of correlations in users’ profiles: if users A and B overlap in their previously
consumed movies and music, the recommender system might suggest content of a completely
different kind, for example, recommending to user A a book that user B liked (see Fig. 4.B). In sum,
recommender systems influence cultural evolution by rewiring our social networks and modifying
information flows such that they can substantially influence the dynamics of cultural markets 46–48.
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A framework for machine-mediated cultural evolution
Building on these exemplary instances of how machine technologies may impact cultural evolution,
we will now map out a systematic framework for studying the potential of machines to shape cultural
evolutionary processes.

Culture has been defined as information capable of affecting individuals’ behaviors that is acquired
from other individuals via social transmission 49. Consequently, the science of cultural evolution
examines the change of cultural information over time 50,51. Cultural information is represented by
individual cultural traits, which can exist as cognitive representations or be expressed in behaviors or
artifacts 52. Culture evolves according to a similar process by which species change, that is, through
the selective retention of cultural traits and through other nonselective processes, such as drift 10.
While there are ongoing discussions on how far the analogy between cultural and genetic evolution
should be pushed 53,54, there is general agreement that culture exhibits the key properties of
evolutionary systems that are Variation, Transmission, and Selection. These properties are not
necessarily the result of distinct processes of human cognition and behavior, yet they offer a useful
framework to analyze the multifaceted ways machines can influence cultural evolution (see Table 1
for a summary).

Variation refers to the existence of different cultural traits within a population. Transmission involves
the spread of cultural information from one individual to another through social learning mechanisms,
including observation and teaching. During this transmission, information losses often occur, affecting
the preservation of cultural traits. Selection occurs when certain cultural traits are more likely to be
adopted by individuals due to factors such as their usefulness, popularity, or compatibility with
existing cultural practices. Crucially, the prevalence of specific traits over time can be influenced by
both their selection and variations in transmission fidelity, contingent on the traits’ characteristics. We
anticipate that machine technologies will affect each of these three properties(see Fig. 4), which are
likely to have transformative impacts on cultural evolution.
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Table 1. Tentative conjectures about ways in which machines might shape the processes of cultural
evolution.

Machine Capability Possible Impact on Culture

Variation Learning at unprecedented scale and speed
(e.g., reinforcement learning)

Emergence of solutions culturally alien to
humans

Superhuman model complexity Generation of solutions inconceivable by
collective human intelligence and human
cultural evolution

Incomparably broad and deep knowledge base Creation of novel recombinations beyond the
human horizon

(Semi-)autonomous creativity (e.g., image
generation models)

Facilitation or crowding out human
participation in creative exploration

Transmission Exposing and/or preserving documented
cultural knowledge (e.g., LLM chatbots)

Enhanced retrieval and increased
transmission fidelity of documented cultural
knowledge

Reproduction of human biases Amplification or mitigation of existing biases;
potential for increased cultural erosion

Accelerated processing of empirical evidence Facilitation of transmission of less
compressed knowledge

Leveraging the unique cognitive capabilities of
both humans and machines

Expanding the collective capacity to maintain
diverse cultural artifacts

Selection Recommendation of social ties (e.g., link
recommendation algorithm)

Shaping social networks, potentially
inhibiting or enhancing serendipitous
encounters

Curating content (e.g., ranking algorithms,
collaborative filtering)

Indirectly shaping social networks via content
exposure

Shaping incentives for human content
creators (e.g., clickbait)

Adapting to human feedback (e.g., RLHF) Alignment of machines to human goals,
potentially leading to unintended
consequences (e.g., spread of highly
believable myths)

Machine learning from machine-generated
content

Selection of machine-generated content as
main driver of cultural evolution

Adaptability of AI models to market/societal
demands

Proliferation of appealing apps with varying
alignment to human welfare

Competing with humans in cultural production
(e.g., poetry)

Specialization of humans and machines in
distinct niches
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Variation

Variation refers to the presence of diverse cultural traits within a population. Humans and machines
contribute to this existing cultural variation through both random and guided exploration, as well as
the recombination of existing cultural traits. However, machines, leveraging their unique capacities,
can produce traits distinct from those produced by humans, thus potentially steering culture toward
new paths.

Machines have the ability to learn individually at an unparalleled scale, enabling the discovery of
novel cultural traits through extensive exploration. Thorough exploration is not unique to machines.
Thomas Edison, for example, famously tested over 6,000 materials to find the most suitable filament
for his incandescent light bulb 55. However, the computational speed of humans imposes time
constraints that limit their exploration compared to machines 56. For instance, AlphaGo Zero needed
only three days to play 4.9 million games against itself, achieving a superhuman level of proficiency
29. No human can amass that volume of experience individually; hence, we tend to rely heavily on
preexisting, culturally evolved solutions that are socially learned 57,58. This approach narrows the
scope of innovation to the cultural context of previous generations. AI systems like AlphaGo use
reinforcement learning—based on iterative rounds of trial and error—and hence can transcend this
cultural path dependency by starting from a blank slate and discovering innovative solutions through
exploration alone 59. As a result, AI systems have the potential to generate culturally alien traits. In
this respect, AlphaGo is in stark contrast to language models, which primarily learn to reproduce
human cultural output.

Machines and humans employ guiding models—policies—that aid in efficiently exploring complex
solution spaces, thereby enabling the discovery of solutions that would be unobtainable through
random exploration alone. For instance, Mesoamerican skywatchers, via an early example of human
astronomic modeling, developed a policy for optimal seed planting times, maximizing agricultural
productivity 60. Similar to humans, algorithms like AlphaGo utilize complex policies to guide their
search. The general approach to guided search is similar for both humans and machines: experience is
used to update a predictive model of the world, which then informs actions that generate new
experiences. Machines no longer require humans to explicitly formulate these guiding models.
Instead, general-purpose neural networks are universal approximators, allowing functional
relationships to be learned 61,62. This allows for unprecedented model complexity and consequently
pushes the boundary of attainable solutions 63. Surpassing the capabilities of any human-conceived
model, the neural network-based algorithm AlphaFold has achieved remarkable precision in modeling
intramolecular relations, enabling it to tackle one of molecular biology's greatest challenges:
predicting a protein's three-dimensional structure based solely on its DNA sequence 64. For centuries,
protein structure prediction has drawn substantial intellectual contributions from scientists, even
harnessing the collective intelligence of tens of thousands of citizen scientists 65. Nevertheless,
AlphaFold’s complex model of intramolecular relations, manifested in the form of a deep neural
network, proved superior, eclipsing these extensive human efforts with remarkable proficiency.

Many contemporary algorithms, such as LLMs, have been trained on a cultural repertoire of
unprecedented scale 66. For instance, some LLMs are trained on hundreds of billions of words 67.
While size does not guarantee diversity 68, the degree to which machines can learn from human
culture repertoires far exceeds what can be achieved by a single human being, allowing, for instance,
individual language models to cover a broad spectrum of languages comprehensively 69. By
combining knowledge from disjointed communities—spanning cultural and geographic contexts,
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language barriers, or scientific disciplines—intelligent machines can produce novel recombinations
that may be beyond humanity’s reach. Irrespective of whether LLMs truly exhibit understanding 70,
the mere recombination of cultural traits can lead to innovation and fuel cultural evolution 68,71.
Indeed, recombination is considered central to generating novel cultural traits 23,68,72–74. Another way in
which intelligent machines may increase the variety of cultural traits is by building on human
knowledge while at the same time identifying and deliberately avoiding common human pathways.
For instance, in the realm of scientific discoveries, intelligent machines may be designed to uncover
scientifically plausible and promising “alien” hypotheses that would normally fall outside the focal
point of contemporary scientific communities 75. This does not imply, however, that intelligent
machines are without their own limitations or blind spots, as we will discuss later.

But machines may also augment human exploration. Conditional generative AI, like DALL-E, allows
users to steer the generative process through text prompts, enabling experimentation with diverse
concepts and visualizations without the need for advanced artistic skills 19. Throughout human history,
the effective size of the population that contributed to the creation and maintenance of cultural
knowledge has constrained human cultural evolution 1. Technology has had a varying impact on
human cultural activities. On the one hand, it can democratize behavior. For instance, advancements
in digital cameras and editing software have enabled individuals with limited technical knowledge to
capture high-quality photographs and edit them effectively. On the other hand, the advent of new
technologies can lead to increasingly specialized roles for humans. For instance, visual effects
technology has led to the emergence of entirely new professions in film production, contributing to a
cumulative increase in crew size 76. Lastly, technological advancements can also lead to a reduction in
human engagement in certain activities. For example, the advent of farming decreased the necessity
for hunting, as people could grow food instead. It is yet to be seen whether the proliferation of
increasingly intelligent machines will follow a similar trajectory. Will it democratize and increase
human participation in creative fields, will it lead to new professions and increasing specialization, or
could it lead to a decline in human-led creative expression, as we become increasingly reliant on
intelligent machines 41? Undoubtedly, human cultural exploration, in science as in arts, will
increasingly be in collaboration with machines 77,78.

Transmission

The transmission of cultural information occurs via social learning, defined as learning that is
influenced by the observation of another individual and/or its products 57. This is in contrast to
individual learning, where information is acquired, for instance, through trial and error. In humans,
social learning tends to be imperfect, which means that transmission events are associated with a risk
of losing cultural information. For example, if individuals observe a behavior incorrectly or do not
fully understand it, they may not pass on the correct information to others. Over time, this can lead to
the deterioration or even loss of cultural practices, which can have lasting consequences for a
population.

Intelligent machines will increasingly be involved in the preservation and transmission of cultural
information. Cultural evolution has supplied humans with increasingly efficient tools to preserve
cultural information. The invention of writing, for instance, allowed humans to mitigate cultural loss
by recording information in a more permanent way. Theoretical and empirical studies of cultural
evolution have shown that the stability of cultural information strongly depends on both the size of the
population that shares information 72 and the type of social learning mechanisms involved (with lower
fidelity when transmission relies on mere observation than when it relies on verbal teaching, for
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instance) 79. Besides serving as a persistent medium of cultural storage analogous to a book, machines
can learn to seek and transmit information 78,80 and can act as conversational and pedagogical agents,
similar to teachers 81. This dual role has potential for drastically boosting cultural preservation by
reducing cultural drift. For instance, LLMs have been harnessed to resurrect historical figures 82 and to
revive languages teetering on the edge of extinction 83. By fostering interactive cultural experiences
for learners, these technologies can enhance the comprehension and retention of cultural information
84.

As machines store and transmit cultural information, they may reproduce and transmit biases inherent
to human culture, for example through biased training datasets; but they also offer potential to
mitigate those. Machine learning models reproduce various content biases inherent to their training
data, including gender bias, racial or ethnic bias, bias for negative and threat-related information, and
socioeconomic bias 68,85–89. For instance, many LLMs make implicit assumptions about the gender
associated with professions like nurse and doctor, reflecting the demographic perspective dominant in
the training data 90. When an LLM is used for revision and enhancement of human-written text, it can
transmit and/or reinforce these biases 68. Numerous strategies exist to address bias and fairness in
machine learning models 91. For instance, the demographic representation in the outputs of LLMs can
be improved by using prompts featuring personas from a broad demographic spectrum 92. However,
LLMs present another challenge: they struggle to accurately represent languages and communities for
which there is limited training data 68,93. This limitation implies that LLM-based copy-editing could
inadvertently lead to cultural erosion within these underrepresented communities due to losses in text
reproduction. Nevertheless, LLMs, with their capacity to handle vast quantities of training data, can
contribute to the preservation and even enhancement of cultural diversity, provided that the training
data is carefully curated with attention to diversity and representation.

Cultural transmission can be impacted not only by the replication of biases but also by disparities
between human and algorithmic biases. Examples of biases found in humans are confirmation bias 94,
availability bias 95, and a bias towards specific symmetries 96. Despite their reputation for undermining
optimal decision-making, biases can actually reflect optimal decisions within a particular
socio-environmental context under cognitive constraints such as memory, computation, or experience
97–100. Similarly, machines may seize biases -- for instance, deep learning architectures assume spatial
symmetries to improve training efficiency 94. Importantly, humans and machines operate under
different cognitive constraints 56 and inhabit distinct socio-environmental contexts. This may give rise
to idiosyncratic biases. For instance, due to their enhanced computational capabilities, machines may
display more utilitarian rationality 90. Remarkably, humans often anticipate more utilitarian behavior
from them 102 and might indeed, as we will elaborate in the following section, enhance this tendency.
Irrespective of their origin, the effects of biases on culture tend to strengthen through repeated
transmission 98,103,104. This can restrict the spectrum of solutions that a population can derive, and even
highly effective solutions may not be sustained if they conflict with pre-existing biases 105. As such,
the increased cognitive diversity—for instance with regard to biases—within human-machine
societies has the potential to expand the collective capacity to maintain diverse cultural artifacts.
Artifacts that might not be maintained by humans could potentially be maintained by machines.
Conversely, in the transmission between humans and machines, a misalignment of biases can increase
the risk of information loss 106.

Machines' increased computational capacity might additionally affect the feasibility of accumulating
uncompressed information via a “big data” approach. The compressibility of information is the
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inverse of its algorithmic complexity: Compressing information is achieved by creating a rule that is
shorter than a complete list of the data itself 107. Compression is a key feature of both human cognition
and machine learning 108; any information-processing system must address a general trade-off between
a truthful representation of the “raw” information and constraints on computation. The extent and
nature of these constraints, however, differ between humans and machines 56. Compression processes
have an important role in human transmission to mitigate cultural loss: Raw information oftentimes is
not learnable because it is too complex, whereas a compressed rule might very well be. Human
language, for example, retains its expressivity by becoming learnable via the evolution of compressed
structure 109. Similarly, scientists develop, transmit, and revise theories as compressed representations
of knowledge. Machine learning has the potential to reduce some of the constraints resulting from
human computation, as the amount of data that can be processed is vastly increased. Consequently,
information might be increasingly transmitted with low compression – in the form of “big data” –
when predictive power is of ultimate importance and for some applications, the necessity to derive
and transmit highly compressed rules or theories might be reduced 110,111. For instance, with the advent
of AlphaFold, scientists might focus on collecting and preserving further ground truth data on
molecule structures to refine future models rather than refining and transmitting theories of atomic
interactions. While symbolic representations may remain crucial for efficient computation,
algorithmic-assisted discovery could lessen the need for their transmission, as these representations
could be easily regenerated 112. However, theories may retain importance in shaping human
understanding and intuition, serving as essential tools for conceptualizing knowledge—a function that
the framework we present in this work aims to fulfill.

Selection

Culture evolves in part through the selective retention of cultural traits. In the context of machine
culture, selection can occur at a level where machines select what and from whom humans learn, at a
level where humans select machine behavior, and at a level where there is selection between humans
and machines.

When it comes to what humans learn, social learning strategies shape what, when, and whom we
copy. These strategies can be broadly categorized into content- and context-based strategies 113,114:
content-based strategies consider what is learned, favoring—for instance—social over nonsocial
information 115. Conversely, context-based strategies attend to situational features, focusing on
properties of a cultural model (e.g., their competence, success, prestige, knowledge, similarity),
frequencies (e.g., most common behavior, rare behavior), or internal states of the learner (e.g.,
uncertainty, the cost of individual learning). Machines that help humans to navigate vast information
spaces by (pre-)selecting cultural traits often reflect such social learning strategies.

For instance, content-based filtering algorithms aim to maximize the similarity between items a user
previously showed interest in and unobserved items. Emulating context-based strategies in selection,
ranking algorithms typically sort items according to a relevance score, which is based on the items’
popularity 116,117. Concurrently, collaborative filtering (CF) algorithms detect hidden patterns between
items and users, achieving recommendations about novel items to similar users without using
additional exogenous information about individual items or users 118 (see Fig. 4B).

Another dimension along which algorithms may influence the selective retention of cultural traits
pertains to social networks, which form the backbone of information exchange. In this context, social
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ties are rewired as users follow algorithmic recommendations based on user attributes, such as
popularity, or similarities in user preferences both in personal (X: “who to follow”) and professional
domains (LinkedIn “People you might know”). Link recommendation algorithms have the potential to
shape the overall evolution of social networks 119–121. X’s “who to follow” recommendation was
observed to disproportionately benefit those users who were already the most popular, fueling “the
rich get richer” dynamics 121. A growing body of research documents a complex but persistent and
critical relationship between social networks’ structure and collectives’ ability to collaborate,
coordinate, and solve problems 122–124 that ultimately shape cultural repertoires 73,125.

While machines have most commonly relied on exploiting explicit user preferences and historical
behavior (e.g., ratings, engagement), there has been a growing interest in considering users' internal
states to improve algorithmic recommendations. For instance, users might be uncertain about their
preferences -- especially in domains in which they lack expertise. Bayesian approaches can model
users’ uncertainty and be used to update algorithmic recommendations as the user interacts with the
system 126. As another example, recommender systems might account for the cognitive cost of
exploring items or learning about them by prioritizing items that are easier for users to evaluate or
learn 127. Affective recommender systems 128 use techniques such as natural language processing to
make inferences about users’ emotional states, and even combine them with other context information
such as the recommendation domain (e.g., music or movies) 129–131. While recommender systems have
so far been mostly shaping user preferences implicitly (e.g., by optimizing the position or ranking of
content), LLMs may accelerate developments where users are increasingly persuaded explicitly
through interactive argumentation.

Downstream consequences of selection by machines may often be specific to particular environments,
algorithmic models, and feedback loops. However, one feature generalizing across various contexts is
that algorithms–by design of underlying business models–are often geared towards maximizing user
engagement for profit 132. In social networks, this may be achieved by promoting content congruent
with users’ past engagement or ingroup attitudes 133, or content that humans inherently attend to, such
as emotionally and morally charged content 134,135. One example for this is information that relates to
threat or elicits disgust, as shown in transmission chain experiments inspired from cultural
evolutionary theory 136. The algorithmic amplification of such content may then feed back into human
social learning, for instance inflating beliefs about the normative value of expressing moral outrage
137,138, increasing out-group animosity 139, or by creating echo chambers and filter bubbles 140–142. It is
important to note that user engagement is a signal of value to both users and platforms deploying
algorithms, connecting them in complex feedback loops 143,144: machines such as recommender
systems react to user engagement, selecting types of content people engage with. Users also react to
recommender systems, both directly in terms of clicking, viewing, purchasing but also in terms of
what they produce, as content creators anticipate what will receive the widest distribution. These
feedback loops, but also deliberate product design choices along with policy approaches, provide
potent leverage points for aligning recommender systems with human values 145. A promising
approach to addressing this challenge could involve considering potential misalignments between
users’ engagement and their own preferences and identifying the boundary conditions determining
when maximizing user engagement enhances user welfare and when it produces the opposite effect
146. Algorithmic systems more generally offer powerful ways to bridge social divides, for instance by
designing selection policies that steer users’ attention to content that increases mutual understanding
and trust 147,148, or by identifying and promoting links in social networks that can effectively mitigate
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polarizing dynamics 149,150. Machine selection can also be deliberately geared towards fostering
content diversity 151, or towards maximizing agreement among humans with diverse preferences 152.

Human preferences, in turn, can directly shape machine behavior, in particular through reinforcement
learning with human feedback (RLHF) 153,154. One way to conceptualize this is by viewing machines
as students that generate arrays of solutions, with humans acting as teachers who select the most
suitable ones. This process can nudge machines towards desirable properties like helpfulness, honesty,
and harmlessness 154. However, harvesting human annotators' preferences at scale through RLHF can
induce machines to adopt behaviors unintended by the deploying organizations, exemplified by
chatbots that increasingly endorse inflated political views or express a heightened desire to avoid
shutdown 155. Human influence on machine behavior also occurs through more subtle pathways:
through training on human text alone LLMs picked up a tendency to repeat users’ stated views 155.
Machines’ attention to human feedback may create selection pressures towards pleasing human
interlocutors. For instance, humans may favor machines catering to non-factual stories and narratives
that match concepts and ideas preferred by human cognition 156, such as those appealing to intuitive
expectations about the natural world 157,158, or to specific religious practices 159.

Humans select machine behavior also through direct creation and curation of training data for
machine learning, and through more indirect interactions with machine-generated outputs. Despite
efforts to watermark machine-created content 160, machine and human-made content will increasingly
intertwine 161. For instance, it is estimated that many supposedly human-written texts on
crowdsourcing platforms are already augmented by machines 162. Consequently, it seems inevitable
that future machines will be trained on mixed human-machine content, forming part of a larger
feedback cycle between content generation and selection. The human element in this cycle may prove
crucial, for instance in preventing ‘model collapse’ -- a dynamic where repeated training on
machine-generated data narrows its outputs to very few traits 161. This phenomenon stems from a
classification bias that favors more prevalent classes 163, a bias that is amplified through successive
iterations of learning 164. By contrast, when encountering similar challenges, human culture might
preserve diversity by utilizing biases with counteracting effects, such as endorsing local conformity
165. That said, it seems likely that machines could recover similar strategies to maintain cultural
diversity without human involvement.

Yet another pathway for human selection on machine behavior pertains to general machine properties.
For instance, humans may choose between different intelligent machines available on the market
based on factors such as preferences, cost, usefulness, harmfulness, and alignment with regulatory
requirements. As such, the language model LLaMA recently gained attention for its relatively smaller
size, making it more cost-effective to use 166. Conversely, ChatGPT outperformed many comparable
models due to its superior accessibility and helpfulness 154. Human demands towards machines are
likely to change over time, shaping the trajectory of machine culture similar to other historic cases
where technologies evolved in response to changing human demands (e.g., the wheel from wooden
wheels on carriages to rubber tires on automobiles). Crucially, if intelligent machines are designed and
evaluated by non-representative experts, these systems run the risk of unintentionally reproducing and
intensifying the biases inherent to their selectors 167.

Selection is also bound to occur at a level where machines or humans are favored over one another.
For instance, the ability of machines to process vast amounts of information both quickly and
accurately affords them a competitive edge in numerous cognitive tasks, such as strategic gameplay
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and information retrieval. Relatedly, due to their cost-effectiveness and efficiency, intelligent
machines may grow into the main workforce across various professional domains 38,168. However,
analogous to how the invention of the car did not diminish interest in running as a sport, the
proliferation of machines may not curtail human interest in intellectual pursuits; instead, it might
redirect the focus from necessity to leisure and entertainment. Meanwhile, across various contexts,
humans might favor other humans over machines due to their shared experience. For instance, even
though present-day machines can conceive messages perceived as more empathic than messages
conceived by humans 169,170 , such messages may be perceived differently once recipients become
aware of their artificial origin. This phenomenon, which could be referred to as the “artificial empathy
paradox” 171 may, at least in part, arise from the very fact that empathizing is effortful for humans 172

and that, as such, it conveys a motivational social signal to others that is made void by
machine-involvement. Selection between humans and machines does not imply that one agent
dominates over the other in any cultural niche; oftentimes, one will augment -- rather than fully
replace -- the other; other times, the presence of the other may trigger the development of new skills,
or roles.

Grand challenges and open questions

We now suggest a broad research agenda for computational and behavioral scientists interested in the
phenomenon of Machine Culture.

Measurement

One major open challenge is to quantify how much of human cultural dynamics can be attributable to
algorithmic processes. For instance, it is difficult to completely disentangle the effects of ranking and
recommendation algorithms on culture from alternative processes of human social learning, such as
communication technology, institutions, and social practices. Since the inception of human culture,
derived tools have had an important role in shaping cultural processes, making the establishment of a
baseline a challenging question in itself. Getting good estimates is a precondition to optimizing for the
usefulness of these algorithms while avoiding undesirable cultural impact such as polarizations 173.
This challenge is reflected in research on “filter bubbles”, which has moved from considering
algorithmic curation as decisive force shaping online engagement141 towards acknowledging the
influence of users’ own choices on social media ranking algorithms 174 and search engines 175; thus
highlighting the intricate feedback loops between machine and human decisions. While we hope that
it will be possible to find appropriate metrics for the cultural impact of machines, the intricacy of this
problem qualifies it as an open grand challenge.

A complementary question is how to quantify the influence of machine-generated artifacts – e.g.,
artwork, literature, music – on human cultural production in these areas. As generative AI becomes
more commonplace, distinguishing intrinsic human culture from machine-generated culture or
machine-influenced culture becomes even more challenging, especially as watermarking techniques
may not be universally adopted. Despite popular media claims about machine-generated art
developing its own unique style 176, we do not yet have a reliable way of verifying these claims, let
alone assessing machine-to-human cultural transmission 106.

Another measurement concern relates to the quantification of the cultural regularities encoded in
LLMs and other AI models. Even prior to the rise of LLMs, social media platforms like Facebook
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already possessed fairly detailed quantitative models of cultural regularities and differences 177,
developed mainly for the purpose of marketing to particular demographics. However, as LLMs are
trained from curated datasets, and fine-tuning using human feedback, quantifying the biases that are
introduced and/or mitigated by these models is crucial 178,179.

Societal Decision-making

We currently observe a rapid increase in the diversity of AI models, including LLMs, accelerated by
the open-source software movement. However, market forces, such as regulation and market power,
may result in a world dominated by a small number of monolithic models. This raises the possibility
of reduction in cultural diversity, as major social, political, and economic forces try to shape global
machine culture to match their preferences. This process may be amplified by feedback loops, in
which LLMs train on an ongoing basis from synthetic data, or from human data that contains much
machine-generated text. Preliminary evidence points to the possibility of model collapse, with the
models losing diversity and converging to a state with low variance 161.

Conversely, we face a potential 'Tower of Babel' scenario. As AI models become increasingly
personalized, conforming to and reinforcing our individual worldviews, they risk engendering an
unprecedented fragmentation of our shared perception of the world. In the biblical story (Genesis
11:1-9), the construction of the tower led to a divine intervention that scattered humanity and
confounded languages. Drawing a parallel, if we continually interact with machines that echo and
affirm our preconceived notions, we risk isolating ourselves within ideologically and culturally
homogenous echo chambers. Such fragmentation can stifle meaningful dialogue, breed
misunderstanding, and, ultimately, fracture our shared future vision.

Against this background, a key research agenda is to quantify the degree to which a given AI model,
or ecosystem of models, exhibits uniformity or diversity. It is also imperative to understand what
constitutes a ‘healthy’ level of diversity, that retains local sovereignty while also fostering collective
human flourishing.

Ensuring that AI models, such as LLMs, reflect the beliefs and values of a given community requires
mechanisms for societal decision-making about what knowledge goes into the models 180.
Furthermore, humans exhibit variation in their ethical expectations towards machines, both within and
across cultures 181. This raises questions about how to best aggregate diverse, potentially conflicting
preferences to arrive at an agreeable outcome 182. A number of interesting ideas are emerging, from
voting on different algorithmic policy-makers 183 to utilizing LLMs to summarize diverse human
opinions 184 and generate consensus statements 152.

A related challenge is how to ensure long-term monitoring of Machine Culture. Similar to the notion
of human-in-the-loop control of intelligent machines, we can aspire towards society-in-the-loop
control of the complex phenomena of Machine Culture 185.

Suppose a community knows which cultural beliefs and values it wants to encode in an AI model. The
next question is how to ensure that these are indeed present in the model. One approach is to carefully
curate the dataset on which the model is trained 186,187. Another, increasingly used approach is
fine-tuning based on RLHF 188. Yet another approach is to fine-tune using constitutional rules
provided by humans 189. The relative merits and drawbacks of these various approaches are still not
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well understood. There is a need for methods to check which cultural beliefs and values have been
learned, inferred, or encoded in a given AI model and the degree to which it aligns with a target
culture.

Long-term Dynamics & Optimization

In all likelihood, the future of culture will be hybrid, with cultural artifacts–scientific theories,
industrial processes, art, literature–being created by a combination of human and machine
intelligence. This raises a suite of open questions relating to the long-term dynamics of
human-machine co-evolution. These dynamics may lead to diverse phenomena ranging from different
forms of human-machine mutualism, to Red Queen effects (an evolutionary arms race between
humans and machines) that characterize the co-evolution of both forms of intelligence 190.

A related question is how to optimize the aforementioned dynamics, in order to combine human and
machine intelligence in an ideal or safe manner 75. This may be relevant to questions of risk
mitigation. Although experts disagree on the timescales and the degree of risk involved, the potential
of superhuman Artificial General Intelligence (AGI) poses a possible existential threat to the human
species 191. Cultural evolution provides a useful framework for navigating this challenge. Specifically,
cultural evolution processes take place today at multiple scales, with human collectives–e.g.,
companies, universities, institutions, cities, nation-states–acting as the units of selection 192. This
multi-level selection can, in principle, operate at the level of human organizations augmented by
intelligent machines and (eventually) superhuman AGI. Engineering this evolutionary process can
provide means for ensuring human survival and agency in the long run.

Conclusion

We asked GPT-4 to first write a compressed version of this Perspective and then to provide a
conclusion. It suggested the following (minimal editing to align nomenclature has been applied). The
symbiosis of human and machine intelligence is forging a new epoch of cultural evolution. This
Perspective highlights the transformative role of intelligent machines in reshaping creativity,
redefining skill value, and altering human interactions. Central to the discourse is the triad of cultural
evolution: variation, transmission, and selection, and how machines interface with each. The
interaction is multifaceted, from generative AI birthing novel cultural artifacts to recommendation
algorithms influencing individual perspectives. However, the crux remains in understanding and
navigating the challenges and opportunities that arise from this hybridization of culture. As the
imprints of intelligent machines grow deeper, it's imperative to ensure a harmonious co-creation of
culture where both human and machine augment, rather than eclipse, each other. This not only
broadens the horizons of cultural exploration but also fortifies the tapestry of human experience in the
age of intelligent machines.

Author contributions
Conception: LB, IR; Manuscript preparation: LB, FB, JFB, MD, TFM, AMN, IR; Critical review,
commentary or revision: AC, AA, TLG, JH, JZL, RM, PYO, JS; Supervision: IR

18



Acknowledgments
LB thanks Michiel Bakker for useful discussions. The authors thank Bramantyo Supriyatno for
supporting the formatting of the manuscript. The conclusion was created by GPT-4 based on a
summary (also created by GPT-4) of this manuscript with minimal editing to align nomenclature. JFB
and MD acknowledge IAST funding from the French National Research Agency (ANR) under grant
no. ANR-17-EURE-0010 (Investissements d’Avenir programme)

Competing interests
The authors declare no competing interests.

References
1. Henrich, J. The Secret of Our Success: How Culture Is Driving Human Evolution,

Domesticating Our Species, and Making Us Smarter. (Princeton University Press,

2016). https://doi.org/10.1515/9781400873296.

2. Heyes, C. Cognitive Gadgets: The Cultural Evolution of Thinking. (Harvard University

Press, 2018). https://doi.org/10.4159/9780674985155.

3. Thompson, B., van Opheusden, B., Sumers, T. & Griffiths, T. L. Complex cognitive

algorithms preserved by selective social learning in experimental populations. Science

376, 95–98 (2022). https://doi.org/10.1126/science.abn0915.

4. Whiten, A. Cultural Evolution in Animals. Annu. Rev. Ecol. Evol. Syst. 50, 27–48 (2019).

https://doi.org/10.1146/annurev-ecolsys-110218-025040.

5. Gray, R. D. & Atkinson, Q. D. Language-tree divergence times support the Anatolian

theory of Indo-European origin. Nature 426, 435–439 (2003).

https://doi.org/10.1038/nature02029.

6. Kirby, S., Cornish, H. & Smith, K. Cumulative cultural evolution in the laboratory: An

experimental approach to the origins of structure in human language. Proc. Natl. Acad.

Sci. 105, 10681–10686 (2008). https://doi.org/10.1073/pnas.0707835105.

7. Shennan, S. Genes, memes, and human history: Darwinian archaeology and cultural

evolution. (Thames & Hudson, 2002). https://doi.org/10.1017/S0003598X00061913.

8. Kiley, K. & Vaisey, S. Measuring stability and change in personal culture using panel

19

https://doi.org/10.1515/9781400873296
https://www.degruyter.com/document/doi/10.4159/9780674985155/html
https://doi.org/10.1126/science.abn0915
https://doi.org/10.1146/annurev-ecolsys-110218-025040
https://doi.org/10.1038/nature02029
https://doi.org/10.1073/pnas.0707835105
https://doi.org/10.1017/S0003598X00061913


data. Am. Sociol. Rev. 85, 477–506 (2020). https://doi.org/10.1177/0003122420921538.

9. Mokyr, J. A Culture of Growth: The Origins of the Modern Economy. (Princeton

University Press, 2017). https://doi.org/10.1515/9781400882915.

10. Mesoudi, A., Whiten, A. & Laland, K. N. Perspective: Is Human Cultural Evolution

Darwinian? Evidence Reviewed From The Perspective Of The Origin Of Species.

Evolution 58, 1–11 (2004). https://doi.org/10.1111/j.0014-3820.2004.tb01568.x.

11. Needham, J. Science and Civilisation in China | History of science and technology. in

Chemistry and Chemical Technology; Pt. 7: Military Technology; The Gunpowder Epic

vol. 5 (Cambridge University Press, 1986).

https://doi.org/10.1017/S0035869X0016486X.

12. Eisenstein, E. L. The printing press as an agent of change. vol. 1 (Cambridge

University Press, 1980). https://doi.org/10.1017/CBO9781107049963.

13. Mesoudi, A. Culture and the Darwinian Renaissance in the social sciences and

humanities: For a special issue of the Journal of Evolutionary Psychology , “The

Darwinian Renaissance in the Social Sciences and Humanities”. J. Evol. Psychol. 9,

109–124 (2011). https://doi.org/10.1556/jep.9.2011.29.1.

14. Acerbi, A. Cultural Evolution in the Digital Age. (Oxford University Press, 2019).

https://doi.org/10.1093/oso/9780198835943.001.0001.

15. Russell, S. & Norvig, P. Artificial Intelligence: A Modern Approach. (Prentice Hall Press,

2009).

16. Kurzweil, R., Richter, R., Kurzweil, R. & Schneider, M. L. The age of intelligent

machines. vol. 580 (MIT press Cambridge, 1990).

17. Goodfellow, I. J. et al. Generative Adversarial Networks. Preprint at

http://arxiv.org/abs/1406.2661 (2014).

18. Epstein, Z., Boulais, O., Gordon, S. & Groh, M. Interpolating GANs to Scaffold Autotelic

Creativity. Preprint at http://arxiv.org/abs/2007.11119 (2020).

19. Ramesh, A. et al. Zero-Shot Text-to-Image Generation. Preprint at

20

https://doi.org/10.1177/0003122420921538
https://doi.org/10.1515/9781400882915
https://doi.org/10.1111/j.0014-3820.2004.tb01568.x
https://doi.org/10.1017/S0035869X0016486X
https://doi.org/10.1017/CBO9781107049963
https://doi.org/10.1556/jep.9.2011.29.1
https://doi.org/10.1093/oso/9780198835943.001.0001
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/2007.11119


https://doi.org/10.48550/arXiv.2102.12092 (2021).

20. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C. & Chen, M. Hierarchical Text-Conditional

Image Generation with CLIP Latents. Preprint at http://arxiv.org/abs/2204.06125 (2022).

21. Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B. High-Resolution Image

Synthesis with Latent Diffusion Models. Preprint at

https://doi.org/10.48550/arXiv.2112.10752 (2022).

22. Epstein, Z., Levine, S., Rand, D. G. & Rahwan, I. Who Gets Credit for AI-Generated

Art? iScience 23, 101515 (2020). https://doi.org/10.1016/j.isci.2020.101515.

23. Thagard, P. & Stewart, T. C. The AHA! Experience: Creativity Through Emergent

Binding in Neural Networks. Cogn. Sci. 35, 1–33 (2011).

https://doi.org/10.1111/j.1551-6709.2010.01142.x.

24. Mikolov, T., Yih, W. & Zweig, G. Linguistic Regularities in Continuous Space Word

Representations. in Proceedings of the 2013 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies 746–751 (Association for Computational Linguistics, 2013).

25. Colas, C., Karch, T., Moulin-Frier, C. & Oudeyer, P.-Y. Language and culture

internalization for human-like autotelic AI. Nat. Mach. Intell. 4, 1068–1076 (2022).

https://doi.org/10.1038/s42256-022-00591-4.

26. Elgammal, A., Liu, B., Elhoseiny, M. & Mazzone, M. CAN: Creative Adversarial

Networks, Generating ‘Art’ by Learning About Styles and Deviating from Style Norms.

Preprint at http://arxiv.org/abs/1706.07068 (2017).

27. Wang, Y., Shimada, K. & Barati Farimani, A. Airfoil GAN: encoding and synthesizing

airfoils for aerodynamic shape optimization. J. Comput. Des. Eng. 10, 1350–1362

(2023). https://doi.org/10.1093/jcde/qwad046.

28. Metz, C. In Two Moves, AlphaGo and Lee Sedol Redefined the Future. Wired (2016).

29. Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550,

354–359 (2017). https://doi.org/10.1038/nature24270.

21

https://doi.org/10.48550/arXiv.2102.12092
http://arxiv.org/abs/2204.06125
https://doi.org/10.48550/arXiv.2112.10752
https://doi.org/10.1016/j.isci.2020.101515
https://doi.org/10.1111/j.1551-6709.2010.01142.x
https://doi.org/10.1038/s42256-022-00591-4
http://arxiv.org/abs/1706.07068
https://doi.org/10.1093/jcde/qwad046
https://doi.org/10.1038/nature24270


30. Shin, M., Kim, J., van Opheusden, B. & Griffiths, T. L. Superhuman artificial intelligence

can improve human decision-making by increasing novelty. Proc. Natl. Acad. Sci. 120,

e2214840120 (2023). https://doi.org/10.1073/pnas.2214840120.

31. Choi, S., Kim, N., Kim, J. & Kang, H. How Does AI Improve Human Decision-Making?

Evidence from the AI-Powered Go Program. SSRN Scholarly Paper at

https://doi.org/10.2139/ssrn.3893835 (2022).

32. Shin, M., Kim, J. & Kim, M. Human Learning from Artificial Intelligence: Evidence from

Human Go Players’ Decisions after AlphaGo. Proc. Annu. Meet. Cogn. Sci. Soc. 43,

(2021). https://doi.org/10.5281/zenodo.5095146.

33. Schrittwieser, J. et al. Mastering Atari, Go, chess and shogi by planning with a learned

model. Nature 588, 604–609 (2020). https://doi.org/10.1038/s41586-020-03051-4.

34. Discovering faster matrix multiplication algorithms with reinforcement learning | Nature.

https://www.nature.com/articles/s41586-022-05172-4.

35. Kasneci, E. et al. ChatGPT for good? On opportunities and challenges of large

language models for education. Learn. Individ. Differ. 103, 102274 (2023).

https://doi.org/10.1016/j.lindif.2023.102274.

36. Wagner, G., Lukyanenko, R. & Paré, G. Artificial intelligence and the conduct of

literature reviews. J. Inf. Technol. 37, 209–226 (2022).

https://doi.org/10.1177/02683962211048201.

37. Chen, M. et al. Evaluating Large Language Models Trained on Code. Preprint at

https://doi.org/10.48550/arXiv.2107.03374 (2021).

38. Eloundou, T., Manning, S., Mishkin, P. & Rock, D. GPTs are GPTs: An Early Look at the

Labor Market Impact Potential of Large Language Models. Preprint at

https://doi.org/10.48550/arXiv.2303.10130 (2023).

39. Stevenson, C., Smal, I., Baas, M., Grasman, R. & van der Maas, H. Putting GPT-3’s

Creativity to the (Alternative Uses) Test. Preprint at

https://doi.org/10.48550/arXiv.2206.08932 (2022).

22

https://doi.org/10.1073/pnas.2214840120
https://doi.org/10.2139/ssrn.3893835
https://doi.org/10.5281/zenodo.5095146
https://doi.org/10.1038/s41586-020-03051-4
https://www.nature.com/articles/s41586-022-05172-4
https://doi.org/10.1016/j.lindif.2023.102274
https://doi.org/10.1177/02683962211048201
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2303.10130
https://doi.org/10.48550/arXiv.2206.08932


40. Popli, N. How to Get a Six-Figure Job as an AI Prompt Engineer.

https://time.com/6272103/ai-prompt-engineer-job/ (2023).

41. Epstein, Z., Hertzmann, A., & THE INVESTIGATORS OF HUMAN CREATIVITY. Art

and the science of generative AI. Science 380, 1110–1111 (2023).

https://doi.org/10.1126/science.adh4451.

42. Oppenlaender, J. The Creativity of Text-to-Image Generation. in Proceedings of the

25th International Academic Mindtrek Conference 192–202 (2022).

https://doi.org/10.1145/3569219.3569352.

43. Li, Z. (Lionel), Fang, X. & Sheng, O. R. L. A Survey of Link Recommendation for Social

Networks: Methods, Theoretical Foundations, and Future Research Directions. ACM

Trans. Manag. Inf. Syst. 9, 1–26 (2018). https://doi.org/10.1145/3131782.

44. Lops, P., de Gemmis, M. & Semeraro, G. Content-based Recommender Systems:

State of the Art and Trends. in Recommender Systems Handbook (eds. Ricci, F.,

Rokach, L., Shapira, B. & Kantor, P. B.) 73–105 (Springer US, 2011).

https://doi.org/10.1007/978-0-387-85820-3_3.

45. Su, X. & Khoshgoftaar, T. M. A Survey of Collaborative Filtering Techniques. Adv. Artif.

Intell. 2009, 1–19 (2009). https://doi.org/10.1155/2009/421425.

46. Anderson, A., Maystre, L., Anderson, I., Mehrotra, R. & Lalmas, M. Algorithmic Effects

on the Diversity of Consumption on Spotify. in Proceedings of The Web Conference

2020 2155–2165 (Association for Computing Machinery, 2020).

https://doi.org/10.1145/3366423.3380281.

47. Krumme, C., Cebrian, M., Pickard, G. & Pentland, S. Quantifying Social Influence in an

Online Cultural Market. PLOS ONE 7, e33785 (2012).

https://doi.org/10.1371/journal.pone.0033785.

48. Salganik, M. J., Dodds, P. S. & Watts, D. J. Experimental Study of Inequality and

Unpredictability in an Artificial Cultural Market. Science 311, 854–856 (2006).

https://doi.org/10.1126/science.1121066.

23

https://time.com/6272103/ai-prompt-engineer-job/
https://doi.org/10.1126/science.adh4451
https://doi.org/10.1145/3569219.3569352
https://doi.org/10.1145/3131782
https://doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1155/2009/421425
https://doi.org/10.1145/3366423.3380281
https://doi.org/10.1371/journal.pone.0033785
https://doi.org/10.1126/science.1121066


49. Richerson, P. J. & Boyd, R. Not by genes alone: how culture transformed human

evolution. (University of Chicago Press, 2005).

https://doi.org/10.7208/chicago/9780226712130.001.0001.

50. Cavalli-Sforza, L. L. & Feldman, M. W. Cultural Transmission and Evolution: A

Quantitative Approach. (Princeton University Press, 1981).

51. Mesoudi, A. Pursuing Darwin’s curious parallel: Prospects for a science of cultural

evolution. Proc. Natl. Acad. Sci. 114, 7853–7860 (2017).

https://doi.org/10.1073/pnas.1620741114.

52. Enquist, M. & Ghirlanda, S. Evolution of social learning does not explain the origin of

human cumulative culture. J. Theor. Biol. 246, 129–135 (2007).

https://doi.org/10.1016/j.jtbi.2006.12.022.

53. Acerbi, A. & Mesoudi, A. If we are all cultural Darwinians what’s the fuss about?

Clarifying recent disagreements in the field of cultural evolution. Biol. Philos. 30,

481–503 (2015). https://doi.org/10.1007/s10539-015-9490-2.

54. Morin, O. Reasons to be fussy about cultural evolution. Biol. Philos. 31, 447–458

(2016). https://doi.org/10.1007/s10539-016-9516-4.

55. Weitzman, M. L. Recombinant Growth*. Q. J. Econ. 113, 331–360 (1998).

https://doi.org/10.1162/003355398555595.

56. Griffiths, T. L. Understanding Human Intelligence through Human Limitations. Trends

Cogn. Sci. 24, 873–883 (2020). https://doi.org/10.1016/j.tics.2020.09.001.

57. Boyd, R. & Richerson, P. J. Culture and the evolutionary process. (University of

Chicago Press, 1985).

58. Mesoudi, A. Cultural Evolution: How Darwinian Theory Can Explain Human Culture and

Synthesize the Social Sciences. (University of Chicago Press, 2011).

https://doi.org/10.7208/chicago/9780226520452.001.0001.

59. Leibo, J. Z., Hughes, E., Lanctot, M. & Graepel, T. Autocurricula and the Emergence of

Innovation from Social Interaction: A Manifesto for Multi-Agent Intelligence Research.

24

https://doi.org/10.7208/chicago/9780226712130.001.0001
https://doi.org/10.1073/pnas.1620741114
https://doi.org/10.1016/j.jtbi.2006.12.022
https://doi.org/10.1007/s10539-015-9490-2
https://doi.org/10.1007/s10539-016-9516-4
https://doi.org/10.1162/003355398555595
https://doi.org/10.1016/j.tics.2020.09.001
https://doi.org/10.7208/chicago/9780226520452.001.0001


Preprint at https://doi.org/10.48550/arXiv.1903.00742 (2019).

60. Aveni, A. F. Skywatchers: A Revised and Updated Version of Skywatchers of Ancient

Mexico. (University of Texas Press, 2001). https://doi.org/10.2307/972243.

61. Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw.

4, 251–257 (1991). https://doi.org/10.1016/0893-6080(91)90009-T.

62. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

https://doi.org/10.1038/nature14539.

63. Zenil, H. et al. The Future of Fundamental Science Led by Generative Closed-Loop

Artificial Intelligence. Preprint at http://arxiv.org/abs/2307.07522 (2023).

64. Senior, A. W. et al. Improved protein structure prediction using potentials from deep

learning. Nature 577, 706–710 (2020). https://doi.org/10.1038/s41586-019-1923-7.

65. Cooper, S. et al. Predicting protein structures with a multiplayer online game. Nature

466, 756–760 (2010). https://doi.org/10.1038/nature09304.

66. Bommasani, R. et al. On the Opportunities and Risks of Foundation Models. Preprint at

https://doi.org/10.48550/arXiv.2108.07258 (2022).

67. Hoffmann, J. et al. Training Compute-Optimal Large Language Models. Preprint at

https://doi.org/10.48550/arXiv.2203.15556 (2022).

68. Bender, E. M., Gebru, T., McMillan-Major, A. & Shmitchell, S. On the Dangers of

Stochastic Parrots: Can Language Models Be Too Big?🦜. in Proceedings of the 2021

ACM Conference on Fairness, Accountability, and Transparency 610–623 (Association

for Computing Machinery, 2021). https://doi.org/10.1145/3442188.3445922.

69. Brown, T. et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst.

33, 1877–1901 (2020). https://doi.org/10.48550/arXiv.2005.14165.

70. Mitchell, M. & Krakauer, D. C. The debate over understanding in AI’s large language

models. Proc. Natl. Acad. Sci. 120, e2215907120 (2023).

https://doi.org/10.1073/pnas.2215907120.

71. Charbonneau, M. Modularity and Recombination in Technological Evolution. Philos.

25

https://doi.org/10.48550/arXiv.1903.00742
https://doi.org/10.2307/972243
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1038/nature14539
http://arxiv.org/abs/2307.07522
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1038/nature09304
https://doi.org/10.48550/arXiv.2108.07258
https://doi.org/10.48550/arXiv.2203.15556
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1073/pnas.2215907120


Technol. 29, 373–392 (2016). https://doi.org/10.1007/s13347-016-0228-0.

72. Henrich, J. Demography and Cultural Evolution: How Adaptive Cultural Processes Can

Produce Maladaptive Losses—The Tasmanian Case. Am. Antiq. 69, 197–214 (2004).

https://doi.org/10.2307/4128416.

73. Henrich, J. & Muthukrishna, M. What Makes Us Smart? Top. Cogn. Sci. (2023)

https://doi.org/10.1111/tops.12656.

74. Youn, H., Strumsky, D., Bettencourt, L. M. A. & Lobo, J. Invention as a combinatorial

process: evidence from US patents. J. R. Soc. Interface 12, 20150272 (2015).

https://doi.org/10.1098/rsif.2015.0272.

75. Sourati, J. & Evans, J. A. Accelerating science with human-aware artificial intelligence.

Nat. Hum. Behav. 1–15 (2023) https://doi.org/10.1038/s41562-023-01648-z.

76. Tinits, P. & Sobchuk, O. Open-ended cumulative cultural evolution of Hollywood film

crews. Evol. Hum. Sci. 2, e26 (2020). https://doi.org/10.1017/ehs.2020.21.

77. Grizou, J., Points, L. J., Sharma, A. & Cronin, L. A curious formulation robot enables

the discovery of a novel protocell behavior. Sci. Adv. 6, eaay4237 (2020).

https://doi.org/10.1126/sciadv.aay4237.

78. Kramer, S., Cerrato, M., Džeroski, S. & King, R. Automated Scientific Discovery: From

Equation Discovery to Autonomous Discovery Systems. Preprint at

http://arxiv.org/abs/2305.02251 (2023).

79. Lucas, A. J. et al. The value of teaching increases with tool complexity in cumulative

cultural evolution. Proc. R. Soc. B Biol. Sci. 287, 20201885 (2020).

https://doi.org/10.1098/rspb.2020.1885.

80. Borsa, D., Piot, B., Munos, R. & Pietquin, O. Observational Learning by Reinforcement

Learning. Preprint at https://doi.org/10.48550/arXiv.1706.06617 (2017).

81. Kohnke, L., Moorhouse, B. L. & Zou, D. ChatGPT for Language Teaching and

Learning. RELC J. 00336882231162868 (2023).

https://doi.org/10.1177/00336882231162868.

26

https://doi.org/10.1007/s13347-016-0228-0
https://doi.org/10.2307/4128416
https://doi.org/10.1111/tops.12656
https://doi.org/10.1098/rsif.2015.0272
https://doi.org/10.1038/s41562-023-01648-z
https://doi.org/10.1017/ehs.2020.21
https://doi.org/10.1126/sciadv.aay4237
http://arxiv.org/abs/2305.02251
https://doi.org/10.1098/rspb.2020.1885
https://doi.org/10.48550/arXiv.1706.06617
https://doi.org/10.1177/00336882231162868


82. Haller, E. & Rebedea, T. Designing a Chat-bot that Simulates an Historical Figure. in

2013 19th International Conference on Control Systems and Computer Science

582–589 (2013). https://doi.org/10.1109/CSCS.2013.85.

83. Zhang, S., Frey, B. & Bansal, M. How can NLP Help Revitalize Endangered

Languages? A Case Study and Roadmap for the Cherokee Language. Preprint at

http://arxiv.org/abs/2204.11909 (2022).

84. Ijaz, K., Bogdanovych, A. & Trescak, T. Virtual worlds vs books and videos in history

education. Interact. Learn. Environ. 25, 904–929 (2017).

https://doi.org/10.1080/10494820.2016.1225099.

85. Buolamwini, J. & Gebru, T. Gender Shades: Intersectional Accuracy Disparities in

Commercial Gender Classification. in Proceedings of the 1st Conference on Fairness,

Accountability and Transparency 77–91 (PMLR, 2018).

86. Caliskan, A., Bryson, J. J. & Narayanan, A. Semantics derived automatically from

language corpora contain human-like biases. Science 356, 183–186 (2017).

https://doi.org/10.1126/science.aal4230.

87. O’Neil, C. Weapons of Math Destruction: How Big Data Increases Inequality and

Threatens Democracy. (Crown, 2016). https://doi.org/10.5860/crl.78.3.403.

88. Prates, M. O. R., Avelar, P. H. C. & Lamb, L. Assessing Gender Bias in Machine

Translation -- A Case Study with Google Translate. Preprint at

https://doi.org/10.48550/arXiv.1809.02208 (2019).

89. Acerbi, A. & Stubbersfield, J. Large language models show human-like content biases

in transmission chain experiments. Preprint at https://doi.org/10.31219/osf.io/8zg4d

(2023).

90. Vig, J. et al. Investigating Gender Bias in Language Models Using Causal Mediation

Analysis. in Advances in Neural Information Processing Systems vol. 33 12388–12401

(Curran Associates, Inc., 2020).

91. Pessach, D. & Shmueli, E. A Review on Fairness in Machine Learning. ACM Comput.

27

https://doi.org/10.1109/CSCS.2013.85
http://arxiv.org/abs/2204.11909
https://doi.org/10.1080/10494820.2016.1225099
https://doi.org/10.1126/science.aal4230
https://doi.org/10.5860/crl.78.3.403
https://doi.org/10.48550/arXiv.1809.02208
https://doi.org/10.31219/osf.io/8zg4d


Surv. 55, 51:1-51:44 (2022). https://doi.org/10.1145/3494672.

92. Argyle, L. P. et al. Out of One, Many: Using Language Models to Simulate Human

Samples. in Proceedings of the 60th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers) 819–862 (2022).

https://doi.org/10.18653/v1/2022.acl-long.60.

93. Hendy, A. et al. How Good Are GPT Models at Machine Translation? A Comprehensive

Evaluation. Preprint at http://arxiv.org/abs/2302.09210 (2023).

94. Bartlett, F. C. Remembering: A study in experimental and social psychology. xix, 317

(Cambridge University Press, 1932).

95. Kashima, Y. Maintaining Cultural Stereotypes in the Serial Reproduction of Narratives.

Pers. Soc. Psychol. Bull. 26, 594–604 (2000).

https://doi.org/10.1177/0146167200267007.

96. Griffiths, T. L., Christian, B. R. & Kalish, M. L. Using Category Structures to Test

Iterated Learning as a Method for Identifying Inductive Biases. Cogn. Sci. 32, 68–107

(2008). https://doi.org/10.1080/03640210701801974.

97. Lieder, F. & Griffiths, T. L. Resource-rational analysis: Understanding human cognition

as the optimal use of limited computational resources. Behav. Brain Sci. 43, e1 (2020).

98. Simon, H. A. Bounded Rationality. in Utility and Probability (eds. Eatwell, J., Milgate, M.

& Newman, P.) 15–18 (Palgrave Macmillan UK, 1990).

https://doi.org/10.1007/978-1-349-20568-4_5.

99. Todd, P. M. & Gigerenzer, G. Environments That Make Us Smart: Ecological

Rationality. Curr. Dir. Psychol. Sci. 16, 167–171 (2007).

https://doi.org/10.1111/j.1467-8721.2007.00497.x.

100. Tversky, A. & Kahneman, D. Judgment under Uncertainty: Heuristics and Biases.

Science 185, 1124–1131 (1974). https://doi.org/10.1126/science.185.4157.1124.

101. Gershman, S. J., Horvitz, E. J. & Tenenbaum, J. B. Computational rationality: A

converging paradigm for intelligence in brains, minds, and machines. Science 349,

28

https://doi.org/10.1145/3494672
https://doi.org/10.18653/v1/2022.acl-long.60
http://arxiv.org/abs/2302.09210
https://doi.org/10.1177/0146167200267007
https://doi.org/10.1080/03640210701801974
https://doi.org/10.1007/978-1-349-20568-4_5
https://doi.org/10.1111/j.1467-8721.2007.00497.x
https://doi.org/10.1126/science.185.4157.1124


273–278 (2015). https://doi.org/10.1126/science.aac6076.

102. Malle, B. F., Scheutz, M., Arnold, T., Voiklis, J. & Cusimano, C. Sacrifice One For the

Good of Many? People Apply Different Moral Norms to Human and Robot Agents. in

Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot

Interaction 117–124 (Association for Computing Machinery, 2015).

https://doi.org/10.1145/2696454.2696458.

103. Griffiths, T. L., Kalish, M. L. & Lewandowsky, S. Theoretical and empirical evidence for

the impact of inductive biases on cultural evolution. Philos. Trans. R. Soc. B Biol. Sci.

363, 3503–3514 (2008). https://doi.org/10.1098/rstb.2008.0146.

104. Kirby, S., Dowman, M. & Griffiths, T. L. Innateness and culture in the evolution of

language. PNAS Proc. Natl. Acad. Sci. U. S. Am. 104, 5241–5245 (2007).

https://doi.org/10.1073/pnas.0608222104.

105. Thompson, B. & Griffiths, T. L. Human biases limit cumulative innovation. Proc. R. Soc.

B Biol. Sci. 288, 20202752 (2021). https://doi.org/10.1098/rspb.2020.2752.

106. Brinkmann, L. et al. Hybrid social learning in human-algorithm cultural transmission.

Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 380, 20200426 (2022).

https://doi.org/10.1098/rsta.2020.0426.

107. Tamariz, M. & Kirby, S. Culture: copying, compression, and conventionality. Cogn. Sci.

39, 171–183 (2015). https://doi.org/10.1111/cogs.12144.

108. Chater, N. & Vitányi, P. Simplicity: a unifying principle in cognitive science? Trends

Cogn. Sci. 7, 19–22 (2003). https://doi.org/10.1016/s1364-6613(02)00005-0.

109. Kirby, S., Tamariz, M., Cornish, H. & Smith, K. Compression and communication in the

cultural evolution of linguistic structure. Cognition 141, 87–102 (2015).

https://doi.org/10.1016/j.cognition.2015.03.016.

110. Anderson, C. The End of Theory: The Data Deluge Makes the Scientific Method

Obsolete. Wired (2018).

111. Spinney, L. Are we witnessing the dawn of post-theory science? The Guardian (2022).

29

https://doi.org/10.1126/science.aac6076
https://doi.org/10.1145/2696454.2696458
https://doi.org/10.1098/rstb.2008.0146
https://doi.org/10.1073/pnas.0608222104
https://doi.org/10.1098/rspb.2020.2752
https://doi.org/10.1098/rsta.2020.0426
https://doi.org/10.1111/cogs.12144
https://doi.org/10.1016/s1364-6613(02)00005-0
https://psycnet.apa.org/doi/10.1016/j.cognition.2015.03.016


112. Liu, Z., Madhavan, V. & Tegmark, M. AI Poincaré 2.0: Machine Learning Conservation

Laws from Differential Equations. Phys. Rev. E 106, 045307 (2022).

https://doi.org/10.1103/PhysRevE.106.045307.

113. Kendal, R. L. et al. Social Learning Strategies: Bridge-Building between Fields. Trends

Cogn. Sci. 22, 651–665 (2018). https://doi.org/10.1016/j.tics.2018.04.003.

114. Henrich, J. & McElreath, R. The evolution of cultural evolution. Evol. Anthropol. Issues

News Rev. Issues News Rev. 12, 123–135 (2003). https://doi.org/10.1002/evan.10110.

115. Mesoudi, A., Whiten, A. & Dunbar, R. A bias for social information in human cultural

transmission. Br. J. Psychol. 97, 405–423 (2006).

https://doi.org/10.1348/000712605X85871.

116. Sharma, D. K. & Sharma, A. A comparative analysis of web page ranking algorithms.

Int. J. Comput. Sci. Eng. 2, 2670–2676 (2010).

117. Duhan, N., Sharma, A. K. & Bhatia, K. K. Page Ranking Algorithms: A Survey. in 2009

IEEE International Advance Computing Conference 1530–1537 (2009).

https://doi.org/10.1109/IADCC.2009.4809246.

118. Koren, Y., Rendle, S. & Bell, R. Advances in collaborative filtering. Recomm. Syst.

Handb. 91–142 (2022). https://doi.org/10.1007/978-1-0716-2197-4_3.

119. Banihashemi, S. & Abhari, A. Effects of Different Recommendation Algorithms on

Structure of Social Networks. in 2021 International Conference on Computational

Science and Computational Intelligence (CSCI) 1395–1400 (2021).

https://doi.org/10.1109/CSCI54926.2021.00279.

120. Ferrara, A., Espín-Noboa, L., Karimi, F. & Wagner, C. Link recommendations: Their

impact on network structure and minorities. in 14th ACM Web Science Conference

2022 228–238 (2022). https://doi.org/10.1145/3501247.3531583.

121. Su, J., Sharma, A. & Goel, S. The Effect of Recommendations on Network Structure. in

Proceedings of the 25th International Conference on World Wide Web 1157–1167

(International World Wide Web Conferences Steering Committee, 2016).

30

https://doi.org/10.1103/PhysRevE.106.045307
https://doi.org/10.1016/j.tics.2018.04.003
https://doi.org/10.1002/evan.10110
https://doi.org/10.1348/000712605X85871
https://doi.org/10.1109/IADCC.2009.4809246
https://doi.org/10.1007/978-1-0716-2197-4_3
https://doi.org/10.1109/CSCI54926.2021.00279
https://doi.org/10.1145/3501247.3531583


https://doi.org/10.1145/2872427.2883040.

122. Lazer, D. & Friedman, A. The Network Structure of Exploration and Exploitation. Adm.

Sci. Q. 52, 667–694 (2007).

123. Mason, W. & Watts, D. J. Collaborative learning in networks. Proc. Natl. Acad. Sci. 109,

764–769 (2012).

124. Woolley, A. W., Aggarwal, I. & Malone, T. W. Collective Intelligence and Group

Performance. Curr. Dir. Psychol. Sci. 24, 420–424 (2015).

125. Derex, M. & Boyd, R. Partial connectivity increases cultural accumulation within groups.

Proc. Natl. Acad. Sci. 113, 2982–2987 (2016).

126. Kant, V., Jhalani, T. & Dwivedi, P. Enhanced multi-criteria recommender system based

on fuzzy Bayesian approach. Multimed. Tools Appl. 77, 12935–12953 (2018).

127. Bollen, D., Knijnenburg, B. P., Willemsen, M. C. & Graus, M. Understanding choice

overload in recommender systems. in Proceedings of the fourth ACM conference on

Recommender systems 63–70 (2010).

128. Tkalcic, M., Kosir, A. & Tasic, J. Affective recommender systems: the role of emotions

in recommender systems. in The RecSys 2011 Workshops-Decisions@ RecSys 2011

and UCERSTI-2: Human Decision Making in Recommender Systems; User-Centric

Evaluation of Recommender Systems and Their Interfaces-2 vol. 811 9–13 (CEUR-WS.

org, 2011).

129. Gonzalez, G., de la Rosa, J. L., Montaner, M. & Delfin, S. Embedding Emotional

Context in Recommender Systems. in 2007 IEEE 23rd International Conference on

Data Engineering Workshop 845–852 (2007). doi:10.1109/ICDEW.2007.4401075.

130. Osman, N. A., Mohd Noah, S. A., Darwich, M. & Mohd, M. Integrating contextual

sentiment analysis in collaborative recommender systems. PLoS ONE 16, e0248695

(2021).

131. Zheng, Y., Mobasher, B. & Burke, R. D. The Role of Emotions in Context-aware

Recommendation. Decis. RecSys 2013, 21–28 (2013).

31

https://doi.org/10.1145/2872427.2883040


132. Zhang, X., Ferreira, P., Godinho De Matos, M. & Belo, R. Welfare Properties of Profit

Maximizing Recommender Systems: Theory and Results from a Randomized

Experiment. MIS Q. 45, 1–43 (2021).

133. Levy, R. Social Media, News Consumption, and Polarization: Evidence from a Field

Experiment. Am. Econ. Rev. 111, 831–870 (2021).

134. Brady, W. J., Gantman, A. P. & Van Bavel, J. J. Attentional capture helps explain why

moral and emotional content go viral. J. Exp. Psychol. Gen. 149, 746–756 (2020).

135. Brady, W. J., Jackson, J. C., Lindström, B. & Crockett, M. J. Algorithm-mediated social

learning in online social networks. Trends Cogn. Sci. 0, (2023).

136. Acerbi, A. Cognitive attraction and online misinformation. Palgrave Commun. 5, 1–7

(2019).

137. Brady, W. J. et al. Overperception of moral outrage in online social networks inflates

beliefs about intergroup hostility. Nat. Hum. Behav. 1–11 (2023)

doi:10.1038/s41562-023-01582-0.

138. Brady, W. J. & Crockett, M. J. Norm Psychology in the Digital Age: How Social Media

Shapes the Cultural Evolution of Normativity. Perspect. Psychol. Sci.

17456916231187395 (2023) doi:10.1177/17456916231187395.

139. Milli, S., Carroll, M., Pandey, S., Wang, Y. & Dragan, A. D. Twitter’s Algorithm:

Amplifying Anger, Animosity, and Affective Polarization. Preprint at

http://arxiv.org/abs/2305.16941 (2023).

140. Cinelli, M., De Francisci Morales, G., Galeazzi, A., Quattrociocchi, W. & Starnini, M.

The echo chamber effect on social media. Proc. Natl. Acad. Sci. 118, e2023301118

(2021).

141. Pariser, E. The Filter Bubble: What the Internet Is Hiding from You. (The Penguin Press

HC, 2011).

142. Sunstein, C. R. Republic.com 2.0. (Princeton University Press, 2007).

143. Jiang, R., Chiappa, S., Lattimore, T., György, A. & Kohli, P. Degenerate Feedback

32



Loops in Recommender Systems. in Proceedings of the 2019 AAAI/ACM Conference

on AI, Ethics, and Society 383–390 (ACM, 2019). doi:10.1145/3306618.3314288.

144. Pagan, N. et al. A Classification of Feedback Loops and Their Relation to Biases in

Automated Decision-Making Systems. Preprint at http://arxiv.org/abs/2305.06055

(2023).

145. Stray, J. et al. Building Human Values into Recommender Systems: An Interdisciplinary

Synthesis. Preprint at https://doi.org/10.48550/arXiv.2207.10192 (2022).

146. Kleinberg, J., Mullainathan, S. & Raghavan, M. The Challenge of Understanding What

Users Want: Inconsistent Preferences and Engagement Optimization. Preprint at

https://doi.org/10.48550/arXiv.2202.11776 (2022).

147. Ovadya, A. & Thorburn, L. Bridging Systems: Open Problems for Countering

Destructive Divisiveness across Ranking, Recommenders, and Governance. Preprint

at http://arxiv.org/abs/2301.09976 (2023).

148. Yao, B., Jiang, M., Yang, D. & Hu, J. Empowering LLM-based Machine Translation with

Cultural Awareness. Preprint at http://arxiv.org/abs/2305.14328 (2023).

149. Garimella, K., De Francisci Morales, G., Gionis, A. & Mathioudakis, M. Reducing

Controversy by Connecting Opposing Views. in Proceedings of the Tenth ACM

International Conference on Web Search and Data Mining 81–90 (Association for

Computing Machinery, 2017). doi:10.1145/3018661.3018703.

150. Santos, F. P., Lelkes, Y. & Levin, S. A. Link recommendation algorithms and dynamics

of polarization in online social networks. Proc. Natl. Acad. Sci. 118, e2102141118

(2021).

151. Möller, J., Trilling, D., Helberger, N. & Van Es, B. Do not blame it on the algorithm: an

empirical assessment of multiple recommender systems and their impact on content

diversity. Inf. Commun. Soc. 21, 959–977 (2018).

152. Bakker, M. A. et al. Fine-tuning language models to find agreement among humans

with diverse preferences. Preprint at https://doi.org/10.48550/arXiv.2211.15006 (2022).

33

https://doi.org/10.48550/arXiv.2211.15006


153. Christiano, P. et al. Deep reinforcement learning from human preferences. Preprint at

https://doi.org/10.48550/arXiv.1706.03741 (2023).

154. Ouyang, L. et al. Training language models to follow instructions with human feedback.

Preprint at https://doi.org/10.48550/arXiv.2203.02155 (2022).

155. Perez, E. et al. Discovering Language Model Behaviors with Model-Written

Evaluations. Preprint at http://arxiv.org/abs/2212.09251 (2022).

156. Claidière, N., Scott-Phillips, T. C. & Sperber, D. How Darwinian is cultural evolution?

Philos. Trans. R. Soc. B Biol. Sci. 369, 20130368 (2014).

157. Blancke, S., Van Breusegem, F., De Jaeger, G., Braeckman, J. & Van Montagu, M.

Fatal attraction: the intuitive appeal of GMO opposition. Trends Plant Sci. 20, 414–418

(2015).

158. Miton, H. & Mercier, H. Cognitive Obstacles to Pro-Vaccination Beliefs. Trends Cogn.

Sci. 19, 633–636 (2015).

159. Poulsen, V. & DeDeo, S. Cognitive Attractors and the Cultural Evolution of Religion.

Preprint at https://doi.org/10.31234/osf.io/daxyu (2023).

160. Kirchenbauer, J. et al. A Watermark for Large Language Models. Preprint at

http://arxiv.org/abs/2301.10226 (2023).

161. Shumailov, I. et al. The Curse of Recursion: Training on Generated Data Makes Models

Forget. Preprint at http://arxiv.org/abs/2305.17493 (2023).

162. Veselovsky, V., Ribeiro, M. H. & West, R. Artificial Artificial Artificial Intelligence: Crowd

Workers Widely Use Large Language Models for Text Production Tasks. Preprint at

https://doi.org/10.48550/arXiv.2306.07899 (2023).

163. Japkowicz, N. & Stephen, S. The class imbalance problem: A systematic study. Intell.

Data Anal. 6, 429–449 (2002).

164. Kalish, M. L., Griffiths, T. L. & Lewandowsky, S. Iterated learning: Intergenerational

knowledge transmission reveals inductive biases. Psychon. Bull. Rev. 14, 288–294

(2007).

34



165. Axelrod, R. The Dissemination of Culture: A Model with Local Convergence and Global

Polarization. J. Confl. Resolut. 41, 203–226 (1997).

166. Touvron, H. et al. LLaMA: Open and Efficient Foundation Language Models. Preprint at

https://doi.org/10.48550/arXiv.2302.13971 (2023).

167. West, S. M., Whittaker, M. & Crawford, K. Discriminating systems: gender, race and

power in AI. AI Inst.

168. Autor, D. H. Why Are There Still So Many Jobs? The History and Future of Workplace

Automation. J. Econ. Perspect. 29, 3–30 (2015).

169. Ayers, J. W. et al. Comparing physician and artificial intelligence chatbot responses to

patient questions posted to a public social media forum. JAMA Intern. Med. (2023).

170. Sharma, A., Lin, I. W., Miner, A. S., Atkins, D. C. & Althoff, T. Human–AI collaboration

enables more empathic conversations in text-based peer-to-peer mental health

support. Nat. Mach. Intell. 5, 46–57 (2023).

171. Perry, A. AI will never convey the essence of human empathy. Nat. Hum. Behav. 1–2

(2023) doi:10.1038/s41562-023-01675-w.

172. Weisz, E. & Zaki, J. Motivated empathy: a social neuroscience perspective. Curr. Opin.

Psychol. 24, 67–71 (2018).

173. Carroll, M., Hadfield-Menell, D., Russell, S. & Dragan, A. Estimating and Penalizing

Preference Shift in Recommender Systems. in Proceedings of the 15th ACM

Conference on Recommender Systems 661–667 (Association for Computing

Machinery, 2021). doi:10.1145/3460231.3478849.

174. Bakshy, E., Messing, S. & Adamic, L. A. Exposure to ideologically diverse news and

opinion on Facebook. Science 348, 1130–1132 (2015).

175. Robertson, R. E. et al. Users choose to engage with more partisan news than they are

exposed to on Google Search. Nature 618, 342–348 (2023).

176. Art made by artificial intelligence is developing a style of its own. The Economist.

177. Obradovich, N. et al. Expanding the measurement of culture with a sample of two

35



billion humans. J. R. Soc. Interface 19, 20220085 (2022).

178. Garg, N., Schiebinger, L., Jurafsky, D. & Zou, J. Word embeddings quantify 100 years

of gender and ethnic stereotypes. Proc. Natl. Acad. Sci. 115, E3635–E3644 (2018).

179. Karjus, A., Solà, M. C., Ohm, T., Ahnert, S. E. & Schich, M. Compression ensembles

quantify aesthetic complexity and the evolution of visual art. EPJ Data Sci. 12, 21

(2023).

180. Santy, S., Liang, J. T., Bras, R. L., Reinecke, K. & Sap, M. NLPositionality:

Characterizing Design Biases of Datasets and Models. Preprint at

http://arxiv.org/abs/2306.01943 (2023).

181. Awad, E. et al. The Moral Machine experiment. Nature 563, 59–64 (2018).

182. Brandt, F., Conitzer, V. & Endriss, U. Computational Social Choice. in Multiagent

Systems (The MIT Press, 2013).

183. Koster, R. et al. Human-centred mechanism design with Democratic AI. Nat. Hum.

Behav. 6, 1398–1407 (2022).

184. Small, C. T. et al. Opportunities and Risks of LLMs for Scalable Deliberation with Polis.

Preprint at http://arxiv.org/abs/2306.11932 (2023).

185. Rahwan, I. Society-in-the-loop: programming the algorithmic social contract. Ethics Inf.

Technol. 20, 5–14 (2018).

186. Jernite, Y. et al. Data Governance in the Age of Large-Scale Data-Driven Language

Technology. in 2022 ACM Conference on Fairness, Accountability, and Transparency

2206–2222 (2022). doi:10.1145/3531146.3534637.

187. Laurençon, H. et al. The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual

Dataset. Preprint at https://doi.org/10.48550/arXiv.2303.03915 (2023).

188. Ziegler, D. M. et al. Fine-Tuning Language Models from Human Preferences. Preprint

at https://doi.org/10.48550/arXiv.1909.08593 (2020).

189. Bai, Y. et al. Constitutional AI: Harmlessness from AI Feedback. Preprint at

http://arxiv.org/abs/2212.08073 (2022).

36



190. Bergstrom, C. T. & Lachmann, M. The Red King effect: When the slowest runner wins

the coevolutionary race. Proc. Natl. Acad. Sci. 100, 593–598 (2003).

191. Bostrom, N. Superintelligence: Paths, Dangers, Strategies. (Oxford University Press,

2014).

192. Wilson, D. S. et al. Multilevel cultural evolution: From new theory to practical

applications. Proc. Natl. Acad. Sci. U. S. A. 120, e2218222120 (2023).

193. DALL·E: Creating Images from Text, https://openai.com/research/dall-e (OpenAI, 2021).

194. Lisi, E., Malekzadeh, M., Haddadi H., Lau, F.D.-H. & Flaxman, S. Modelling and forecasting art

movements with CGANs R. Soc. Open Science 7, 191569 (2020).

37


