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Abstract

We initiate the study of sorting permutations using prefix block-interchanges,

which exchange any prefix of a permutation with another non-intersecting inter-

val. The goal is to transform a given permutation into the identity permutation

using as few such operations as possible. We give a 2-approximation algorithm

for this problem, as well as a 4/3-approximation for simple permutations; we

prove tight lower and upper bounds on the corresponding distance; and we

bound the largest value that the distance can reach.

Keywords: permutations, genome rearrangements, interconnection network,

sorting, distance, prefix block-interchange

1. Introduction

The problem of transforming two sequences into one another using a specified

set of operations has received a lot of attention in the last decades, with applica-

tions in computational biology as (genome) rearrangement problems [13] as well

as interconnection network design [23]. In the context of permutations, it can be

equivalently formulated as follows: given a permutation π of [n] = {1, 2, . . . , n}

and a generating set S (also consisting of permutations of [n]), find a minimum-

length sequence of elements from S that sorts π. The problem is known to be

NP-hard in general [16] and W[1]-hard when parameterised by the length of a

solution [6], but some families of operations that are important in applications

lead to problems that can be solved in polynomial time (e.g. exchanges [18],

block-interchanges [10] and signed reversals [15]), while other families yield hard

Preprint submitted to Elsevier



problems that admit good approximations (e.g. 11/8 for reversals [3] and for

block-transpositions [12]).

Several restrictions of these families have also been studied, one of which

stands out in the field of interconnection network design: the so-called prefix

constraint, which forces operations to act on a prefix of the permutation rather

than on an arbitrary interval. Those restrictions were introduced as a way of

reducing the size of the generated network while maintaining a low value for its

diameter, thereby guaranteeing a low maximum communication delay [23]. The

most famous example is perhaps the restriction of reversals (which reverse the

order of elements along an interval) to prefix reversals, and the corresponding

problem known as pancake flipping, introduced by Kleitman et al. [17] and whose

complexity was only settled thirty years later [5].

As Table 1 shows (see Fertin et al. [13] for undefined terms), although sorting

problems using interval transformations are now fairly well understood, progress

on the corresponding prefix sorting problems has been lacking, with only three

families whose status has been settled and no approximation ratio smaller than

3/2 for those problems not known to be in P. As a result, while the topology of

the Cayley graph generated by those operations might exhibit attractive prop-

erties, efficient routing algorithms (which achieve exactly the same task as the

sorting algorithms in genome rearrangements) are still needed for the network

to be of practical interest.

Table 1: Complexity of some sorting problems on permutations in the unrestricted setting
and under the prefix constraint.

Operation Unrestricted Prefix-constrained
reversal NP-hard [7] NP-hard [5]
signed reversal in P [15] open
double cut-and-join NP-hard [8] open
signed double cut-and-join in P [26] in P [14]
exchange in P [18] in P [1]
block-transposition NP-hard [4] open
block-interchange in P [10] open

In this work, we choose to focus on the family of block-interchanges for the
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following reasons:

1. along with double cut-and-joins, they constitute one of the most general

kind of operations on permutations, including both exchanges and block-

transpositions as special cases;

2. their behaviour in the unrestricted setting is understood well enough that

we can hope for the corresponding prefix sorting problem to be in P;

3. knowledge about these operations in the prefix setting is lacking and will

be needed for more general studies; for instance, rearrangement prob-

lems on strings are usually NP-hard, and efficient algorithms to solve

them exactly or approximately routinely rely on techniques developed for

permutations [13, part II], which currently do not exist for prefix block-

interchanges.

We are only aware of two other works on prefix block-interchanges. The first one

is a paper by Chou et al. [9], who studied them on strings and showed that binary

strings can be sorted in linear time, whereas transforming two binary strings

into one another using the minimum number of prefix block-interchanges is NP-

complete. The second one is a paper by Pai and Chitturi [24], published after

the conference version of our work [21], which gives another 2-approximation

for sorting permutations by prefix block-interchanges, which we will discuss in

section 7, and a 4/3-approximation for permutations with O(1) cycles. Our

main contributions in this paper are:

1. tight upper (Theorem 1, Theorem 5, Lemma 12) and lower (Theorem 3,

Corollary 2, Corollary 3) bounds on the so-called prefix block-interchange

distance;

2. an approximation algorithm (Algorithm 1) which we prove to be a 2-

approximation with respect to two different measures;

3. tractable instances (Lemma 9) and a 4/3-approximation for simple per-

mutations (Algorithm 2);

4. an upper bound of b2n/3c on the maximum value of the distance (Corol-

lary 4), an important parameter in some applications [23].
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A large portion of the results in this paper first appeared in a conference

version [21]. The main additions and differences are:

� a simpler presentation of Lemma 2, and a slight practical improvement of

Algorithm 1 (which unfortunately does not improve its theoretical worst-

case performance);

� the tighter lower bound of Corollary 2;

� all results in section 5;

� the removal of the results of Theorems 21 and 27 from [21]: the statement

of Theorem 21 is erroneous, and can therefore not be used to obtain the

lower bound needed in Theorem 27. Therefore, we can currently only give

an upper bound on the diameter instead of an exact value;

� the distribution of the prefix block-interchange distance up to n = 12

(Table 2);

� an experimental assessment of our algorithm, and a discussion of Pai and

Chitturi’s algorithm (section 7).

We implemented Algorithm 1 and Algorithm 2 in Python. The source files

are freely available at http://igm.univ-mlv.fr/~alabarre/software.php.

2. Notation and definitions

A permutation is a bijective function of a set (usually [n] = {1, 2, . . . , n} in

this work) onto itself. The symmetric group Sn is the set of all permutations of

[n] together with the usual function composition applied from right to left. We

write permutations using lower case Greek letters, viewing them as sequences

π = 〈π1 π2 · · · πn〉, where πi = π(i), and occasionally rely on the two-line

notation to denote them. The permutation ι = 〈1 2 · · · n〉 is the identity

permutation.

Permutations are well known to decompose in a unique way into disjoint

cycles (up to the ordering of cycles and of elements within each cycle), leading
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to another notation for π based on its disjoint cycle decomposition. For instance,

when π = 〈7 1 4 5 3 2 6〉, the disjoint cycle notation is π = (1, 7, 6, 2)(3, 4, 5). A

permutation that contains only one cycle of length k > 1 is commonly referred

to as a k-cycle.

Definition 1. [10] The block-interchange β(i, j, k, `) with 1 ≤ i < j ≤ k <
` ≤ n + 1 is the permutation that exchanges the closed intervals determined
respectively by i and j− 1 and by k and `− 1. If i = 1, then β is called a prefix
block-interchange.

Block-interchanges generalise several well-studied operations: when j = k,

the resulting operation exchanges two adjacent intervals, and is known as a

(block-)transposition [2]; when j = i + 1 and ` = k + 1, the resulting opera-

tion swaps elements in respective positions i and k, and is called an exchange

(or (algebraic) transposition). Prefix block-transpositions and prefix exchanges

are defined in a fashion similar to prefix block-interchanges, i.e., prefix block-

transpositions are block-transpositions with i = 1 and prefix exchanges are

exchanges with i = 1. We study the following problem.

sorting by prefix block-interchanges (sbpbi)

Input: a permutation π in Sn, a number K ∈ N.

Question: is there a sequence of at most K prefix block-interchanges that

sorts π?

The length of a shortest sorting sequence of prefix block-interchanges for a

permutation π is its (prefix block-interchange) distance, which we denote pbid(π).

For instance, a possible sorting sequence for π = 〈1 4 3 2〉 is:

〈 1 4 3 2 〉 → 〈 2 3 1 4〉 → 〈1 2 3 4〉

.

Proving its optimality will require a lower bound (see Theorem 3). Dis-

tances based on other operations are defined similarly; they can be computed

between any pair of permutations, and since they are left-invariant, computing
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pbid(π, σ) is equivalent to computing pbid(σ−1π, ι), which allows us to restrict

our attention to sorting problems and sequences.

3. A 2-approximation based on the breakpoint graph

We give in this section a 2-approximation algorithm for sbpbi based on the

breakpoint graph. We first use this structure in subsection 3.1 to derive an

upper bound on pbid and present our algorithm, then derive a lower bound

in subsection 3.2 which allows us to prove its performance guarantee. The

breakpoint graph is well known to be equivalent [19] to another structure known

as the cycle graph [2], which allows us to use results based on either graph

indifferently.

Definition 2. [15] For any π in Sn, let π′ be the permutation of {0, 1, 2, . . .,
2n+ 1} defined by π′0 = 0, π′2n+1 = 2n+ 1, and (π′2i−1, π

′
2i) = (2πi − 1, 2πi) for

1 ≤ i ≤ n. The breakpoint graph of π is the undirected edge-bicoloured graph
G(π) = (V,Eb ∪Eg) with ordered vertex set (π′0, π

′
1, . . . , π

′
2n+1) and whose edge

set consists of:

� Eb = {{π′2i, π′2i+1} | 0 ≤ i ≤ n}, called the set of black edges;

� Eg = {{2i, 2i+ 1} | 0 ≤ i ≤ n}, called the set of grey edges.

Figure 1 shows an example of a breakpoint graph. Since G(π) is 2-regular,

it decomposes in a unique way into edge-disjoint cycles which alternate black

and grey edges. The length of a cycle in G(π) is the number of black edges it

contains, and a k-cycle in G(π) is a cycle of length k. We let c(G(π)) (resp.

ck(G(π))) denote the number of cycles (resp. k-cycles) in G(π), and refer to

1-cycles as trivial cycles.

0 13 14 1 2 7 8 9 10 5 6 3 4 11 12 15

Figure 1: The breakpoint graph of 〈7 1 4 5 3 2 6〉.
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A crucial insight of strategies based on the breakpoint graph is the obser-

vation that the transformations that we apply never affect grey edges, whereas

they remove black edges and replace them with new black edges. This point of

view conveniently allows us to define block-interchanges in terms of the black

edges on which they act : using the notation bi = {π′2i−2, π′2i−1} for a black edge,

a quadruplet (bi, bj , bk, b`) of black edges with i < j ≤ k < ` naturally defines

the block-interchange β(i, j, k, `) and conversely.

3.1. An upper bound based on the breakpoint graph

For any π in Sn, let f(π) = 0 if π fixes 1 (i.e. π1 = 1) and 1 otherwise. The

following quantity, defined for any π in Sn, has been shown to be a tight lower

bound on the prefix block-transposition distance [20] :

g(π) =
n+ 1 + c(G(π))

2
− c1(G(π))− f(π). (1)

We prove in Theorem 1 that this quantity is also an upper bound on the prefix

block-interchange distance. To that end, we use the following notation, based

on the one introduced by Bafna and Pevzner [2]; for any two permutations π

and σ, define:

� ∆c(π, σ) = c(G(σ))− c(G(π)),

� ∆c1(π, σ) = c1(G(σ))− c1(G(π)),

� ∆f(π, σ) = f(σ)− f(π), and

� ∆g(π, σ) = g(σ)− g(π).

These parameters allow us to obtain the following expression, which will be

useful in our proofs:

∆g(π, σ) = ∆c(π, σ)/2−∆c1(π, σ)−∆f(π, σ). (2)

We start by proving in Lemma 2 the existence of a prefix block-interchange

that decreases g(π) by at least one if π1 6= 1. The proof uses the following

structural result, where grey edges {π′a, π′b} and {π′c, π′d} (with a < b and c < d)

are said to intersect if a < c < b < d or c < a < d < b.
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Lemma 1. [15] For every permutation π, let e be a grey edge in a nontrivial

cycle of G(π); then there exists another grey edge e′ in G(π) that intersects e.

We refer to the grey edge of G(π) that contains π′1 as the first grey edge,

and to the cycle that contains 0 as the leftmost cycle. Our figures represent

alternating subpaths (i.e., paths that alternate black and grey edges) as dotted

edges; therefore, such a dotted edge might correspond to a unique grey edge, or

to a black edge framed by two grey edges, and so on.

When the need arises, we will distinguish between two categories of grey

edges: assuming without loss of generality that a < b, we call a grey edge

{π′a, π′b} an inner grey edge if a is odd, and an outer grey edge otherwise. For

instance, grey edges {0, 1}, {2, 3}, {8, 9}, {10, 11}, {14, 15} in Figure 1 are outer

grey edges, while grey edges {5, 4}, {7, 6}, and {13, 12} are inner grey edges. In

particular, the first grey edge is always an inner grey edge. Although Lemma 1

guarantees intersection relationships between grey edges, some grey edges might

intersect only inner or only outer grey edges, and will therefore yield different

options for applying prefix block-interchanges.

Lemma 2. For any π in Sn: if π1 6= 1, then there exists a prefix block-

interchange β such that ∆c(π, πβ) = 2, ∆c1(π, πβ) ≥ 2, and ∆g(π, πβ) ≤ −1.

Proof. We first present a case analysis explaining how to compute β in each

case, then prove that β meets the stated requirements. Let e be the first grey

edge. Lemma 1 guarantees the existence of a grey edge e′ that intersects e; if

e′ is an inner grey edge, we apply the prefix block-interchange defined by the

black edges connected by e and by e′. There are two cases to handle, depending

on whether or not e′ belongs to the leftmost cycle:

1.

0 π′1 π′2i−2 π′2i−1 π′2j−2 π
′
2j−1 π

′
2k−2 π

′
2k−1

e′e

0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π
′
2k−2 π′2k−1

2.

0 π′1 π′2i−2 π′2i−1 π′2j−2 π
′
2j−1 π

′
2k−2 π

′
2k−1

e′e

0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π
′
2k−2 π′2k−1
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If no inner grey edge intersects e, then there must be an outer grey edge

e′ that intersects e. We first assume that e and e′ connect four different black

edges; again, we apply the prefix block-interchange defined by the black edges

connected by e and by e′, whether or not e and e′ both belong to the leftmost

cycle:

3.

0 π′1 π′2i−2 π′2i−1 π′2j−2 π
′
2j−1 π

′
2k−2 π

′
2k−1

e
e′

0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π
′
2k−2 π′2k−1

4.

0 π′1 π′2i−2 π′2i−1 π′2j−2 π
′
2j−1 π

′
2k−2 π

′
2k−1

e
e′

0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π
′
2k−2 π′2k−1

Finally, if all outer grey edges that intersect e share a black edge with e,

then we may assume that one such grey edge, which we again write e′, does

not contain 0. Indeed, assume {0, k} intersects e; then by definition k < i, and

there exists an alternating path connecting π′2k−1 and π′2i+1. Therefore, either

the grey edge incident with π′2i+1 connects it to a vertex located before π′2i+1,

in which case it is an outer edge and we have found the wanted e′; or that grey

edge connects it with a vertex located after π′2i+1, in which case the analysis of

case 3 applies.

If there is an outer grey edge e′ that shares a black edge with e, then we

apply the prefix block-interchange β defined by the corresponding three distinct

black edges, which is in fact a prefix block-transposition:

5.

0 π′1 π′2i−2 π′2i−1 π′2j−2 π
′
2j−1

e e′

0 π′1 π′2i−2π′2i−1 π′2j−2 π′2j−1

We now show that in all five cases, the prefix block-interchange we apply

meets the requirements in our statement. It is easy to verify that all choices

we describe for β satisfy ∆c(π, πβ) = 2 and ∆c1(π, πβ) ≥ 2. Since π1 6= 1,

the leftmost cycle in G(π) is never trivial, so f(π) = −1. The leftmost cycle

in G(πβ) remains nontrivial in cases 1 and 3, but might be trivial in cases 2, 4

and 5, which would then yield ∆f(π) = 1 but also ∆c1(π, πβ) ≥ 3. Equation 2

therefore allows us to conclude that in all cases, we obtain ∆g(π, πβ) ≤ −1. �
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We handle the case where π1 = 1 in the proof of our upper bound below.

Theorem 1. For any π in Sn, we have pbid(π) ≤ g(π).

Proof. If π1 6= 1, then we apply Lemma 2 to decrease g(π) by at least 1.

Otherwise, {π′0, π′1} induces a 1-cycle in G(π) and f(π) = 0. Assume π 6= ι

to avoid triviality; then G(π) contains a nontrivial cycle, from which we select

a grey edge {π′2i−2, π′2j−1} with j > i. Applying the prefix block-interchange

β(1, i, i, j) then makes πi and πi+1 contiguous in πβ, and that pair corresponds

to a new 1-cycle in G(πβ). On the other hand, β merges the 1-cycle induced by

{π′0, π′1} in G(π) with the cycle that contains {π′2i−2, π′2j−1}, so ∆c(π, πβ) = 0 =

∆c1(π, πβ), ∆f(π, πβ) = 1 and Equation 2 yields ∆g(π, πβ) = 0/2−0−1 = −1.

�

The smallest example of a permutation for which the inequality in Theo-

rem 1 is strict is π = 〈3 2 1〉, with pbid(π) = 1 < g(π) = 2 (Figure 2(a) shows

its breakpoint graph). Algorithm 1 implements the strategy described in The-

orem 1, favouring proper block-interchanges (i.e., β(i, j, k, `) with j < k) over

block-transpositions whenever possible. We prove in the next subsection that

Algorithm 1 is a 2-approximation.

0 5 6 3 4 1 2 7 0 1 2 7 8 5 6 3 4 9

(a) (b)

Figure 2: The breakpoint graphs of (a) 〈3 2 1〉 and (b) 〈1 4 3 2〉.

Algorithm 1 can be implemented to run in time O(n2): the main loop un-

dergoes O(n) iterations, and products of permutations can be computed in time

O(n). The properties that must be checked in order to decide which prefix

block-interchange should be applied can be verified in time O(n). We note that

the log-lists introduced by Rusu [25] can be used to compute πσ in time O(log n)

rather than O(n), but we still need a more efficient way of performing the more

expensive checks in order to improve the complexity of Algorithm 1.
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Algorithm 1: ApproximateSbpbi(π)

Input: A permutation π of [n].
Output: A sorting sequence of prefix block-interchanges for π.

1 S ← empty sequence;
2 while π 6= ι do
3 if π1 6= 1 then
4 j ← the position of π1 − 1;
5 if {1, j} intersects an inner grey edge {i, k} then
6 σ ← β(1, i, j, k); // Lemma 2 cases 1 and 2

7 else
/* condition k > j + 1 below favours proper

block-interchanges over block-transpositions;

Lemma 2 guarantees the existence of either option

*/

8 {i, k} ← an outer grey edge that intersects {0, j} with i > 0
and k > j + 1 if one exists; otherwise, an outer grey edge
that intersects {0, j} with i > 0 and k = j + 1;

9 if k = j + 1 then σ ← β(1, i, i, k); // Lemma 2 case 5

10 else σ ← β(1, i, j, k); // Lemma 2 cases 3 and 4

11 else // Theorem 1

12 i← smallest index such that πi+1 6= πi + 1;
13 j ← the position of πi + 1;
14 σ ← β(1, i, i, j);

15 π ← πσ;
16 S.append(σ);

17 return S;
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3.2. A lower bound based on the breakpoint graph

We now prove a lower bound on pbid that allows us to show that Algorithm 1

is a 2-approximation for sbpbi. To that end, we use a framework we introduced

in a previous paper [20]. The starting point is the following mapping, in which

the symmetric group on [n+1] is identified with the symmetric group on {0}∪[n]

and where An is the subgroup of Sn formed by the set of all permutations that

are the product of an even number of exchanges:

ψ : Sn → An+1 : π 7→ π = (0, 1, 2, . . . , n)(0, πn, πn−1, . . . , π1). (3)

This mapping associates to every permutation π another permutation π whose

disjoint cycles are in one-to-one correspondence with the cycles of G(π). As

a result, terminology based on the disjoint cycle decomposition of π or on the

alternating cycle decomposition of G(π) can conveniently be used indifferently,

including the notation introduced at the beginning of section 3 (e.g. c(π) =

c(G(π)), and therefore ∆c(π, πσ) = c(πσ) − c(π) = c(G(πσ)) − c(G(π)) =

∆c(π, πσ)). Recall that two permutations π and π′ are conjugate if there exists

a permutation σ such that π′ = σπσ−1. This equivalence relation partitions Sn

into conjugacy classes, each of which contains all permutations that have the

same cycle structure. The following result will be our main tool for proving our

lower bound.

Theorem 2. [20] Let S be a subset of Sn whose elements are mapped by ψ(·)

onto S′ = ψ(S) ⊆ An+1. Moreover, let C be the union of the conjugacy classes

(of Sn+1) that intersect with S′; then for any π in Sn, any factorisation of π

into the product of t elements of S yields a factorisation of π into the product

of t elements of C .

Consequently, for any S ⊆ Sn, if we let dS(σ) denote the length of a shortest

sorting sequence for σ consisting solely of elements from S, then Theorem 2

implies that for any π in Sn, we have dS(π) ≥ dS′(π). In order to use The-

orem 2, we need a translation of the effect of an operation on π in terms of

a transformation on π, as well as a precise characterisation of the image of a
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prefix block-interchange under the mapping ψ. Both are provided, respectively,

by the following results.

Lemma 3. [20] For all π, σ in Sn, we have πσ = ππσπ−1.

Lemma 4. [20] For any block-interchange β(i, j, k, `) in Sn, we have β(i, j, k, `) =

(j, `)(i, k).

As is well-known, a 2-cycle σ containing elements from different cycles in a

permutation π merges those cycles in πσ, while a 2-cycle in σ containing ele-

ments from the same cycle in π splits that cycle into two cycles in πσ. Lemma 3

and Lemma 4 therefore provide us with a very simple way of analysing the ef-

fects of a block-interchange: the effect of β on the cycles of G(π) is the same

as the effect of πβπ−1 on the cycles of π, and therefore bounds on the (prefix)

block-interchange distance of π can be obtained by studying the effects of pairs

of 2-cycles on π. The following lemma will be useful in restricting the number

of cases in the proof of our lower bound (Theorem 3).

Lemma 5. For any π in Sn and any block-interchange β, we have ∆c(π, πβ) ∈

{−2, 0, 2}.

Proof. By Lemma 4, β consists of two 2-cycles, each of which might split

a cycle into two cycles or merge two cycles into one (Lemma 3). Combining

all possible cases yields the set {−2, 0, 2} as possible values for ∆c(π, πβ) =

∆c(π, πβ). �

Finally, the following technical observation will be useful in ruling out im-

possible values for ∆f(π, σ), whose set of possible values is {−1, 0, 1} when no

restrictions apply.

Lemma 6. For any π in Sn and every prefix block-interchange β: if ∆c1(π, πβ) ≥

2, then ∆f(π, πβ) 6= 1.

Proof. If ∆c1(π, πβ) ≥ 2, then the new 1-cycles are obtained in one of the

following ways:
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1. if at least one of them is the result of a split of the leftmost cycle of G(π),

then that cycle is nontrivial and therefore f(π) = 1, thereby forbidding

the value ∆f(π, πβ) = 1;

2. otherwise, all new 1-cycles are extracted from a cycle in G(π) other than

the leftmost cycle; since that cycle can only be split into at most two new

cycles (Lemma 3 and Lemma 4), we have ∆c1(π, πβ) ≤ 2 in this case.

Moreover, we also have π1 = 1, otherwise the 1-cycle containing π1 would

vanish in G(πβ) and contradict our assumption that ∆c1(π, πβ) ≥ 2.

Therefore, the value ∆f(π, πβ) = 1 is also excluded in this case.

�

We now have everything we need to prove our lower bound on pbid.

Theorem 3. For any π in Sn, we have pbid(π) ≥ g(π)/2.

Proof. By Theorem 2 and Lemma 4, we have pbid(π) ≥ d(π), where d(π) is

the length of a shortest sorting sequence for π where the only nontrivial cycles

of each transformation in the sequence are two 2-cycles, exactly one of which

contains 1. As a result, any lower bound on d(π) is a lower bound on pbid(π),

and therefore we only need to show that a transformation of the kind we have

just described can decrease the value of g(π) by at most 2.

Let β = (1, a)(b, c) be the image of a prefix block-interchange under the

mapping ψ(·). By Lemma 5, we only need to distinguish between the following

three cases; in each situation, we aim to minimise the value of ∆g(π, πβ).

1. If ∆c(π, πβ) = −2, then clearly ∆c1(π, πβ) ≤ 0, and Equation 2 allows us

to conclude that ∆g(π, πβ) ≥ −1− 0− 1 = −2.

2. If ∆c(π, πβ) = 0, then either 2-cycle of β merges two cycles while the other

splits a cycle into two. The lengths of the involved cycles in π and in πβ

may vary, but this observation is enough to deduce that ∆c1(π, πβ) ≤ 2.

The lowest value of ∆g(π, πβ) is obtained when ∆c1(π, πβ) = 2, in which
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case Equation 2 and Lemma 6 yield ∆g(π, πβ) ≥ 0− 2− 0 = −2, or when

∆c1(π, πβ) = 1, in which case Equation 2 yields ∆g(π, πβ) ≥ 0− 1− 1 =

−2.

3. If ∆c(π, πβ) = 2, then both elements of β each split one cycle into two

cycles. As in the previous case, the lengths of the involved cycles in

π and in πβ may vary, but this observation is enough to deduce that

∆c1(π, πβ) ≤ 4, and as a result ∆f(π, πβ) ∈ {−1, 0} (Lemma 6). The

lowest value of ∆g(π, πβ) is obtained in two cases:

(a) when ∆c1(π, πβ) = 4, in which case the leftmost cycle of π splits

into two 1-cycles; therefore ∆f(π, πβ) = −1 and Equation 2 yields

∆g(π, πβ) ≥ 1− 4 + 1 = −2;

(b) or when ∆c1(π, πβ) = 3, in which case Equation 2 and Lemma 6

yield ∆g(π, πβ) ≥ 1− 3 + 0 = −2.

�

Theorem 3 implies that Algorithm 1 is a 2-approximation for sbpbi. We note

that the value of the unrestricted block-interchange distance (denoted by bid(π))

yields a trivial lower bound on pbid and can be computed in O(n) time [10].

Theorem 4. For any π in Sn, we have pbid(π) ≥ bid(π) = (n+1−c(G(π)))/2.

This lower bound often outperforms that of Theorem 3, but cases exist where

the opposite holds (〈1 4 3 2〉 is the smallest example; Figure 2(b) shows its

breakpoint graph). Unfortunately, a straightforward relationship linking g(π)

and bid(π) has eluded us thus far. We will further comment on these lower

bounds in section 7, where we discuss the performances of Algorithm 1 and

comment on Pai and Chitturi’s approximation [24], which is based on the lower

bound provided by Theorem 4.

4. Tightening the bounds

Although obtaining better approximation guarantees for sbpbi seems as non-

trivial as for other prefix sorting problems, the bounds obtained in the previous
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section can be improved. We show in this section how to tighten them.

By Theorem 3, the largest value by which the upper bound of Theorem 1

can decrease with a single prefix block-interchange is 2. In this section, we

characterise all permutations that admit such a prefix block-interchange. Other

nontight permutations exist (see e.g. Proposition 1), but they do not admit such

an operation as the first step of an optimal sorting sequence. As a consequence,

we obtain an improved upper bound on pbid in Theorem 5. The key to this

improvement lies in the use of “short” cycles (i.e., cycles of length 2) in G(π).

We first show how to take advantage of 2-cycles intersecting the first grey edge.

Lemma 7. For any π in Sn: if G(π) contains a 2-cycle that intersects the first

grey edge, then there exists a prefix block-interchange β such that ∆g(π, πβ) =

−2.

Proof. Follows from cases 2 and 4 of the proof of Lemma 2, when the cycle

that contains grey edge e′ has length 2. �

Following Bafna and Pevzner [2], we say that a cycle C with bi and bk as

black edges of minimum and maximum indices, respectively, spans a black edge

bj if i < j < k. We now show that some 2-cycles other than those that intersect

the first grey edge are also helpful.

Lemma 8. For any π in Sn: if G(π) contains a 2-cycle which is not the leftmost

cycle and which spans a black edge that belongs to a nontrivial cycle different

from the leftmost cycle, then there exists a prefix block-interchange β such that

∆g(π, πβ) = −2.

Proof. We apply a prefix block-interchange defined by the first black edge,

both black edges of the 2-cycle, and any black edge spanned by the 2-cycle:

0 π′1 π′2i−2 π′2i−1 π′2j−2 π
′
2j−1 π

′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1

The number of cycles does not change, so ∆c(π, πβ) = 0. Either π1 = 1, and

then ∆c1(π, πβ) = 1 and ∆f(π, πβ) = 1; or π1 6= 1, and then ∆c1(π, πβ) = 2

and ∆f(π, πβ) = 0. In both cases, Equation 2 yields ∆g(π, πβ) = −2. �
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2-cycles other than the leftmost cycle and in a different configuration from

our characterisations are still helpful. We show that even though they do not

allow us to apply a prefix block-interchange that decreases g(·) by 2 right away,

they make it possible to obtain such an operation eventually.

Proposition 1. For any π in Sn: if G(π) contains a 2-cycle which is not the

leftmost cycle, then π admits a sequence S of prefix-block interchanges that turns

π into a permutation σ with ∆g(π, σ) = |S| and which admits a prefix block-

interchange β such that ∆g(σ, σβ) = −2.

Proof. Let C denote the 2-cycle of interest. If C intersects the first grey edge

or a cycle different from the leftmost cycle, then we are done (see respectively

Lemma 7 and Lemma 8). Otherwise, C intersects another grey edge of the

leftmost cycle, and Lemma 2 allows us to reduce g(π) by one while reducing

the length of the leftmost cycle without affecting C. Repeated applications of

Lemma 2 eventually yield a permutation σ which satisfies one of the following

conditions:

1. σ1 = 1, in which case C necessarily spans a black edge that does not

belong to the leftmost cycle and therefore we can apply Lemma 8;

2. σ1 6= 1 and C intersects another cycle than the leftmost cycle, in which

case we can again apply Lemma 8; or

3. σ1 6= 1 and C intersects the first grey edge, in which case we can apply

Lemma 7.

�

The interactions between 2-cycles prevent us from simply reducing the upper

bound of Theorem 1 by the number of 2-cycles in G(π): indeed, the black

edge spanned by the 2-cycle described in Lemma 8 may belong to a 2-cycle

whose length will increase in the breakpoint graph of the resulting permutation.

Therefore, we can only conclude the following.
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Theorem 5. For any π in Sn, we have pbid(π) ≤ g(π)− dc∅2(G(π))/2e, where

c∅2(G(π)) denotes the number of 2-cycles in G(π) excluding the leftmost cycle.

Proof. We repeatedly apply Proposition 1 to take advantage of suitable 2-

cycles. Each prefix block-interchange we use transforms a 2-cycle into two

1-cycles without affecting the other 2-cycles, except possibly in the case of

Lemma 8 when the edge spanned by the 2-cycle we focus on belongs to another

2-cycle. In the worst case, every 2-cycle we try to split forces us to increase the

length of a 2-cycle it intersects, hence the improvement of only dc∅2(G(π))/2e

over Theorem 1. �

Theorem 5 again yields a tight upper bound, as shown by the permutation

〈1 4 3 2〉 for which the value of the improved upper bound matches its distance

(Figure 2(b) shows its breakpoint graph).

Although an improvement over Theorem 1, Theorem 5 still overestimates the

distance of some permutations. However, we note that the above results allow

us to easily identify other nontight permutations (with respect to Theorem 1)

whose breakpoint graph contains no 2-cycle. For instance, if the first grey

edge intersects a 3-cycle C, then applying a prefix-block interchange selected

according to Lemma 7 decreases the lengths of both the leftmost cycle and

C, which becomes a 2-cycle and which therefore eventually allows for a prefix

block-interchange that decreases g(·) by 2 according to Proposition 1.

Finally, we observe that the trivial lower bound pbid(π) ≥ bid(π) can be

slightly improved.

Corollary 1. [24] For any π in Sn and any prefix block-interchange β in Sn:

if π1 = 1, then ∆c(π, πβ) ∈ {−2, 0}.

Corollary 2. For any π 6= ι in Sn: if π1 = 1, then pbid(π) > bid(π).

Proof. If π1 = 1, then no prefix block-interchange can create cycles in G(π)

(Corollary 1), and therefore bid(πβ) ≥ bid(π) for any prefix block-interchange

β. The lower bound then follows from Theorem 4. �
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5. Improved ratios on some classes

In this section we identify instances of sbpbi for which an approximation

ratio smaller than 2 can be obtained. We begin with permutations whose break-

point graph contains a unique nontrivial cycle, in which case we can compute

the exact value of the prefix block-interchange distance.

Lemma 9. For any π in Sn: if c(G(π))− c1(G(π)) = 1, then pbid(π) = g(π).

Proof. Theorem 4 yields the lower bound

bid(π) =
n+ 1− c(G(π)

2
=
n+ 1− (1 + c1(G(π)))

2
=
n− c1(G(π))

2
.

If π1 6= 1, then Theorem 1 yields

pbid(π) ≤ g(π) =
n+ 1 + c(G(π))

2
− c1(G(π))− 1

=
n+ 1 + c(G(π))− c1(G(π))− c1(G(π))− 2

2
=
n− c1(G(π))

2

which matches the lower bound. If π1 = 1, then g(π) = bid(π)+1, and pbid(π) >

bid(π) (Corollary 2). �

Note that Algorithm 1 finds an optimal sorting sequence for the permutations

described in Lemma 9: if π1 6= 1, then Algorithm 1 continually applies case 1

of Lemma 2 until π = ι; and if π1 = 1, then Algorithm 1 selects a prefix block-

interchange β such that ∆g(π, πβ) = −1 and the leftmost cycle of G(πβ) is its

only nontrivial cycle. We now turn to permutations whose breakpoint graph

contains only cycles of bounded length.

Definition 3. [15] A permutation is simple if its breakpoint graph contains no
cycle of length greater than 2.

Proposition 2. Let π be a simple permutation. Then there is a 4/3-approxi-

mation for sbpbi on π.

Proof. If π1 6= 1, then the leftmost cycle of G(π) is a 2-cycle and intersects a 2-

cycle (Lemma 1). Therefore, there exists a prefix block-interchange β such that

19



∆g(π, πβ) = −2 (Lemma 7). The resulting permutation fixes 1 and remains

simple.

If π1 = 1, then there exists a prefix block-interchange β such that ∆g(π, πβ) =

−2 (Lemma 8). The leftmost cycle of G(πβ) has length 3, and the prefix block-

transposition that acts on it decreases the value of g(πβ) by 1 and yields a

simple permutation that fixes 1. Therefore, in the worst case, the value of g(π)

decreases by 3 using two prefix block-interchanges, which implies that every

simple permutation can be sorted using 2g(π)/3 operations. The approxima-

tion ratio of 4/3 then follows from Theorem 3. �

Algorithm 2 implements the approach outlined in Proposition 2. Pairs of

black edges are always assumed to be sorted by increasing indices. Although

the algorithm is designed for simple permutations, we allow the leftmost cycle

to have length 3, since the algorithm can yield this case as an intermediate step.

As in the case of Algorithm 1, Algorithm 2 can be implemented to run in time

O(n2), and the same comments regarding the use of log-lists apply here.

The performances of Algorithm 2 can be improved further in the presence

of components with more than two 2-cycles.

Definition 4. [15] Let π be a permutation. A component of G(π) is a connected
component of the intersection graph of the nontrivial cycles of G(π).

Lemma 10. Let π 6= ι be a simple permutation with π1 = 1. If G(π) contains

a component C with |C | > 2, then π admits a sequence S of three prefix block-

interchanges such that ∆g(π, πS) = −6.

Proof. Our starting point is a pair {C = (c1, c2), D = (d1, d2)} of intersecting

2-cycles in C :

0 π′1 π′2i−2 π′2i−1 π′2j−2 π
′
2j−1 π

′
2k−2 π

′
2k−1 π

′
2`−2 π′2`−1

C D

Depending on how we choose to apply Lemma 8, we can select either of the

following prefix block-interchanges, both of which decrease g(π) by 2:
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Algorithm 2: ApproximateSbpbiSimple(π)

Input: A permutation π of [n] such that all cycles in G(π) have length
≤ 2, with the possible exception of a leftmost cycle of length
≤ 3.

Output: A sorting sequence of prefix block-interchanges for π.

1 S ← empty sequence;
2 while π 6= ι do
3 if π1 6= 1 then
4 j ← the position of π1 − 1;
5 if {1, j} intersects an inner grey edge {i, k} then
6 σ ← β(1, i, j, k);
7 else // leftmost cycle has length 3

8 b1, bi, bj ← the three black edges of the leftmost cycle;
9 σ ← β(1, i, i, j);

10 else
11 C = (bi, bk)← a 2-cycle in G(π) such that i is minimal;
12 D = (bj , b`)← any 2-cycle in G(π) with i < j < k < `;
13 σ ← β(1, i, j, k);

14 π ← πσ;
15 S.append(σ);

16 return S;

� a prefix block-interchange β(1, c1, d1, c2), which yields a leftmost 3-cycle

whose first grey edge is the inner grey edge of D; or

� a prefix block-interchange β(1, d1, c2, d2), which yields a leftmost 3-cycle

whose first grey edge is the outer grey edge of C.

The choice between either of the two options will be guided by our ability to

obtain a 2-cycle that intersects the first grey edge of the leftmost 3-cycle in the

resulting permutation. Let E = (e1, e2) be another 2-cycle of C ; we distinguish

between three families of cases depending on the interactions between C, D and

E. If E intersects C but not D, then we are in one of the following three cases:

1.

0 π′1 π′2i−2 π′2i−1 π′2j−2 π
′
2j−1 π

′
2k−2 π

′
2k−1 π

′
2`−2 π′2`−1 π

′
2k−2 π

′
2k−1 π

′
2m−2π

′
2m−1

C
DE
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β(1,c1,e1,c2)−→
0 π′1 π′2i−2 π′2i−1 π′2j−2π′2j−1 π

′
2k−2π′2k−1 π

′
2`−2 π′2`−1 π

′
2k−2 π′2k−1 π

′
2m−2π

′
2m−1

D

2.

0 π′1 π′2i−2 π′2i−1 π′2j−2 π
′
2j−1 π

′
2k−2 π

′
2k−1 π

′
2`−2 π′2`−1 π

′
2k−2 π

′
2k−1 π

′
2m−2π

′
2m−1

C
D

E

β(1,d1,c2,d2)−→
0 π′1 π′2i−2π′2i−1 π′2j−2 π

′
2j−1 π

′
2k−2π′2k−1 π

′
2`−2 π′2`−1 π

′
2k−2 π

′
2k−1 π

′
2m−2π

′
2m−1

E

3.

0 π′1 π′2i−2 π′2i−1 π′2j−2 π
′
2j−1 π

′
2k−2 π

′
2k−1 π

′
2`−2 π′2`−1 π

′
2k−2 π

′
2k−1 π

′
2m−2π

′
2m−1

C
E

D

,

which reduces to the previous case by swapping D and E.

If E intersects D but not C, then we are in one of the following three cases:

4.

0 π′1 π′2i−2 π′2i−1 π′2j−2 π
′
2j−1 π

′
2k−2 π

′
2k−1 π

′
2`−2 π′2`−1 π

′
2k−2 π

′
2k−1 π

′
2m−2π

′
2m−1

C
D

E

β(1,d1,c2,d2)−→
0 π′1 π′2i−2 π′2i−1 π′2j−2 π

′
2j−1 π

′
2k−2π′2k−1 π

′
2`−2 π′2`−1 π

′
2k−2π′2k−1 π

′
2m−2 π′2m−1

E

5.

0 π′1 π′2i−2 π′2i−1 π′2j−2 π
′
2j−1 π

′
2k−2 π

′
2k−1 π

′
2`−2 π′2`−1 π

′
2k−2 π

′
2k−1 π

′
2m−2π

′
2m−1

E
D

C

,

which reduces to the previous case by swapping C and E.

6.

0 π′1 π′2i−2 π′2i−1 π′2j−2 π
′
2j−1 π

′
2k−2 π

′
2k−1 π

′
2`−2 π′2`−1 π

′
2k−2 π

′
2k−1 π

′
2m−2π

′
2m−1

D
EC

,

which reduces to case 1 by mapping C,D,E onto E,C,D, respectively.

Finally, if E intersects both C and D, then all remaining cases reduce to the

following one:
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7.

0 π′1 π′2i−2 π′2i−1 π′2j−2 π
′
2j−1 π

′
2k−2 π

′
2k−1 π

′
2`−2 π′2`−1 π

′
2k−2 π

′
2k−1 π

′
2m−2π

′
2m−1

C D E

β(1,d1,c2,d2)−→
0 π′1 π′2i−2 π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π

′
2k−1 π

′
2`−2π′2`−1 π

′
2k−2 π′2k−1 π

′
2m−2π

′
2m−1

E

In all cases, the leftmost cycle of the resulting breakpoint graph has length

3, and its first grey edge intersects a 2-cycle. We can therefore apply a second

prefix block-interchange that decreases the value of g(·) by 2 (Lemma 7). Since

the leftmost cycle of the resulting breakpoint graph has length 2, and since the

resulting permutation is simple, a third prefix block-interchange can be applied

to reduce the value of g(·) by 2 (Lemma 7) again, which yields the wanted

optimal sequence of length 3. �

As a straightforward consequence of Lemma 10, we can sort simple permu-

tations that fix 1 and whose breakpoint graph is a concatenation of components

of size 4, possibly interspersed with trivial cycles, optimally. Unfortunately, pre-

dicting the evolution of components under block-interchanges is difficult, and it

is unclear yet how this result might lead to an approximation ratio smaller than

4/3.

6. The maximum value of the prefix block-interchange distance

The diameter of Sn is the maximum value that a distance can reach for

a particular family of operations. In this section, we obtain an upper bound

on its value in the case of prefix block-interchanges, and show along the way

that our 2-approximation algorithm based on the breakpoint graph is also a

2-approximation with respect to the following notion.

Definition 5. [11] Let π be a permutation of {0, 1, 2, . . . , n + 1} with π0 = 0
and πn+1 = n + 1. The pair (πi, πi+1) with 0 ≤ i ≤ n is a breakpoint if i = 0
or πi+1 − πi 6= 1, and an adjacency otherwise. The number of breakpoints in a
permutation π is denoted by b(π).
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For readability, we slightly abuse notation by using b(π) for π in Sn, with

the understanding that it refers to b(〈0 π1 π2 · · · πn n+ 1〉). We let ∆b(π, σ) =

b(σ) − b(π), and say that a prefix block-interchange β with ∆b(π, πβ) < 0

removes breakpoints, or creates adjacencies.

Lemma 11. For any π in Sn and any prefix block-interchange β, we have

|∆b(π, πβ)| ≤ 3.

Proof. A prefix block-interchange β acts on at most four pairs of adjacent

elements, including the pair (0, π1) which is a breakpoint. Therefore, the number

of breakpoints that β can remove or create lies in the set {0, 1, 2, 3}. �

Since ι is the only permutation with exactly one breakpoint, Lemma 11

immediately implies the following corollary.

Corollary 3. For any π in Sn : pbid(π) ≥
⌈
b(π)−1

3

⌉
.

Lemma 12. For any π in Sn, we have pbid(π) ≤ 2
⌈
b(π)−1

3

⌉
.

Proof. Assume π 6= ι to avoid triviality, and observe that adjacencies in 〈0 π1
π2 · · · πn n + 1〉 are in one-to-one correspondence with trivial cycles in G(π)

(except for the pair (0, π1) which by Definition 5 is always a breakpoint). If

π1 6= 1, then Lemma 2 guarantees the existence of a prefix block-interchange

β with ∆c1(π, πβ) ≥ 2 and in turn implies ∆b(π, πβ) ≥ 2. If π1 = 1, then

we select β as in the proof of Theorem 1, which creates a new trivial cycle in

G(πβ) that corresponds to a new adjacency in πβ. Since πβ1 6= 1, the previous

case provides the next operation, and the number of breakpoints decreases by

at least three using two prefix block-interchanges. �

Since b(π) ≤ n+ 1 for all π in Sn, we immediately obtain the following.

Corollary 4. For any π ∈ Sn, we have pbid(π) ≤ 2n/3.

Table 2 shows the distribution of the prefix block-interchange distance for

n ≤ 12. The last line in particular shows that the upper bound of Corollary 4

is not tight.
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Table 2: The number of permutations π in Sn with pbid(π) = k
n \ k 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0
3 1 4 1 0 0 0 0 0
4 1 10 13 0 0 0 0 0
5 1 20 78 21 0 0 0 0
6 1 35 308 375 1 0 0 0
7 1 56 938 3 264 781 0 0 0
8 1 84 2 394 18 452 19 357 32 0 0
9 1 120 5 376 78 220 231 724 47 438 1 0

10 1 165 10 956 270 082 1 766 184 1 579 231 2 181 0
11 1 220 20 691 799 810 9 870 456 24 790 471 4 435 129 22
12 1 286 36 751 2 102 188 43 989 003 243 298 111 189 361 249 214 011

7. On the performances of approximations for sbpbi

In this section, we examine the performances of our algorithm in practice

using our freely available implementation, and comment on Pai and Chitturi’s

algorithm [24].

7.1. Practical assessment of Algorithm 1

Figure 3 shows the behaviour of Algorithm 1 on all permutations of size at

most 12. We compare the quality of our solutions to all known lower bounds,

as well as to the exact distance. Each area in these plots corresponds to the

percentage of permutations for which Algorithm 1 returns a solution with ap-

proximation ratio k, where the ratio is measured with respect to the lower

bounds of Theorem 3, Corollary 3, Theorem 4, Corollary 2, and to the actual

distance, respectively.

Figure 3 allows us to make a few observations:

1. as expected, each lower bound provides a different lens through which

the approximation guarantee can be examined. It appears that the lower

bound of Theorem 3 is very pessimistic, whereas the lower bound of The-

orem 4, on which Pai and Chitturi’s algorithm [24] is based, yields a more

satisfying outlook on the performances of Algorithm 1.

2. the performances when comparing Algorithm 1’s results to the actual dis-

tance of each permutation are even more encouraging: the worst ratio in

practice is actually 3/2, and Algorithm 1 finds an optimal solution for
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Figure 3: The performances of Algorithm 1 on all permutations of n elements, for 1 ≤ n ≤ 12.
Each area depicts the percentage of permutations for which the approximation returns a
solution whose quality is the specified value.
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more than 80% of all instances. Performances do decrease as n increases,

but the degradation is far less steep than when comparing the results

against the lower bounds.

3. the comparison against the actual distance also reveals the emergence of

increasingly larger areas with increasingly smaller approximation ratios;

that is, as n increases, the proportion of instances we solve to optimality

decreases, but the instances on which the algorithm fails to find an optimal

solution yield ratios smaller than 3/2 which keep getting closer to 1.

7.2. Comments on the approximation of Pai and Chitturi

We briefly remind the reader how the 2-approximation algorithm of Pai and

Chitturi [24] works, avoiding technical definitions which we will not use. The

algorithm is based on the lower bound of Theorem 4: the main idea is to try at

every step to find a 2-move, which is a prefix block-interchange that increases

the number of cycles in G(π) by 2; they show in their paper that such a 2-move

always exists, provided that π1 6= 1. If π1 = 1, and π 6= ι, then no 2-move

exists, but it is possible to find a prefix block-interchange that moves 1 out of

the way without changing the number of cycles (i.e., that operation is a 0-move),

and as a result, produces a permutation which admits a 2-move. The 0-moves

they apply also preserve the number of trivial cycles. Therefore, in the worst

case, the number of cycles increases by only 2 with a sequence of two prefix

block-interchanges, and the approximation ratio of 2 follows. We are not aware

of an implementation of Pai and Chitturi’s algorithm [24], and can therefore

not provide extensive practical performance comparisons to our algorithm. We

can nevertheless make a few hopefully interesting comments and suggestions for

improvements.

First, Pai and Chitturi’s algorithm uses the lower bound of Theorem 4,

and therefore focuses solely on splitting cycles in the breakpoint graph. That

strategy yielded an exact polynomial-time algorithm in the case of sorting by

unrestricted block-interchanges; but as our bounds reveal (Theorem 3 and The-

orem 1), splitting cycles is only beneficial when the newly extracted cycles are
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trivial, which Algorithm 1 takes into account. Note that this observation applies

to other prefix sorting problems as well, since like-minded bounds have been ob-

tained in those cases too (see e.g. sorting by prefix transpositions [20]

and sorting by prefix signed reversals [22]).

Second, care should be taken so as to avoid the problematic case π1 = 1

as often as possible. To illustrate, let us examine the permutation π = 〈n2 +

1 1 n
2 + 2 2 n

2 + 3 3 · · · n n
2 〉 for any even n ≥ 4. The breakpoint graph of

this permutation contains a single, nontrivial cycle, and therefore pbid(π) = n/2

(Lemma 9). However, Pai and Chitturi’s algorithm may exchange n
2 + 1 and 1,

which is indeed a 2-move but yields a permutation that fixes 1. This mistake

might be repeated and, as a result, yield a sequence whose length is asymp-

totically close to their announced ratio of 2. Figure 4 compares the resulting

sequence to an optimal solution in the case where π has 8 elements.

5 1 6 2 7 3 8 4 5 1 6 2 7 3 8 4
↓ ↓

1 5 6 2 7 3 8 4 4 5 1 6 2 7 3 8
↓ ↓

5 6 1 2 7 3 8 4 3 4 5 1 6 2 7 8
↓ ↓

1 2 5 6 7 3 8 4 2 3 4 5 1 6 7 8
↓ ↓

5 6 7 1 2 3 8 4 1 2 3 4 5 6 7 8
↓

1 2 3 5 6 7 8 4
↓

5 6 7 8 1 2 3 4
↓

1 2 3 4 5 6 7 8

(a) (b)

Figure 4: An asymptotically tight example for Pai and Chitturi’s algorithm with respect to
the actual distance. (a) A sequence that their algorithm might produce; (b) an optimal sorting
sequence.

Third, our bounds also reveal that, somehow counter-intuitively, situations

exist where progress can be achieved by applying −2-moves, i.e., operations

that decrease the number of cycles by merging them. Such moves are never
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considered by Pai and Chitturi’s algorithm, which will therefore miss the optimal

solution.

As an example, consider π = 〈9 3 2 4 1 6 5 8 7 10 12 11〉. Figure 5(a)

shows a sorting sequence that Pai and Chitturi’s algorithm may produce for

π, along with the breakpoint graph at each step (without vertex labels for

clarity). Every operation in that sequence either splits the leftmost cycle if

possible, or combines the trivial leftmost cycle with a nontrivial one so as to

obtain a nontrivial leftmost cycle and a trivial cycle elsewhere. By contrast,

as Figure 5(b) shows, applying an operation that merges the three cycles into

one produces a permutation with distance 6, and this strategy turns out to be

optimal. Note that π is but one of over 200 000 permutations of size 12 with

distance 7, and more difficult instances are likely to arise as n further increases.

Moreover, although the solution we show is optimal, we have no proof that there

exists a permutation for which such merging moves are required (in the sense

that no optimal solution can be reached without them).

8. Conclusions and future work

We initiated in this work the study of sorting permutations by prefix block-

interchanges, an operation that generalises several well-studied operations in

genome rearrangements and interconnection network design. We gave tight up-

per and lower bounds on the corresponding distance, derived a 2-approximation

algorithm for the problem, as well as a 4/3-approximation for simple permuta-

tions, and an exact solution for some simple permutations as well as permuta-

tions with only one nontrivial cycle in their breakpoint graph. We also obtained

an upper bound on the maximum value that the distance can reach, and finally,

we examined the performances of our 2-approximation in practice and put it in

perspective with that of Pai and Chitturi [24]. We outline below several leads

for further investigations.

Hardness and approximability. The complexity of sbpbi remains open, and ex-

isting proofs for similar problems do not seem to be adaptable. One possible
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9 3 2 4 1 6 5 8 7 10 12 11 9 3 2 4 1 6 5 8 7 10 12 11

↓ ↓

1 6 9 3 2 4 5 8 7 10 12 11 10 3 2 4 1 6 5 8 7 9 12 11

↓

3 6 9 1 2 4 5 8 7 10 12 11

↓

1 2 4 5 8 7 3 6 9 10 12 11

↓

4 5 8 7 1 2 3 6 9 10 12 11

↓

1 2 3 4 5 8 7 6 9 10 12 11

↓

7 8 1 2 3 4 5 6 9 10 12 11

↓

1 2 3 4 5 6 7 8 9 10 12 11

↓

11 12 1 2 3 4 5 6 7 8 9 10

↓
1 2 3 4 5 6 7 8 9 10 11 12

(a) (b)

Figure 5: An example where Pai and Chitturi’s algorithm fails to find the optimal solution
partly due to its disregard for operations that merge three cycles. (a) A sorting sequence of
length 9 that their algorithm might produce; (b) the first move of an optimal sorting sequence,
which merges the three cycles in G(π) and produces a permutation with distance 6 (Lemma 9),
thereby totaling 7 operations.
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lead might be to further investigate the puzzling instances discussed in subsec-

tion 7.2, and to understand when obtaining an optimal solution requires the

use of merging operations. As far as approximability is concerned: can a ratio

smaller than 2 be obtained? We note that improving this ratio will probably

require improved lower bounds, since for all three upper bounds we have ob-

tained (Theorem 1, Theorem 5 and Lemma 12) there are permutations whose

actual distance matches those bounds (which does not prevent approximations

from achieving better performances against the actual distance). Note that no

approximation with a ratio smaller than 2 is known for any of those prefix sort-

ing problems whose complexity remains open, except for prefix double-cut-and-

joins [14]. We have seen (subsection 7.1) that in practice, at least on instances

of size ≤ 12, Algorithm 1’s performance ratio against the actual distance never

exceeds 3/2. It may be possible to improve its performances further by com-

bining it with Algorithm 2, although whether or not this will lead to further

theoretical improvements is unclear.

Bounded cycle lengths. We have shown that 2-cycles were helpful in obtaining

improved upper bounds in the general case, and that the approximation ratio

can be lowered from 2 to 4/3 for permutations whose breakpoint graph contains

no k-cycle for k > 2. Can a ratio smaller than 4/3 be obtained for simple

permutations, and can we obtain similar results for larger values of k? Note

that simple permutations led to a polynomial-time algorithm for sorting by

signed reversals [15], but we do not expect such an outcome for prefix block-

interchanges since the simplification process does not preserve the prefix block-

interchange distance (whereas it did preserve the signed reversal distance): the

smallest counterexample is π = 〈3 1 4 2〉, which simplifies to σ = 〈5 2 7 4 1 6 3〉,

and for which pbid(π) = 2 6= pbid(σ) = 3.

Further tractable instances. Finally, if a polynomial-time algorithm for sbpbi

keeps eluding us, it would be valuable to extend the list of instances we can

solve in polynomial time. For instance, Pai and Chitturi [24] show how to sort

Rn = 〈n n − 1 · · · 2 1〉 optimally, and we have shown that some subclasses of
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simple permutations, as well as permutations with c(G(π)) − c1(G(π)) = k for

k = 1, are tractable instances (note that Rn satisfies this criterion when n is

even); can positive results for larger values of k be obtained?
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