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ABSTRACT

We investigate the accuracy of the perturbative galaxy bias expansion in view of the forthcoming analysis of the Euclid spectroscopic galaxy
samples. We compare the performance of a Eulerian galaxy bias expansion using state-of-the-art prescriptions from the effective field theory of
large-scale structure (EFTofLSS) with a hybrid approach based on Lagrangian perturbation theory and high-resolution simulations. These models
are benchmarked against comoving snapshots of the flagship I N-body simulation at z = (0.9, 1.2, 1.5, 1.8), which have been populated with Hα
galaxies leading to catalogues of millions of objects within a volume of about 58 h−3 Gpc3. Our analysis suggests that both models can be used to
provide a robust inference of the parameters (h, ωc) in the redshift range under consideration, with comparable constraining power. We additionally
determine the range of validity of the EFTofLSS model in terms of scale cuts and model degrees of freedom. From these tests, it emerges that
the standard third-order Eulerian bias expansion – which includes local and non-local bias parameters, a matter counter term, and a correction
to the shot-noise contribution – can accurately describe the full shape of the real-space galaxy power spectrum up to the maximum wavenumber
of kmax = 0.45 h Mpc−1, and with a measurement precision of well below the percentage level. Fixing either of the tidal bias parameters to
physically motivated relations still leads to unbiased cosmological constraints, and helps in reducing the severity of projection effects due to the
large dimensionality of the model. We finally show how we repeated our analysis assuming a volume that matches the expected footprint of Euclid,
but without considering observational effects, such as purity and completeness, showing that we can get constraints on the combination (h, ωc) that
are consistent with the fiducial values to better than the 68% confidence interval over this range of scales and redshifts.

Key words. cosmological parameters – cosmology: theory – large-scale structure of Universe

1. Introduction

The large-scale distribution of galaxies is an extremely impor-
tant source of cosmological information from the low-redshift
Universe, complementing observations of the cosmic microwave
background (CMB), such as those made using the Wilkinson
Microwave Anisotropy Probe (WMAP; Hinshaw et al. 2013)
and Planck (Planck Collaboration VI 2020). In the course of
the past two decades, observations of the large-scale structure
(LSS) from spectroscopic galaxy redshift surveys, such as the
2dF Galaxy Redshift Survey (2dFGRS; Colless et al. 2001), the
6dF Galaxy Survey (6dFGS; Jones et al. 2009), the VIMOS
VLT Deep Survey (VVDS; Le Fèvre et al. 2013), the Sloan Dig-
ital Sky Survey (SDSS; York et al. 2000), the WiggleZ Dark
Energy Survey (WiggleZ; Drinkwater et al. 2010), the VIMOS
Public Extragalactic Redshift Survey (VIPERS; Guzzo et al.
2014), the Galaxy And Mass Assembly (GAMA; Driver et al.
2011), and the Baryon Oscillation Spectroscopic Survey (BOSS;
Dawson et al. 2012) and its extension (eBOSS; Dawson et al.
2016), have provided a wealth of information on how gravita-
tional instability shapes the large-scale matter distribution and on
the relation between matter and galaxy density perturbations. At
the same time, such observations have stood as a testing ground
for what has ultimately emerged as the standard cosmological
model.

In the next decade, this picture is going to be significantly
enriched by analyses performed by Stage-IV spectroscopic
surveys, such as the Dark Energy Spectroscopic Instrument
(DESI; DESI Collaboration 2016) and Euclid (Laureijs et al.
2011), which are going to explore a still relatively uncharted
epoch at 1 . z . 2, when the Universe was only about
half of its current age. In particular, Euclid is going to col-
lect the redshift of millions of Hα-emitting galaxies across a
total sky surface of 15 000 deg2, therefore increasing the sta-
tistical constraining power on the cosmological parameters to
an unprecedented level for spectroscopic analyses in the low-
redshift Universe. It comes with no surprise that the increase
in statistical significance of the observations must necessar-
ily be accompanied by an equivalent increase in the accuracy
of the theoretical recipes used to analyse the data in order to
keep systematic errors in the theory at a fraction of the statis-
tical error budget. This becomes even more relevant in terms
of the range of validity of the considered models, whose reach
must be properly benchmarked against realistic mock samples.

The standard cosmological probe for galaxy clustering is the
galaxy two-point correlation function (2PCF), or its Fourier
transform, the galaxy power spectrum. Both statistics quantify
the excess probability of finding galaxy pairs at a given separa-
tion with respect to the case of a purely random (Poissonian)
distribution. These observables have been extensively used
by recent experiments to place constraints on the cosmolog-
ical parameters, either focusing on specific features such as
baryon acoustic oscillation (BAO) and redshift-space distortions
(RSDs) in the so-called template-fitting approach (Peacock et al.
2001; Tegmark et al. 2006; Guzzo et al. 2008; Blake et al. 2011;
Reid et al. 2012; Beutler et al. 2012, 2016; Contreras et al. 2013;
Howlett et al. 2015; Okumura et al. 2016; Alam et al. 2017;
Pezzotta et al. 2017; Gil-Marín et al. 2018; Hou et al. 2018;
Wang et al. 2018; Zhao et al. 2018), or in full-shape analyses
(Sánchez et al. 2014, 2016; Grieb et al. 2017; Ivanov et al. 2020;
Tröster et al. 2020; d’Amico et al. 2020; Semenaite et al. 2022,
2023; Chen et al. 2022; Philcox & Ivanov 2022; Carrilho et al.
2023; Moretti et al. 2023).

For both kinds of approaches, the inference of cosmological
information is made intrinsically more difficult by the presence
of three separate effects that build on linear theory predictions.
These are the non-linear gravitational evolution of the dark mat-
ter density field (Bernardeau et al. 2002; Baumann et al. 2012;
Carrasco et al. 2012), the relationship between the galaxy δg and
the matter δ density fields, known as thr ‘galaxy bias’ (Kaiser
1984; Bardeen et al. 1986; see Desjacques et al. 2018 for a recent
review), and finally the apparently anisotropic pattern in the dis-
tribution of galaxies due to the effect of their peculiar velocities on
the observed redshift (RSDs, Kaiser 1987; Hamilton 1992; Fisher
1995; Scoccimarro et al. 1999b; Scoccimarro 2004; Taruya et al.
2010; Senatore & Zaldarriaga 2014; Perko et al. 2016). Each of
these effects needs to be carefully modelled in order to infer accu-
rate cosmological constraints from the full shape of the galaxy
power spectrum/2PCF. This goal can be achieved in different
ways: using numerical methods, such as N-body simulations
(e.g. Kuhlen et al. 2012; Schneider et al. 2016; Springel et al.
2021), adopting analytical approaches based on a perturba-
tive solution to the equations governing the evolution of the
matter and galaxy density fields (e.g. Fry & Gaztanaga 1993;
Bernardeau et al. 2002; McDonald & Roy 2009; Carrasco et al.
2012; Assassi et al. 2014; Senatore 2015; Desjacques et al. 2018),
or resorting to hybrid methods that combine the previous two
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methodologies (e.g. Euclid Collaboration 2021; Angulo et al.
2021; Zennaro et al. 2023; Pellejero-Ibañez et al. 2023).

In terms of galaxy bias, it has become standard practice
to adopt a perturbative expansion of the galaxy density field
using Eulerian coordinates, which can be expressed as a sum
of partial derivatives of the gravitational and velocity diver-
gence potentials, each one weighted by a corresponding free
parameter to be fitted against measurements. When consid-
ering the one-loop galaxy power spectrum, the list includes
the linear bias, b1, expressed in terms of the dark matter
density field in the large-scale limit, as δg = b1δ (Kaiser
1984; Bardeen et al. 1986; Cole & Kaiser 1989; Nusser & Davis
1994; Mo & White 1996; Sheth & Tormen 1999), plus the next-
to-leading-order correction obtained from a spherically sym-
metric gravitational collapse via a power-law Taylor expan-
sion δg =

∑
n bn δ

n/n! of the matter density field (Szalay
1988; Coles 1993; Fry & Gaztanaga 1993; Scoccimarro et al.
2001; Smith et al. 2007; Manera et al. 2010; Desjacques et al.
2010; Frusciante & Sheth 2012; Schmidt et al. 2013). This is
further supplemented by the presence of non-local contribu-
tions generated by the cosmic tidal field (Bouchet et al. 1992;
Catelan et al. 1998, 2000; McDonald & Roy 2009), which have
been proven to be essential for a correct description of the
clustering of dark matter halos (Manera & Gaztañaga 2011;
Roth & Porciani 2011) and to secure consistency between the
results from the analysis of two- and three-point correlation mea-
surements (Pollack et al. 2012, 2014). These extra corrections
were first detected in N-body simulations in Chan et al. (2012)
and Baldauf & Seljak (2012), and have since then become a stan-
dard ingredient in the bias expansion. Additionally, the latter
also takes into account the effects of short-range non-localities
during the processes of galaxy formation, which lead to the
presence of higher-than-second-order derivatives of the gravita-
tional potential. At leading order in the power spectrum, higher
derivatives appear with a term scaling as ∇2δ (Bardeen et al.
1986; Matsubara 1999; Desjacques 2008; Desjacques et al.
2010). Finally, the dependence on short-wavelength modes is
included via an additional stochastic field εg(x) (Dekel & Lahav
1999; Sheth & Lemson 1999; Taruya & Soda 1999; Matsubara
1999; Bonoli & Pen 2009; Hamaus et al. 2010; Schmidt 2016;
Ginzburg et al. 2017)1, which is responsible for a shot-noise
contribution to the power spectrum. This correction deviates
from the predictions of a purely Poissonian distribution, and
at the same time can introduce a scale dependence due to
the physical scale at which two objects can be mistaken for
a single one, similarly to the exclusion effect for dark mat-
ter halos (Scherrer & Weinberg 1998; Sheth & Lemson 1999;
Cooray & Sheth 2002; Smith et al. 2007; Baldauf et al. 2013,
2016).

The high dimensionality of the parameter space for the
model described above can be reduced by employing a set of
physically motivated relations expressing a few higher-order bias
parameters in terms of lower-order ones. A typical assumption is
the conserved evolution of tracers (coevolution), which, from a
local-in-matter-density expansion at the moment of formation,
leads to the well-known local Lagrangian relations (Chan et al.
2012; Baldauf & Seljak 2012; Eggemeier et al. 2019). The latter
have been adopted in the literature as a fairly conservative trade-
off between sampling the whole set of bias parameters and fix-

1 In order for εg(x) to be completely uncorrelated from large-scale
fluctuations, the hypothesis of primordial Gaussianity must hold true.
On the contrary, εg(x) cannot be treated as a purely stochastic
contribution.

ing some of the model degrees of freedom, most notably in the
analysis of the BOSS DR12 data release (Sánchez et al. 2016;
Grieb et al. 2017) to improve the statistical constraints on the
cosmological parameters obtained from the anisotropic 2PCF
and power spectrum.

The standard bias expansion has been the subject of several
tests in the literature, together with a validation of the coevolu-
tion relations mentioned in the previous paragraph. As an exam-
ple, Saito et al. (2014) checked the consistency between the bias
parameters fitted from the halo power spectrum and bispec-
trum (the Fourier transform of the three-point function) using
a sample of measurements in different mass bins and at dif-
ferent redshifts, revealing an agreement between the two sets
of bias measurements up to k ∼ 0.1 h Mpc−1. The use of an
irreducible bias basis, and also properly including a higher-
derivative correction, was tested in Angulo et al. (2015), who
showed that with this approach it is possible to extend the valid-
ity of the one-loop galaxy bias expansion up to k ∼ 0.3 h Mpc−1

even at z = 0. More recently, Eggemeier et al. (2020) analysed
the accuracy of this expansion at fixed cosmology using sim-
ulated halo occupation distribution (HOD) catalogues built to
mimic the clustering properties of the SDSS Main Galaxy Sam-
ple (Strauss et al. 2002) and of the BOSS CMASS and LOWZ
samples (Eisenstein et al. 2011; Dawson et al. 2012; Reid et al.
2016). The authors focused on the necessity to introduce both a
higher-derivative term and a scale-dependent correction to shot
noise while analysing the auto galaxy and cross galaxy-matter
power spectrum. Findings from this study indicate that the stan-
dard one-loop bias expansion can be broken on scales k ∼
0.2 h Mpc−1 unless higher-order stochastic corrections are taken
into consideration. Pezzotta et al. (2021) and Eggemeier et al.
(2021) extended this analysis to include a determination of
the cosmological parameters, and explored the additional con-
straining power coming from the one-loop galaxy bispectrum.
These works show how fixing the quadratic tidal bias as a
function of the linear bias provides accurate results up to k ∼
0.35 h Mpc−1 for the galaxy power spectrum. A similar anal-
ysis was carried out by Oddo et al. (2021), who assessed the
constraining power of the galaxy bispectrum on the cosmologi-
cal parameters, displaying a consistency up to k ∼ 0.3 h Mpc−1

for the one-loop power spectrum and k ∼ 0.09 h Mpc−1 for
the tree-level bispectrum. Equivalent analyses in redshift space
(Markovič et al. 2019; Bose et al. 2020; de la Bella et al. 2020;
Gualdi et al. 2021; Rizzo et al. 2023; Nicola et al. 2024), or in
terms of field-level comparisons (Schmittfull et al. 2019), have
also appeared in recent years, leading to compatible scenarios.

On a partially different side, numerical simulations (see e.g.
Kuhlen et al. 2012, for a review) have proven to be an optimal
way to reproduce the evolution of the matter and galaxy den-
sity field deep into the non-linear regime, and their use in analy-
ses of galaxy redshift surveys has therefore multiplied in recent
years thanks to a large number of different suites, such as DEM-
NUni (Castorina et al. 2015), UNIT (Chuang et al. 2019), Qui-
jote (Villaescusa-Navarro et al. 2020), Uchuu (Ishiyama et al.
2021), and AbacusSummit (Maksimova et al. 2021; Yuan et al.
2022) simulations. In quantitative terms, state-of-art N-body
simulations can achieve an accuracy of better than 2% on the
shape of the non-linear matter power spectrum down to scales
of k ∼ 10 h Mpc−1 (Schneider et al. 2016; Springel et al. 2021;
Angulo et al. 2021), but unfortunately their application as a tool
to infer cosmological information from real observations is lim-
ited by their extreme computational cost. However, in recent
years, different methods have been proposed with the goal of
increasing their range of applicability. This ranges from methods
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meant to speed up their production (e.g. Monaco et al. 2002;
Tassev et al. 2013; Izard et al. 2016) to ones designed to find
an optimal interpolation strategy among a limited pool of high-
resolution simulations (Heitmann et al. 2013; Liu et al. 2018;
Nishimichi et al. 2019; DeRose et al. 2019; Giblin et al. 2019;
Wibking et al. 2018; Winther et al. 2019; Euclid Collaboration
2019, 2021). Among this second category of methods, we high-
light baccoemu (Angulo et al. 2021), an emulator for the non-
linear matter power spectrum that was recently extended to
also include biased tracers in real (Zennaro et al. 2023) and
redshift space (Pellejero-Ibañez et al. 2023), assuming a hybrid
Lagrangian bias model, with the individual terms of the expan-
sion directly emulated from high-resolution simulations, and a
cosmology-rescaling technique meant to reduce the number of
simulations required to train the emulator.

In this paper, we compare different models and test different
scale cuts and bias relations on a sample of synthetic galaxy cat-
alogues tailored to reproduce – to the best of our knowledge –
the clustering signal of the Hα sample that will be targeted by
Euclid. As we are interested in the relative performance of dif-
ferent theory models, we do not consider the presence of obser-
vational systematic uncertainties in this analysis. For example,
effects such as purity and completeness of the sample will induce
variations in the comoving number density considered in this
work. At the same time, the sample purity, which is determined
by the presence of line and noise interlopers, will also modify
the overall shape of the measured n-point statistics. All of these
effects are going to be investigated by a dedicated group in the
Euclid Consortium, while a specific analysis on theory model
selection with a more realistic analysis (including survey mask,
selection effects, and combining multiple redshift bins) is going
to be developed in a future paper (Euclid Collaboration: Moretti
et al., in prep.).

Our goal is to test the range of validity of the one-loop galaxy
bias expansion, which we quantify by means of three different
performance metrics (Osato et al. 2019): the figure of bias, quan-
tifying the accuracy of the model in terms of the recovery of
the model parameters; the goodness of fit, measuring how well
the best-fit model compares to the input data vectors; and the
figure of merit, quantifying the statistical power of the model
in constraining the cosmological parameters. These metrics are
computed for each of the configurations we test, as a function
of the maximum wave mode kmax included in the fit, explor-
ing different bias relations meant to reduce the dimensionality
of the parameter space. As we limit our attention to the real-
space galaxy power spectrum alone, we focus on the recovery of
the dimensionless Hubble parameter h, which is defined in terms
of the Hubble constant H0 as H0 = 100 h km s−1 Mpc−1, and of
the cold dark matter density parameter ωc ≡ Ωch2, where Ωc
is the corresponding fractional density parameter. At the same
time, we avoid sampling the scalar amplitude As, as this would
lead to a strong degeneracy with the linear bias parameter b1.
This degeneracy can be partially broken if only considering the
additional constraining power from higher-order statistics, cross-
correlation with the matter density field, or in a multi-tracer
analysis, or by considering the apparently anisotropic clustering
amplitude when also including RSDs.

This work is the first installment in a series of Euclid prepa-
ration papers meant to validate the theoretical framework used
to analyse the full shape of two- and three-point clustering
measurements from the final data sample. Here, we focus on
the real-space galaxy power spectrum, while the correspond-
ing three-point equivalent for the real-space galaxy bispectrum
is going to be presented in Euclid Collaboration: Eggemeier

et al. (in prep.). Both of these papers describe tests conducted in
real space, that is, using the true comoving positions of galax-
ies inside the box instead of the positions displaced because
of RSDs. While this choice excludes one of the main observa-
tional probes of galaxy clustering, such analyses can provide
an important testing ground for the model of galaxy bias. This
includes calibration of optimal scale cuts for the model2, as
well as testing different ways to reduce the dimensionality of
the parameter space, such as using the coevolution relations. In
addition, real-space analyses can become relevant in the con-
text of modelling 3× 2 point statistics (photometric galaxy clus-
tering, weak gravitational lensing, and galaxy–galaxy lensing),
such as in the analysis performed by the Dark Energy Survey
(see e.g. Pandey et al. 2022; Porredon et al. 2022, for cosmolog-
ical inference that requires a proper modelling of photometric
galaxy bias). On the other hand, future installments of this series
will focus on the modelling of the redshift-space equivalents of
the statistics adopted in these works.

This article is structured in the following way. In Sect. 2 we
present the simulated galaxy samples and the power-spectrum
measurements and covariances used throughout the paper. In
Sect. 3 we describe the theoretical models that we employed for
the analysis, while in Sect. 4 we describe the fitting procedure
and the performance metrics used to quantify the goodness of
the models for different configurations as a function of the max-
imum mode included in the fit. Finally, in Sect. 5 we present the
results of the analysis, and we draw our conclusions in Sect. 6.

2. Data

2.1. Euclid simulations

In order to determine the performance of the selected theoretical
models, we first need a set of simulated data samples spanning
the same redshift range that will be observed by Euclid, and for
which the input cosmology is known a priori.

In the following we make use of four comoving outputs,
selected to cover the redshift range 0.9 < z < 1.8 of the
Flagship I simulation3. The latter has been carried out on the
supercomputer Piz Daint, which is hosted by the Swiss National
Supercomputing Center (CSCS), using the PKDGRAV3 algorithm
(Potter et al. 2017), and consists of a record-setting N-body run
with two trillions dark matter particles moving under the effect
of gravity within a box of size L = 3780 h−1 Mpc. The mass
resolution of the simulation (mp ∼ 2.398 × 109 h−1 M� ) allows
us to marginally resolve halos with a typical mass Mh of few
1010 h−1 M�, which host the majority of the Hα emission line
galaxies that are going to be targeted by Euclid. The nomi-
nal flat ΛCDM cosmology adopted to run the simulation as
stated in Potter et al. (2017) differs from the fiducial cosmol-
ogy assumed in this paper in the value of the spectral index
(ns = 0.96 vs. ns = 0.97). This choice has been motivated since,
2 The reader should bear in mind that these scale cuts are determined
only from the performance of galaxy bias. More realistic scale cuts,
also including the effect of, for example, RSDs will be provided in one
of the next entries of the series (Euclid Collaboration: Camacho et al.,
in prep.).
3 The roman numeral ‘I’ is meant to differentiate the simulation
adopted in this work from its more recent version, i.e. Flagship II. The
latter has been upgraded with respect to its predecessor in a number of
way, such as by displaying a 2.5 times larger mass resolution, account-
ing for relativistic effects, and including massive neutrinos. However,
because of the unavailability of halo comoving snapshots at the time
the analysis presented in this paper first started, we decided to employ
the older version of the Flagship for this work.
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Table 1. Fiducial parameters of the flat ΛCDM cosmological model of
the Flagship I simulation.

h ωc ωb Mν [eV] σ8 ns

0.67 0.121203 0.0219961 0 0.83 0.97

Notes. From left to right, the list includes the value of the Hubble
parameter h, the density parameter of cold dark matter ωc, and baryons
ωb, the total neutrino mass Mν, the rms density fluctuations inside a
sphere of radius 8 h−1 Mpc, σ8, and the scalar index ns.

during the course of this study, we observed subtle yet signifi-
cant inconsistencies between our models and the measurement
in the Flagship I simulation. After contacting the team responsi-
ble for running the simulation, they confirmed that the nominal
parameters of the simulation were previously wrongly communi-
cated, and that they are in agreement with the ones we have iden-
tified. The latter are obtained by performing cosmological fits
to high-resolution dark matter power spectrum measurements at
various redshifts, and are summarized in Table 1. This procedure
is detailed in Appendix A.

Each comoving snapshot has been populated with galaxies
by firstly generating a friends-of-friends (FoF) halo catalogue
with a linking length b = 0.2 and a minimum halo mass corre-
sponding to ten dark matter particles4, where the halo mass Mh
is defined as the sum of all the identified particles. Subsequently,
halos have been populated with galaxies using a HOD algorithm
to match the abundance and clustering of the Hα samples imple-
mented in the main Flagship I lightcone catalog5. The latter, in
turn, is meant to reproduce the number density and clustering
properties corresponding to two different Hα profiles, labelled
as Model 1 and Model 3 in Pozzetti et al. (2016). These sam-
ples are defined by different templates for the evolution of the
luminosity function φ(L, z), from the use of a standard Schechter
parametrization for Model 1 (Schechter 1976), to the direct fit to
real observations for Model 3. The net effect in terms of num-
ber density is that the Model 1 sample has almost twice as many
objects as Model 3, which is more conservative in the selection
of Hα emitters, as shown in Fig. 4 of Pozzetti et al. (2016)6. A
more detailed description of the Flagship Hα lightcone and the
pipeline for its construction will be provided in Euclid Collabo-
ration: Castander et al., (in prep).

In terms of the comoving snapshots, the HOD we imple-
mented consists of a 8-parameter model, where the mean occu-
pation numbers of central and satellite galaxies are defined as

〈Ncen〉 (Mh) =
1
2

f max
cen

[
1 + erf

(
log Mh − log Mmin

σlog M

)]
×

[
1 −

1 − f min
cen / f max

cen

1 + 10
2
k (log Mh−log Mdrop)

]
, (1)

4 Despite this small number, we only select halos hosting Hα emitters
with a minimum mass corresponding to few tens of matter particles,
based on the redshift of the considered snapshot.
5 The particle lightcone has been built on the fly when running the N-
body code at the CSCS, and features a full-sky distribution of dark mat-
ter particles in the redshift range 0 < z < 2.3. This has been later pop-
ulated with Rockstar halos (Behroozi et al. 2013) and galaxies using
HOD and abundance matching techniques to reproduce the expected
number density and luminosity profile of the Hα models described in
Pozzetti et al. (2016).
6 We do not consider the additional Model 2 in this analysis since the
total number density of this sample is of the same order of the one of the
Model 1 sample, which already provides an optimistic number count.
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Fig. 1. Halo occupation dsitribution profiles of the eight Hα samples
employed in this analysis. Individual panels show the profiles at differ-
ent redshift (increasing from the top left to the bottom right panel) for
both Model 1 (blue) and 3 (orange). Solid and dashed lines identify the
average number of central and satellite galaxies, respectively, in halos
of mass Mh.

〈Nsat〉 (Mh) = Ncen

(
Mh

M1

)α
. (2)

Here, Mmin is the typical minimum mass of halos hosting a cen-
tral galaxy, σlog M is the dispersion around Mmin, and f max

cen is the
amplitude of the central galaxy occupation. We include mass-
dependency of 〈Ncen〉 above the transition scale Mmin using three
additional parameters, Mdrop, k, and f min

cen . Finally, the mean occu-
pancy of satellite galaxies is regulated by M1, which is a simple
normalisation factor, and α, which corresponds to the slope of
the power law distribution of satellites. In order to determine the
distribution of galaxies inside halos, we employ a standard NFW
profile (Navarro et al. 1996).

In Fig. 1 we show the fitted HOD profiles as a function of the
host halo mass Mh for the eight samples: four redshifts times two
different models. In all panels, both centrals and satellites pro-
files are shown, marked respectively with continuous and dashed
lines. The mean occupation of central galaxies f max

cen inside dark
matter halos does not converge to one, even for the most massive
halos selected by the halo finder. This is a consequence of hav-
ing selected a subsample (Hα in this case) from the whole pop-
ulation present in the ligthcone. The typical expection value for
the occupancy of central galaxies for Mh > Mmin slightly varies
with the different samples, but is typically close to 0.2. This fol-
lows from the property of Hα emitters to be relatively young,
blue, and star-forming galaxies, whereas, in massive halos, envi-
ronmental effects such as galaxy-galaxy interactions, ram pres-
sure stripping, and AGN feedback can suppress star formation in
galaxies, effectively reducing the likelihood of finding actively
star-forming central galaxies.

The total number of galaxies for each sample, their num-
ber density, and the scale ksn at which the Poissonian shot-noise
Psn ≡ 1/n̄ becomes the dominant contribution in the data vec-
tors, are listed in Table 2. A warning to be made is that, to deter-
mine the parameters for the HOD models, we selected galaxies
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Table 2. Specifications for the HOD galaxy samples used in this
analysis.

n̄ ksn
z HOD Ng

[
h3 Mpc−3

] [
h Mpc−1

]
η

0.9 1 201 816 513 0.0037 0.64 6.67
3 110 321 755 0.0020 0.51

1.2 1 108 057 141 0.0020 0.56 5.88
3 55 563 490 0.0010 0.39

1.5 1 69 132 138 0.0013 0.45 5.26
3 31 613 213 0.0006 0.26

1.8 1 24 553 758 0.0005 0.26 3.33
3 16 926 864 0.0003 0.22

Notes. The table lists the total number of objects Ng, the mean comov-
ing number density n̄ of the sample, and the scale ksn at which Pois-
sonian shot- noise becomes the leading contribution in the galaxy
power spectrum. Following our convention on the normalization of the
power spectrum, the latter is simply defined as the inverse of the mean
number density. All the considered samples share the same volume,
which coincides with the one of the Flagship I comoving outputs, i.e.
(3780 h−1 Mpc)3. The last columns shows the volume factor η between
the full-box volume and the one of a Euclid-like shell, as defined in
Eq. (4).

from the lightcone assuming a significantly faint Hα flux limit,
corresponding to f Hα = 2× 10−16 erg cm−2 s−1 (Scaramella et al.
2022), without assuming any realistic observational effect, such
as target incompleteness, purity of the sample, and the impact of
the angular footprint and radial selection function (Euclid Col-
laboration: Granett et al., in prep., Euclid Collaboration: Monaco
et al., in prep.). This results in a sample with higher number den-
sity (see e.g. Bagley et al. 2020, for a recent forecast of Hα emit-
ters from HST), with measured galaxy power spectra that are
less affected by shot-noise. At the same time, the lack of line
and noise interlopers allows us to neglect any extra contribution
(Euclid Collaboration: Risso et al., in prep., Euclid Collabora-
tion: Lee et al., in prep.) to the model galaxy power spectrum
presented in Sect. 3. As a consequence, given the high precision
assumed to validate the theory models, we believe that our tests
should provide a conservative estimate of their range of validity.
We leave to future Euclid analyses a more dedicated study of the
impact of observational systematics.

2.2. Measurements and covariances

For each of the samples described above, we measured the real-
space galaxy power spectrum Pgg(k) using the publicly available
PowerI4 code7. The latter provides the functionality to compute
the power spectrum from a particle distribution within a regu-
lar cubic box, using a variety of particle assignment schemes.
For this analysis, we made use of a fourth-order interpolation
scheme, otherwise known as piecewise cubic spline (PCS; see
Sefusatti et al. 2016, for the exact form of the kernel), coupled
with an interlacing method to reduce the aliasing contribution at
high wave modes k.

7 Available at https://github.com/sefusatti/PowerI4. For this
purpose, we do not use the official Euclid code, LE3-PK-GC, since our
only need is to measure the power spectrum from periodic boxes, with-
out including also radial and angular selection effects that can be prop-
erly included using the official code.

We measured the power spectrum in the range defined by[
k F, k Nyq

]
, where k F = 2π/L ∼ 0.0017 h Mpc−1 is the funda-

mental frequency in a box of linear size L , and k Nyq = πNgrid/L
is the Nyquist frequency corresponding to a density grid of lin-
ear size Ngrid. We choose a grid resolution of Ngrid = 1024 for
the three dimensions of the box, to obtain measurements of the
power spectrum up to a maximum wave mode of 0.8 h Mpc−1,
and we sampled the k range using a linear binning with step
∆k = k F

8. The top and central panels of Fig. 2 show the power
spectrum measurements for the Model 1 and 3 HOD samples
respectively, with the redshift evolution over the available sim-
ulation snapshots marked by different lines in each panel. Dif-
ferently from the evolution of the matter power spectrum, the
galaxy power spectrum features an increasingly lower amplitude
at lower redshifts. This can be explained by a larger linear galaxy
bias at high redshift that overcomes the growth of matter fluctu-
ations.

Since only a single realization is available for each of the
HOD samples, we estimate the error covariance matrices asso-
ciated to the data vectors using an analytical prediction in the
Gaussian approximation, as explained in Grieb et al. (2016).
This implies that the variance σ 2

P(k) associated to each k bin is
independent from the value of the galaxy power spectrum at dif-
ferent modes, and can be written as

σ 2
P (k) =

2
Nk

P 2
gg(k), (3)

where Nk identifies the number of independent wave modes
falling in the bin [k − ∆k/2, k + ∆k/2], while Pgg(k) is the the-
oretical non-linear galaxy power spectrum including shot-noise
contributions. The latter has been obtained from a preliminary
fit of the full non-linear model to the data vector of each sam-
ple, assuming, in a first iteration, an approximate but reason-
able evaluation of the covariance itself. We expect the Gaus-
sian approximation to be sufficient to our goals. The only addi-
tional contribution due to the galaxy trispectrum, here neglected,
while noticeable at the relevant scales (Scoccimarro et al. 1999a;
Sefusatti et al. 2006; Blot et al. 2015, 2016; Bertolini et al. 2016;
Wadekar & Scoccimarro 2020) does not lead to significant dif-
ferences (.10%) on parameters constraints in the mildly non-
linear regime (Blot et al. 2019; Wadekar et al. 2020). This is also
supported by the goal of this analysis, which is testing the rela-
tive performance of different theory models rather than provid-
ing absolute values for the parameter uncertainties. However,
we highlight how the Gaussian approximation is not expected
to deliver completely realistic error bars (to the level of accu-
racy mentioned above), and that future analyses, both on simu-
lated and real data will be integrated with a more complex model
also including non-linear corrections (either analytical or from
N-body simulations).

The bottom panel of Fig. 2 shows the standard deviation nor-
malised by the corresponding galaxy power spectrum, where the
latter is shot-noise-subtracted to highlight the different level of
noise in our samples. For this reason, the eight cases exhibit a
deviation from the linear relation in Eq. (3) (shown with a black
dashed line) at small (k & 0.1 h Mpc−1) scales, where the shot-
noise correction starts to become dominant with respect to the
power spectrum signal. It should be noted how the relative error
over this range of scales is well below the 1% level. Similarly,

8 For a limited number of the configurations presented in later sec-
tions, we carried out consistency checks with a different linear binning,
namely ∆k = 2k F and ∆k = 3k F, showing how the final constraints do
not depend significantly on this choice.
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Fig. 2. Galaxy power spectrum measurements and uncertainties
obtained from the Flagship I comoving snapshots. Top: measurements
of the Model 1 HOD samples. The colour gradient identifies the differ-
ent redshifts of the samples, as shown in the legend. Dashed horizontal
lines correspond to the amplitude of the Poisson shot-noise term P sn –
obtained as the inverse of the number density specified in the last col-
umn of Table 2 – for the different redshifts. Centre: same but for the
Model 3 HOD samples. Bottom: error-to-measurement ratios, assum-
ing a Gaussian covariance matrix as in Eq. (3). The coloured solid lines
are obtained using the Poisson noise-subtracted power spectra, while
the dashed black line highlights the linear relationship from Eq. (3), i.e.
2/Nk. Grey bands mark the 1%, 0.5%, and 0.1% limit.

at large scales (k . 0.005 h Mpc−1) we find a departure from
the linear relationship due to the small amplitude of Pgg, which
can be clearly observed from the top and middle panel of Fig. 2.
Finally, we note that this range of scales is also partially domi-

nated by cosmic variance, due to the use of a single realisation
of the Flagship simulation.

2.3. Volume rescaling

The main goal of our analysis is to carry out stringent tests to
determine the range of validity of the standard one-loop galaxy
bias model on the redshift range that will be explored by Euclid.
For this we make use of a volume Vbox corresponding to the full-
box size of the Flagship comoving outputs, which is significantly
larger than the volume that will be covered by Euclid. At the
same time, we are interested in assessing the constraining power
of the real-space galaxy power spectrum using a reference vol-
ume close to the one of an expected redshift bin of the full Euclid
volume, Vshell. With this purpose in mind, we define new covari-
ance matrices for the different samples presented in the previous
sections, with an overall amplitude rescaled by the ratio between
the volume of the Flagship comoving outputs and that of the
Euclid-like shells,

η =
Vbox

Vshell
, (4)

such that the rescaled covariance Cshell can be expressed9 in
terms of the original full-box covariance Cbox as

Cshell = ηCbox. (5)

We follow Euclid Collaboration (2020) and assume
four non-overlapping redshift shells, centered at z =
(0.9, 1.2, 1.5, 1.8), and with a depth of ∆z = (0.2, 0.2, 0.2, 0.3),
respectively, over a total projected area of 15 000 square degrees.
With these values, we derive volume factors η for each of the
considered redshift bins, shown in the last column of Table 2.
We note that the mean values of the four redshift shells used in
Euclid Collaboration (2020) do not match perfectly the redshifts
of the four comoving snapshots used in this work. However, this
is only marginally relevant, since we do not carry out a proper
comparison to the Fisher forecasts obtained in that analysis. In
fact, this will be a more suited aspect of investigation when con-
sidering the same observables, that is, the Legendre multipoles
of the anisotropic galaxy power spectrum, and especially when
considering more realistic number densities, as pointed out in
Sect. 2.1.

A proper comparison between the results obtained using the
full-box volume and the rescaled ones is presented in Sect. 5.5.
In addition to the Euclid-like shells, we consider three additional
volume rescalings, by dividing the range between Vbox and Vshell
into four evenly sized intervals. This leads to a total of five dif-
ferent sets of covariances, based on the volumes defined above.

3. Theoretical model

In this section we describe the theoretical framework of pertur-
bation theory (PT), which is essential to understand the evolution
of post-inflationary fluctuations in the matter density field δ into

9 This rescaling is not valid in general, but can be performed when
working under the assumption of a diagonal covariance matrix (see
e.g. Eggemeier et al. 2020, for a similar rescaling to partially match the
signal-to-noise ratio of different galaxy and halo samples). We note that
the approach adopted in this analysis bears some limitations, since the
amplitude of shot-noise is also rescaled, leading to slightly larger data
uncertainties. However, this effect should partially account for the fact
that we assume only a Gaussian recipe to predict the covariance matrix,
thus underestimating the error.
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the current large-scale distribution of galaxies via gravitational
instability. This description is expected to be accurate only down
to the mildly non-linear regime, where the amplitude of the den-
sity contrast δ is small enough to be perturbatively expanded.
In the strong non-linear regime we expect this model to fail, as
gravitational collapse leads to the formation of bound structures
beyond the regime of validity of perturbative approaches.

For convenience, in the rest of this article we use the follow-
ing notation for the integration over the infinite volume of a loop
variable q,∫

q
≡

∫
d3q

(2π)3 , (6)

and adopt the following convention for the direct and inverse
Fourier transform of the density contrast,

δ(k) ≡ (2π)3
∫

x
e−ik·xδ(x), (7)

δ(x) ≡
∫

k
e ik·xδ(k). (8)

The three-dimensional Dirac function is represented with the
standard notation δ (3)

D . Finally, the power spectrum PXX(k, z) of
any component, matter or biased tracer, is defined as the auto-
correlation of the corresponding density field δX, such that〈
δX(k) δX(k′)

〉
≡ (2π)3 PXX(k) δ (3)

D
(
k + k′

)
, (9)

where the presence of the Dirac function and the independence
of the power spectrum from the orientation of the wave mode k
reflect the underlying assumption of homogeneity and isotropy.

3.1. Eulerian framework and effective field theory

3.1.1. Modelling of the non-linear matter power spectrum

We begin by summarising the most relevant outcomes of stan-
dard perturbation theory (SPT; see e.g. Bernardeau et al. 2002,
for a review on the subject). Its main assumption is that on large
scales the dynamics of dark matter can be approximated as that
of a perfectly pressureless fluid, with negligible effects from par-
ticle shell-crossing in multi-streaming regions. Under the so-
called Einstein–de Sitter (EdS) approximation, we can write the
matter density contrast using a perturbative expansion,

δ = δ (1) + δ (2) + δ (3) + . . . , (10)

where at each order n the individual contribution δ (n) is a func-
tion of the linear density contrast δL

10,

δ (n)(k) =

∫
q1... qn

δ (3)
D (k − q1... n) Fn (q1, . . . , qn)

× δL(q1) . . . δL(qn). (11)

Here q1... n ≡ q1 + · · · + qn, and Fn is the nth order sym-
metrised PT kernel describing the non-linear interaction among
fluctuations at different wave modes q1, . . . , qn. The vanishing
argument of δ (3)

D reflects the translational invariance of the equa-
tions of motion in a spatially homogeneous universe.

Similarly, the non-linear matter power spectrum Pmm(k) can
be expanded by combining Eqs. (9) and (10), leading to

Pmm(k) = PL(k) + P 1-loop(k) + P 2-loop(k) + . . . , (12)

10 In details, δL represents the initial density contrast linearly extrapo-
lated to the redshift under consideration.

where PL ∼
〈
δ 2

L

〉
corresponds to the linear matter power spec-

trum, and at one-loop the only non-vanishing contributions are

P 1-loop(k) = P22(k) + P13(k)

= 2
∫

q
F 2

2 (k − q, q) PL (|k − q|) PL(q)

+ 6 PL(k)
∫

q
F3 (q,−q, k) PL(q). (13)

For the sake of completeness, we report the expanded expres-
sions for the second- and third-order symmetrised kernels,
F2(q1, q2) and F3(q1, q2, q3) in Appendix B.

The one-loop model in SPT, however, fails to accu-
rately describe the non-linear damping of the acoustic oscil-
lations due to bulk flow displacements (Eisenstein et al. 2007;
Crocce & Scoccimarro 2008; Baldauf et al. 2015b). At first
order, this effect can be reproduced in the theoretical model
for Pmm(k) by a proper resummation of all infrared (IR) modes
q < k, that is, of comoving separations larger than the one
under consideration (see Crocce & Scoccimarro 2006, 2008 for
a description of the BAO smearing in the context of renormalised
perturbation theory).

A more standard procedure to include these corrections is
based on the split of the linear power spectrum PL as the sum
of a smooth Pnw and wiggly Pw component (Seo et al. 2008;
Baldauf et al. 2015b; Blas et al. 2016), that is

PL(k) = Pnw(k) + Pw(k). (14)

At leading order, it is possible to estimate the amplitude of
the damping factor making use of the Zeldovich approximation
(Zel’dovich 1970). This leads to an expression for the leading-
order, IR-resummed power spectrum,

P IR-LO
mm (k) = Pnw(k) + e−k2Σ2

Pw(k), (15)

where Σ2, representing the variance of the relative displacement
field (Eisenstein et al. 2007), is defined as

Σ2 =
1

6π2

∫ ks

0
Pnw(q)

[
1 − j0

(
q

kosc

)
+ 2 j2

(
q

kosc

)]
dq. (16)

Here jn is the nth order spherical Bessel function of the first kind,
kosc = 1/`osc is the wavelength corresponding to the BAO scale
`osc = 110 h−1 Mpc11, and ks = 0.2 h Mpc−1 is the ultraviolet
(UV) integration limit12.

The next-to-leading order correction can be written by using
the leading order term of Eq. (15) inside the expression for
the one-loop corrections of Eq. (13). This leads to the final
formulation for the non-linear IR-resummed power spectrum
(Baldauf et al. 2015b; Blas et al. 2016),

P IR-(LO+NLO)
mm (k) = Pnw(k) +

(
1 + k2Σ2

)
e−k2Σ2

Pw(k)

+ P1-loop
[
Pnw + e−k2Σ2

Pw

]
(k), (17)

11 The value of `osc should be varied as a function of the cosmologi-
cal parameters. However, we cross-checked that for the relatively small
parameter space explored in this analysis, its value do not deviate sig-
nificantly from the one of a Planck-like cosmology.
12 Despite the correct integration range being scale-dependent, as it
accounts for all wave modes q < k, we fix the UV limit, similarly to
what is done in Ivanov et al. (2020), as it can be shown that the integrand
of Eq. (16) is not providing significant contributions at q > 0.2 h Mpc−1.

A216, page 8 of 40



Euclid Collaboration: A&A, 687, A216 (2024)

where the square brackets of the last term mean that the eval-
uation of the one-loop correction is carried out using the lead-
ing order IR-resummed power spectrum in place of the linear
one.

Another partial failure of the model, which is equally
shared by any recipe based on perturbative methods, is that
its range of validity is limited to quasi-linear scales, where
the assumption of a pressureless fluid is still justified. How-
ever, on scales approaching the non-linear scale kNL

13, dark
matter particles experience shell-crossing, effectively introduc-
ing a non-zero pressure, which under more realistic condi-
tions is further enhanced by the presence of baryonic pro-
cesses, such as galaxy formation, ISM cooling, and AGN
and supernovae feedback. These effects can be described in
terms of a non-trivial stress-energy tensor which, at leading
order, results in an additional contribution to the matter power
spectrum (Pueblas & Scoccimarro 2009; Carrasco et al. 2012;
Baumann et al. 2012),
Pctr(k) = −2 c2

s k2P IR-LO
mm (k), (18)

usually denoted as counterterm in the EFTofLSS framework.
Here, the parameter cs can be interpreted as an effective speed of
sound (Baumann et al. 2012; Carrasco et al. 2014; Baldauf et al.
2015a), reflecting the influence of short-wavelength perturba-
tions, but accounts as well for the complex physics behind galaxy
formation (when considering biased tracers of the matter density
field).

Summarising, we can write the final expression for the model
of the non-linear matter power spectrum as

Pmm(k) = P IR-(LO+NLO)
mm (k) + Pctr(k), (19)

which contains one free parameter, cs, which must be treated
as a nuisance parameter to be fitted against real or, in our case,
simulated measurements.

3.1.2. Modelling of the non-linear galaxy power spectrum

The general perturbative expansion of the galaxy density field δg
is based on the sum of all the individual operators that are a func-
tion of properties of the environment in which galaxies reside,
such as the underlying matter density field and the large-scale
tidal field. More precisely, this sum includes all those operators
that are sourced by second derivatives of the gravitational poten-
tial Φ and the velocity potential Φv (see Desjacques et al. 2018,
for a detailed review on the subject).

If we restrict our model to the one-loop prediction for the
power spectrum, the relation between δg and δ can be described
considering only terms up to third order in the perturbations. In
detail, this relation can be written as
δg(x) = b1 δ(x) + b∇ 2δ ∇

2δ(x) + εg(x)

+
b2

2
δ 2(x) + bG2 G2 (Φv | x) + bΓ3 Γ3(x) + . . . , (20)

where each operator is multiplied by a free bias parameter
that determines its overall amplitude14. The different terms in
Eq. (20) can be summarised as follows.
13 This is typically defined as the scale at which the dimensionless mat-
ter power spectrum,

∆2(k) ≡
k3P(k)

2π2 ,

becomes unity, that is, ∆2(kNL) ≡ 1.
14 We note that this set of bias parameters needs to be renormalised
before one can write the expression for the galaxy power spectrum

(i) At leading order, the shot-noise-corrected galaxy density
field can be expressed using a linear and local relation in
δ. This relation is characterised by a linear bias parame-
ter, b1, which simply rescales the underlying matter density
contrast by a constant factor (Kaiser 1984).

(ii) The effect of short-range non-localities during the
process of galaxy formation is characterised by the
presence of higher derivatives of the gravitational
potential (Bardeen et al. 1986; McDonald & Roy 2009;
Desjacques et al. 2010). At leading order, the only non-zero
term scales with the Laplacian of the matter density field,
∇ 2δ, and has an amplitude regulated by the free parameter
b∇ 2δ. The formation of structures involves the collapse of
matter from a finite region of space, which for dark mat-
ter halos is well approximated by their Lagrangian radius
R. Since the estimation of the corresponding radius for a
given galaxy sample can be cumbersome, here we absorb
the value of R inside the definition of b∇ 2δ.

(iii) The impact of short-scale fluctuations on the galaxy den-
sity field at larger separations is determined by an addi-
tional stochastic field, εg, which, under the assumption
of Gaussian initial conditions, is completely uncorrelated
from large-scale perturbations. If galaxies are randomly dis-
tributed, the stochastic contribution to the galaxy power
spectrum is purely represented by the Poisson limit, 1/n̄,
with n̄ corresponding to the mean number density of the
selected sample.

(iv) Moving to mildly non-linear scales, higher-order cor-
relations of the density field appear (Coles 1993;
Fry & Gaztanaga 1993), starting with a term proportional
to δ 2, characterised by a quadratic local bias b2. This factor
is expected from a spherically symmetric gravitational col-
lapse, in which higher powers of δ become more relevant at
progressively smaller scales. The third power of the matter
density field is not included in Eq. (20) since its effect on
the one-loop galaxy power spectrum is an extra contribu-
tion to the large-scale limit, which can be absorbed in the
renormalization of the linear bias.

(v) Even starting with a purely local-in-matter-density bias
expansion at the time of formation, non-linear evolu-
tion is responsible for the generation of large-scale tidal
fields (Chan et al. 2012; Baldauf & Seljak 2012). At lead-
ing order, the corrections given by the tidal stress tensor are
represented by a non-local quadratic bias, bG2 , and by the
second-order Galileon operator, G2, defined as

G2 (Φ | x) ≡
[
∇i j Φ(x)

] 2
−

[
∇ 2 Φ(x)

] 2
. (21)

In Fourier space, Eq. (21) can be written as

G2(k) =

∫
q

S (q, k − q) δ(q) δ(k − q) , (22)

where

S (k1, k2) ≡
(k1 · k2) 2

k 2
1 k 2

2

− 1 (23)

is the Fourier-space kernel corresponding to the second-
order Galileon operator G2.

(McDonald 2006; Assassi et al. 2014). This procedure is meant to
remove the dependence on the cutoff scale used to define the galaxy
density field, and to cancel the effect of higher-order bias parameters on
large scales.
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(vi) The next-to-leading-order correction to the tidal field can be
obtained considering terms up to second-order in the poten-
tial of the displacement field (Chan et al. 2012). This contri-
bution is represented by an additional non-local cubic bias,
bΓ3 , and by the operator

Γ3(x) ≡ G2 (Φ | x) − G2 (Φv | x) , (24)

whose net effect inside Eq. (20) is to include terms up to
third order in perturbations of δ.

All the terms giving a non-zero contribution to the one-loop
galaxy power spectrum are listed in Eq. (20). The complete
expression for Pgg then reads

Pgg(k) = P tree
gg (k) + P 1-loop

gg (k) + P ctr
gg (k) + P noise

gg (k) , (25)

where the individual contributions can be written as

P tree
gg (k) = b 2

1 PL(k), (26)

P 1-loop
gg (k) = Pgg,22(k) + Pgg,13(k)

= 2
∫

q
K 2

2 (q, k − q) PL (|k − q|) PL(q)

+ 6 b1 PL(k)
∫

q
K3 (q,−q, k) PL(q), (27)

P ctr
gg (k) = −2 b1

(
b1 c 2

s + b∇ 2δ

)
k2 PL(k)

≡ −2 c0 k2 PL(k), (28)

P noise
gg (k) =

1
n̄

(
1 + αP,1 + αP,2 k2

)
. (29)

For the sake of completeness, a complete list of the individual
one-loop corrections can be found in Appendix B. In the previ-
ous expressions, K2 and K3 are the symmetrised mode-coupling
kernels for a generic biased tracer of the matter density field that
follows the parametrization given in Eq. (20). In detail, they read

K2(k1, k2) = b1 F2(k1, k2) +
1
2

b2 + bG2 S (k1, k2), (30)

and

K3(k1, k2, k3) = b1 F3(k1, k2, k3) + b2 F2(k1, k2)
+ 2 bG2 S (k1, k23) F2(k2, k3)
+ 2 bΓ3 S (k1, k23) [F2(k2, k3) −G2(k2, k3)] ,

(31)

where G2(k1, k2) is the standard one-loop kernel for the non-
linear evolution of the velocity divergence field, and Eq. (31)
has to be symmetrised with respect to its arguments (k1, k2, k3).

Inside Eq. (29), αP,1 is a free nuisance parameter that
accounts for deviations from a purely Poissonian shot-noise15.
In addition, it is also required as a way to reabsorb the otherwise
non-zero low-k limit of one of the individual one-loop contribu-
tions, as explained in Appendix B. Similarly, αP,2 parametrises
the next-to-leading order correction, which scale as k2.

15 This is expected since there is a physical separation under which two
galaxies cannot simultaneously form, similarly to the exclusion effect
for dark matter halos. The observed shot-noise can be either super- (sig-
nature of high-satellite star-forming galaxies) or sub-Poissonian (mostly
typical of red central galaxies in massive halos), depending on the con-
sidered galaxy sample.

Since the leading-order higher-derivative correction is com-
pletely degenerate with the matter counterterm, as they are both
proportional to the combination k2 PL(k), we define a new more
suited parameter,

c0 ≡ b1

(
b1 c 2

s + b∇ 2δ

)
, (32)

to avoid the presence of unnecessary degeneracies between the
parameters of the model.

In the previous scheme we have deliberately omitted the
resummation of infrared modes, but, similarly to the case dis-
cussed in Sect. 3.1.1, galaxy two-point clustering also has to be
corrected for the effect of large-scale bulk motions. For this rea-
son, we write the relations for the leading- and next-to-leading
order IR-resummed galaxy power spectra (mimicking Eqs. (15)
and (17)) as

P IR−LO
gg (k) = b 2

1

[
Pnw(k) + e−k2 Σ2

Pw(k)
]

+
1
n̄

(
1 + αP,1

)
, (33)

P IR−(LO+NLO)
gg (k) = b 2

1

[
Pnw(k) +

(
1 + k2Σ2

)
e−k2Σ2

Pw(k)
]

+ P 1-loop
gg

[
Pnw + e−k2Σ2

Pw

]
(k)

+ P ctr
gg

[
Pnw + e−k2Σ2

Pw

]
(k) + P noise

gg (k), (34)

where, once again, the square brackets of the second and third
terms in Eq. (34) reflect how the evaluation of the one-loop
and counterterm contributions is carried out sourcing the lead-
ing order IR-resummed matter power spectrum, P IR-LO

mm , in place
of the linear power spectrum, PL(k).

3.1.3. Coevolution relations

A significant fraction of the bias parameters that have been
introduced in this section enters in the expression for Pgg(k)
only at higher-order, as clearly pointed out by the presence of
only the linear bias b1 in the expression for the leading-order
galaxy power spectrum Eq. (33). This is significantly different
from higher-order correlators of the galaxy density field, such
as the galaxy bispectrum, for which both the local and non-local
quadratic biases, b2 and bG2 , appear also in the expression for the
leading-order term, and can therefore be constrained with much
better accuracy (Oddo et al. 2021; Eggemeier et al. 2021).

Given the poor constraining power of the galaxy power spec-
trum alone, it has become standard practice in real-data analyses
to fix some of them to some physically motivated values or rela-
tions. This is important not only to obtain a larger constraining
power for the remaining parameters, but also to ensure that none
of them experiences strong degeneracies such as the one exhib-
ited by the

(
bG2 , bΓ3

)
pair (see Appendix B). In this work, we test

two different relations, which are briefly summarised in the next
paragraphs.

As already explained in Sect. 3.1.2, even starting with a
purely local-in-matter-density expression, δg(δ), at the time of
formation, non-linear gravitational evolution is responsible for
the generation of a large-scale tidal field (Fry 1996; Chan et al.
2012). This means that, even expressing the initial galaxy den-
sity field assuming only a spherically symmetric gravitational
collapse – and thus with only local bias parameters bn , 0 –
tidal contributions appear at later times because of gravitational
evolution, leading to the presence of non-negligible tidal biases.
Assuming that the total number of objects is conserved in time,
it is possible to find a relation between the late-time non-local
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parameters and lower-order bias parameters, such that

bcoev
G2

= −
2
7

(b1 − 1) + bL
G2
, (35)

bcoev
Γ3

= −
1
6

(b1 − 1) −
5
2

bG2 + bL
Γ3
, (36)

where the bias parameters with a superscript L stand for the
corresponding Lagrangian quantities, that is, at the time of
formation. The previous relations are commonly referred to
as coevolution, or local Lagrangian relations when setting to
zero the Lagrangian bias, and have been extensively used in
most real-data analyses to fix one or both non-local parameters
(Feldman et al. 2001; Gil-Marín et al. 2015; Sánchez et al. 2016;
Grieb et al. 2017). However, recent results (Lazeyras & Schmidt
2018; Abidi & Baldauf 2018) have indicated that measurements
from numerical simulations seem to suggest lower values for bG2

with respect to its local Lagrangian relation.
An alternative approach for fixing bG2 , found to be more

accurate when compared to results from N-body simulations and
derived using the excursion-set formalism, has been proposed by
Sheth et al. (2013). In this case, it is possible to express bG2 as a
quadratic form in terms of the linear bias b1, such that

bex−set
G2

= 0.524 − 0.547 b1 + 0.046 b 2
1 . (37)

Such expressions are based on theoretical considerations on halo
bias that only take into account the halo mass. As a consequence,
they neglect potentially important effects, such as assembly bias
(see e.g. Lazeyras et al. 2021; Barreira et al. 2021, for an anal-
ysis carried out, respectively, on dark matter halos and galaxies
from hydrodinamical simulations). This means that their appli-
cability to a real-data analysis must be carefully assessed (see
Eggemeier et al. 2020; Pezzotta et al. 2021, for recent applica-
tions). Nonetheless, their use in this analysis is well justified,
since we focus on HOD samples for which the assignment of a
galaxy into a host halo is only determined by the mass of the
latter.

In Sect. 5 we carry out tests to determine whether the pre-
viously defined relations can be employed to analyse clustering
measurements adopting Euclid requirements.

3.2. Hybrid Lagrangian bias expansion model

In the previous sections, the relationship between the galaxy
and the matter density field has been described through an
Eulerian-based framework. However, this is not the only descrip-
tion of the galaxy power spectrum in the quasi-linear regime.
Other approaches are possible, often based to various degrees
on results from numerical simulations. We consider here the so-
called ‘hybrid Lagrangian’ models. They draw from Lagrangian
perturbation theory for the bias expression connecting galaxy
and matter overdensities, but rely on simulations to capture
the development of non-linearities when converting Lagrangian
quantities to the observable Eulerian quantities.

The Lagrangian bias expansion describes the clustering of
biased tracers in terms of a superposition of Lagrangian opera-
tors advected to Eulerian coordinates. It was first developed at
one-loop in PT by Matsubara (2008), while Modi et al. (2020)
proposed to combine the perturbative approach on bias with
measurements of the advected operators from N-body simu-
lations. This hybrid approach potentially allows us to push
the bias expansion formalism to smaller scales with respect
to purely perturbative approaches (see e.g. Hadzhiyska et al.
2021a; DeRose et al. 2023, for recent applications of the model

to DES Y1 data and numerical simulations). Recent imple-
mentations include the works of Kokron et al. (2021) and
Zennaro et al. (2023) in real space, and of Pellejero-Ibañez et al.
(2023) in redshift space. In the present work we consider the
implementation in the code baccoemu (Zennaro et al. 2023)16. It
describes the Eulerian galaxy overdensity in terms of a second-
order expansion of the Lagrangian galaxy density field δg(q)
where q is the Lagrangian position corresponding to the Eule-
rian position x = q + Ψ(q) with Ψ(q) being the displacement
field-connecting initial and final positions. This means that the
Eulerian overdensity is given by

1 + δg(x) =

∫
q
w(q) δ (3)

D
(
x − q −Ψ(q)

)
, (38)

where w(q) expresses the weighting function that transforms the
matter field into the galaxy field,

w(q) = 1 + bL1 δ(q) + bL2
(
δ 2(q) −

〈
δ 2

〉)
+ bLs 2

[
s 2(q) −

〈
s 2

〉]
+ bL

∇2δ
∇2δ(q). (39)

Here the total list of operators built on the matter density
field δ(q) consists of O = {1, δ, δ 2, s 2,∇2δ}, and the individual
entries correspond to the fully non-linear matter distribution, not
weighted (1) and weighted (δ) by the linear overdensity field, the
squared linear overdensity field δ 2, the squared traceless tidal
field s 2 17, and the Laplacian of the linear overdensity field ∇2δ,
respectively. Note that unlike the Eulerian bias basis presented
before, the expansion in Eq. (39) does not include the next-to-
leading-order correction to the tidal field, captured by the oper-
ator Γ3

18. This implies that the two bases are only equivalent
under the assumption of coevolution for the Eulerian parameter
bΓ3 (see Eq. 36).

The final model depends on four free parameters, the linear
bias bL1 , the local quadratic bias bL2 , the tidal quadratic bias bLs2 ,
and the higher-derivative bias bL

∇2δ
, to which we add the extra

free parameter αP,1 to account (at first order) for non-Poissonian
shot-noise, in the same way as it is done in the Eulerian PT
model. We use a different notation for the quadratic tidal bias,
since the definition of the tidal field operator is slightly differ-
ent from the one presented in Sect. 3.1. The same is true for the
Laplacian bias, which in this case only models higher-derivative
corrections, but could also (partially) absorb unmodelled non-
local effects coming from higher orders, extra physics, such as
baryonic effects, or the smoothing of the density field performed
in Lagrangian space.

The galaxy power spectrum can then be expressed as

Pgg(k) =
∑
i, j

bLi bLj Pi j (k) +
1 + αP,1

n̄g
, (40)

16 https://bacco.dipc.org/emulator.html
17 In this expansion si j(q) = ∂i ∂ j Φ(q) − δK

i j δ(q), where δK
i j is the Kro-

necker delta function. This definition matches the one of the second-
order Galileon operatorG2, as in Eq. (21), with the only difference being
that the two operators are defined in Lagrangian and Eulerian space,
respectively. This is different from the parametrisation adopted in e.g.
Desjacques et al. (2018), where the quadratic tidal operator is defined
as Ki j = ∂i ∂ j Φ(k) − 1

3δ
K
i j δ(k).

18 We note that there is nothing preventing a complete expansion up to
third order in δ even in Lagrangian space. While the presence of this
contribution may be partially relevant in terms of field level or higher-
order statistics, such as the galaxy bispectrum, accuracy checks carried
out by the baccoemu team have led to the conclusion that neglecting
the cubic operator is a robust assumption for the analysis of the galaxy
power spectrum.
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where Pi j(k) are the 15 cross-spectra of the five previ-
ously defined advected operators. To compute the Pi j terms,
baccoemu has been trained with high-resolution Pi j measure-
ments from 800 combinations of cosmologies and redshifts,
obtained applying the cosmology-rescaling technique to four
main N-body simulations (Angulo & White 2010; Zennaro et al.
2019; Contreras et al. 2020).

As a final remark, we note that, even if it is possible to find
a relation between the Lagrangian and Eulerian bias parame-
ters, the two sets do not exactly correspond to the same phys-
ical quantities. This happens because in the purely perturba-
tive Eulerian framework they properly represent the response
of galaxy formation to large-scale perturbations, whereas in the
hybrid Lagrangian one this physical meaning is lost due to the
extrapolation of the individual operators to the non-linear regime
(since the individual operators of the bias expansion are mea-
sured from N-body simulations and thus contain higher-order
contributions).

4. Model selection and fitting procedure

In this section we describe the methodology used to determine
the best combination between different models, scale cuts, and
bias configurations. In addition we list the details of the fitting
procedure and the priors of the selected parameter spaces.

4.1. Performance metrics

In the context of model selection, the most relevant aspects to
take into consideration are the range of validity of a given model
and the precision and accuracy of the constraints on the param-
eters of interest. The procedure that we adopt is based on the
selection of the maximum wave mode kmax up to which the
model is still capable of providing a good description of the data
vectors, while still recovering the correct input parameters. This
can be quantified by means of three different performance met-
rics (employed in e.g. Osato et al. 2019; Eggemeier et al. 2020,
2021; Pezzotta et al. 2021), which are described in the next sub-
sections.

4.1.1. Figure of bias

One of the main requirement that the theoretical model has to
satisfy is that its fit to the data return unbiased model parame-
ters. The parameters controlling bias, shot-noise, and countert-
erms can be effectively treated as free nuisance parameters, to
be marginalised over after sampling the joint posterior distribu-
tion. The set of parameters of interest is therefore restricted to
the cosmological parameters, in our case θ ≡ {h, ωc}.

We quantify the unbiasedness of the model in the recovery
of θ in terms of the figure of bias (FoB) defined as

FoB(θ) ≡
[(
〈θ〉 − θ fid

)ᵀ S −1(θ)
(
〈θ〉 − θ fid

)] 1
2 , (41)

where 〈θ〉 and θ fid represent the mean of the posterior dis-
tribution of the selected parameters and their fiducial values,
respectively, and S (θ) is a square matrix containing the auto-
and cross-covariance among all the entries of the vector θ19. The
meaning of Eq. (41) is straightforward: we are quantifying the
deviation of the posterior distribution from the fiducial values of

19 This means that, for the case we are considering, where θ = {h, ωc},
S is a 2 × 2 matrix containing the variance of h and ωc on its diagonal,
and the cross-covariance between them on the off-diagonal entries.

the corresponding parameters, and expressing this information in
terms of the intrinsic error of those parameters. In the case where
θ consists of only one parameter, the FoB simply expresses how
far the posterior is from the fiducial value in units of the stan-
dard deviation of the parameter, with the 68% and 95% per-
centiles corresponding to values of FoB of 1 and 2, respectively.
Note that when considering more than one parameter these val-
ues change, as they need to be computed by directly integrat-
ing a multivariate normal distribution with the corresponding
number of dimensions. For n = 2, we evaluate that the new
thresholds for the 68% and 95% percentiles are 1.52 and 2.49,
respectively.

4.1.2. Goodness of fit

The goodness of fit quantifies the consistency of the theoretical
model P th with the input data vector P data. We consider the stan-
dard χ2 test, corresponding to

χ2(θ) =

Nbins∑
i=1

Nbins∑
j=i

[
P th

i (θ) − P data
i

]
C−1

i j (θ)
[
P th

j (θ) − P data
j

]
. (42)

This results in a distribution of χ2 values across the sampled
parameter space. Instead of picking the χ2 corresponding to the
maximum-likelihood position, whose estimation from the sam-
pled posterior distribution is subject to noise20, we compute the
posterior-averaged value,

〈
χ2

〉
, from a weighted average over

all sampled parameter combinations, which is instead a more
stable quantity (see Appendix E for a comparison between the
two approaches). The posterior-averaged χ2 is then compared to
the predictions from the 68% and 95% percentiles of the χ2 dis-
tribution with the corresponding number of degrees of freedom.
The latter is simply defined as Ndof = Nbins − Npars, where Nbins
is the total number of independent wave mode bins up to the
selected kmax, and Npars is the total number of free parameters of
the model.

4.1.3. Figure of merit

Finally, each configuration of the model – that is a given scale
cut and bias assumptions – is inspected to determine its statis-
tical power in constraining the parameters θ. For this purpose,
similarly to what is done for the figure of bias, we define a figure
of merit (FoM) for a given set of model parameters θ as (Wang
2008)

FoM(θ) =
[
det

(
S (θ)

)]−1/2
, (43)

where S (θ) is once again the covariance matrix of the parame-
ters θ, and det(S ) its determinant. The meaning of this quantity
can be more clearly understood assuming a flat posterior distri-
bution with null correlation between the entries of θ. In this case,
det(S ) represents the volume of the hyper-rectangle over which
the posterior distribution of θ is distributed. Similarly, for non-
zero parameter correlations, det(S ) represents the hyper-volume
contained in the hyper-surface defined by the covariance matrix
S . Therefore, a high value of the FoM corresponds to a more
statistically significant constraint of the model parameters.

20 An optimal research of the maximum-likelihood position could be
carried out employing a χ2 minimiser, or in the context of a more fre-
quentist approach based on a profile likelihood, which we do not per-
form in this work.
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In order to visualise how much can be gained by pushing
the model to higher kmax values, in the next section we plot
the FoM of each individual configuration normalised to that of
a reference case, corresponding to the configuration with the
EFTofLSS model at kmax = 0.1 h Mpc−1 with all nuisance param-
eters sampled as free parameters.

4.2. Fitting procedure

In order to properly sample the posterior distribution we need
to compute the galaxy power spectrum and the likelihood for a
large number of points in parameter space. To achieve conver-
gence while keeping the number of evaluations as low as possi-
ble, an efficient sampling algorithm is needed.

All the results presented in this work have been obtained
using a nested sampling approach (Skilling 2006), which differs
from a standard Metropolis–Hastings (Metropolis et al. 1953;
Hastings 1970) Markov-chain sampler in a number of ways. The
main difference is that, using nested sampling, the whole hyper-
dimensional parameter space is explored within the specified pri-
ors by means of a given number of live points, which are subse-
quently modified to track the posterior distribution of the param-
eters according to the value of the evidence. In this analysis we
make use of the public code PyMultiNest (Buchner et al. 2014)
with a total number of 1800 live points, after having checked that
the output posterior distribution has properly converged with this
number. Further details, together with a comparison of different
samplers, are presented in Appendix F.

We adopt the approach of a full-shape analysis. This means
that we directly sample the cosmological parameter space, with
a model galaxy power spectrum that is generated at each step. A
single evaluation of the theory models presented in Sect. 3 can
take up to few seconds, since it combines a call to the Boltzmann
solver to obtain linear theory predictions, and a call to the rou-
tines responsible for computing the non-linear corrections. Since
the typical number of model evaluations for a single Markov
chain can reach order of O (106), the final running time neces-
sary to obtain a converged posterior distribution can take up to
several days.

In order to speed up the model evaluation, we make use of
the publicly available COMET package (Eggemeier et al. 2022)21

to emulate the EFTofLSS model, providing an evaluation of the
full one-loop prediction in about O (10 ms). The code has been
validated against a set of 1500 theory data vectors in a range of
redshifts that covers the one we explore in this analysis, showing
an averaged 0.1% systematic error for the final Pgg(k) model, and
it is therefore suited to be used for this analysis22. The evaluation
of the hybrid Lagrangian-bias-based model is instead carried out
using the public emulator baccoemu, as mentioned in Sect. 3.2.

In all the cases, we assume a Gaussian likelihood function
defined as

−2 lnL(θ) =

Nbins∑
i=1

Nbins∑
j=i

[
P th

i (θ) − P data
i

]
C −1

i j (θ)
[
P th

j (θ) − P data
j

]
,

(44)

which is computed at each point in parameter space explored by
the sampler, and whose value is used to determine whether to
assign to the current point one of the live points. The final out-
put, which is saved to external files ready to be post-processed,
consists of a list of points in parameter space together with the
corresponding value of the log-likelihood.
21 https://pypi.org/project/comet-emu/
22 Further validation tests have been carried out against other codes
owned by the authors of this paper, as shown in Appendix D.

4.3. Parameter priors

Our parameter space consists of both cosmological and nui-
sance parameters. Sampled cosmological parameters comprise
the Hubble parameter h and the cold dark matter density param-
eter ωc. The latter can be constrained only through the full-shape
of the galaxy power spectrum, especially via the position of the
matter-radiation equality keq, since geometric distance informa-
tion is lost due to the fact that we conduct our analysis using
real-space coordinates. For the same reason, h can be artificially
constrained because we fix all the other parameters affecting the
amplitude of the matter power spectrum (Sánchez et al. 2022)23.
We keep fixed the baryon density parameter ωb and the scalar
spectral index ns, since galaxy clustering measurements on their
own are not able to constrain them with the same level of pre-
cision of CMB data. At the same time, since in real space the
primordial scalar amplitude As is strongly degenerate with the
linear bias parameter b1, at least on sufficiently large scales24,
we keep As fixed to its fiducial value, along with the rest of the
cosmological parameters, to the values shown in Table 1.

The nuisance parameters are split into two sets, depend-
ing on the considered model. The parameters of the Eulerian
bias expansion are composed of a mixture of bias parameters,{
b1, b2, bG2 , bΓ3

}
, counterterms, {c0}, and shot-noise parameters,{

αP,1, αP,2
}
. All of them enter in the final expression for the

galaxy power spectrum as shown in Sect. 3.1. When testing the
bias relations presented in Sect. 3.1.3, the parameters subject to
the bias relations are not sampled over, but computed at each
step in the chain as a function of the lower-order bias parame-
ters. The scale-dependent noise parameter αP,2 is kept fixed to
0 for the majority of the runs we carry out, except for the ones
presented in Sect. 5.3, where we explicitly test the constraining
power of the EFTofLSS model on this parameter in the range of
redshifts that we are considering.

For the hybrid Lagrangian model we sample over a different
set of bias parameters,

{
bL1 , b

L

2 , b
L

s2 , b
L

∇2δ

}
, and shot-noise,

{
αP,1

}
.

In this case we do not consider relations among bias parameters,
but every run will assume the full set.

When not mentioned otherwise, we adopt a completely
agnostic approach, setting an uninformative flat prior for all the
parameters, as shown in Table 3. The size of the prior for the two
cosmological parameters and for most of the nuisance parame-
ters has been selected to prevent the posterior distribution from
becoming dominated by the imposed prior.

5. Results

In this section we present the results obtained by fitting the data
samples presented in Sect. 2 with the two theoretical models
described in Sect. 3. We start off with a comparison between

23 In practice, expressing the galaxy power spectrum in h Mpc−1 units
makes possible to constrain evolution parameters (h, As, w0, wa, ωK, . . .)
even when they are varied together in the same fit of the galaxy power
spectrum data vector. This happens because with this set of units it is
possible to break the degeneracy experienced by the evolution parame-
ters that is otherwise present when expressing the data vector in Mpc−1

units (Sánchez et al. 2022).
24 While the linear galaxy power spectrum depends on the combination
b2

1As, the non-linear corrections depend on a different combination of
the linear bias and the scalar amplitude, so that they can in principle
break the degeneracy. However, since loop corrections are subdominant
with respect to the amplitude of the linear galaxy power spectrum, we
find that a strong degeneracy is still present, even when including mildly
non-linear scales in the fits.
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the performance of these models in Sect. 5.1, and leave to later
sections a more detailed description of the model selection car-
ried out for the EFTofLSS model in terms of scale cuts and bias
relations. For compactness, we call this model simply the EFT
model.

5.1. Performance of Eulerian and hybrid Lagrangian bias
expansion

In this section we carry out a comparison between the Eule-
rian expansion and the hybrid Lagrangian bias approach imple-
mented in baccoemu in terms of the three performance metrics
previously defined in Sect. 4.1. For this goal, we focus on fitting
the galaxy power spectra of the Model 3 HOD sample at the red-
shifts of the four comoving snapshots, using both the rescaled
Euclid-like covariances, and the ones from the full simulation
box. For each case, we run multiple chains to assess the stabil-
ity of the results as a function of the maximum wave mode kmax.
The latter is selected in the range [0.10, 0.45] h Mpc−1 using a
linear spacing of ∆k = 0.05 h Mpc−1, for a total of eight different
cases.

We select two different configurations of the EFT model.
The first one corresponds to the case in which all the nui-
sance parameters

{
b1, b2, bG2 , bΓ3 , c0, αP,1

}
are free to vary, with

the only exception of the scale-dependent shot-noise param-
eter αP,2 which we set to zero. In the second one we addi-
tionally fix the cubic tidal bias bΓ3 to its coevolution rela-
tion (Eq. (36)). The latter case is chosen in order to pro-
vide an alternative model based on the Eulerian expansion of
Sect. 3.1, with the same assumptions on galaxy bias as in
baccoemu (see discussion in Sect. 3.2). In addition, this is one
of the best configurations when considering the performance
metrics on the combination {h, ωc}, as we properly validate in
Sect. 5.4.

As for baccoemu, we leave all bias parameters{
bL1 , b

L

2 , b
L

s2 , b
L

∇2δ

}
free to vary, with the addition of the

parameter controlling the amplitude of the non-Poissonian
stochastic noise, αP,1. Since baccoemu is an emulator based on
N-body simulations, it is affected by two sources of noise: first,
the emulation error, that is the noise introduced by the accuracy
of the trained neural network itself; second, the training set error,
that is the inaccuracies already present in the data used for train-
ing. The former is a scale-dependent quantity, which becomes
progressively larger at small scales and caps at a maximum
0.5% of the galaxy power spectrum signal at k ∼ 0.7 h Mpc−1 for
ΛCDM cosmologies well within the allowed parameter space; it
can get to the order of O (1%) of the power spectrum signal for
cosmologies closer to the limits of the emulator parameter space
(Zennaro et al. 2023). On the other hand, the intrinsic error of
the training set is induced by the cosmology-rescaling technique
employed during its construction; it once again depends on
scale, and is subpercent in the case of ΛCDM cosmologies,
but could reach percent levels when also massive neutrinos and
dynamical dark energy are considered (Contreras et al. 2020;
Zennaro et al. 2023). To account for these combined effects,
we consider two cases for the chains run with baccoemu.
In the first one we employ the same covariance matrix used
to analyse the data galaxy power spectra as in the EFT
chains, while in the second one we add in quadrature a theory
error corresponding to 0.5% of the galaxy power spectrum
signal25.

25 The assumption of choosing an extra contribution of 0.5% of the
power spectrum is well justified by the fact that we are only explor-

Table 3. Model parameters, split into cosmological and nuisance ones,
with the latter further divided into the two bias models described in
Sect. 3.

Parameter Prior
Cosmology

h U [0.55, 0.85]
ωc U [0.08, 0.16]

Eulerian bias expansion
Bias b1 U [0.25, 4]

b2 U [−10, 10]
bG2 U [−4, 4] or fixed to Eq. (37)
bΓ3 U [−8, 8] or fixed to Eq. (36)

Counterterm c0
[
(Mpc/h)2] U [−100, 100]

Shot-noise αP,1 U [−1, 2]
αP,2

[
(Mpc/h)2] U [−5, 5] or fixed to 0

Hybrid Lagrangian bias expansion

Bias bL1 U [−1, 3]
bL2 U [−3, 3]
bLs2 U [−10, 10]

bL
∇2δ

[
(Mpc/h)2] U [−10, 10]

Shot-noise αP,1 U [−1, 1]

Notes. The nuisance parameters consist of bias parameters, EFTofLSS
counterterm, and shot-noise terms. For each parameter, the imposed
prior is specified in the last column of the table. The letter U stands
for a uniform distribution, with edges identified by the first and second
element of the pair, respectively.

In Fig. 3 we show the performance metrics (FoB, FoM) in
the case of the realistic Euclid-like volume. Note that we do not
show the averaged reduced χ2 in this case, since the rescaled
covariance matrix does not describe the fluctuations in the data
vector, and therefore the collection of

∑
(P th−P data)2/σ 2 values

deviates from a χ2 distribution. At all redshifts the fits obtained
with both models display a FoB within the 68% confidence inter-
val up to kmax = 0.45 h Mpc−1, with only a partial preference
for the EFT framework when considering the value of the FoB,
which is anyway consistent to 1σ for all the cases.

In the figure, the FoM is normalised by the value obtained
with the EFT configuration at kmax = 0.1 h Mpc−1, to show rel-
ative gains. As expected, the FoM of the EFT model is larger
with a fixed bΓ3 , because of the smaller number of free parame-
ters. Similarly, we note that the combined constraining power on
(h, ωc) of baccoemu is degraded when including theory errors in
the data covariance matrix.

When comparing the two different models, we note that
baccoemu without including theory errors (orange line) reaches
its maximum FoM value, comparable to the maximum value
achieved by the Eulerian model (blue line), already at a lower
kmax, of about 0.25–0.3 h Mpc−1. This is a consequence of the
extra parameter, bΓ3 , present in the Eulerian bias model. As fur-
ther evidence, the Eulerian bias model display higher FoM val-
ues when considering a fixed bΓ3 (light-blue line), in particular
on scales kmax < 0.2 h Mpc−1. Above this threshold, we note that
the EFT configuration features a slightly larger FoM than the

ing a ΛCDM parameter space that is completely contained within the
prior range of the emulator.
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Fig. 3. Performance metrics (FoB in the top row and FoM in the bottom row) extracted from the Model 3 HOD samples as a function of the
maximum wave mode kmax of the fit, assuming the rescaled covariance matrices matching the four Euclid spectroscopic redshift bins described
in Sect. 2.3. Different curves correspond to different models, as described in the legend. The FoM panels are normalised in units of the reference
FoM, corresponding to the one of the EFT model with all parameters free at kmax = 0.1 h Mpc−1. The grey bands in the FoB panels represent the
68% and 95% percentiles of the corresponding FoB distribution, as explained in Sect. 4.1.1.

one of the hybrid model, with the only exception of the z = 0.9
snapshot, for which the two curves have a similar amplitude at
all scales (light blue vs. orange).

Except for the main EFT case, including smaller scales
does not seem to increase the FoM beyond a scale of about
0.3 h Mpc−1. Since on these scales the theory error associated
to baccoemu is of similar magnitude as the data covariance, we
note that, including the extra 0.5% contribution (red line), the
FoM starts flattening at a slightly lower kmax ∼ 0.25 h Mpc−1.
This is mostly noticeable for the z = 0.9 snapshot, for which
shot-noise becomes the dominant contribution at a much larger
kmax.

A plot similar to the one in Fig. 3 is shown in Fig. 4, this time
considering the covariance matrix corresponding to the full sim-
ulation volume of about 54 h−3 Gpc3. Since now the covariance
matrix correctly represents the statistical fluctuations in the data
vectors, we additionally show the χ2 averaged over the chain and
normalised to the numbers of degrees of freedom. In this case,
it is clear that not accounting for the theory error of baccoemu
can lead to a bias in the cosmological parameters, most notably
at low redshift. On the contrary, including the reference 0.5%
theory error is enough to recover unbiased results, with the sole
exception of the case at kmax = 0.45 h Mpc−1 and z = 0.9.

The EFT model also returns unbiased measurements, with
some spurious configurations outside the 1σ confidence interval
for low kmax values at z = 1.5. The main reason for this effect
is likely imputable to the presence of projection effects when
marginalising the posterior distribution in the {h, ωc} plane, as we
explain later in Sect. 5.4. The averaged χ2 behaves in a consistent
way between the two models, displaying an amplitude that is

constantly lower than the 95th percentile of the corresponding
χ2 distribution for both sets of curves, with the only exception of
the largest kmax values of the z = 1.8 snapshot.

In terms of goodness of fit, we note that, due to our choice
of reporting the posterior-averaged χ2 value instead of the
maximum-likelihood value, the normalised χ2 can start off with
values larger than 1 at low kmax values. This is mostly caused by
the non-gaussianity of the sampled posterior distribution when
the data vectors cannot properly constrain the whole set of sam-
pled parameters. In this case the averaged posterior can increase
the value of the χ2 and making it appear artificially larger.
In Appendix E we include an example using the maximum-
likelihood χ2, showing how in this case the goodness of fit typi-
cally assumes values consistent with 1 on those scales.

While the constraining power of baccoemu is in this case
limited by the theory error being of similar order as the statisti-
cal error of the synthetic data considered, it is highly competi-
tive with the Eulerian approach on scales that are free from this
limitation, at kmax . 0.2 h Mpc−1. On the one hand, the full-
volume test considered here leads to very conservative results:
the errors associated with the full volume of the Flagship sim-
ulation are roughly a factor 2 smaller than the scaled errors
considered in this work, and these scaled errors for Model 3,
in turn, are roughly another factor 2 smaller than the errors
expected assuming the volumes and number densities for typ-
ical redshift bins of the spectroscopic sample described in the
forecasts of Euclid Collaboration (2020). In addition, all covari-
ance matrices are computed in the Gaussian approximation,
which might underestimate the amplitude of the errors at small
scales. On the other hand, these results provide a motivation to
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Fig. 4. Same as Fig. 3 but assuming a covariance matrix corresponding to the full simulation volume. The additional middle row corresponds to
the averaged χ2 normalised by the total number of degrees of freedom. Similarly to the FoB panels, the grey shaded bands in the χ2 panels mark
the 68th and 95th percentile of the corresponding χ2 distribution with the corresponding number of degrees of freedom.

further reduce the noise associated with emulators – for example
through larger training sets, and employing Zeldovich control
variates (Chartier et al. 2021; Kokron et al. 2022). This is key
for the design of the next generation of emulators. In fact, even
if the configuration without theory errors shows the limitation
of currently available codes, the corresponding FoM curve high-
lights the potential gain achievable with a more accurate version
of the emulator.

5.2. Testing the EFT model: Fixed cosmology

In the rest of this section we focus on testing the range of validity
of the EFT model using different scale cuts, bias relations, and
reference volumes. This test is limited only to the EFT model
because, as shown in the previous subsection, we cannot run
fits using baccoemu without accounting for the extra contribu-
tion from theory errors in the covariance matrix, especially when
considering the extremely large precision of the full-box covari-
ance. In order to assess the level of accuracy of the EFT model
and determine its range of validity, we first carry out fits at fixed
cosmology assuming the full volume of the simulation box. In

this way, we focus exclusively on the performance of one-loop
galaxy bias prediction with highly precise measurements, testing
which scale cuts and bias relations lead to the best agreement
between the theory model and the input data vectors.

The validation of the model includes an accuracy test con-
sisting in recovering fiducial values for the linear bias b1 and
the shot-noise parameter αP,1 determined from the large-scale
limit of the ratio between the measurements of the galaxy and
of the matter power spectrum. This will reduce the effect of cos-
mic variance on the linear bias estimate (the cross galaxy-matter
power spectrum is unfortunately not available). At large scales,
we can assume a simple two-parameter, linear model given by

Pgg(k) = b2
1 Pmm(k) +

1 + αP,1

n̄
, (45)

to be fit on scales kmax < 0.08 h Mpc−1. As a reference, the
marginalised mean posterior values of both b1 and αP,1 are listed
in Table 4.

In Fig. 5 we show the marginalised constraints obtained fit-
ting the full model of Eq. (34) to the eight data vectors, against
the fiducial values of

{
b1, αP,1

}
obtained from the large-scale
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Fig. 5. Comparison between the marginalised constraints on the linear bias parameter b1 and the shot-noise parameter αP,1 obtained at fixed
cosmology, and the fiducial values listed in Table 4 obtained using only the large scale-limit of Eq. (45). The first two and last two rows show
results for the Model 1 and Model 3 HOD samples, respectively. In both cases, the upper panels show constraints on the linear bias b1, while
the bottom ones show constraints on the constant shot-noise parameter αP,1. Different colours correspond to different assumptions on the total
number of free bias parameters, as shown in the legend. Star symbols highlight the position of the maximum-likelihood for the case with all bias
parameters free to vary. Dashed grey lines and shaded bands mark the fiducial value and 1σ confidence interval from Table 4.

limit as in Eq. (45). We test four different model configurations,
which differ by the total number of bias parameters that are kept
fixed to the relations presented in Sect. 3.1.3.
(i) All nuisance parameters are left free to vary while sampling

the posterior distribution, for a total of six free parameters –

linear bias b1, local quadratic bias b2, non-local quadratic bias
bG2 , non-local cubic bias bΓ3 , matter counterterm and higher-
derivative bias c0, and constant shot-noise parameter αP,1.

(ii) bG2 is fixed to the excursion-set-based relation defined in
Eq. (37), for a total number of five parameters.
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(
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panels correspond to the case in which all the parameters are left free (left panel), bG2 is fixed to the excursion-set relation as in Eq. (37) (middle
panel), and bΓ3 is fixed to the coevolution relation as in Eq. (36) (right panel). Different colours represent different kmax values, as listed in the
legend. Fiducial 68% confidence intervals for both b1 and αP,1 are shown with grey bands.

Table 4. Marginalised mean values of the linear bias b1 and the shot-
noise parameter αP,1 measured using the two-parameter model for the
ratio Pgg/Pmm presented in Eq. (45).

Redshift HOD
model b1 αP,1

[
1
n̄

]
z = 0.9 1 1.350 ± 0.004 0.220 ± 0.220

3 1.395 ± 0.003 0.253 ± 0.079
z = 1.2 1 1.661 ± 0.006 0.424 ± 0.152

3 1.751 ± 0.004 0.289 ± 0.057
z = 1.5 1 1.977 ± 0.007 0.386 ± 0.104

3 2.030 ± 0.005 0.219 ± 0.032
z = 1.8 1 2.474 ± 0.007 0.257 ± 0.039

3 2.486 ± 0.005 0.346 ± 0.018

Notes. Fits are carried out only considering scales up to kmax =
0.08 h Mpc−1.

(iii) bΓ3 is fixed to the coevolution relation defined in Eq. (36),
for a total number of five parameters.

(iv) Both bG2 and bΓ3 are fixed to the relations assumed in (ii)
and (iii), respectively, for a total number of four parameters.

In all these cases, we keep the scale-dependent shot-noise
parameter αP,2 fixed to zero (we test the validity of this assump-
tion in Sect. 5.3).

Overall, the configuration with the largest number of free
parameters – case (i) in the previous list, shown with blue
points and error bars in Fig. 5 – is capable of capturing the
correct amplitude of both b1 and αP,1 for the majority of the
tested kmax values and redshifts, showing a mild running of
the one-dimensional marginalised values that becomes relevant
only for the lowest redshift snapshot we consider, on scales
kmax > 0.2 h Mpc−1. The same effect is partially present for the
z = 1.2 snapshot, although less significant: as a matter of fact,
the marginalised constraints are consistent with their fiducial val-

ues at better than 2σ. Rather than only considering the mean
posterior distribution, it is instructive to also plot the maximum-
likelihood point in the parameter space under consideration. We
estimate this quantity using as a proxy the point in the sampled
posterior distribution that maximises the likelihood, even though
the latter is partially affected by a certain degree of stochasticity.
In this case (star symbols in Fig. 5) we observe a shift towards
the fiducial values, even if not for all configurations. A discrep-
ancy between the maximum-likelihood point and the mean of the
marginalised posterior is a clear hint at the presence of projec-
tion effects, also known as prior volume effects, due to the high
dimensionality of the parameter space and to non-linear degen-
eracies among the model parameters.

Fixing either bG2 – case (ii), orange points and error bars –
or bΓ3 – case (iii), green points and error bars – does not signifi-
cantly help in terms of accuracy of the marginalised constraints,
with systematic deviations that can still become larger than the
1σ confidence interval. However we find that, while fixing bΓ3

typically results in similar constraining power on both b1 and
αP,1, imposing a relation on bG2 leads to definitely tighter posteri-
ors. This is the result of breaking the strong degeneracy between
the two non-local bias parameters, bG2 and bΓ3 , and at the same
time the one between the quadratic biases, b2 and bG2 , leaving
the remaining parameters to be more tightly constrained (a clear
example of these is displayed in the right panel of Fig. F.1). The
same clearly happens when combining the two previous rela-
tions – case (iv), red points and error bars – since with this setup
we completely break the degeneracies in the considered param-
eter space. However, in this case we observe a deviation from
the fiducial values of b1 which can reach more than 2σ for some
of the configurations, in particular at low redshift, hinting at a
departure from the assumption of conserved evolution.

The effect of the strong b2-bG2 -bΓ3 degeneracy can be
observed in a more direct way by inspection of the 2d
marginalised constraints in the b1-αP,1 subspace. In Fig. 6 we
show such posterior distributions, taking as a reference the
Model 3 sample at z = 1.2. The different panels correspond
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Fig. 7. Number of effective parameters that can be properly constrained
by the input data vectors of the Model 1 (circles) and 3 (squares)
HOD samples, respectively, as a function of the maximum wave mode
included in the analysis and for different configurations of the bias
model, as listed in the legend. Different panels correspond to different
redshifts, as shown in the corresponding top left corner.

to different bias relations, from left to right: the case with all
the parameters free to vary, with bG2 fixed to the excursion-set-
based relation, and with bΓ3 fixed to the coevolution relation. A
first consideration to make is that there is a non-trivial degen-
eracy between the two parameters, for which projection effects
might bias the 1d constraints without necessarily meaning that
the hyper-dimensional posterior distribution does not cover the
fiducial values of the parameters. Secondly, we can observe how
the case with fixed bG2 gives the tightest constraints for both
parameters, with an increase in the merit of the constraints that
is directly related to the maximum scale adopted in the fit, up
to kmax = 0.4 h Mpc−1. Once more, this trend can be easily
explained by the effective breaking of the degeneracy among the
higher-order bias parameters.

For a limited number of cases, even when fixing one or
more degrees of freedom, we find that the final posterior dis-
tribution can still appear multi-modal, leading to enlarged con-
straints when marginalising over the remaining parameters. For
this reason, some of the chains where both tidal bias parame-
ters bG2 and bΓ3 are fixed feature marginalised constraints that
are larger than the ones with one additional degree of freedom.
This is clearly noticeable for the largest kmax bin of the Model 3
sample at z = 0.9.

The self-consistency of the different models in terms of the
number of model parameters can be assessed using an additional
statistics. In this context, we are interested in determining the
total number of parameters that can be effectively constrained by
the data vectors. A commonly employed statistics is represented

by the pV value, defined as (Gelman et al. 2014)

pV =
1
2

〈(
χ 2 −

〈
χ 2

〉)2
〉
, (46)

that is, the variance of the corresponding χ 2 distribution. This
number indirectly tracks the presence of degeneracies among the
model parameters, and only converges to the total number of free
parameters for a normal distribution. In order for a theory model
to effectively constrain a given number of parameters, the pV
value is expected to reach that same value, and can therefore be
used as a proxy for the self-consistency of different model con-
figurations. In Fig. 7 we show this value as measured from both
sets of HOD samples and for different values of kmax. In practice,
we observe that the model with all parameters free never reaches
the expected value of pV = 6, even for the largest value of kmax,
with the exception of a couple of configurations. This shows that
a six-parameter model is most likely resulting in overfitting. On
the contrary, fixing one of the two tidal biases makes the pV reach
the expected limit above some kmax, with a transition that typi-
cally happens sooner for the case with fixed bG2 . This reinforces
the conclusion that this configuration is preferred with respect to
the others under consideration.

We note that these results may be partially affected by the
presence of cosmic variance in the data vectors. For this reason,
in Appendix G we explicitly assess the impact of this extra con-
tribution, using both a smooth and a noisy realization of the data,
generated using the theory code. This test shows that most of the
residuals observed in Fig. 5 can be explained by sample variance
affecting our data vectors.

5.3. Constraints on scale-dependent shot noise

So far, the stochastic field εg entering the expression for the
galaxy density field in Eq. (20) has been assumed responsibile
only for a constant offset from Poissonian predictions, via the
parameter αP,1. An immediate check on the performance of the
one-loop galaxy bias expansion can be carried out by further
extending the model parameter space to also include the next-
to-leading order correction to the stochastic field εg. As already
mentioned in Sect. 3, this leads to the presence of an additional
k2-dependent term in the galaxy power spectrum, whose ampli-
tude is regulated by the extra parameter αP,2.

Figure 8 shows the marginalised one-dimensional constraints
on αP,2, for both HOD samples, Model 1 on the left and Model 3
on the right, respectively. Since the large-scale limit of the galaxy
power spectrum does not have enough constraining power on
αP,2, we only consider values of kmax above 0.35 h Mpc−1 26.
We never observe a statistically significant detection of the αP,2
parameter, with the majority of the marginalised constraints
being consistent with αP,2 = 0 well within the 2σ confidence
interval. The only configurations for which this does not hap-
pen are the ones at high redshifts, specifically when considering
high values of kmax, since these are the configurations for which
the parameter αP,2 is constrained with the highest precision. Per-
forming the same test with one of the tidal bias fixed27 does not
lead to significantly different conclusions. This seems to suggest
that the αP,2 parameter might have a more important role over a

26 For some of the samples, this range of scales is already dominated
by the Poissonian shot-noise contribution, as can be observed from the
top and middle panel of Fig. 2.
27 We choose to fix bG2 , motivated by the results of Sect. 5.2 that sug-
gested this is the configuration less affected by degeneracies between
the model parameters.
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Fig. 8. Marginalised 1D constraints on the scale-dependent shot-noise
parameter αP,2 in the fits with fixed cosmological parameters. Different
rows correspond to different redshifts (top to bottom, low to high red-
shift), while different columns correspond to different HOD samples.
Within each panel, the colour gradient marks different values of kmax, as
detailed in the legend. Solid/dashed lines correspond to the configura-
tions with all the nuisance parameters free to vary, and with bG2 fixed to
the excursion-set relation as in Eq. (37), respectively.

range of redshifts where the shot-noise correction is more rele-
vant.

We postpone further tests to a next installment of this series
of papers, since a more careful check should be carried out
adopting samples with different number densities – as this value

determines the range of scales where the transition from sig-
nal to noise takes place – in particular considering values that
would represent in a more reliable way the expected Hα galaxy
distribution detected by Euclid. At the same time, an impor-
tant test should be carried out using the redshift-space galaxy
power spectrum (Euclid Collaboration: Camacho et al., in prep.),
for which extra k2-dependent noise corrections are required,
as a function of the orientation with respect to the line of
sight (Philcox & Ivanov 2022; Carrilho et al. 2023; Moretti et al.
2023). Finally, we note that the findings of this analysis are in
line with the conclusions from Pezzotta et al. (2021), for which,
in terms of constraints on the cosmological parameters {h, ωc},
a clear detection of scale-dependent stochastic parameters hap-
pens only when considering the combined information from the
galaxy-galaxy and galaxy-matter power spectra.

5.4. Testing the EFT model: results on cosmological
parameters

After having investigated the performance of the EFT model, we
now turn our attention to the study of how cosmological con-
straints can be affected by different choices of model configura-
tion. Specifically, we assume the same parameter space already
used in Sect. 5.1, which also includes the Hubble parameter h
and the cold dark matter density parameter ωc, while keeping
the rest of the cosmological parameters fixed to their fiducial
values, as listed in Table 1. A standard full-shape analysis of
the redshift-space galaxy power spectrum would typically also
include the scalar amplitude of the power spectrum, As, since
the anisotropies introduced by peculiar velocities make possible
to break the strong As- b1 degeneracy that is otherwise present
when considering real-space coordinates28. However, since this
analysis revolves around the real-space galaxy power spectrum,
we ought to choose a more conservative approach in order to
obtain as least degenerate constraints as possible on the rest of
the cosmological parameters. The sampling of As will be per-
formed in the rest of the papers of this series, when consid-
ering the additional information content of the galaxy bispec-
trum (Euclid Collaboration: Eggemeier et al., in prep.) and RSDs
(Euclid Collaboration: Camacho et al., in prep., Euclid Collabo-
ration: Pardede et al., in prep.).

Figures 9 and 10 show the three performance metrics defined
in Sect. 4.1 for the Model 1 and Model 3 HOD samples respec-
tively, assuming the full-box volume of the Flagship I simula-
tion. In both cases, the FoB and FoM panels refer to the com-
bination between the two cosmological parameters we are sam-
pling over.

5.4.1. Figure of bias

In terms of FoB, we observe a consistent trend across each model
configuration, indicating an unbiased combined measurement of
the cosmological parameters even well within the mildly non-
linear regime, at kmax & 0.3 h Mpc−1. The only exception is rep-
resented by the configuration in which both tidal bias parame-
ters, bG2 and bΓ3 , are simultaneously kept fixed to the excursion-
set relation (Eq. (37)) and to the coevolution relation (Eq. (36)),
respectively. This outcome is unsurprising, as we are reducing
by two the total number of degrees of freedom of the model.
Notably, the bias on the cosmological parameters gets larger

28 Specifically, the As- b1 degeneracy can be broken thanks to the dif-
ferent impact that these two parameters have on the amplitude of the
leading-order power spectrum multipoles, P (`) ∝ As b2−`/2

1 .
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Fig. 9. Performance metrics of the Model 1 HOD samples for the various configurations defined in Sect. 5.2 as a function of the maximum wave
mode kmax, and for the four different redshifts of the samples. The metrics shown are figure of bias (top), goodness of fit (middle), and figure of
merit (bottom). Different colours correspond to different model configurations, as listed in the legend. The black dashed line shows as a reference
the case in which both tidal bias parameters, bG2 and bΓ3 , are set to 0. The grey bands in the FoB and χ2 panels represent the 68% and 95%
percentiles of the corresponding distributions. The FoM panels show the figure of merit normalised to the one of the standard run – with all bias
parameters free to vary – at kmax = 0.1 h Mpc−1.

at lower redshift, hinting to a departure from the coevolution
relations as non-linear gravitational effects become more pro-
nounced. Typically, this deviation occurs at scales of approxi-
mately kmax = 0.3 h Mpc−1. However, we observe that this con-
figuration behaves surprisingly well for high-redshift snapshots,
exhibiting a FoB well within the 68% confidence interval.

In terms of overall stability of the results, we observe a
deviation at low kmax values for the Model 3 sample. This is
more strongly affecting high-redshift snapshots, for which the
value of the FoB at kmax ∼ 0.1 h Mpc−1 already exceeds the
corresponding 68% confidence level, and only gets below the
threshold when including additional signals from smaller scales.
This effect is primarily attributed to the presence of projec-
tion effects, owing to the large dimensionality of the selected
parameter space. Specifically, we find that all samples display a
non-negligible correlation between the cold dark matter density
parameter, ωc, and the EFT counterterm c0, resulting in a sys-
tematic shift of ωc for the lowest values of kmax, where there is

insufficient constraining power to accurately constrain c0. Fixing
the cubic tidal bias bΓ3 to the coevolution relation typically helps
to restore the cosmological parameters to their fiducial positions.
This happens due the further degeneracy between bΓ3 and c0 over
the mildly non-linear regime. The relative importance of the ωc-
c0 degeneracy gets amplified only when considering the snap-
shots at the highest redshifts. As a partial confirmation of this
trend, Pezzotta et al. (2021) did not report either any low-k sys-
tematic effect when analysing mock galaxies meant to reproduce
the clustering properties of the BOSS – CMASS and LOWZ –
and SDSS MGS samples, since, in that case, the considered red-
shift range was much lower (0.1 . z . 0.6) than the one anal-
ysed in this work. As a further cross-check, the same effect is
partially present when combining the full shape of the galaxy
power spectrum and bispectrum in a joint analysis (Euclid Col-
laboration: Eggemeier et al., in prep.), albeit with a lower signif-
icance, due to the additional constraining power of higher-order
statistics.
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Fig. 10. Same as in Fig. 9, but for the Model 3 HOD samples.

5.4.2. Goodness of fit

Similarly to the case at fixed cosmology, we find that the good-
ness of fit for the different models is consistent among the var-
ious model configurations, with only a small departure of the
case where both tidal biases, bG2 and bΓ3 , are kept fixed to their
corresponding relations and for the largest kmax values we con-
sider in this analysis. This is visible in the case of the Model 1
sample at z = 0.9, for which there is an increase in the averaged
χ2 value at kmax & 0.3 h Mpc−1, which also corresponds to the
transition of the FoB to values above the 68% percentile value.
Otherwise, we find that the different model configurations pro-
vide a systematically consistent goodness of fit, with a reduced
average χ2 value that is typically well within the 95% percentile
of the corresponding χ2 distribution.

When considering the two different HOD models, the χ2 for
the Model 3 HOD samples is consistently larger than for the
Model 1 case (see the middle panel of Fig. 10). The most signifi-
cant deviation is affecting the high-redshift snapshots, for which
the average χ2 spuriously gets larger than the 95% confidence
interval for some of the selected kmax values. In practice, this
deviation is still consistent to better than the 3σ confidence inter-
val. In addition, we remind that here we are using a single noisy

realization, meaning sample variance could partially be driving
some of the constraints. Moreover, we are analysing the data vec-
tors with an extremely high level of precision, due to choice of
using the full volume of the simulation and to the high number
density of the HOD samples. As a further evidence for the good-
ness of our fits, in Fig. 11 we show the residuals between the
maximum-likelihood theory vectors obtained at different values
of kmax against the input data vectors, assuming the most relaxed
model configuration. For all the samples that are under exam-
ination, we find that the broadband of the input galaxy power
spectrum is perfectly recovered, and that the worst performance
(in terms of goodness of fit) is only imputable to the scatter of
the noisy data vector around the best fit – with a significance that
is larger for some of the samples, such as for the Model 3 sample
at z = 1.8.

Finally, in Figs. 9 and 10 we show with a dashed black line
the FoB and averaged χ2 of the case where the values of the
tidal biases are set to 0. In this case, we observe a departure of
the goodness of fit from the other configurations, in a redshift-
dependent way, which is also accompanied by a breaking of the
model in terms of FoB. This shows that the use of coevolution
relations can drastically improve the performance of the model,
with respect to simply set the non-local bias parameters to zero.
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Fig. 11. Residuals of the maximum-likelihood best fits against the input galaxy power spectrum data vectors, assuming the case with all bias
parameters free to vary. Different columns correspond to different redshifts, as shown on top of the corresponding column, while different rows
mark either the Model 1 (top row) or Model 3 (bottom row) HOD sample. Different colour shades mark the best fits obtained at different kmax
values, from 0.1 h Mpc−1 up to 0.45 h Mpc−1.

5.4.3. Figure of merit

As expected, the FoM monotonically increases when including
additional information from more non-linear scales, with a rela-
tive gain with respect to the most relaxed configuration (all bias
parameters free to vary, at kmax = 0.1 h Mpc−1) that becomes
larger moving towards lower redshifts. In fact, extending the fit-
ting range to the maximal value of kmax = 0.45 h Mpc−1, we find
that the trend for the FoM of the different bias configurations
is approximately 10, 15, 20 and 30 times larger than the refer-
ence at z = 1.8, 1.5, 1.2 and 0.9, respectively. The only excep-
tion is represented by the high-redshift snapshots of the Model 3
sample, for which the total galaxy power spectrum on mildly
non-linear scales becomes dominated by the shot-noise correc-
tion earlier than for the rest of the samples, and for which we
observe that the FoM reaches a plateau at kmax & 0.3 h Mpc−1.
As expected, the case with two less degrees of freedom con-
sistently gains more constraining power on the cosmological
parameters, leading to much tighter constraints in particular at
the largest kmax value we probe. However, we note that these
gains are directly correlated with the breaking of the model in
terms of FoB at z = 0.929, and might therefore lead to biased
cosmological constraints if used in a real-data analysis. Never-
theless, for most of the tested cases, combining the two relations
still leads to acceptable results up to the maximal scale we are
considering.

29 The breaking of this particular configuration, with both bG2 and bΓ3

fixed to the bias relations, also exhibits a FoM at kmax = 0.45 h Mpc−1

that is lower than the one obtained at lower kmax. We do not explore this
configuration, since the model cannot be used with this configuration,
but we argue that a more careful investigation of this effect should be
carried out using a larger set of simulations, to reduce the importance of
cosmic variance, which might partially drive these effects.

5.4.4. Summary

Overall, we find that fixing only the quadratic tidal bias bG2 leads
to the most stable results, with a FoB that is typically – except
for some spurious scale cut – well within the 68% percentile of
the corresponding distribution, and with a FoM which is system-
atically larger than in the case where all the parameters are free
to vary. The performance of the case with a fixed cubic tidal bias
is also consistent, but with the caveat that the underlying bias
parameters experience a strong degeneracy among themselves,
as shown in Sect. 5.2. However, we find that this case typically
achieves a FoM larger than the one with fixed quadratic tidal
bias, with the latter catching up only at large enough values of
kmax. Also, in a range of scales up to kmax ∼ 0.3 h Mpc−1, the case
with relations applied to both tidal biases matches almost identi-
cally the case with fixed cubic bias, highlighting again how this
parameter has a much larger impact when constraining the cos-
mological parameters considered in this analysis.

Nevertheless, as already mentioned in Sec. 3.1.3, we argue
that the applicability of the excursion set and coevolution rela-
tions may partially fail when adopting them with real data, given
the lack of any realistic dependency on other quantities different
from the halo mass, such as assembly bias (Croton et al. 2007;
Barreira et al. 2021; Hadzhiyska et al. 2021b; Lazeyras et al.
2023) or the scatter in the 〈N〉 (Mh) relation (Behroozi et al.
2010; Zehavi et al. 2011). For this reason, extended studies on
more realistic simulated samples will be needed to properly
benchmark these relations when applying them to real Euclid
observations.

As a final remark, in Nicola et al. (2024) the authors carried
out a comparison similar to the one presented in this paper, by
forecasting the impact of different bias models in the analysis of
the Rubin Observatory Legacy Survey of Space and Time (LSST;
Ivezić et al. 2019) photometric observations. Differently from
this work, their analysis showed that the use of minimal bias
models with 1/2 less degrees of freedom could bias the recovery
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of cosmological parameters at more than 3σ also when restrict-
ing the analysis to relatively large scales (kmax ∼ 0.15 h Mpc−1).
We argue that this apparent inconsistency is mainly imputable to
the different observables selected in the two analyses. While in
this work we make use of the real-space galaxy power spectrum
at some fixed redshifts z & 1, their analysis is focused on the
3× 2-point data combination in tomographic bins that are for the
most part at lower redshifts (0 < z < 1), for which the assump-
tion of a negligible tidal or higher-derivative bias is no longer
valid. As a further evidence, the dashed black lines in Figs. 9
and 10 show how setting both tidal biases to 0 makes the Eule-
rian bias model break sooner when considering the snapshots at
lower redshifts, especially the one at z = 0.9.

5.5. Dependence on sample volume

As anticipated in Sect. 2.3, in addition to performing a model
selection using extremely high-precision measurements – with a
Gaussian covariance matrix derived assuming the full box vol-
ume of the Flagship I simulation – in this section we test the
performance of the Eulerian bias expansion for smaller values
of the galaxy sample volume, in order to provide more realistic
forecasts for the analysis of the Euclid spectroscopic data. Once
again, we remind the reader that for these tests we consider HOD
catalogs with a number density larger than the one expected for
the real galaxy samples, and that more realistic mocks will be
used in forthcoming analyses that will also consider observa-
tional systematic effects, such as target purity and incomplete-
ness, and observational effects such as the radial and angular
selection function.

In this section, we consider the same data vectors obtained
from measurements of the Flagship simulation snapshots already
used in the previous ones. The dependence on the volume is
explored by rescaling the corresponding covariance. We con-
sider four different volumes corresponding to possible Euclid-
like shells, as explained in Sect. 2.3. For each comoving snap-
shot, at z = (0.9, 1.2, 1.5, 1.8), with reference volume Vbox,
we define the volume Vshell of a spectroscopic bin correspond-
ing to a total angular surface of 15 000 square degrees – and
with a depth of ∆z = (0.2, 0.2, 0.2, 0.3) – following the choices
made in Euclid Collaboration (2020). The three additional vol-
ume rescalings are obtained by selecting the values that divide
the interval [η, 1] into four equi-partitioned subintervals, where
η = Vbox/Vshell.

In Fig. 12 we show the trends of the FoB and FoM for the
previously defined samples, with Model 1 and 3 in the top and
bottom two rows, respectively. Thick solid lines correspond to
the case with bΓ3 fixed to the coevolution relation, which we
selected as one of the best performing model among the ones
that we have tested in Sect. 5.4. On the contrary, thin dashed
lines correspond to the case with all the bias parameters free to
vary. Different colours identify the different covariance matrices
used in the fits, from the already shown full-box case – in light
blue/orange – to the case corresponding to the Euclid-like shells
– in dark blue/orange. As expected, we find that in both cases
the FoB for the two cosmological parameters (h, ωc) becomes
progressively smaller, reflecting the increasing amplitude of the
covariance matrices used in the fits of the input data vectors. At
the same time, we observe how this trend is tightly correlated to
a decrease in the FoM, with the severity of the drop being almost
proportional to the factor between the original and the rescaled
volume, η.

It comes with no surprise that the reference bias model is
well-performing up to the highest value of kmax we consider,

even under realistic assumptions. Additionally, for the case with
fixed bΓ3 , we can observe how the precision on the cosmological
constraints reaches a plateau above a typical threshold that corre-
sponds to the transition scale between the regimes dominated by
the signal and by the shot-noise contribution, respectively. For
this reason, it is possible to gain additional constraining power
by pushing the analysis to high values of kmax at z = 0.9, for
which the number density of the sample is significantly larger
than the one of the high-redshift samples. In contrast, when all
the parameters are free to vary, the trend for the FoM curves is
to gain additional constraints from smaller scales, even above
the scale of transition, possibly pointing to a further breaking of
parameter degeneracies that are no longer present when fixing
the value of bΓ3 to the coevolution relation.

As a final consideration, we note that the Eulerian bias
expansion is performing significantly well for all the consid-
ered rescalings of the covariance matrix. The constraining power
of the EFT model in terms of the combination {h, ωc} can be
enhanced employing one of the coevolution relations described
in Sect. 3.1.3 without the appearance of systematic errors, even
when considering samples with a number density significantly
larger than the one expected from the real Euclid data. This
analysis, limited to real space, motivates further tests including
higher-order statistics, such as the galaxy bispectrum, and tak-
ing into account redshift-space distortions. These topics will be
properly explored in the next entries of this series.

6. Conclusions

In this paper we carried out an analysis meant to assess the
performance of state-of-art models for one-loop galaxy bias
over a redshift range that is well representative of the spec-
troscopic galaxy sample that will be one of the main targets
of Euclid. We employed a set of four FoF halo catalogues
from comoving snapshots of the Flagship I simulation at z =
(0.9, 1.2, 1.5, 1.8), which were subsequently populated with Hα
galaxies using HOD prescriptions based on the Model 1 and 3
from Pozzetti et al. (2016). Each snapshot features an outstand-
ing volume of (3780 h−1 Mpc)3 and a high comoving number
density (from ∼10−4 h3 Mpc−3 to ∼10−3 h3 Mpc−3), which cor-
responds to a flux limit of fHα = 2 × 10−16 erg cm−2 s−1. These
snapshots can therefore be used to assess the accuracy of the
perturbative bias expansion at a high level of precision.

We tested two galaxy bias models for the full shape of
the real-space galaxy power spectrum. The first one adopts a
Eulerian bias expansion, and is based on the recently devel-
oped EFTofLSS modelling, in which the impact of small-scale
physics, as well as the integration of ultraviolet modes in SPT,
can be captured by a set of counter terms, which reduce to a
single one when considering real-space coordinates. The final
parameter space consists of two cosmological parameters, the
Hubble parameter h, and the cold dark matter density param-
eter ωc, plus a set of six nuisance parameters, consisting of
the linear bias b1, the quadratic bias b2, the tidal quadratic and
cubic biases, bG2 and bΓ3 , the matter counter term and higher-
derivative bias c0, and two extra parameters representing devi-
ations from Poissonian shot noise: a constant offset, αP,1, and a
scale-dependent term, αP,2. The second model adopts a similar
one-loop expansion of the galaxy power spectrum, but this time
using Lagrangian coordinates, and is based on the emulation of
the individual terms of the expansion starting from a limited set
of high-resolution N-body simulations. This is achieved thanks
to the cosmology-rescaling technique presented in Angulo et al.
(2021). In addition to the two cosmological parameters, this
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Fig. 12. Evolution of the FoB and FoM as a function of the different choice for the rescaling of the reference volume, as shown in the legend.
Solid and dashed curves correspond to the case with bΓ3 fixed to the coevolution relation and to the case with all the parameters free to vary,
respectively. All configurations of the top two rows correspond to the fits of the Model 1 HOD samples, while the bottom two rows do the same
for the Model 3 HOD samples. Grey bands in the FoM panels identify the scale at which the Poisson shot-noise contribution assumes the same
height of the underlying clustering signal, marking the transition to the shot-noise-dominated scales.
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model features the linear bias b1, the quadratic bias b2, the
tidal quadratic bias bs2 , the Laplacian bias b∇2δ, and a stochas-
tic parameter representing a constant deviation from Poissonian
shot noise, αP,1. In this work, we made use of the two imple-
mentations available in the public codes COMET (Eggemeier et al.
2022) for the EFT model – with accuracy tests carried out against
external benchmarks, as shown in Appendix D – and baccoemu
(Zennaro et al. 2023) for the hybrid model.

In the main section of this work, we present tests of the rel-
ative performance of these two galaxy bias models, while in the
subsequent sections we show how we determined the range of
validity of the EFT model and tested the impact of fixing one or
more parameters of the Eulerian bias expansion to some physi-
cally motivated relations in a way that allows us to break strong
parameter degeneracies and better constrain the cosmological
parameters. In all cases, we determined the range of validity of
a given bias relation and scale cut by means of three different
performance metrics: the goodness of fit, the figure of bias, and
the figure of merit. The latter two metrics are computed on the
{h, ωc} combination in order to quantify the accuracy and preci-
sion of the model in terms of these two parameters.

We compare the performance of the Eulerian and hybrid
Lagrangian bias models using a rescaled covariance to match
the size of Euclid-like redshift shells (assuming a full-sky area of
15 000 deg2). Our results highlight how both models are capable
of providing unbiased measurements of the cosmological param-
eters up to kmax = 0.45 h Mpc−1 for all four redshift snapshots,
consistently with the 1σ confidence interval for the FoB distri-
bution. In terms of FoM, baccoemu reaches the same amplitude
of the maximally achievable FoM of the EFT case already at
a lower kmax value, most likely due to the absence of the cubic
tidal bias parameter that is instead free to vary in the EFT chains.
As expected, when fixing this parameter, the EFT model per-
forms similarly to baccoemu, and for most of the configura-
tions it achieves a slightly larger FoM. When considering the
covariance matrix corresponding to the full-box of the comov-
ing snapshots (from three to seven times larger than the Euclid-
like shells, depending on the considered redshift) we find that
the EFT model manages to recover the cosmological parameters
consistently with the 1σ confidence interval. However, there are
some spurious cases at low values of kmax that are affected by
projection effects, which can be alleviated by fixing the value
of bΓ3 . On the other hand, with this level of precision, we hit
the intrinsic emulation error of baccoemu, which leads to bias
in the inferred parameters when considering high kmax values
at low redshift. Including an extra component to the covariance
matrix – corresponding to 0.5% of the amplitude of the galaxy
power spectrum, based on the combined systematic error from
the emulation and from the measurements used to train the emu-
lator – brings the FoB of baccoemu back within the 1σ confi-
dence interval. Also in this case, on scales for which the intrin-
sic error of baccoemu is not the dominant contribution, that is,
kmax . 0.2 h Mpc−1, its FoM is consistent with that of the EFT
model. Not including the 0.5% extra error, we note that the FoM
is consistent with – and in some cases even larger than – the cor-
responding EFT results, demonstrating the potential gain to be
obtained by improving the accuracy of next-generation emula-
tors of the full shape of the galaxy power spectrum.

We then focus exclusively on the EFT model: we first
describe the fits we performed at fixed cosmology to check
the self-consistency of the one-loop galaxy bias expansion in
terms of the linear bias b1 and the scale-independent shot-noise
parameter αP,1. The fiducial values for these parameters were fit-
ted from the measured galaxy-to-matter-power-spectrum ratio,

assuming a leading-order recipe on scales of k < 0.08 h Mpc−1.
The result is that, when leaving all parameters free to vary, it
is possible to recover – at better than 2σ – the value of both
parameters for the majority of the samples – two HOD mod-
els times four different redshifts – and scale cuts up to kmax =
0.45 h Mpc−1. The only significant deviation takes place at the
lowest redshift we consider, z = 0.9, for which we observe a
departure from the fiducial values soon after kmax = 0.2 h Mpc−1.
The latter is however consistent with sample variance expecta-
tions, as observed in a set of ten different noisy realisations of
a synthetic theory data vector (see Appendix G). The system-
atic errors are partially alleviated when considering the posi-
tion in parameter space corresponding to the maximum of the
likelihood, showing how the deviations might be imputable to
projection effects. Fixing one of the two tidal biases to either
an excursion-set-derived relation or to the coevolution relation
still results in constraints that are consistent with the 2σ confi-
dence interval. In particular, the former is preferred in terms of
constraints of the model parameters because of the simultaneous
breaking of the strong degeneracies with both the quadratic bias
b2 and the cubic tidal bias bΓ3 . We find that fixing both param-
eters at the same time still works extremely well (with a typical
recovery of b1 and αP,1 within the 68% confidence interval) even
for the largest kmax values when considering the high-redshift
snapshots. However, at low redshift, this choice can lead to devi-
ations of more than 3σ for some of the configurations we test,
especially when the maximum scale included in the fit is above
a typical scale of kmax ∼ 0.3 h Mpc−1.

We explicitly checked whether or not a next-to-leading-order
correction to the shot-noise contribution (αP,2) can improve the
model performance. In all cases considered, the marginalised
posterior distribution for αP,2 is consistent with zero within 2σ,
suggesting this additional parameter is not needed, at least for
the description of these galaxy samples. Additionally, the scales
that can constrain this parameter soon become dominated by the
underlying shot-noise correction, effectively breaking the per-
turbative description of the latter in a Taylor expansion. A more
significant test should be carried out considering more realis-
tic galaxy samples, in terms of galaxy number density, and also
including RSDs and observational systematic effects.

When the parameter space is extended to also include the
two cosmological parameters, we note a good recovery of the
fiducial values across the whole range of separations we test.
The FoB exhibits an increasing trend moving towards high red-
shifts and low values of kmax, which is due to projection effects
when marginalising over all the nuisance parameters. This trend
can be partially corrected by fixing the cubic tidal bias bΓ3 to
the coevolution relation, and indeed with this configuration it
is possible to consistently recover unbiased – within the 68%
confidence interval – constraints on the (h, ωc) pair. Also in this
case, fixing both tidal biases at the same time can lead to biased
cosmological constraints, with the amplitude of the systematic
errors increasing towards lower redshifts, which suggests a pre-
mature breaking of the tested relations. In terms of goodness of
fit, we do not observe a significant change in the average χ2 when
fixing some of the model parameters to the relations presented
in Sect. 3.1.3. Finally, the FoM of the cosmological parame-
ters clearly increases when reducing the degrees of freedom of
the model. However, the configuration with both tidal biases
fixed results in biased constraints for the low-redshift samples,
while the case with only bΓ3 fixed can be employed down to
smaller scales. This configuration displays a relative gain in
FoM that ranges from 1.5 to 2 times, with respect to the case
with all the parameters free. Relative gains in the FoM are more
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concentrated at kmax . 0.3 h Mpc−1, where the model with fixed
bΓ3 experiences a steep increase that is then followed by a more
modest growth. The configuration with bG2 fixed also displays a
FoM larger than the case with all parameters free to vary, but
with a steady slope that manages to catch up with the other
configuration only for the largest kmax values that we tested.
Overall, we find that the one-loop galaxy bias expansion is suf-
ficiently accurate on the redshift range that we are exploring,
1 . z . 2, even deep within the mildly non-linear regime, at
kmax ∼ 0.4 h Mpc−1, with a statistical significance on the cosmo-
logical parameters that can be enhanced by fixing some of the
degrees of freedom of the model.

In order to understand the impact of a different statistical pre-
cision on the input data vectors, we rescaled the Gaussian covari-
ance matrix used in the fitting procedure to match the volume of
a Euclid-like spectroscopic bin, with three additional interme-
diate volume choices selected between the Euclid-like bin and
the original volume of the comoving box. A smaller volume
therefore corresponds to a reduced amplitude in the covariance
matrix, resulting in a decrease in both FoB and FoM in a way
that is proportional to the fraction of lost volume. We therefore
confirm that these models of galaxy bias can be eventually used
to analyse the real spectroscopic data collected by Euclid.

This paper stands as the first installment of a series of works
meant to validate the theoretical framework that will be used
to analyse the large-scale galaxy distribution as observed in the
actual measurements of Euclid. Here we focus on the modelling
of the real-space galaxy power spectrum of the spectroscopic sam-
ple, which stands as an important test for the complementary pho-
tometric analysis that is going to be carried out by Euclid, in the
shape of the popular 3× 2-point data combination. In parallel, in
Euclid Collaboration: Eggemeier et al. (in prep.) we consider the
joint analysis of the real-space galaxy power spectrum and bispec-
trum, exploring a consistent description of non-linear bias in both
observables. Two additional papers in the series (Euclid Collabo-
ration: Camacho et al., in prep., Euclid Collaboration: Pardede et
al., in prep.) will extend the modelling tests to redshift space. In
parallel, a different set of papers will be devoted to a similar analy-
sis of configuration-space statistics (Euclid Collaboration: Guidi
et al., in prep., Euclid Collaboration: Kärcher et al., in prep., Euclid
Collaboration: Pugno et al., in prep.).
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Appendix A: Matter power spectrum fits and the
fiducial cosmology
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Fig. A.1. Marginalised one-dimensional constraints as a function of red-
shift obtained by fitting the measured matter power spectrum with the
EFT model (blue) and the baccoemu emulator (orange). Solid lines and
shaded bands mark the mean and the standard deviation of the pos-
terior distribution, respectively. For both models, the fit is carried out
up to maximum wave mode kmax = 0.25 h Mpc−1, using a Gaussian
covariance matrix corresponding to the full box volume of the Flagship
I simulation. Dashed lines denote the nominal fiducial values of the
parameters {h, ωc, As}. In the bottom panel we show the marginalised
constraints on the c0 EFT counterterm parameter.

In the main body of this article, we carried out tests meant to
assess the level of accuracy of different models for the one-
loop galaxy power spectrum, using measurements coming from
the Flagship I simulation. In addition to this analysis, we also
tested our model for the matter power spectrum on a set of
measurements obtained on the fly while running the PKDGRAV3
code in the redshift range [0.7, 2.4]. Each measurement consists
of the matter power spectrum, measured in the range of wave
modes defined by the interval [0.01, 4] h Mpc−1, using 18 lin-
early spaced bins up to k ∼ 0.03 h Mpc−1 and other 84 logarith-
mically spaced bins after.

We run two independent analyses, the first using the next-to-
leading order matter power spectrum obtained in the EFTofLSS
framework (Eq. 19) and the second using the non-linear matter
power spectrum from the baccoemu emulator. We use an ana-
lytical Gaussian covariance matrix to describe the error on the
matter power spectrum measurements, assuming the full volume
of the simulation box, that is, (3780 h−1 Mpc)3. For both models,
we limit the maximum mode of the fit to kmax = 0.25 h Mpc−1,
within the expected PT range of validity for the relevant red-
shifts.

In Fig. A.1 we show the marginalised 1d posterior distribu-
tions for {h, ωc, As} as a function of redshift. For this test we
limit the redshift range to the first four snapshots (z < 1.3),
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Fig. A.2. Ratio between the Flagship matter power spectrum measure-
ments and predictions obtained using baccoemu, considering both the
nominal cosmology (upper panel) and the fiducial one (bottom panel).
In both cases, different colours correspond to a different redshift, as
shown in the legend. The grey shaded band mark the intrinsic error of
the power spectrum measurements to which an additional 1% contribu-
tion has been added to include the error contribution of the emulator, as
explained in Sect. 5.1.

since the results are sufficient to draw conclusions on the agree-
ment between data vector and theory models. Also shown, with
dashed lines, are the nominal values of the parameters provided
in Potter et al. (2017). We find that all cosmological parameters
are obtained with a bias of 3–4σ from their fiducial values, in
a way that is consistent across redshifts, as highlighted by the
almost constant trends in each of the panels. In addition, the EFT
model and baccoemu are consistent at better than 1σ with each
other, pointing to a systematic effect that cannot be attributed to
the particular model used to describe the data vectors.

In the upper panel of Fig. A.2 we show the ratio of the
non-linear matter power spectrum from the baccoemu emulator
assuming the nominal cosmology to the measured one for the
different redshifts. We note that the discrepancy among the two
sets of curves is apparently due to a different tilt in the full-shape
of the matter power spectrum, here corresponding to the nomi-
nal value of ns = 0.96. Indeed we note that the disagreement
between nominal and recovered cosmology can be alleviated for
all parameters by assuming a different value of ns, while keeping
all the remaining parameters fixed to their nominal value (with
the exception of the scalar amplitude As, since the latter has to
be modified to recover the nominal value of σ8). This is also
supported by the matter transfer function files that were gener-
ated to set-up the initial conditions for the Flagship I simulation,
which confirmed how all the parameters affecting the shape of
the transfer function {ωc, ωb, Mν} are consistent with the nomi-
nal values listed in Table 1.
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We therefore performed new fits to the Flagship I matter
power spectra keeping all parameters fixed (including the Hub-
ble parameter h) to the nominal values, and only sampling those
controlling the primordial matter power spectrum, that is, the
scalar amplitude As and index ns. The best-fit value that we found
for the spectral index is close to the value of ns = 0.97. This leads
to consistent results across the redshift range we are considering,
as well as for a broad range of scales, up to k ∼ 4 h Mpc−1, as
shown in the bottom panel of Fig. A.2.

The new values of the spectral index and scalar amplitude,
along with nominal values for the other parameters constitute
what we refer to as the fiducial cosmology. This is the one given
in Table 1 and adopted for all predictions throughout this paper.

Appendix B: Standard perturbation theory

In this section we report the full expressions for several quan-
tities that are defined in Sect. 3 and used throughout the rest
of the paper. For a more detailed and exhaustive description of
the framework on which cosmological PT is based, we refer the
reader to the comprehensive review by Bernardeau et al. (2002).

The main idea behind cosmological PT is that the generic
solution to the growth of non-linear density and velocity fluc-
tuations – δ(k) and θ(k) – in an expanding universe can be
expressed in terms of linear theory solutions, δL(k). Assum-
ing an EdS universe, it is possible to perfectly separate the
time- and space-dependence of δ(k) and θ(k) (Goroff et al. 1986;
Jain & Bertschinger 1994). In an arbitrary ΛCDM cosmology,
it can be shown that approximate solutions can be found with
the same separation (Donath & Senatore 2020), especially in a
range of redshift for which the EdS cosmology is still a valid
approximation. In this case we can write the density and veloc-
ity divergence fields using an expansion of the form

δ (k, τ) =

∞∑
n=1

Dn(τ) δ (n)(k) , (B.1)

θ (k, τ) = −H(τ) f (τ)
∞∑

n=1

Dn(τ) θ (n)(k) , (B.2)

where τ is the conformal time defined via dt = a(τ) dτ, a(τ) is
the cosmic scale factor, H(τ) ≡ d ln a(τ)/dτ is the conformal
Hubble expansion factor, and f (τ) ≡ d ln D1(τ)/d ln a(τ) is the
growth rate. The n-th order growth factor Dn characterises the
time-dependence of the density and velocity field, and reduces
to Dn = a n in the EdS limit. Assuming the conservation of mass,
momentum, and the Poisson equation, the individual n-th order
corrections to the density and velocity fields can be written as

δ (n)(k) =

∫
q1

. . .

∫
qn

δ (3)
D (k − q1...n) Fn(q1, . . . , qn)

× δL(q1) . . . δL(qn) ,
(B.3)

θ (n)(k) =

∫
q1

. . .

∫
qn

δ (3)
D (k − q1...n) Gn(q1, . . . , qn)

× δL(q1) . . . δL(qn) ,
(B.4)

where the n-th order PT kernels Fn and Gn are homogeneous
functions of the wave vectors

(
q1, . . . , qn

)
, and are built starting

from the fundamental mode-coupling functions,

α (k1, k2) ≡
k12 · k1

k 2
1

, (B.5)

β (k1, k2) ≡
k 2

12(k1 · k2)

2 k 2
1 k 2

2

, (B.6)

with k12 = k1 + k2. At linear order these quantities clearly
become unity, F1 = G1 = 1, so to recover linear theory pre-
dictions, that is, δ (1)(k) = θ (1)(k) = δL(k). At higher order, these
kernels can be derived using recursive relations, which read

Fn
(
q1, . . . , qn

)
=

n−1∑
m=1

Gm(q1, . . . , qm)
(2n + 3) (n − 1)

×
[
(2n + 1)α(k1, k2) Fn−m (qm+1, . . . , qn)

+ 2 β(k1, k2) Gn−m(qm+1, . . . , qn)
]
, (B.7)

Gn
(
q1, . . . , qn

)
=

n−1∑
m=1

Gm(q1, . . . , qm)
(2n + 3) (n − 1)

×
[
3α(k1, k2) Fn−m(qm+1, . . . , qn)

+ 2n β(k1, k2) Gn−m(qm+1, . . . , qn)
]
, (B.8)

where k1 = q1 + . . . + qm and k2 = qm+1 + . . . + qn. As a clas-
sical example, needed for the calculation of the one-loop galaxy
power spectrum, the second-order PT kernels for the non-linear
evolution of the matter density and velocity fields are defined as

F2(k1, k2) =
5
7

+
1
2

k1 · k2

k1k2

(
k1

k2
+

k2

k1

)
+

2
7

(k1 · k2)2

k 2
1 k 2

2

, (B.9)

G2(k1, k2) =
3
7

+
1
2

k1 · k2

k1k2

(
k1

k2
+

k2

k1

)
+

4
7

(k1 · k2)2

k 2
1 k 2

2

, (B.10)

while the explicit expression for the third-order kernel of the
matter density field, F3(k1, k2, k3), can be found in Goroff et al.
(1986), and it is not reported here for practical purposes.

When considering the galaxy power spectrum Pgg, we need
to evaluate the usual two-point statistics defined by the ensemble
average of the galaxy density field times itself,〈
δg(k) δg(k′)

〉
= (2π)3 δ (3)

D (k + k′) Pgg(k) . (B.11)

At third order in the perturbations of δ, we obtain the one-loop
expression for the power spectrum presented in Eq. (27), where
all the next-to-leading order corrections are grouped into mode-
coupling and propagator-like contributions. In the former, the
loop integrand is proportional to PL(|k − q|) PL(q), reflecting the
mixing of modes due to non-linear evolution, while in the lat-
ter the integrals are carried out on the factor PL(k) PL(q), corre-
sponding to a time propagation of the initial density field. Sep-
arating these two groups into individual corrections, each one
multiplied by a given combination of bias parameters, we end
up with the following scheme,

P 1-loop
gg (k) = b 2

1 P 1-loop(k)

+ b1b2 Pb1b2 (k) + b1bG2 Pb1bG2
(k)

+ b1bΓ3 Pb1bΓ3
(k) + b 2

2 Pb2b2 (k)

+ b2bG2 Pb2bG2
(k) + b 2

G2
PbG2 bG2

(k) ,

(B.12)

where all the previous terms can be represented as loop integrals,

P 1-loop(k) = P 1-loop,MC(k) + P 1-loop,Prop(k)

= 2
∫

q
F 2

2 (k − q, q) PL(|k − q|) PL(q)

+ 6 PL(k)
∫

q
F3(q,−q, k) PL(q) ,

(B.13)
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Pb1b2 (k) = 2
∫

q
F2(k − q, q) PL(|k − q|) PL(q) , (B.14)

Pb1bG2
(k) = P MC

b1bG2
(k) + P Prop

b1bG2
(k)

= 4
∫

q
F2(k − q, q) S (k − q, q) PL(|k − q|) PL(q)

+ 8 PL(k)
∫

q
F2(k,−q) S (k − q, q) PL(q) ,

(B.15)

Pb1bΓ3
(k) = −

16
7

PL(k)
∫

q
S (k − q, q) S (k, q) PL(q) , (B.16)

Pb2b2 (k) =
1
2

∫
q

PL(|k − q|) PL(q) , (B.17)

Pb2bG2
(k) = 2

∫
q

S (k − q, q) PL(k − q, q) PL(q) , (B.18)

PbG2 bG2
(k) = 2

∫
q

S 2(k − q, q) PL(k − q, q) PL(q) . (B.19)

In the previous set of equations, the Pb1bΓ3
contribution is char-

acterised by a single propagator-like term, which is perfectly
degenerate with the second addend contributing to Pb1bG2

. Fol-
lowing the expansion that has been adopted in this paper, the
degeneracy results from the equality

Pb1bΓ3
(k) =

2
5

P MC
b1bG2

(k) . (B.20)

As shown in the main body of this article, breaking this degen-
eracy with the information coming from the galaxy power spec-
trum alone is not possible, and for this reason we often keep one
of the two tidal bias parameters fixed to some physically moti-
vated relation, such as the excursion-set-based relation (Eq. 37)
for bG2 , or the coevolution relations for both bG2 and bΓ3 (Eqs.
35 – 36).

The behaviour of all the loop integrals listed above is to con-
sistently converge to zero at infrared modes, since the non-linear
kernel Fn(k1, . . . , kn) scales as k2 when k ≡ k1 + . . . + kn goes
to zero, reflecting the range of validity of linear theory predic-
tions. The only exception is represented by the Pb2b2 term, which
features a non-zero asymptote for k → 0. This limit can be
manually set to zero via a redefinition of the loop integral, such
that

Pb2b2 (k) =
1
2

∫
q

PL(q)
[
PL(|k − q|) − PL(q)

]
. (B.21)

In turn, the extra contribution

P noise
b2b2

(k) =

∫
q

P 2
L(q) (B.22)

can be absorbed by the constant shot-noise parameter, αP,1,
which we have defined in Sect. 3.1.2, as they both corre-
spond to constant shift in the amplitude of the galaxy power
spectrum.

Appendix C: Implementation of the wiggle vs.
no-wiggle split

In this section, we investigate the prescriptions used to obtain a
smooth template Pnw starting from the linear matter power spec-
trum. This is an important aspect of the theoretical recipe that
we adopt, as the wiggle-no wiggle split is essential for the cor-
rect implementation of IR-resummation, as shown in Sect. 3.1.
While several different algorithms can be found in the literature,
here we test three different methods.

The first one is based on a one-dimensional Gaussian
smoothing (GS1D), and consists of a rescaling of the original
formula for the featureless matter power spectrum PEH, origi-
nally presented in Eisenstein & Hu (1998), to match the broad-
band amplitude of the linear matter power spectrum. In practice,
we follow the approach of Vlah et al. (2016), who defines the
smooth component of the linear matter power spectrum as

Pnw(k) = PEH(k)F
[

PL(k)
PEH(k)

]
, (C.1)

where F is meant to filter out the broadband difference between
PL and PEH. We choose a functional form for F corresponding
to a Gaussian filter, that is,

F
[
f (k)

]
=

log10(e)
√

2πλ

∫
dq

f (q)
q

exp
[
−

1
2λ2 log 2

10

(
k
q

)]
, (C.2)

where λ determines the variance of the Gaussian filter used to
rescale the ratio of the linear to the featureless power spectrum.
In this analysis, we fix its value to λ = 0.25.

The result of this approach is presented in the top panel of
Fig. C.1, where we show a comparison between the shape of
the original Eisenstein & Hu (1998) smooth function and the
one presented in Eq. (C.1) using the fiducial cosmology from
Table 1 at z = 0. From the comparison, it is clear that the broad-
band of PEH features a non-negligible tilt with respect to the one
of the linear matter power spectrum, reaching deviations of up
to 2% across the whole BAO wave mode interval. This differ-
ence can be corrected using the filtering strategy, whose out-
put is completely consistent with the broadband shape of PL,
with the only exception of a small residual of ∼ 0.5% peaking at
0.5 h Mpc−1 . k . 1 h Mpc−1.

The second approach makes use of a discrete sine transform
(DST), and has been originally proposed in Hamann et al. (2010)
(see Chudaykin et al. 2020 and Ivanov et al. 2020 for an applica-
tion to real data). This is based on a fast Fourier transformation
of the input matter power spectrum, and in the removal of the
bump corresponding to the BAO peak. This step is carried out
based on the value of the second derivative of the sine transform,
and the generated gap is subsequently filled using a cubic-spline
interpolation. The new function is finally transformed back into
Fourier space to deliver a power spectrum shape deprived from
BAO oscillations.

The third and final approach is based on the approximation
of the BAO wiggles with a basis spline (B-spline) curve, starting
from a set of knots {ki, Pi}, and subsequently finding the spline
coefficients that maximise the likelihood with the original power
spectrum (see e.g. Vlah et al. 2016, for a similar implementa-
tion).

The bottom panel of Fig. C.1 shows a comparison between
the three methods summarised above. We note a non-negligible
difference, with discrepancies on the BAO scales that can reach
a fraction of percent, depending on the considered approach
(see Moradinezhad Dizgah et al. 2021, for similar conclusions).
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Fig. C.1. Ratio between the no-wiggle and the linear matter power spec-
trum. Top: Comparison between the raw featureless power spectrum
PEH and the no-wiggle power spectrum Pnw computed using Eq. (C.1).
In both cases, the power spectra are computed at z = 0 using the fiducial
cosmology from Table 1. Bottom: Comparison between the three differ-
ent methods we tested to obtain the no-wiggle power spectrum Pnw. The
thick orange line corresponds to the method we selected, i.e. the con-
volution with a Gaussian smoothing function, while the other two lines
represent a Discrete Sine Transform (red) and a basis spline (blue). In
both panels, the grey shaded bands represent the 1% (dark grey) and 2%
(light grey) thresholds.

Nevertheless, at linear order these differences are diluted by
the recombination of the smooth and wiggling component at
a later stage, so that the net result on the IR-resummed non-
linear galaxy power spectrum is going to be much smaller than
the values exhibited in this plot. We highlight a major discrep-
ancy between the DST method and the other two that reaches its
maximum at a scale k ∼ 0.01 h Mpc−1, which roughly coincides
with the position of the turnaround in the matter power spectrum.
Because of this major discrepancy, and since all three methods
behave in a slightly different way on the BAO scales, we decided
to adopt the GS1D method throughout the analysis presented in

this paper. We observe a marginal residuals of this method on
mildly non-linear scales, at 0.5 h Mpc−1 . k . 1 h Mpc−1, which,
once again, is not likely to significantly bias our results

At the same time we highlight how this approach is most
likely going to perform worse when considering cosmologies
beyond the vanilla ΛCDM model, such as those including mas-
sive neutrinos. In these cases, depending on the magnitude of the
deviation from ΛCDM, the broadband shape of PEH can deviate
from that of PL by up to 10% (as quoted in Eisenstein & Hu
1998). We therefore adopt one of the other two methods for
future analyses, such as for the upcoming analysis of the Flag-
ship II simulation.

Appendix D: Comparison between model
implementation

In order to estimate the systematic error budget due to the imple-
mentation of the algorithm for the one-loop model presented in
Sect. 3.1 and Appendix B, we make use of four individual imple-
mentations, based on four independent codes provided by several
group members. Each code features a different way to compute
the loop corrections presented in Sect. B.

These include a two-dimensional integration implemented
within the Cuba library 30 (Hahn 2005) used to generate the
training set of the COMET emulator (Eggemeier et al. 2022),
and implemented in the CosmoSIS-gClust 31 code (cour-
tesy of A. Moradinezhad Dizgah). Alternative methods take
advantage of a Fast Fourier Transform approach, such as
FastPT 32 (McEwen et al. 2016) – implemented in the PBJ code
(Oddo et al. 2020, 2021; Rizzo et al. 2023; Moretti et al. 2023)
– and FFTLog 33 (Hamilton 2000; Simonović et al. 2018) – used
in the TNSToolBox 34 code (courtesy of S. de la Torre) and again
in CosmoSIS-gClust.

In Fig. D.1 we show the systematic deviation between dif-
ferent computations of the same terms, including the leading-
and next-to-leading order correction to the IR-resummed matter
power spectrum, and the six one-loop bias corrections defined
in Eqs. (B.14 – B.19). For this exercise, we compute a common
data vector using the fiducial Flagship cosmology from Table 1
at z = 0. We assume as a reference measurement the one per-
formed using a direct integration of the wave number q within
the range of scales [0.00001, 100] h Mpc−1, which proved to be
a sensible choice to achieve the convergence of the different
loop integrals. Finally, we compare the different terms evalu-
ated using the four codes described in the previous paragraph.
We find an overall optimal consistency among the different the-
ory implementations, with all terms being in agreement at better
than 0.01% on the overall range of scales shown in Fig. D.1. We
observe a slightly worse concordance between different compu-
tations of the propagator-like terms, that is, P IR-(LO+NLO)

mm , which
contains the contribution P13, and more importantly Pb1bΓ3

, for
which the discrepancy can become as large as ∼ 0.05% on scales
of k ∼ 1 h Mpc−1. However, we consider this difference com-
pletely negligible, since this value is much smaller than the sta-
tistical precision of the data vectors, and since this scale is com-
pletely outside of the range of scales considered in this work.

30 http://www.feynarts.de/cuba/
31 To be made publicly available soon.
32 https://github.com/JoeMcEwen/FAST-PT/
33 https://jila.colorado.edu/~ajsh/FFTLog/
34 https://github.com/sdlt/TNS_ToolBox/

A216, page 35 of 40

http://www.feynarts.de/cuba/
https://github.com/JoeMcEwen/FAST-PT/
https://jila.colorado.edu/~ajsh/FFTLog/
https://github.com/sdlt/TNS_ToolBox/


Euclid Collaboration: A&A, 687, A216 (2024)

0.01 0.1

0.0001

0.01

1

P
/P

1[
%

]

IR-resummed, LO
0.1%

0.01%

0.01 0.1

b1b2

0.01 0.1

b1b 2

0.01 0.1

b1b 3

0.01 0.1
k [hMpc 1]

0.0001

0.01

1

P
/P

1[
%

]

IR-resummed, NLO

0.01 0.1
k [hMpc 1]

b2b2

0.01 0.1
k [hMpc 1]

b2b 2

0.01 0.1
k [hMpc 1]

b 2b 2

 
(FASTPT)

 
(direct integration)

 
(FFTLog)

 
(FFTLog)

Fig. D.1. Comparison among the different methods to obtain the one-loop bias integrals, colour-coded according to the individual code/method,
as listed in the legend. The reference code for these plots is the COMET emulator. Different panels corresponds to different diagrams: the first
column shows the leading order IR-resummed matter power spectrum – for which no actual integration is required – and the next-to-leading order
correction. The remaining columns show the bias diagrams from Eqs. (B.14 – B.19).

Appendix E: Comparison between posterior
averaged and maximum likelihood position

In the main body of this article, we determine the goodness of fit
of a given model configuration in terms of the posterior-averaged
χ2 statistics. For this purpose, we simply iterate through the
sampled positions of the posterior distribution and define the
weighted mean as〈
χ2

〉
=

∑
i

wi χ
2
i , (E.1)

where χ2
i and wi correspond to the χ2 and corresponding weight

for the i-th sampled position, respectively. As already mentioned
in Sec. 4.1.2, this quantity can be estimated with less uncer-
tainty from a sampled posterior distribution with respect to the
maximum-likelihood position. However, the conclusions drawn
in Sec. 5 are independent from which definition is used to quan-
tify the goodness-of-fit statistics.

In Fig. E.1 we show the goodness-of-fit performance met-
ric for the case of the Model 3 sample at z = 1.2, which is one
of the few cases with a posterior-averaged χ2 getting above the
2σ in Fig. 9 and 10. Differently from those two plots, in this
case we compare the trend when using the posterior-averaged χ2

(solid lines) and maximum-likelihood value (dash-dotted lines).
As expected, the latter is constantly outperforming the former,
with a relative improvement that becomes larger at low kmax val-
ues. Moving to larger kmax, we note that for this specific case
the maximum-likelihood position makes all the points consis-
tent within 2σ of the considered χ2 distribution. However, the
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kmax [hMpc 1]
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to Eq. (37)
b 3  fixed
to Eq. (36)
b 2  and b 3  fixed
to Eqs. (37) and (36)

2

2
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2

2
min

Fig. E.1. Normalised χ2 values for the Model 3 sample at z = 1.2. Solid
and dot-dashed lines corresponds to the posterior-averaged and mini-
mum χ2, respectively. Different colours represent different bias mod-
elling assumtpions, as listed in the legend. The two grey shaded areas
represent the 68% and 95% of the χ2 distribution with the same number
of degrees of freedom of the considered model.

marginal gains are not significantly changing the interpretations
that can be made when using the posterior-averaged values.
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Fig. E.2. Normalised χ2 distribution for the Model 3 sample at z = 1.2
and four different value of kmax, as shown in the upper right corner of
the individual panels. The shaded grey areas mark the same confidence
intervals as in Fig. E.1. The magenta vertical line marks the posterior-
averaged value.

As a complement, in Fig. E.2 we show the complete distribu-
tion of χ2 values, and we compare it with the 68th and 95th pre-
rcentile of the reference χ2 distribution with the same numbers
of degrees of freedom. Different panels correspond to different
kmax values, while the solid magenta line marks the position of
the posterior-averaged value. The only configurations for which
there is a partially significant gain in picking the maximum-
likelihood value is clearly the one at kmax = 0.4 h Mpc−1. Other-
wise, our conclusions are not affected by the choice of which χ2

value is used to estimate the goodness-of-fit performance met-
ric. For this reason, in Sec. 5 we show results employing the
posterior-averaged χ2 statistics.

Appendix F: Dependency on the selected sampler

As anticipated in Sect. 4, in order to obtain a posterior distribu-
tion for each of the model configurations that we test, we need to
select a robust algorithm to sample the large multi-dimensional
parameter space of the models described in Sect. 3. Indeed, the
choice of the sampler is critical in presence of multi-modal dis-
tributions. As already thoroughly discussed in the main body of
this paper, this situation is prevalent when we focus solely on the
full shape of the galaxy power spectrum, using only two-point
statistics, due to the strong degeneracies between model param-
eters. In these situations traditional algorithms, which are meant
to explore smaller and more well-behaved – Gaussian-like – ran-
dom variables, may be under-performing, and therefore affecting
the efficiency of the sampling.

In this analysis we compare three different samplers, test-
ing them against a reference subset of the galaxy power spec-
trum data vectors already used to validate the theoretical model
for one-loop galaxy bias. The properties of these sampling algo-
rithms are listed hereafter.

Metropolis–Hastings sampler

This approach (Metropolis et al. 1953; Hastings 1970) is a
Markov-Chain Monte Carlo (MCMC) method based on the con-
struction of a random walk inside the parameter space. Sub-
sequent points in the Markov chain are determined based on
a proposal function that has to be specified as a free param-
eter of the model. For each new point, the likelihood of the
model determines whether the candidate state is accepted or dis-
carded, that is, whether to move to the candidate state or stay
in the current state. For this standard algorithm we make use
of a non-public code,35 which features an implementation of a
Metropolis-Hastings algorithm coupled with the likelihood for
the galaxy power spectrum described in Sect. 3.

Affine-invariant sampler

This MCMC approach (Goodman & Weare 2010) is still based
on a random walk across the parameter space, but with an
improved ensemble sampler, in which a large number of walk-
ers interact with each other in a way that reduces the depen-
dence of the sampling on the aspect ratio of the particular
posterior distribution under consideration. We use the affine-
invariant sampler implemented in the public Python package
emcee (Foreman-Mackey et al. 2013).36

Nested sampling

This approach (Skilling 2006) relies on iteratively refining a set
of live points, initially drawn from a prior distribution, to explore
the parameter space. At each iteration, the point with the low-
est likelihood is selected from the set and replaced with a new
point. The latter is drawn from a constrained region of the prior
distribution, where the likelihood must be higher than that of
the replaced point. The selected point is then assigned a weight,
based on its likelihood and the proportion of the prior volume it
represents: several iterations will allow us to thus construct the
posterior distribution. These algorithms are particularly suited
for multi-modal distributions, given they are not subject to get-
ting stuck in local minima of the loglikelihood, as it commonly
happens with standard algorithms based on Markov chains. We
use the public package Multinest (Feroz et al. 2009a, 2019b),
which can be interfaced with Python using a dedicated wrapper
module.37

Comparison

The comparison between the marginalised two-dimensional dis-
tributions obtained with the different samplers is shown in
Fig. F.1, using as data the galaxy power spectrum of the Model
3 HOD sample at z = 0.9 with kmax = 0.2 h Mpc−1. We test
two different cases, one where we vary the nuisance parameters(
b1, b2, bΓ3 , c0, αP,1

)
while keeping the quadratic tidal bias bG2

fixed to its local Lagrangian relation (35), and one where the lat-
ter is also allowed to freely vary with the rest of the parameters.38

In the first case, we note an almost perfect match among
the three different set of contours, with a statistically negligi-
35 COMPASS, courtesy of Ariel G. Sánchez, Martín Crocce, and Román
Scoccimarro.
36 https://emcee.readthedocs.io/en/stable/
37 https://johannesbuchner.github.io/PyMultiNest/
38 As shown in the main body of this article, fixing bG2 is the only case
for which it is possible to completely break the strong degeneracies of
the parameter space.
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Fig. F.1. Comparison between runs at fixed cosmology obtained using different samplers, carried out using a reference galaxy power spectrum
(Model 3 HOD sample at z = 0.9). The left panel shows the posterior distribution of the nuisance parameters with bG2 fixed to the local Lagrangian
relation (Eq. 35), while in the right panel all the parameters are left free to vary. Different colours correspond to different samplers, as listed in the
legend.

ble difference only appreciable at the tails of the posterior distri-
butions, which can be anyhow partially explained by the intrin-
sic variance of the individual realizations of the posterior dis-
tributions. The second case shows a slightly larger discrepancy,
mostly due to the presence of a multi-modal profile driven by the
strong degeneracy between bG2 and bΓ3 . In this case, the peak
of the posterior distribution is less consistent when using dif-
ferent samplers, and we find that the size of the discrepancy is a
very strong function of kmax. In details, the main differences arise
because of the non-homogeneous sampling of different peaks,
for which traditional Markov chain algorithms may get stuck in
a particular minimum of the distribution, therefore affecting the
overall convergence of the chain. Given the purpose that nested
sampling algorithms were initially developed for, we decided to
employ the latter as our baseline sampler, and used it to sample
the parameter space for all the results presented in this work.

Appendix G: Sample variance effects

Even though the volume of the Flagship I simulation is quite
large, most of our results are, to some extent, affected by the
sample variance of the single N-body realization available.

In this section we quantify this effect reproducing some of
the parameters fits starting from noiseless, synthetic data vectors
obtained as the real-space galaxy power spectrum predictions
from the COMET emulator. These are generated adopting the ref-
erence cosmological parameters from Table 1 at the four differ-
ent redshifts of the comoving snapshots, z = {0.9, 1.2, 1.5, 1.8}.
For each of the four samples, the nuisance parameters are derived
as follows: b1 and αP,1 are fixed to the best-fit value listed in
Table 4 for the Model 1 HOD samples, b2 is computed using
a b2(b1) relation derived from the corresponding HOD model,
bG2 and bΓ3 are obtained from the excursion-set relation (37)

and the coevolution relation (36), respectively, c0 is set to unity,
and αP,2 is set to zero. The covariance matrix for each sample is
computed assuming only the Gaussian component from the full
Flagship I box, and therefore corresponds to a volume of about
58 h−3 Gpc3.

Figure G.1 shows the marginalised one-dimensional con-
straints of the b1 and αP,1, similarly to Fig. 5, for fits at fixed
cosmology of the synthetic data vectors. Even though the data
vectors are smooth – no noise component has been added to
any of the Pgg(ki) bins – and also perfectly consistent with the
theory model used to fit them, we observe some discrepancy of
the constraints with the fiducial values, both with all parameters
free as for the case with bΓ3 fixed to the coevolution relation.
In both cases, the statistical constraints are less tight than the
ones obtained with other bias relations, with a partial break of
the degeneracies between parameters at higher redshift then the
coevolution relation is applied. Such deviations are induced by
projection – or prior volume – effects in the marginalised pos-
teriors, due to the strong degeneracies between parameters. In
particular, these affect b2, bG2 and bΓ3 , and cannot be broken
completely even when reducing the dimensionality of the param-
eter space by fixing bΓ3 , as the b2-bG2 degeneracy is still present.
Consistently among the different redshifts, we note that there is
a trend for b1 and αP,1 to be under- and overestimated, respec-
tively, similarly to what we observe for the real Flagship I data
vectors.

On the contrary, the case where bG2 is fixed as a function of
b1 is systematically better in terms of amplitude of the error bars
and accuracy in the recovery of the parameters, because the pos-
terior distribution of this case is closer to a Gaussian distribution.
This is due to the simultaneous breaking of both the b2-bG2 and
bG2 -bΓ3 degeneracies, for which a clear example can be found in
the left plot of Fig. F.1.
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Fig. G.1. Marginalised 1d constraints on the linear bias b1 and the shot-noise parameter αP,1 obtained from a set of synthetic theory vectors created
using the same recipe from Eq. (34), for the four different redshifts already explored with the Flagship data vectors. Different colours correspond
to different assumptions on the total number of degrees of freedom of the model, as listed in the legend.
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Fig. G.2. Same as in Fig. G.1, but using theory vectors displaced by Gaussian noise realisation from a box of size 3780 h−1 Mpc.

As a follow-up test, we add to the synthetic data vectors a
Gaussian noise consistent with the covariance assumed for the
fits to the simulation. Figure G.2 shows the new marginalised
constraints on b1 and αP,1. In this case it is possible to observe a
much larger discrepancy from the fiducial values, present also

for the configurations in which bG2 is fixed as a function of
b1. We remark how the case at z = 1.2 features a large fluc-
tuation at intermediate scales, kmax ∼ 0.2 h Mpc−1, which is
symptomatic of the particular realization of the Gaussian noise.
We repeated this exercise, on the sample at z = 1.2, with ten
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different noise realizations, and in all cases we observe a slightly
different trend as a function of kmax for the marginalised con-
straints of the configurations we are considering, that is, with
all the parameters free to vary, or with either bG2 or bΓ3 fixed
in terms of b1. For some of the configurations we observe
trends as the one seen in the z = 0.9 Flagship I data vec-

tors, for which we find a sharp running in the (b1, αP,1) plane
at kmax & 0.2 h Mpc−1. We therefore conclude that a more real-
istic analysis, also including observational effects and a proper
survey window function should be conducted using a wider set
of simulations, in order to reduce the overall impact of cosmic
variance.
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