N
N

N

HAL

open science

Ontology Matching Using Convolutional Neural
Networks
Alexandre Bento, Amal Zouaq, Michel Gagnon

» To cite this version:

Alexandre Bento, Amal Zouaq, Michel Gagnon.
Networks. Twelfth Language Resources and Evaluation Conference (LREC 2020), May 2020, Marseille,

France. pp.5648-5653. hal-04326319

HAL Id: hal-04326319
https://hal.science/hal-04326319v1
Submitted on 12 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Ontology Matching Using Convolutional Neural

https://hal.science/hal-04326319v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Ontology Matching Using Convolutional Neural Networks

Alexandre Bento, Amal Zouaq, Michel Gagnon
Ecole Polytechnique de Montréal
{alexandre.bento, amal.zouaq, michel.gagnon} @polymtl.ca

Abstract
Ontology matching is a key problem to solve in the context of Semantic Web, in order to achieve interoperability of information. As
the number of ontologies grows for a given domain, and as overlapping between ontologies follows the same path, developing accurate
and reliable techniques to operate this task automatically is becoming more and more crucial. While traditional approaches to solve this
problem are based on string metrics and structure analysis, in this paper we present a methodology to align ontologies automatically,
using machine learning techniques. We use convolutional neural networks to analyse structure in text data for OAEI ontologies. We
obtain state-of-the-art performance, as well as potential cross-domain applications.

Keywords: ontology matching, machine learning, convolutional neural networks

1. Introduction

An ontology is a set of structural rules designed to repre-
sent concepts in order to perform logic-based operations
to retrieve or infer new information. As Semantic Web
technologies are expanding and becoming more popular,
the amount of data that needs to be represented grows the
same way, and so does its complexity. Since web technolo-
gies are designed to be decentralised, redundancy among
knowledge bases occurs inevitably. For this reason, finding
methods to align equivalent data or their model is becoming
crucial. This problem is addressed in this paper.
Traditional ontology matching methods are mainly based
on string similarity and structure analysis. In this paper
we propose another approach, using machine learning tech-
niques. The core of our method is based on the idea that
semantic information can be retrieved automatically from
text information within ontologies, and within their struc-
ture. To complete this task, convolutional neural networks
were used.

2. Previous Works

As explained earlier, the usual way to align ontologies con-
sists in standard string similarity measurement techniques,
and the analysis of the ontologies’ structure in order to iden-
tify equivalent classes and properties (Hooi et al., 2014)).
There are three main string analysis techniques: 1)
string distances (Levenshtein, Jaccard, string equality,
etc.),2) syntactic transformations (tokenisation, lemmati-
zation, stop word removal, etc.) and 3) semantic opera-
tions (finding synonyms, translating, categorization, etc.)
(Cheatham and Hitzler, 2013). Although using only string
metrics can lead to significant results when aligning ontolo-
gies, it is crucial to choose the right metric for the ontolo-
gies being studied.

Some more advanced string metrics can be defined and
show powerful results, such as metrics that take into ac-
count both the similarities and the differences between two
labels (Stoilos et al., 2005). But in any case, a confidence
value must be attributed to any of these metrics.

Another possible approach consists in analysing similari-
ties between data types of key properties for each studied
concept (Granitzer et al., 2010); however, this approach

cannot be used on its own, and must be coupled with a
text analysis approach, such as string distance, as discussed
above.

Also, the structure of an ontology can be used to determine
similarity between concepts: if two classes have similar
children or parents, they should be considered as equiva-
lent (Granitzer et al., 2010).

Finally, some machine learning approaches have been im-
plemented but are still uncommon in the field of ontology
alignment. Some tried and tested algorithms such as K
Nearest Neighbors (KNN), Support Vector Machine (SVM)
and decision trees, which can outperform state-of-the-art
matching tools (Nezhadi et al., 2011). Machine learning
techniques can also be used as a side tool for the alignment
task, such as word embeddings to determine string similar-
ity (Dhouib et al., 2019). Our methodology goes a step fur-
ther and uses embeddings as an input to make classification
more accurate.

3. Data

The data we used come from the Ontology Alignment Eval-
uation Initiative (OAEIﬂ This data is organised in different
tracks. For training, we used data from the LargeBio track;
for testing, we used other independent tracks, described in
Section 3.2.

3.1. Training - LargeBio Ontologies
LargeBio consists of three biomedical ontologies:

e Foundational Model of Anatomy (FMA
o SNOMED}}

e National Cancer Institute Thesaurus (NCIf]

OAEI provides alignments between each of these ontolo-
gies. We used them to build a dataset. Some classes in these
ontologies do not have any label, and since this makes them

"http://oaei.ontologymatching.org
*http://sig.biostr.washington.edu/projects/fm/
3http://www.ihtsdo.org/index.php?id=545
*http://ncit.nci.nih.gov/

unusable with our approach, they were excluded from the
dataset.

We also noticed that classes referenced as equivalent of-
ten had the exact same label (after passing labels to lower
case), which biased the training process, and were com-
pletely irrelevant since these alignments are trivial. Hence
these examples were excluded from the dataset as well.
With these constraints, we found 18105 references within
LargeBio ontologies. In order to make a balanced dataset
(same number of positive and negative alignments), we ran-
domly generated the same number of negative examples,
matching classes that were not referenced as similar in the
ontologies. This leads to a complete dataset containing
36210 examples.

Finally, this dataset was divided into training, validation
and test sets (this test set is used to choose the model with
best predictive capabilities, but was not used to evaluate our
methodology and to compare it to others, as this would in-
duce a bias when choosing the best model (final test data
is not supposed to be used for any kind of training). The
test was performed on other ontologies - see next section).
We used 80% of the original dataset for training, 10% for
validation and 10% for testing.

3.2. Testing - Other OAEI Tracks

In order to evaluate our method and compare it to previous
works, we used the ontologies provided by the Ontology
Alignment Evaluation Initiative (OAEI). OAEI evaluation
is divided in different tracks, based on the domain and com-
plexity of ontologies. We chose to evaluate our method on
four OAEI tracks:

e Anatomy

e Phenotype and Disease
e BioDiv

e Conference

To make sure that our method was tested the same way as
other competitors in the OAEI workshop, we wrapped our
tool with the SEALS platform, which is used by the OAEI
organization to evaluate participants.

4. Description of the Alignment Method

In this section, we explain how our alignment system is
built, how input data is processed and how the final align-
ment is generated.

4.1. Preprocessing

The preprocessing step consists in two different actions:

o transforming ontological data into numerical vectors
that a neural network model can use as input;

e pre-selecting alignments that are too trivial to be sub-
mitted to the model.

4.1.1. Input Data Transformation

For the task we aim to achieve, input data consist in two
separate ontologies that must be aligned. As this cannot di-
rectly be fed to a machine learning model, it must be trans-
formed into a set of numerical vectors that a model can use
as input. The final alignment must be a set of comparisons
between each class of both ontologies to be aligned.

First, the structure of each ontology is extracted using a
dedicated tool (we used Apache Jena for this application).
This allows us to make a list of each class of the ontology.
For each class that has a label, we also gather the label of
its superclasses, allowing us to use the structure of the on-
tology as well.

Our convolutional neural network takes as input a pair of
class labels and their superclasses (we observed experimen-
tally that using subclasses does not make predictions more
accurate) and returns whether they are similar or not. As
neural network models require a fixed input vector length,
some limits have to be set in order to respect this constraint.
First, for each class label, we set a maximum length of 150
characters (shorter labels are filled with blank spaces at the
end; longer labels are cropped). We observed that this value
led to a minimal prediction error.

As classes have a variable number of superclasses, we must
set a limit for this parameter as well. We chose to use 5
superclasses for each class. For classes with fewer super-
classes, we use padding with blank spaces; for classes with
more superclasses, we only take the first five levels in the
structure of its superclasses.

A neural network model cannot take strings of characters
as direct input. These must be converted into numerical
vectors. A simple character encoding could have been used
(such as the ASCII code), but we chose to add more seman-
tic information during this preprocessing step, and hence
used a character embeddinﬂ This embedding provides a
representation vector for each possible character. The em-
bedding we used is of dimension 300. Each provided value
is normalized between 0 and 1, which is ideal for feeding a
neural network model.

To limit noise within the input data, we also lowercased
each class label, as well as replaced underscores with blank
spaces.

4.1.2. Pre-selecting Trivial Examples

In order to prevent combinatorial explosion when compar-
ing classes from both ontologies (each ontology can have
thousands of classes, leading to millions of possible combi-
nations to evaluate), a preselection must be applied before
passing input data to the neural network model. Two cases
must be studied:

e trivial positive examples: across two different ontolo-
gies, some classes can be identified with the exact
same name, as discussed in section 3.1. When this
happens, these classes are automatically considered as
equivalent.

e trivial negative examples: since only a small propor-
tion of the candidate pairs to alignment contain equiv-

>https://github.com/minimaxir/char-embeddings

Feature Feature

Input maps maps
64@32x32

64@32x32 E4@32x32

Convolution Activation

5x5 kernel

Convolution
5x5 kernel

Feature Feature Feature

maps maps maps
54(@28x28

64@28x28

64@14x14

Activation

Max-pooling
2x2 kernel

Figure 1: A super-convolution layer which takes 64 features of size 32x32 as input.

alent classes, this implies that many completely differ-
ent classes would have to be evaluated if no preselec-
tion was involved. To limit this problem, we chose to
apply a distance-based preselection, using two crite-
ria: Levenshtein distance and the length of each class
label. If the Levenshtein distance between the labels
of two classes is too large, then these classes are con-
sidered as different. We also noticed that short labels
lead to many mistakes during classification, hence we
need to take this problem into consideration. To solve
it, we chose to weight the Levenshtein distance with
a factor that is inversely proportional to the length of
the labels: the shorter the labels, the higher the final
distance. Let a and b be the labels of two classes that
need to be compared. Let L, and L, their respective
length. Then we compute the following index :

. levenshtein(a, b)
- Lo * Ly

ey

We then define a threshold th. If i > th, we directly
classify the two classes as different.

4.2. Alignment Using Machine Learning Models

Once input data has been preprocessed, it can be used to
train a neural network model. We chose to use convolu-
tional neural networks (noted as CNN in the following para-
graphs) in order to capture relevant structural information
inside text data.

4.2.1. Neural network model
The model we used is composed of two main sections:

e CNN layers;

e a multilayer perceptron (noted as MLP).

We used several layers of CNN, with a different filter size
for each. This allows capturing patterns at different scales,
which are obtained by successive applications of average
pooling (which is the equivalent of a X2 zoom each time).
We define a super-convolution layer with the following:

e a convolution layer with a kernel size of 5;
e an activation layer (we use ReL.U);

e a second convolution layer with a kernel size of 5;

e a second activation layer (ReLU);

e an average pooling layer of size 2.

A diagram of a super-convolution layer is shown in Figure
m

The CNN part of the model is composed of 8 super-
convolution layers (which allows processing all scales with
a division factor 2 in between each layer).

CNN layers are then followed by MLP layers. We observed
experimentally that the depth of the network had a more
significant impact on performance than the size of the lay-
ers. Thus the model we used was composed of 10 MLP
layers, of size 500 each. We used ReLU to activate each
layer.

Finally, the last layer of the model leads to a single neuron
(with sigmoid activation) in order to make a binary classi-
fier.

4.2.2. Training strategy

In a real-life situation, when aligning two ontologies, the
number of positive and negative examples that have to be
classified are heavily unbalanced. Indeed, for two ontolo-
gies with 2000 classes each, we need to process 4000000
different examples in order to complete the alignment,
when only a few hundred classes are equivalent in between
these ontologies. If this issue is not considered during train-
ing (i.e., if the training dataset has the same number of posi-
tive and negative examples), the trained model can generate
a large number of false positive alignments (which remains
marginal when the test dataset is balanced as well, but in a
real-life situation, this is no longer the case).

In order to face this problem, a proper training strategy
must be adopted. We chose to grant more weight to nega-
tive examples during training, as the false positive problem
comes from them. We found experimentally that a weight
of 40 (versus a weight of 1 for positive examples) works
best. Below this value, too many false positives still ap-
pear. Above it, the model fails to identify some positive
examples correctly.

As the model needs to be symmetrical (i.e., if class a is
equivalent to class b, then b is equivalent to a), the train-
ing dataset was duplicated and the class positions were
swapped.

Adam optimizer was used to manage training. Consider-
ing the high number of training examples, the learning rate
must be set to a low value in order to get stable training.

We found that a value of 10~ gives decent results. We also
used learning rate decay, with 31 = 0.9 and 35 = 0.999.
In order to make the training process automatic, we used
early stopping to prevent overfitting. As training is not per-
fectly stable, it is necessary to use a patience value of 2 in
order to avoid local minima. Validation loss was used as
the early stopping criterion.

To get the best alignment performance, it is good practice
to train several models and pick the one with best prediction
capability on a test dataset. As discussed in section 3.1, a
dedicated test set was created for this purpose. We trained 5
models and chose the one with the lowest error on test data.

5. Evaluation and Results

This methodology was evaluated on OAEI tracks described
in Section 3.2. Three of them are composed of biomedical
data (Anatomy, Phenotype and Disease, and BioDiv; same
domain as the training data), and the last one (Conference)
is different and is based on conference organisation data.
We wrapped our tool with the SEALS platform so that we
could evaluate it in the same conditions as other partici-
pants for the OAEI workshop; we then compared the re-
sults we obtained with the 2018 OAEI results’] Results are
presented in Table/I]

Task Prec. | Recall F1 Best F1 | Pos.
Anatomy 0.871 | 0.890 | 0.881 0.943 | 5/16
HP/MP 0.882 | 0.819 | 0.850 | 0.855 3/9
Doid/Ordo | 0.870 | 0.795 | 0.831 0.848 | 4/10
Flopo/Pto 0.872 | 0.790 | 0.829 0.86 2/8
Conference | 0.80 0.70 0.75 0.77 3/15

Table 1: Final results on OAEI tracks. HP/MP and
Doid/Ordo are tasks from the Phenotype and Disease track.
Flopo/Pto is a task from BioDiv. Best F1 corresponds to the
F1-measure of the best participant for each task. Pos rep-
resents the position of our system in the competition based
on the best F1.

As shown in Table[T] our methodology leads to similar re-
sults as state-of-the-art competitors. Also, as the results for
the Conference track show, our system produces relevant
performance for non-biomedical ontologies. This means
that our network was successful in aligning classes from
different domains, which is a valuable result.

6. Conclusion and future works

We showed that a machine learning approach to the ontol-
ogy matching problem using convolutional neural networks
leads to state-of-the-art results. As there is no domain-
dependant variable in our methodology, it can be applied to
any domain, with no necessary adaptation. We also showed
that a model trained on biomedical data gives consistent re-
sults on other domains; however this needs to be confirmed
on more datasets.

This approach could be improved using other types of neu-
ral networks, or a combination of different models: recur-
rent networks, especially LSTM, are very appropriate for

text data, as they allow analysing sequences, and may im-
prove performance for ontology matching. Similarly trans-
formers might lead to better results and are a research direc-
tion we would like to explore, together with different inputs
to the network.

The preprocessing part of the methodology presented in
this article could also be replaced with more advanced tech-
niques (possibly machine learning as well). This could help
solve the false-positive problem presented in Section 4.2.2
with more accurate results.

7. References

Cheatham, M. and Hitzler, P. (2013). String similarity met-
rics for ontology alignment. In International semantic
web conference, pages 294-309. Springer.

Dhouib, M. T., Zucker, C. E., and Tettamanzi, A. G. (2019).
An ontology alignment approach combining word em-
bedding and the radius measure. In International Con-
ference on Semantic Systems, pages 191-197. Springer.

Granitzer, M., Sabol, V., Onn, K. W., Lukose, D., and
Tochtermann, K. (2010). Ontology alignment—a survey
with focus on visually supported semi-automatic tech-
niques. Future Internet, 2(3):238-258.

Hooi, Y. K., Hassan, M. F., and Shariff, A. M. (2014). A
survey on ontology mapping techniques. In Advances in
Computer Science and its Applications, pages 829-836.
Springer.

Nezhadi, A. H., Shadgar, B., and Osareh, A. (2011). On-
tology alignment using machine learning techniques. In-
ternational Journal of Computer Science & Information
Technology, 3(2):139.

Stoilos, G., Stamou, G., and Kollias, S. (2005). A string
metric for ontology alignment. In International Seman-
tic Web Conference, pages 624—637. Springer.

2018 OAEI results: http://oaei.ontologymatching.org/2018/results/

	Introduction
	Previous Works
	Data
	Training - LargeBio Ontologies
	Testing - Other OAEI Tracks

	Description of the Alignment Method
	Preprocessing
	Input Data Transformation
	Pre-selecting Trivial Examples

	Alignment Using Machine Learning Models
	Neural network model
	Training strategy

	Evaluation and Results
	Conclusion and future works
	References

