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Abstract. The use of the Continuous Wavelet Transform method for modal identification and
structural damage analysis is discussed in this paper. The wavelet transform method can be
used to understand the responses of different structures under different loading conditions, i.e.
after noise-embedded shock signals. The method allows the processed signal to be displayed
in the time-frequency plane, making it possible to estimate modal characteristics, or study the
effect of structural defects on the vibration behaviour of the structure. The paper summarises
the important aspects of the method and proposes a novel formulation for structural assess-
ment. Two example applications are presented, a four-degree-of-freedom linear system vibrat-
ing freely and a damaged masonry wall subjected to shear compression and ambient vibration
tests. The examples show that the CWT method can be used to obtain valuable information for
structural characterization.
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1 INTRODUCTION

The Wavelet Transform (WT) method appeared in mathematics more than a century ago,
starting with Haar who discovered in 1909 an orthonormal basis consisting of step functions.
The Haar basis construction is a precursor of what is known today as the multiresolution analy-
sis [1] which refers to the expansion of a signal into components that can reproduce the original
signal when added together. The principle of multiresolution spaces is to decompose a signal
of finite energy L2(R) to two complementary spaces: (i) a space of approximation; and (ii)
a detail space that contains the approximation error. Multi-resolution analysis can be seen as
a way to zoom into, or out of, the signal without losing information. From the beginning of
1980s, under the impetus of several French researchers, especially Grossmann and Morlet [2],
wavelet research in mathematics has grown steadily with significant contributions from many
authors. Figure 1 provides a quick overview of the history of the WT method. Since then, the
WT has been used in many areas of science and engineering. For example, is a recent refer-
ence published by A. Guillet and his co-workers,the method has been applied to physiological
signals. In reference [14], the authors introduced time-log-frequency ratio distributions based
on WT with analytic mother wavelets (the Grossmann wavelet belonging to the Morse wavelets
family cf. [19]) that they applied to voice recordings. Two main trends exist in how the WT
is computed and used: the Continuous Wavelet Transform (CWT) and the Discrete Wavelet
Transform (DWT) method [3]. Our work will focus on the former.

Figure 1: Short History of Wavelet Transform (WT).

The wavelet transform method, allows the time-frequency (TF) analysis of a signal. An inter-
esting analogy between TF analysis and modern music notation is shown in Figure 2. Modern
music notation gives an illustration of the time-frequency representation where the vertical po-
sition of the note-head within the staff indicates its pitch which can be modified by accidentals,
associated with a frequency. For example, the frequency of A3 is set at 440 Hz. The time du-
ration (note length, or note value) is indicated by the form of the note-head or with the addition
of a note-stem plus beams or flags (cf. 2).

2



Pierre Argoul and Michalis Fragiadakis

Among the large number of books on the wavelet transform method [4, 6, 3], few are ded-
icated to applications on civil engineering structures. The book by Chatterjee [7] describes
several applications of wavelets to civil engineering problems and shows their importance, for
example, in the analysis of non-stationarities in seismic ground motions, in the study of bridge
vibrations caused by vehicle passage, or in the identification of structural damage. Further-
more, damaging events often result in short-time, non-stationary vibration characteristics that
are difficult to analyse using classical modal approaches. Methods based on time-frequency
representations, such as wavelet transform methods, are better suited to analysing signals gen-
erated by time-varying systems than those using the Fourier transform that are better suited to
signals generated by time-invariant systems. This makes these time-frequency based methods a
very interesting tool for structural damage detection.

Figure 2: Writing of a musical piece: a famous illustration of time-frequency representation.

2 THE CONTINUOUS WAVELET TRANSFORM METHOD

The basic idea of the Continuous Wavelet Transform (CWT) method is to use a function
ψ(t) ∈ L

1(R)∩L2(R) called the “mother wavelet”1, which can generate an infinite continuous
basis of functions, by varying the parameters a and b:

ψa,b(t) = (1/a)ψ[(t − b)/a], (1)

where a is a scale parameter and b a temporal localization parameter.
There is a clear relationship between the scale parameter a and the frequency f . More

specifically, a low value of a results in a compressed wavelet, allowing to capture details that
change rapidly in the processed signal, thus resulting in a high frequency content. On the other
hand, a large value of a results in a stretched wavelet, which captures slowly changing coarse
features in the processed signal, resulting in a high frequency content. Thus, the ratio 1 / a can
be assimilated to a frequency parameter f . There are several possible approaches that relate the
scale a to the inverse of the frequency, typically denoted: a = f

∗
ψ/f . In the references [8, 10],

f
∗
ψ is chosen to be equal to the peak frequency f 0

ψ, where f 0
ψ = argmax(∣ψ̂∣) and ψ̂ is the

Fourier transform of the mother wavelet. Two other meaningful frequencies, classically found
in literature, are the energy frequency: f̃ψ

2 and the time-varying instantaneous frequency of the

1A function ψ(t) ∈ L
1(R) ∩ L

2(R) can be admissible to a mother wavelet if it satisfies the admissibility

condition : Cψ = ∫+∞

−∞
∣ψ̂(f)∣2

∣f ∣ df < ∞ where ψ̂(f) = ∫+∞

−∞ ψ(t)e−2iπ ftdt is the Fourier transform of ψ(t), which

implies that ∫+∞

−∞ ψ(t)dt = 0 . cf. [4].
2
f̃ψ =

∫+∞
−∞ f

»»»»»ψ̂(f)
»»»»»
2
df

∫+∞
−∞ ∣ψ̂(f)∣2 df .
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wavelet at its time center f̆ψ(0)3 (cf. [17]). These three definitions of f∗
ψ result to three different

mappings between scale and frequency. The first will correctly give the frequency of a pure
harmonic signal from the scale a at which its transform obtains a maximum. The second will
correctly give the frequency of a pure cosine from the energy mean scale of the CWT ãψ(b) 4.
The third fixes the frequency to be the same as the phase progression of the transform at the
location of an infinitesimally narrow impulse.

To better highlight the importance of the choice of f 0
ψ, consider the example of the CWT of a

cosine u(t) = A1 cos (2π f1 t + θ1). The CWT can be written as: Tψ[u](a, b) = 1

2
A1 ψ̂(af1) eiθ1

and its modulus ∣Tψ[u](a, b)∣ = 1

2
A1 ∣ψ̂(af1)∣ is maximal when ∣ψ̂(af1)∣ is maximal, so that

af1 = f
0
ψ and ∣Tψ[u](a, b)∣ = A1. In addition, the energy mean scale of the CWT ãψ(b) in the

case of a pure cosine is equal to: ãψ(b) = f̃ψ / f1 5.
Using a mother wavelet ψ, the CWT method is then used to decompose a function u(t) into

the time-frequency domain as follows:

Tψ[u](a, b) =
1
a ∫

+∞

−∞
u(t)ψ (t − b

a ) dt, (2)

where ψ is the conjugate of ψ.
Regarding the regularizing term 1/a in the definition of Eq. 2. This term is appropriate

when the magnitude of the modulus wavelet transform is wished to reflect the amplitude of
the analysed signal u(t). It is generally more useful to describe time-localized signals by their
amplitude; hence, Eq. 2 uses the 1/a normalization which is known as the L1 norm, it is used
in Carmona et al. [4], preferred by Argoul [12, 13], or Lilly[15]. Instead, the factor 1/√a can
guarantee that the wavelet maintains constant energy. This is known as the L2 norm of Tψ and
is more appropriate when one wishes that the modulus-squared wavelet transform reflects the
energy of the analyzed signal.

The definition of CWT of Eq. 2 can be rewritten in the frequency domain:

Tψ[u](a, b) = ∫
+∞

−∞
û(f)ψ̂ (af) e2iπ fbdf, (3)

where û(f) = ∫+∞

−∞ u(t)e−2iπ ftdt is the Fourier transform of u(t) and ψ̂ is the mother wavelet
in the frequency domain. Eq. 3 allows for an easy numerical computation by means of the fast
Fourier transform (FFT) algorithm.

2.1 Selection of mother wavelet

Apart from the widely-used Morlet wavelet, which is only approximately analytic, various
analytic wavelets have been proposed, including the Cauchy-Paul, the derivative of the Gaussian
wavelet, the lognormal or log Gabor, the Shannon and the Bessel, among others. Olhede and
Walden [16] and Lilly and Olhede [17] have showed that all known analytic wavelets can be
grouped together in a much larger family, first introduced by Daubechies and Paul [18], whose
properties were studied in detail [19]. This broad “superfamily” of wavelets is known as the

3
f̆ψ(t) =

1
2π

d
dt
I {lnψ(t)} =

1
2π

d
dt

(arg {ψ(t)}) .
4
ãψ(b) =

∫+∞
−∞ a ∣Tψ[u](a,b)∣2da
∫+∞
−∞ ∣Tψ[u](a,b)∣2da

.

5
ãψ(b) =

∫+∞
−∞ a ∣Tψ[u](a,b)∣2da
∫+∞
−∞ ∣Tψ[u](a,b)∣2da

=

1
4
A

2
1 ∫+∞

0
a
»»»»»ψ̂(af1)

»»»»»
2
da

1
4
A2

1 ∫+∞
0

»»»»»ψ̂(af1)
»»»»»
2
da

=
1
f1

∫+∞
0

f
»»»»»ψ̂(f)

»»»»»
2
df

∫+∞
0

»»»»»ψ̂(f)
»»»»»
2
df

=
f̃ψ

f1
.
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generalized Morse wavelets. Within that family, one can objectively say which wavelet choice
is the “best” for the problem at hand. The generalized Morse wavelets ψβ,γ depend on two
parameters β and γ which control the shape of the wavelet. The general expression is as follows:

ψ̂β,γ(f) = cβ,γf
β
e
−(2πf)γ

H(f) (4)

where cβ,γ is a normalization constant and H(f) is the unit step function.
Among the broad family of generalised Morse wavelets, the Cauchy-Paul mother wavelet

ψn(t) has been preferred in our work. This is a complex single parameter mother wavelet
where n is an integer that controls the shape of the wavelet. With respect to Eq. 4, the Cauchy-
Paul wavelet belongs to the Morse family when β = n and γ = 1. The definition with respect
to parameter n, becomes:

ψ̂n(f) = cn f
n
e
−2πf

H(f) (5)

where cn is a normalization constant. An asymmetry in the frequency domain of the Cauchy-
Paul wavelet leads to distinct values for the frequencies previously introduced in order to define
the scale parameter a = f

∗
ψ/f , i.e.:

f
0
ψn =

n

2π
, f̃ψ =

n + 1

2

2π
, f̆ψn =

n + 1

2π
, (6)

There are several ways to define the cn parameter. In older papers [11, 12, 13] we pre-
ferred the L∞ norm in the time domain: ∥ψn∥∞ = 1. In this paper we have chosen the norm:
∥ψ̂n∥∞ = max ∣ψ̂n(f)∣ = 2, which leads to cn = 2(2πe/n)n. Therefore, the peak frequency
is: f 0

ψ = n/2π, for which the maximum value is: ψ̂n(f 0
ψ) = 2. This is the same choice as in

Lilly [15], since it provides a direct equality between ∣Tψ[u](t, a(t))∣ and the amplitude of u.
There are several reasons for choosing an analytic mother wavelet, and in particular the

Cauchy-Paul wavelet. The first is that an analytic mother wavelet which is a complex function
whose spectrum contains only positive frequencies, leading to: ψ̂n(f) = 0 ∀ f < 0. As an
analytic mother wavelet, it only responds to non-negative frequencies in the signal being anal-
ysed and it produces a transform whose modulus is less oscillatory than in the case of a real
mother wavelet. This property is a real advantage for detecting and tracking the instantaneous
frequencies contained in the signal. Eq. 3 is simplified as follows:

Tψ[u](a, b) = ∫
+∞

0

û(f)ψ̂ (af) e2iπ fbdf. (7)

The second reason concerns the phase retrieval problem which is related to the reconstruction
of a function from its scalogram, that is, from the modulus of its wavelet transform. Mallat and
Waldspurger [20] mathematically proved that the reconstruction of the analyzed function from
the modulus of its Cauchy-Paul wavelet transform is unique up to a global phase. They have
also showed that the reconstruction operator is continuous but non uniformly continuous. The
authors specify that the proofs are special to Cauchy-Paul wavelets and cannot be extended to
generic wavelets because they make intensive use of the link between Cauchy wavelets and
holomorphic functions.
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2.2 Resolution in the time-frequency domain

For the successful CWT decomposition, it is essential to control the time-frequency resolu-
tion of the signal wavelet transform. This is necessary in order to correctly interpret the CWT
plot and also to take into account edge effects [13].

Referring to the conventional frequency analysis of constant-Q filters, Le and Argoul [13]
introduced a parameter Qm called “quality factor”. This parameter can be used in order to con-
trol the time-frequency resolution of the CWT. Introducing the duration ∆t and the frequency
bandwidth ∆f of the wavelet transform and its relationship with the the duration ∆tψ and the
frequency bandwidth ∆fψ of the mother wavelet are as follows:

∆t = a∆tψ ∆f =
∆fψ
a , (8)

where ∆tψ and ∆fψ are stated in terms of root mean squares for L2 norm which are equivalent
to the standard deviation in statistics:

∆tψ =
1

∥ψ∥2
2

∫
+∞

−∞
(t − tψ)

2 ∣ψ(t)∣ dt

∆fψ =
1

∥ψ̂∥2
2

∫
+∞

−∞
(f − fψ)

2 ∣ψ̂(f)∣2 df, (9)

where tψ and fψ are the centre of ψ and ψ̂, respectively:

tψ =
1

∥ψ∥2
2

∫
+∞

−∞
t ∣ψ(t)∣2 dt fψ =

1

∥ψ̂∥2
2

∫
+∞

−∞
f ∣ψ̂(f)∣2 df. (10)

It is noteworthy to introduce the CWT uncertainty µ, equal to the mother wavelet uncertainty
µψ:

µ = ∆t∆f = ∆tψ∆fψ = µψ (11)

Using the relationship between scale and frequency previously discussed (a = f
∗
ψ/f), Eq.

8 becomes:

∆t =
f
∗
ψ ∆tψ
f

∝
1

f
∆f =

∆fψ

f∗
ψ

f ∝ f, (12)

This Qm factor introduced in [13] is defined as the ratio of the mean value f̃ (for L2 norm)
previously defined over two times its standard deviation ∆f of the wavelet transform, i.e.:

Qm =
f̃

2∆f
=

f̃ψ

a

2
∆fψ

a

=
f̃ψ

2∆fψ
. (13)

Notice from Eq. 13 that the resolution parameter Qm is independent of the frequency param-
eter a. From the formulae above, it is easy to see that:

∆t = 2Qm µψ
f
∗
ψ

f̃ψ

1

f
∆f =

1

2Qm

f̃ψ

f∗
ψ

f. (14)

where the ratio f̃ψ

f∗ψ
is close to 1 and equal to 1 if f∗

ψ = f̃ψ; for example for Cauchy wavelet it
depends on the value of n (Eq. 6).
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Thus, a small Qm value increases the resolution in the time axis (∆t small), while a large
value increases the frequency resolution (∆f small).

Properly adjusting theQm parameter is particularly important in the case of two close Eigen-
modes which allows to separate them. In reference [13], it was shown that the value of Qm can
be chosen within the limits below:

Q
(min)
m = cf

fj
2Dfj

≤ Qm ≤ Q
(max)
m =

πLfj
ct

, (15)

where L is the length of the signal, ct, cf are constants that are used to identify edge effects in
the time and the frequency domain, respectively, fj is the Eigenfrequency of interest and Dfj
is its distance from the closest Eigenfrequency. Note that typically ct and cf receive values
between 3 and 5.

(a) (b)

(c)

Figure 3: Wavelet analysis on a amplitude-modulated signal u1(t) = A(t) cos(2πt) with
A(t) = 1 + 0.2 cos(2πt/10): (a) the signal u1(t) in the time domain, (b) scalogram com-
puted with Qm = 75 and (c) scalogram computed with Qm = 15.

The importance of the resolution parameter can be understood from the two examples of Fig-
ures 3 and 4. The figures present two examples of signals, with their time-frequency scalogram
plots.

7
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The first example concerns the amplitude modulated signal u1(t) = A(t) cos(2πt), where
A(t) = 1 + 0.2 cos(2πt/10) (Figure 3a). The expression for u1(t) can be misleading. By
developing the equation using trigonometric formulae, it can be shown that u1(t) is the sum of
three cosines: u1(t) = cos(2πt) + 0.1 cos(11

10
2πt) + 0.1 cos( 9

10
2πt) which can be identified

in the scalogram plot of Figure 3b) as three horizontal ridges. Due to the amplitude dominance
of the first term at 1Hz, the other two frequencies at 9/10 and 11/10Hz cannot be seen unless
the quality factor Qm is chosen “correctly”. According to Eq. 15, the bounds are: Q(min)

m = 25

and Q(max)
m = 125.6 respectively, with ct = cf = 5, fj = 1Hz, ∆f = 1 / 10 Hz and L = 200s.

If we had chosen a quality factor lower than Q(min)
m = 25, giving precedence to time resolution

over frequency resolution, the scalogram plot would have shown oscillations at the edges, as
shown in Figure 3c.

The second example (Figure 4) is that of an acoustic signal u2(t) measured when the passage
of a semi-trailer on a joint of pavement in very good condition on a motorway bridge and plotted
in Fig. 4a). The frequency content of this signal is mainly between 0 Hz and 2500 Hz (see.
Fig. 4b)). Zooming in on the amplitude spectral density of u2(t), which is the square root
of its classical Pseudo Spectral Density (PSD) over this frequency range, we see three main
peaks around the frequencies 250, 600 and 900Hz. Table 1, shows the limits of the Qm factor:
Q

(min)
m and Q(max)

m , for the three frequency values obtained using Eq. (15). Two scalograms
of this signal are then plotted for two different values of the quality factor in Figures 4c) and
4d): Qm = Q

(min)
m = 2 and Qm = Q

(max)
m = 125, respectively, corresponding to the limits:

Q
(min)
m = 2 and Q(max)

m = 125 for the relevant frequency: fj = 250Hz given in Table 1.
A comparison of these two scalograms provides an obvious interpretation. The lower the

value of Qm, the more visible the time effect is, with the vertical lines corresponding to the
times that the 5 axles of the semi-trailer passed over the pavement joint.

Table 1: Values of the limits of the quality factor Q(min)
m and Q(max)

m from Eq. (15) correspond-
ing to the three frequency peaks in the FT of the signal generated by the passage of a semi-trailer
over the joint.

Relevant frequency
fj (Hz) Q

(min)
m Q

(max)
m

250 2 125
600 5 301
900 7.5 452

Another point of interest, also related to Qm is the edge-effect problem. The problem is
attributed to the finite length of the signal, the discretization of the measured data record and to
the nature of the CWT. Edge effects cannot be removed and there will always be a domain in the
time-frequency plane that should be neglected due to this problem. Edge effects are seen with
dashed lines in Figs. 3 and 4; the effect of the quality parameter Qm on edge effects is evident.
As the Qm value increases, the edge effects become more significant, thus the useful time
interval for modal identification is reduced but the decoupling of the modes is more effective.

In reference [14], based on a study on simulated digital signals, the authors concluded that
the choice of Qm is a compromise between two objectives, (i) to discriminate close frequencies
(in which case larger values of Qm are preferred), (ii) to adopt a correct temporal resolution

8
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(a) (b)

(c) (d)

Figure 4: Acoustic response u2(t) of a joint of pavement on a motorway bridge measured when
a semi-trailer passes by: (a) time response, the amplitude is normalised between [−1, 1], note
that on this recording, the passage of a lorry saturates the microphone, (b) amplitude spectral
density of u2(t) over the range [0, 2500]Hz, (c) Scalogram of u2(t) computed with Qm =

Q
(min)
m = 2 for fj = 250Hz and (d) Scalogram of u2(t) computed with Qm = Q

(max)
m = 125

for fj = 250Hz.

for the detection of abrupt frequency changes (in which case smaller values of Qm are more
effective).

In conclusion, the computation of CWT of Eq. 7 can be performed for f = f
0
ψ / a =

n / (2πa) within a chosen frequency band and with an adapted time-frequency resolution Qm.
This remark led Rouby et al. [21] to introduce an adapted CWT: Tψ[u](f 0

ψ / f, b) with a time-
frequency resolution varying for each frequency, leading to a uniform resolution in the whole
time-frequency plane.

3 ASYMPTOTIC SIGNALS - RIDGE DEFINITION AND EXTRACTION

3.1 One component signal

Several authors [4, 5, 22, 23] have worked on the use of CWT for so-called asymptotic sig-
nals. The typical example is the chirp model [4, 5] which is a pseudo-periodic signal modulated
in frequency around a carrier frequency and also modulated in amplitude by an envelope whose

9
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variations are slow compared with the oscillations of the phase [23]. The CWT results that
are obtained in the context of asymptotic signals are very useful in particular for modal anal-
ysis [13]. The first step is to uniquely associate to any real signal u(t) a canonical amplitude
A

(u)(t), assumed to be positive, and a phase θ(u)(t) assumed to be increasing, and satisfying:
u(t) = A

(u)(t) cos(θ(u)(t)). A(u)(t) and θ(u)(t) can be determined with the aid of the Hilbert
transform H [u] which is defined in the Fourier domain as: Ĥ [u](f) = −isgn(f) û(f) and
allows the definition of the analytical signal Zu(t) associated to u(t) such as:

Zu(t) = u(t) + iH [u] (t) = A
(u)(t) ei θ

(u)(t) (16)

Several authors have showed that the CWT of an asymptotic signal will tend to “concentrate”
in the neighborhood of a curve a1(t) called “ridge” that consists of an aggregation of points
called ridge points. The ridge points are commonly obtained either from the CWT modulus
of the signal, or from its phase, and are called amplitude ridge points and phase ridge points,
respectively [24].

In the time-scale map, a ridge can be defined (see reference [23]) from its canonical phase
θ
(u) by:

a1(t) =
2π f

∗
ψ

θ̇(u)(t)
, (17)

where f∗
ψ appears in the chosen mapping between scale and frequency previously detailed. The

restriction of the CWT to the ridge a1(b), is called the “skeleton” of the wavelet transform.
From the skeleton, it is possible to reproduce the signal, or more precisely, what is associated
with the analytical signal Zu(b)), while it behaves like the product of Zu(b) by a multiplicative
factor entirely characterised by the mother wavelet and the ridge a1(b) :

Tψ[u](a1(b), b) =
1

2
ψ̂ (a1(b)θ̇(u)(b))Zu(b) =

1

2
ψ̂ (2π f∗

ψ)Zu(b). (18)

The process of estimating the ridge from the absolute value and/or from the phase information
of the CWT of the signal is called “ridge extraction”. Different techniques for extracting ridges
exist [4] and can be classified into two categories: the “differential” and the “global” methods
[13].

Differential methods rely on local properties of the CWT of the signal u(t), they are verified
theoretically on the ridge curve and they are based on the partial differential equations of the
CWT. The differential method used here is based on the modulus of Tψ[u](a, b), which is
maximum at b in the vicinity of the ridge, and therefore verifies a cancellation of its partial
derivative at a. This definition is given in [24] and its implementation has the advantage that it
is particularly simple and stable since it is a simple search for maxima.

The global methods, introduced in reference [25], are based on the search for curves that
maximize the energy of the CWT while maintaining a certain regularity of the solution. When
the considered frequency and amplitude modulated signal is embedded in noise and near the
ridges, the contribution of the signal is much larger than that of the noise, while the wavelet
transform of the noise spreads in the whole time-frequency plane. Several algorithms for global
ridge extraction are detailed in the book by Carmona et al. [4] and are discussed with reference
to their robustness to noise.

Once the ridge extraction method has been chosen and the ridge has been determined, the
analytical signal Zu(b) can be obtained. Its real and imaginary parts give the signal and its
Hilbert transform, respectively. The final goal of ridge extraction is to get an estimate of θ̇u(t)
from Eq. 17 and then of Zu(b) feeding it back into Eq. 18.

10
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3.2 Multicomponent signals

The analytical expression of the structural responses of linear systems is well-known, even in
the case of non-proportionally damped systems [26]. The aim of this section is to characterise
the behaviour of structures from multi-channel dynamic signals obtained from measurements
made by a set of N sensors, typically accelerometers. The set of displacement measurements at
these sensor points is grouped into the vector: u = [u1, u2,⋯, uN]T . Note that this notation is
generic and can also be used when the signal is an acceleration. The modal decomposition ex-
presses the state equation as a linear combination of the various modes of the system. Thanks to
the modal decomposition approach for linear systems, every signal can be expanded as a linear
combination of the different modes of the system, e.g. M components, each corresponding to
a different Eigenmode of the structure [26]. The CWT of each component of u is also grouped
in the vector Tψ[u], as follows:

Tψ[u](a, t) = [Tψ[u1](a, t), Tψ[u2](a, t), . . . , Tψ[uN](a, t)]
T (19)

Therefore, the displacement uk(t), taking into account the M modes, can be obtained as:

uk(t) = R
M

∑
l=1

{A(uk)
l (t) ei θ

(uk)
l (t)

Φ
(l)
k } , (20)

where A(uk)
l (t) ei θ

(uk)
l (t) is the analytical modal participation factor of the l-th complex mode

Φ
(l) (Φ(l)

k being its k-th component) to the structural response uk(t), while its real part are
assumed to be asymptotic 6.

The vector ϕ(l) is the complex l-th mode, which we have chosen to normalise as (ϕ(l))T ϕ(l)
=

1, based on the generalisation of a criterion usually used for real modal deformations: ∥ϕ(l)∥2
=

1 (cf. Carpine [10]). In the case of free responses, the dynamic signals contain the vibrations
of each mode of the structure, associated with an exponentially damped sinusoidal component.
Thus, Eq. (20) becomes:

uk(t) = R
M

∑
l=1

{A(uk)
l (t) ei θ

(uk)
l (t)

Φ
(l)
k } = R

M

∑
l=1

{Z(uk)
l e

i λltΦ
(l)
k } , (21)

where Z(uk)
l is a complex constant, λl = 2π i fl

√
1 − ξ2l − ξl 2π fl is the l-th pole and fl, ξl are

the Eigenfrequency and the modal damping ratio associated with mode l, respectively.
With the aid of the above form, which is a sum of asymptotic amplitude and frequency

modulated components, in the case of a single asymptotic amplitude and frequency modulated
signal, the absolute value of its CWT tends to concentrate near the “ridges” of the transform
[4]. In the time-frequency plane, the ridge is a well-defined region, but most importantly, the
wavelet transform acts as a “regularizing” filter that concentrates the information that is carried
within the signal and hence allows to characterize the instantaneous frequencies.

Based on the discussion above, the linearity of the CWT and a good choice of the mother
wavelet ψ can allow to separate these different components and extract the ridge for each of
them. There are several approaches for detecting multiple ridges, the final choice depends on
their interaction, or their independence. When these ridges do not interact and are located at

6the real part of uk is equal to A(uk)
l (t) cos (θ(uk)l (t))
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distinct regions of the time-frequency plane, a frequently encountered case in the analysis of
dynamic signals for which each instantaneous frequency remains in the vicinity of a horizontal
straight line, the methods previously mentioned can be implemented as in [13, 27].

As previously discussed, the ridges can then be deduced using Eq. 17. A common problem
is when there are two close Eigenfrequencies, fj and fk. The possibility of extracting the ridges
is guaranteed if the following condition is satisfied:

ξj ≤

√
2
cf

∣fj − fk∣
fj

, (22)

where cf is a constant related to edge effects [28], ξj is the modal damping ratio of the j-th
mode and the j and k indexes correspond to two neighboring modes j and k, respectively. If the
condition of Eq. 22 is not met, the extraction of accurate ridges is not guaranteed and may even
not be possible since the modes are too close and they cannot be separated in the case that they
are heavily damped. This tells us that two close modes cannot be well separated from each other
if they are damped too much. Figure 5 plots the ξj values as function of fj and ∆f = ∣fj − fk∣
for cf = 3. If the condition of Eq. 22 is met, the extraction of accurate ridges is guaranteed,
provided that the quality factor Qm is appropriately chosen, as already discussed in Eq. 13 and
Section 2.1.

Figure 5: Relationship between damping ration and frequency for ridge identification according
to Eq. 22 (cf = 3).

As already discussed, at each measurement point uk, k ∈ [1, N], a set of ridges a(l)k (t)
can be extracted from the time-frequency plot, for the l-th mode excited by the shock, where
l = 1, . . . ,M . For the extraction of ridges, differential methods based on a local analysis of
the extrema of the CWT modulus are here preferred. Thus the ridges, or the instantaneous
frequencies a(k)l (t), are extracted by the computation of local maxima of ∣Tψ[uk](a, t)∣ as
function of time t and for the l-th mode excited by the shock:

a
(k)
l (t) = argamax

»»»»»»Tψ[uk](a, t)
»»»»»». (23)

So, for a mode l, a set of k = 1, . . . ,M ridges a(k)l (t) is obtained, and a procedure to retain only
one ridge for the instantaneous frequency must be then made, in [13], for example assuming the
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average of the k signals:

a
mean

l
(t) = 1

N

N

∑
k=1

a
k

l
(t) (24)

An alternative way of obtaining a single ridge a(l)Σ (t) for mode l instead of several ridges
a
(k)
l (t) (one for each measurement point) was recently been proposed by the authors in [8].

This new procedure is based on the computation of the Averaged Continuous Wavelet Transform
(ACWT) T̃ψ[u](a, t), which combines the CWTs of each measurement point uk (k ∈ [1, N]),
as follows:

T̃ψ[u](a, b) =
N

∑
k=1

[Tψ[uk](a, b)]2. (25)

Eq. (25) is suitable for ridge extraction in the case of free responses of systems whose Eigen-
vectors are real or with a negligible imaginary part, which is the case of weakly damped systems
[26] and practically refers to all civil engineering structures. In fact, the use of the squares of
the transforms makes it possible to orient the contributions of the useful signal in each mea-
surement channel according to the same orientation in the complex plane, while those of noise
remain a priori randomly distributed. Therefore, Eq. (25) allows to obtain a single ridge a(l)Σ (t)
for mode l as follows:

a
(l)
Σ (t) = argamax

»»»»»»[T̃ψ[u](a, t)]
»»»»»»

1
2
= argamax

»»»»»»

N

∑
k=1

[Tψ[uk](a, t)]
2»»»»»»

1
2
. (26)

Finally, for both definitions of the ridges, i.e. amean

l
(t) (Eq. 23), or a(l)Σ (t) (Eq. 26), a proce-

dure has been proposed in [8] to smooth the result of the maxima obtained for each time t; for
two neighbouring points in frequency of a maximum to the right and to the left make it possible
to perform a parabolic interpolation from which we obtain the coordinates of a new ridge in the
time scale plane for the mode l under consideration (t, ă(l)k (t)), or (t, ă(l)Σ (t)). A procedure for
chaining the discrete points of the time-frequency plane to transform them into ridges is finally
performed (cf. [4]). The set of maxima of the absolute value of the CWT along the ridges
present in the signal forms the skeleton of the CWT of the signal. According to the definition
chosen for a ridge l in eq. (23) or in eq. (26), the absolute value of the CWT along each ridge
Tψ[u] (ă(l)k (t), t) or the ACWT along the single ridge T̃ψ[u] (ă(l)Σ (t), t) is preferred.

4 SYSTEM DYNAMIC CHARACTERIZATION

The modal parameters of a system under transient vibrations can be identified by extracting
the ridges and the skeleton of the CWT time-frequency representation. Once the ridges of
the CWT have been extracted, the instantaneous frequencies, the modal damping ratio and the
modal shapes can be estimated. If the system is purely linear, the shape of the ridges associated
with the Eigenfrequencies will be a straight horizontal line. Furthermore, the damping ratio of
the modes of interest can be estimated from the exponential decrease in amplitude associated
with these ridges, and finally the modal shapes can be obtained from the relative amplitudes and
phase shifts between the channels corresponding to the different sensors.

Therefore, the extraction of the “ridges” is a critical aspect for the successful application
of the CWT for modal identification in the case of transient structural responses. Among the
authors who have used the CWT for modal identification from transient structural responses, we
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can cite two references published in 1997: Staszewski [29] and Ruzzene et al. [30]. Staszewski
[29] proposed several CWT-based methods for estimating damping ratios and applied them to
simulated multi Degree-of-freedom (DoF) systems. Ruzzene et al. [30] showed that the CWT
analysis of the free response of a system allows the estimation of its natural frequencies and
viscous damping ratios. A more complete procedure, which also gives access to frequencies and
modal shapes, can be found in Lardies & Gouttebroze [31]. In Le & Argoul [13], the authors
propose a more precise and complete method where the choice of the mother wavelet, its quality
factor and the management of the edge effects of the TOC are studied in depth. The subsequent
article by Erlicher & Argoul [27] discusses the use of this procedure in the case of systems with
non-proportional damping, and therefore in the presence of complex deformations.

For amplitude and phase modulated signals of the form: u(t) = A(t) cos (ϕ(t)), the re-
striction of the wavelet transform to its ridge behaves mainly as the associated complex signal
of u(t): A(t) exp [iϕ(t)]. This representation also allows the reconstruction of such original
signals in non-significant noise situations [4]. If the system behaviour is close to be linear,
from the CWT (or the ACWT) of its transient responses, the extracted ridges are similar to
horizontal lines and the associated skeleton has an exponential decrease [13]. The logarithm
log ∣T̃ψ[u](ă(l)k (t), t)∣ for the CWT, or log ∣T̃ψ[u](ă(l)Σ (t), t)∣ for the ACWT can be then de-
duced and the calculation of the slope of the “straight lines” for each mode l can be performed in
order to estimate the corresponding modal damping ratio of the l-th mode. The slope allows to
get an estimate to the near sign of the product 2π fl ξl that is the reciprocal of the time constant
characterizing the exponential decay of the l-th mode.

The calculation of the Eigenshapes requires a set of measurements grouped in the vector:
u = [u1, u2,⋯, uN]T . The CWT of each component of u along the smoothed ridge ă(l)Σ of
mode l are also grouped in the vector Tψ[u], as follows:

Tψ[u](ă(l)Σ (t), t) = [Tψ[u1](ă(l)Σ (t), t), Tψ[u2](ă(l)Σ (t), t),⋯, Tψ[uN](ă(l)Σ (t), t)]
T

(27)

Depending on the choice made for the definition of the ridge, i.e. either Eq. 23, or Eq. 26,
the instantaneous complex modal shapes ϕ(l)(t) can be derived from the relative amplitude and
phase of the CWT calculated along each ridge. There are several ways to normalise the modal
vector. One way is to choose the unit amplitude for the measurement point umax, where the
max index corresponds to the measurement point where the modal amplitude is greatest [13].
The k-th component ϕ(l)

k (t) of the “instantaneous” complex mode can be expressed as follows:

ϕ
(l)
k (t) =

Tψ[uk](ă(l)k (t), t)
Tψ[umax](ă(l)l (t), t)

. (28)

As already discussed above, in this work we prefer the following scaling condition: (ϕ(l)(t))T ϕ(l)(t) =
1 for instantaneous mode shape ϕ(l)(t) [8, 10]. This definition results to:

ϕ
(l)
k (t) = ±

Tψ[uk](ă(l)Σ (t), t)

[Tψ[u](ă(l)Σ (t), t))T Tψ[u](ă(l)Σ (t), t))]
1/2 , (29)

where the sign follows the continuity of ϕ(l)
k over time. The amplitude of mode l is then equal

to:
Al(t) =

»»»»»Tψ[u](ă
(l)
Σ (t), t)T Tψ[u](ă(l)Σ (t), t)»»»»»

1/2
(30)
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To obtain a “constant” mode, especially in the case of linear behaviour, the mean value over
time, denoted ϕ, can be calculated for each component k of the l-th mode:

ϕk
(l)

=
1

tf − ti
∫

tf

ti

ϕ
(l)
k (t) dt. (31)

Figure 6: Characteristics of the four DoF system [13].

5 Applications

5.1 Numerical example: Transient response of a four DoF structure

The first example is the four DoF mass spring-damper model originally studied by Le and
Argoul [13] and revisited here. The characteristics of the system are shown in Figure 6. The
structure is displaced from original position by imposing initial displacements: u1 = 1.00m,
u2 = 0.75m, u3 = 0.50m and u4 = 0.25m and zero velocities (ü1 = ü2 = ü3 = ü4 = 0). The
system is left to freely oscillate after the initial displacements. The sample of duration L = 5
sec is taken over M = 1024 points (sampling period T = 0.0049 sec). The wavelet analysis is
performed using the Cauchy wavelet, while for the edge effect ct = cf = 3 is assumed.

Figure 7 shows the displacement response histories of the four DoF system. Furthermore,
Figure 8 shows the modulus of the squared ACWT for three Qm values, i.e Qm = 5, 15 and
30. The large Qm value (Qm = 30) allows to clearly see the Eigenfrequencies, but the edge
effects become more prominent, since the value Qm = 30 exceeds the maximum value Q(max)

m

according to Eq. 15 (see also Table 2).
Figure 9a shows the squared ACWT for Qm = 20 and the four ridges identified, i.e. a(i)Σ (t),

i = 1, 2, 3, 4. Due to the linear response, the ridges are straight, while due to the large Qm

value, the ridge identification of the first mode is restricted to a narrow region by the edge
effects. Moreover, Figure 9b shows the plots of T̃ψ[u](a, b), i.e. of the squared ACWT ridges
versus time and the corresponding ridges α(l)

Σ (t). The slope of each curve provides the modal
damping ratio. Notice that, since the ACWT is squared (see Eq. 25), the slope should be divided
by 2. Finally, Figure 10 shows the four averaged Eigenmodes ϕ obtained after applying Eq. 29
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and Eq. 31. The integration limits [tf , ti] of Eq. 31 are determined by the edge effects for the
frequency of interest.

Figure 7: Response histories for the four-DoF system.

(a) (b) (c)

Figure 8: Scalogram »»»»»T̃ψ[u](a, b)
»»»»» computed for: (a) Qm = 5, (b) Qm = 15, (c) Qm = 30.

Table 2 summarizes the results of this first example. The first three columns provide the
minimum and maximum values of the Qm parameter obtained with Eq. 15. Since the problem
is simulated, the exact Eigenfrequencies and the modal damping ratio values have been exactly
calculated. Table 2 compares the exact values with those obtained with the aid of the proposed
ACWT approach, proving its accuracy and efficiency.

Table 2: Identified modal characteristics using the ACWT method and compared with analytical
characteristics.

Eigenfrequency fi (Hz) Damping ratio ξi (%)
Mode ∆f (Hz) Q

min
m Q

max
m exact identified exact identified

1 4.7397 1.50 24.9 4.7397 4.7430 0.15 0.17
2 8.8503 2.3 71.4 13.5900 13.6915 0.43 0.42
3 7.9135 4.08 112.9 21.5035 21.9165 0.68 0.66
4 4.4379 8.8 136.3 25.9414 26.6851 0.81 0.79
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(a) (b)

Figure 9: (a) Scalogram »»»»»T̃ψ[u](a, b)
»»»»» (computed with: Qm = 20) and ridges identified, (b)

damping calculation from the slope of log of the ridge. Note that since the ACWT transform is
the sum of transforms that are in the power of two (Eq. 25), the slope of log (»»»»»T̃ψ[u](a, b)

»»»»»)
has to be divided by 2. From top to bottom: fi = 4.7, 13.7, 21.9, 26.6 Hz.

Figure 10: The four identified Eigenmodes obtained using Eq. 29.

5.2 “Damaged” masonry wall under dynamic excitation

The second example focuses on vibration data that were acquired during an experimental
campaign carried out on masonry wall specimens. The tests were performed in LabSCo labora-
tory of IUAV University, Venice [32]. These data were used to apply the CWT method for the
dynamic identification through transient responses embedded into noise responses.

The experimental campaign was carried out on UnReinforced Masonry (URM) panels sub-
jected to Shear-Compression (SC) and ambient-vibrations tests using a system of nine ac-
celerometers (Fig. 11). The test specimens are ordinary URM walls with Flemish bond pattern
as masonry arrangement. The unit dimensions of a brick are: 250 × 120 × 55mm and each
wall is 150cm tall, 130cm width and 25cm thick, with 1cm for the thickness of mortar joints.
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Figure 11: Masonry wall test. Location of the nine accelerometric sensors.

Among the types of URM panels tested by the Italian team, including the undamaged walls
already analysed by the wavelet transform method in [8, 33], only those with the fired brick
masonry walls have been processed here and are compared with the undamaged masonry wall
at the loading step, immediately after the appearance of the diagonal crack, shown in Figs. 12a
and 12b for the undamaged and damaged wall, respectively. A core of bricks that were exposed
to high temperature were put in the wall arrangement, aiming to reproduce discontinuities and
irregularities of the wall cross-section as they can be found in existing walls and buildings. In
particular, 12 brick units were subjected to a cycle of exposition to high temperature (600°C)
for 40 minutes and they were cooled at ambient temperature as shown in Figure 12b. The final
modified panel can be seen as a “damaged” panel where the so-called “damage” is controlled
by the number of fired bricks, their location and their firing temperature.

(a) (b)

Figure 12: Photo of the wall at the loading step, immediately after the appearance of the diago-
nal crack, (a) “Undamaged” masonry wall, and (b) “Damaged” wall with the group of 12 fired
bricks (6 for each side) drawn in hatched lines.

The signals acquired, contain some discontinuities in the waveform that can be assumed as
transient responses, i.e. change in the steady-state of the system. These responses are probably
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(a) (b)

Figure 13: “Damaged” masonry wall - After impact responses : (a) The nine “transient” accel-
eration signals data set used for the processing, and (b) Averaged Fourier Transform (Eq.32).

(a) (b)

Figure 14: “Damaged” masonry wall testing. Scalograms of the ACWT for the nine acceleration
signals. Effect of the quality factor: (a) Qm = 5.42, and (b) Qm = 18.06.

due to the testing environment triggered by other testing machines. The set of a “transient”
acceleration signals ük(t) data set k ∈ [1, 9] plotted in Figure 13a, has been processed using the

CWT method. An Averaged Fourier Transform (AFT) ̃̈̂u(f) combining the Fourier transform
of each of the N = 9 channel acceleration signals is introduced, defined by the square root of
the sum of the squared FT of each individual acceleration signal by:

̃̈̂u(f) = (
N

∑
k=1

̂̈u2k(f))
1
2

, (32)

and its absolute value is plotted in Figure 13(b). The effect of the quality factor is illustrated
in Figure 14, where the absolute value of the square (T̃ψ[ü](a, b))2 of the ACWT given in Eq.
(25) is plotted in the time-frequency domain for two different quality factor values Q(1)

m = 5.42

and Q(2)
m = 18.06. For the first three modes, Eigenfrequencies fi and modal amplitudes Ai

are then estimated by the classical peak picking method applied to the AFT, the corresponding
modal damping ratios are obtained with the classical half power technique (cf. [34, 35]) and
listed in Table 3.
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Table 3: “Damaged” masonry wall testing - After impact signals. - Identified modal character-
istics (Eigenfrequency fi(Hz), modal amplitude Ai (m/s2) and modal damping ratio ξi (%)) for
the first three modes) by classical identification techniques (peak picking and half power) from
the AFT versus the ACWT identification technique (indication of the quality factor Qm).

estimated with estimated with
classical techniques from AFT ACWT techniques

Mode fi(Hz) Ai (m/s2) ξi (%) fi(Hz) Ai (m/s2) ξi (%) Qm

1st 11.41 0.024 1.98 11.54 - 0.96 18.06
2nd 21.97 0.0212 4.25 22.12 - 3.07 18.18
3rd 32.11 0.0279 1.31 31.79 - 0.73 40.17

The ridges corresponding to the first three modes are plotted in Figure 15(a), and are similar
to horizontal straight lines showing that the mechanical behaviour of the wall remains “lin-
earized” during its response to the impact. Finally, the average value along each ridge allows to
estimate the three first Eigenfrequencies whose values are given in Table 3. The two first modal
characteristics have then been compared to those obtained with the undamaged wall during a
similar step of loading after diagonal cracking. The calculation of the slope of the three “straight
lines” is then performed and the modal damping ratios ξi for i ∈ [1, 3], of the three first modes
are deduced and given in Table 3. The values obtained are of the same order of magnitude
but slightly lower than those obtained by the half-power method applied to the AFT given in
Eq. (32). The three complex “constant” modal shapes are then computed from Eq. (31). The
imaginary part of the three first complex modal shapes being quite small, thus only their real
part is plotted in Figures 16(a), (b) and (c) for the undamaged wall and in Figures 17(a), (b) and
(c) for the damaged wall, respectively. In both cases “undamaged” and “damaged”, the shape
of these three identified modes is similar and appears to correspond to the first bending mode
for the first mode identified, the first torsion mode for the second mode and a combination of
the two for the third. The identified modal Eigenfrequency fi and modal damping ratio ξi for
the first three modes (1 ≤ i ≤ 3), between the “undamaged” and “damaged” wall, estimated by
ACWT techniques are given and compared in Table 4. It can be seen that the modal characteris-
tics identified for the second mode (torsional type) for the “undamaged” wall are very different
from those for the “damaged” wall (lower eigenfrequency and higher modal damping ratio).

Table 4: Comparison of identified modal characteristics (Eigenfrequency fi(Hz), and modal
damping ratio ξi (%)) for the first three modes, between the “undamaged” and “damaged” wall,
estimated by ACWT techniques with indication of the corresponding quality factor Qm.

“undamaged” wall “damaged” wall
at horizontal load of 224.2kN at horizontal load of 186.79kN

Mode fi(Hz) ξi (%) Qm fi(Hz) ξi (%) Qm

1st 11.01 0.90 18.94 11.54 0.96 18.06
2nd 28.18 0.83 18.33 22.12 3.07 18.18
3rd 34.11 0.74 63.45 31.79 0.73 40.17
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(a) (b)

Figure 15: “Damaged” masonry wall testing - After impact signals. Extraction of ridges and
skeletons from the ACWT: (a) instantaneous eigen frequencies (ridges), and (b) Logarithm of
the absolute value of the ACWT along each ridge. For both figures, yellow curves correspond
to the first mode, red curves to the second mode and blue curves to the third mode.

(a) (b) (c)

Figure 16: “Undamaged” masonry wall testing. Modes shapes: (a) First mode (f1 = 11.01Hz),
(b) Second mode (f2 = 28.18Hz), and (c) Third mode (f3 = 34.11Hz).

6 CONCLUSIONS

The wavelet analysis method allows the processed signal to be represented in the time-
frequency domain, thus facilitating access to the estimation of modal characteristics. Applied to
transient signals, it allows the detection of spurious modes generated by noise or redundant DoF
of the model, and the identification of the presence of close modes and their associated modal
parameters. Two application examples are presented, showing that inverse CWT analysis can
provide valuable information for structural modal identification and for evaluating the effect of
damage on the modal characteristics of the structure under study. The next step is to apply it to
damage assessment, as demonstrated by first studies to be published soon.
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