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John Wright k, Tiffany C. Yang k, Rémy Slama c, Valérie Siroux c, Martine Vrijheid a,d,e, 
Xavier Basagaña a,d,e,* 

a ISGlobal, 08003 Barcelona, Spain 
b CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain 
c University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for 
Advanced Biosciences, 38000 Grenoble, France 
d Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 
e CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain 
f Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public 
Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020 Valencia, Spain 
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A B S T R A C T   

Outcome-wide analysis can offer several benefits, including increased power to detect weak signals and the 
ability to identify exposures with multiple effects on health, which may be good targets for preventive measures. 
Recently, advanced statistical multivariate techniques for outcome-wide analysis have been developed, but they 
have been rarely applied to exposome analysis. In this work, we provide an overview of a selection of methods 
that are well-suited for outcome-wide exposome analysis and are implemented in the R statistical software. Our 
work brings together six different methods presenting innovative solutions for typical problems arising from 
outcome-wide approaches in the context of the exposome, including dependencies among outcomes, high 
dimensionality, mixed-type outcomes, missing data records, and confounding effects. The identified methods can 
be grouped into four main categories: regularized multivariate regression techniques, multi-task learning ap
proaches, dimensionality reduction approaches, and bayesian extensions of the multivariate regression frame
work. Here, we compare each technique presenting its main rationale, strengths, and limitations, and provide 
codes and guidelines for their application to exposome data. Additionally, we apply all selected methods to a real 
exposome dataset from the Human Early-Life Exposome (HELIX) project, demonstrating their suitability for 
exposome research. Although the choice of the best method will always depend on the challenges to be faced in 
each application, for an exposome-like analysis we find dimensionality reduction and bayesian methods such as 
reduced rank regression (RRR) or multivariate bayesian shrinkage priors (MBSP) particularly useful, given their 
ability to deal with critical issues such as collinearity, high-dimensionality, missing data or quantification of 
uncertainty.  
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1. Introduction 

The concept of the “exposome” encompasses all environmental ex
posures to which an individual is exposed from conception onward 
(Santos et al. 2020; Wild 2005). An increased number of studies have 
evidenced the driving role of the early-life exposome in the development 
of most common non-communicable diseases, pointing to prenatal and 
early childhood as windows of opportunity for disease prevention (Agier 
et al. 2019; Maitre et al. 2021; Vrijheid et al. 2020). Most of the expo
some research has traditionally focused on the study of different health 
outcomes separately, under what is known as the single-outcome 
approach (Barrera-Gómez et al. 2017; Vrijheid et al. 2020). Although 
single-outcome analysis is a valid approach for assessing exposome- 
health associations, in some cases, it may not provide a comprehen
sive enough vision, especially when exposures are presumed to have 
multiple effects on health. In the last years, advanced methods for 
outcome-wide analysis have been developed, which can provide a more 
holistic perspective. In outcome-wide analysis, the effect of an envi
ronmental exposure on multiple health outcomes is simultaneously 
investigated (Vanderweele 2017; VanderWeele et al. 2020). Although 
traditionally applied for the evaluation of single exposures in environ
mental epidemiology, outcome-wide analysis has barely been extended 
to exposome research, where multiple exposures are investigated 
jointly. 

Outcome-wide studies can offer several benefits, particularly in 
exposome studies where exposures can influence many health outcomes 
that are usually manifested in populations under a pattern of comor
bidity (e.g., cardiometabolic health, respiratory problems, and neuro
development and cognitive dysfunction). From the methodological 
point of view, outcome-wide analysis allows consideration of the cor
relations among the multiple exposures and outcomes. This can be used 
to borrow information from other exposure-outcome pairs when esti
mating the effect of a particular exposure on a given outcome, bringing 
in an increased ability to detect signals that may not be strong enough to 
be detected in a traditional hypothesis-driven analysis of a single 
outcome (Kundu et al. 2021). This is especially true in the scenario of 
responses that share similar predictors or exposures exerting similar 
influences across different outcomes, or in the case of complex disorders 
arising from multiple correlated phenotypes. Moreover, by allowing 
some flexibility in the functions estimated for each health outcome, 
some of these models can also lead to the discovery of ambiguous risk 
factors previously unnoticed (e.g., exposures that may be beneficial for 
some outcomes but harmful for others) (VanderWeele 2017; Vander
Weele et al. 2020). An outcome-wide exposome analysis also helps 
avoiding selective reporting of results and may better control multiple 
testing. From the perspective of public health recommendations, the 
outcome-wide approach might also be of utility, since the identification 
of key exposure agents with multiple and simultaneous effects on health 
can lead to the development of preventive measures with higher impacts 
on population health. 

Outcome-wide research also poses some challenges, such as the 
increased dimensionality requiring larger sample sizes, the increased 
risk of false positives, the need for complex confounder-adjusting stra
tegies, or the presence of incomplete data records. Fortunately, 
advanced multivariate statistical methods have become available in 
recent years offering solutions to some of these problems (Bai and Ghosh 
2018; Cao et al. 2022; Chen and Huang 2012; Chun and Keleş 2010; Kim 
et al. 2009; Kundu et al. 2021; Luo et al. 2018; Obozinski et al. 2011; 
Peng et al. 2010; Turlach et al. 2005; Wang et al. 2015a). Most of these 
methods stem from the field of omics, in which the identification of 
“master regulators” (i.e., genes affecting the expression or molecular 
profiles of many targets at the same time) is of great interest. Despite the 
parallelisms existing between omics and exposome fields (e.g., high- 
dimensional settings with low sample sizes, complex noise and corre
lation structures present in data, etc.), these techniques have been rarely 
applied for the study of environmental exposure-health associations. On 

the contrary, most of the outcome-wide approaches conducted to date in 
the context of environmental hazards have opted for the use of multi
variate regressions or seemingly unrelated regressions, which at best 
only modestly improve efficiency compared to that achieved when 
fitting a separate linear regression model for each outcome (Des
carpentrie et al. 2023; Kim et al. 2022; Okuzono et al. 2022; Steptoe and 
Fancourt 2020). One of the plausible reasons for the low spread of the 
new available multivariate techniques for outcome-wide analysis in 
exposome research could be the lack of guidelines and recommendations 
on how to apply them to the exposome context, or the requirements in 
some cases of adaptation for dealing with certain exposome 
particularities. 

In this work, we provide an overview of a selection of methods that 
are well-suited for outcome-wide exposome analyses and are imple
mented in the R statistical software. Specifically, we compare each of the 
techniques, presenting the main rationale behind them, their strengths, 
and limitations, and provide guidelines for their application to expo
some data. In addition, we apply all selected methods to a real exposome 
dataset from the HELIX project, in which multiple health outcomes and a 
rich exposome characterization are available for 6 longitudinal Euro
pean birth cohorts (Maitre et al. 2018). By synthesizing the most 
promising methods in this field, illustrating their application to a real 
dataset, and providing analysis codes, this work aims to provide a 
valuable resource for researchers in the field of exposome analysis who 
seek to identify and investigate in a more comprehensive way the 
complex relationships between environmental exposures and multiple 
health outcomes. 

The layout of this manuscript is as follows. In Section 2, we describe 
the main analytical challenges behind outcome-wide analysis with 
exposome data and present each of selected methods, comparing their 
suitability, strengths and limitations. In Section 3, we introduce addi
tional steps that should be considered after the main outcome-wide 
analysis to increase the robustness of findings. Section 4 includes de
tails on the codes and software resources generated in this paper. In 
Section 5, we present the application of all selected methods to a real 
exposome dataset and detail the analysis findings. Finally, we conclude 
with a general discussion in Section 6. 

2. Methods for outcome-wide analysis in exposome research 

In exposome research, there are many examples of situations in 
which an analysis of multiple outcomes simultaneously can be useful. A 
clear example is the identification of key risk exposures with small but 
relevant effects on different health domains, such as the case of passive 
tobacco exposure during childhood and pregnancy, which has been 
revealed as an adverse factor for cardiometabolic or respiratory health, 
as well as for behavioral and neurodevelopmental problems in children 
(Agier et al. 2019; Maitre et al. 2021; Vrijheid et al. 2020). Alternatively, 
one could be interested in the evaluation of pollutants and chemicals 
and their effect on a group of health parameters which are strongly 
correlated to each other; for example, the group of parameters framed 
under the umbrella of the metabolic syndrome definition (e.g., blood 
pressure, lipids levels, glucose, and body mass index). For these and 
other types of outcome-wide approaches in exposome research, a 
number of different advanced techniques have recently become avail
able (Bai and Ghosh 2018; Cao et al. 2022; Chen and Huang 2012; Chun 
and Keleş 2010; Kim et al. 2009; Kundu et al. 2021; Luo et al. 2018; 
Obozinski et al. 2011; Peng et al. 2010; Turlach et al. 2005; Wang et al. 
2015a). In this work, we selected a representative group of the most 
promising and useful outcome-wide analysis techniques, considering 
their suitability for exposome data and their ability to handle the com
mon hurdles encountered when working with multiple health domains 
in the context of the exposome. These challenges involve: 

1) The curse of dimensionality. The high dimensionality of the expo
some is a well-known complication in the case of low-to-moderate 
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sample sizes; it is exacerbated when multiple outcomes are consid
ered as it requires the exploration of how exposome domains could 
be affecting each of the different studied phenotypes. This requires 
study populations with a large enough sample size (i.e., “one in ten 
rule” for each outcome) to robustly test multiple research hypotheses 
as well as to incorporate effective strategies for feature selection 
during the model training. Another issue related to the high 
dimensionality problem in outcome-wide analysis is the increased 
probability of making one or more false discoveries when testing 
multiple hypotheses (family-wise error rate), which should also be 
addressed through the incorporation of adequate inference 
techniques.  

2) The need for adjustment for confounding effects is a constant in all 
epidemiological studies in order to avoid bias and reduce both false 
negative and positive results. The identification of the different 
sources of bias, and their adequate incorporation into models is not a 
straightforward task in exposome-wide association studies (ExWAS). 
Usually, a simplification approach is adopted by selecting the same 
group of confounders for all exposures. In outcome-wide analysis, 
again, the situation gets more complicated, with different ways to 
approach it (Vanderweele 2017). For this reason, it is highly advis
able that outcome-wide analysis techniques incorporate specific 
mechanisms or strategies to control for the effect of confounders.  

3) Heterogeneity in the type of outcomes and correlation structures 
among outcomes. It is common to find phenotypes of interest with 
different variable domains (continuous, binary, counts), and the 
functions for modeling their relation with the exposome are usually 
different. For this reason, it is desirable to count on outcome-wide 
methods especially designed for the joint modeling of different 
types of outcomes. Additionally, within the context of health alter
ations influenced by the exposome, it is typical to find correlation 
structures among outcomes, such as those mentioned in the example 
of metabolic syndrome. It is plausible, therefore, to hypothesize that 
an exposure affecting two correlated outcomes should present a 
similar association with both of them in terms of effect size. The 
consideration of these situations by outcome-wide methods during 
the modelling would result in an increased estimation efficiency.  

4) The presence of missing values in outcomes. Missing data represent 
an important source of uncertainty and loss of accuracy in epide
miological studies. When they are present in exposures, multiple 
imputation techniques are usually adopted in order to preserve the 
sample size of studies and to correct potential biases. Nevertheless, 
some authors point out that there are no clear benefits in imputing 
missing values when these are present in the outcome variables (von 
Hippel 2007). As an alternative, researchers tend to exclude study 
subjects with any missing observations in the phenotype, under the 
so-called complete case analysis, but this is at best of low statistical 
power and at worst provides biased estimates. In an outcome-wide 
analysis, the situation escalates given the increased number of 
assessed phenotypes, which could drastically reduce the sample size 
if one opts for the complete cases analysis. Besides, there could be a 
different number of participants available for each outcome. In this 
context, since there are no clear guidelines on how to proceed, it is 
advisable that selected outcome-wide methods are designed to deal 
with missing data in the outcome variables.  

5) The need for a readily-available implementation in open-source 
software. Given the novelty of the outcome-wide approach, many 
of the methods encountered in the literature are not accompanied by 
the release of an analysis package for their implementation. For this 
reason, we restricted the search to those methods that were properly 
implemented in the open-source R software, commonly employed by 
the epidemiology community, so their use can be widely spread in 
the exposome research. 

Our search identified six different methods that can be grouped into 
four main categories; 1) Regularized multivariate linear regression 

techniques (Graph-Guided Fused Lasso (GFLasso) and GroupRemMap) 
(Kim et al. 2009; Wang et al. 2015a); 2) Multi-task learning (Multi-task 
L2,1-norm regularized regression model (MTL_L21)) (Cao et al. 2022); 
3) Dimensionality reduction approaches (Sparse Reduced-Rank 
Regression (sRRR) and Mixed-response reduced-rank generalized 
linear regression model (mRRR)) (Chen and Huang 2012; Luo et al. 
2018); and 4) Bayesian extensions of the multivariate regression 
framework (Multivariate Bayesian Model with Shrinkage Priors (MBSP)) 
(Bai and Ghosh 2018). In all of them, exposome-health associations for 
each outcome and exposure are quantified in the form of regression 
coefficients (beta estimates, β). Output beta estimates are presented as a 
P × Q matrix where P refers to the number of assessed exposures and Q 
to the number of outcomes. In this matrix, each row represents the co
efficient estimates for one predictor on all outcomes, and each column 
represents the coefficient estimates for all predictors on one outcome. 

2.1. Preliminary concepts: Regularization in a nutshell 

Before starting with the description of each method, we briefly 
introduce the general concept of regularization, which appears as a 
common theme across selected techniques. The term regularization re
fers to a set of mathematical strategies especially designed to select the 
relevant predictors for an outcome variable while mitigating the risk of 
overfitting in a high-dimensionality-low sample size setting, ultimately 
improving the predictive performance and interpretability of the model. 
This is achieved by imposing constraints during the estimation of 
regression coefficients (e.g., driving the coefficients of uninformative 
predictors to zero). For that, regularization techniques add penalties to 
the objective function during the data modelling. The objective function, 
in essence, is a mathematical expression that characterizes the proba
bility of the observed data as a function of some parameters (e.g. 
regression coefficients linking environmental exposures and the health 
outcomes). The estimation process consists of finding values of the 
regression coefficients that optimize the objective function. By adding 
regularization penalties, one forces estimated coefficients to be less 
faithful to the training data and more generalizable in other situations; 
pursuing a balance between fitting the data closely and keeping the 
model’s complexity in check. 

Two common regularization strategies involve using L1 and L2 
penalties. These penalties influence the shape of the objective function 
differently. In L1 regularization, the objective function has an extra term 
(known as (λ)) penalizing models in which the sum of the absolute 
values of the regression coefficients is large. As a result, estimated co
efficients are shrunk and some are driven to zero. This property is 
particularly valuable in variable selection, allowing researchers to 
identify the most important exposures for the research question. On the 
other hand, In L2 regularization, there is an extra term penalizing 
models in which the squared sum of regression coefficients is large. This 
penalizes large estimated coefficients and results in distributing the 
weights more evenly across variables. This can be advantageous when 
dealing with correlated exposures, helping to prevent multicollinearity 
issues and stabilizing coefficient estimates. 

In the context of the selected methods, different regularization 
strategies are adopted pursuing the generation of simpler models, and 
the reduction of overfitting in outcome-wide analysis. 

2.2. Regularized multivariate regression framework 

The techniques GFLasso and GroupRemMap are frequentist multi
variate techniques based on the regularized linear regression framework 
(Kim et al. 2009; Wang et al. 2015a). In the single-outcome scenario, the 
most popular regularization techniques are the Lasso, Ridge regression, 
or Elastic-Net, which use L1 and L2 penalties (or their combination) to 
prevent overfitting in high-dimensional data. As previously mentioned, 
these techniques employ penalties to shrink to/near zero the coefficient 
estimates of non-relevant predictors, which contribute little to the 
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minimization of the error (Tibshirani 1996). The natural extension of 
these regularized techniques into the multivariate framework is equiv
alent to fitting Q single-outcome regularized models separately. In other 
words, for a collection of outcomes, each outcome would be treated as 
independent of all the others, and every outcome would be regressed on 
a common set of exposures via its own Lasso, ignoring the possible re
lations existing among models. For the multi-outcome scenario, the 
proposed methods take the basic idea of the multivariate Lasso and go a 
step further. Besides the L1 penalty, they also incorporate other types of 
penalties into the objective function (e.g., bridge penalty, fusion pen
alty, etc.), so the coefficients of similar exposures/outcomes are forced 
to adopt similar values. Through these strategies, GFLasso, and Group
RemMap, borrow information from different coefficients and outper
form the basic multivariate linear regression and its regularized 
extensions. Below, a brief description and the main concept behind each 
technique are presented.  

• GFLasso: The innovation in GFLasso is that, in addition to using L1 
penalty, which induces overall sparsity, it employs another penalty 
called ‘fusion penalty’ (γ) that fuses regression coefficients across 
correlated phenotypes. This penalty is added to the objective func
tion penalizing the difference among the estimated coefficients for 
the effect of the ith exposure on two correlated outcomes. A larger 
value for the γ□penalty will lead to a greater fusion effect, and 
therefore, a greater similarity among the coefficients of the effect of 
the ith exposure on correlated outcomes. GFLasso, therefore, lays on 
the drawing of the graph dependency structure underlying the 
outcome variables in the dataset, which can be quantified by an 
outcome correlation matrix. Starting from this correlation matrix, 
two types of fusion penalties are proposed in GFLasso, depending on 
whether they use an unweighted or weighted connectivity pheno
type graph as a guide. In the case of the unweighted approach, the 
correlation matrix for outcomes is first transformed into a matrix of 
0 s and 1 s according to a correlation coefficient threshold defined by 
the user, so the γ penalty is equally applied only to the pairs of 
correlated outcomes. Instead, the weighted approach does not need 
any threshold defined by the user and will apply the γ penalty to all 
pairs of outcomes. In this case, a higher correlation coefficient for a 
pair of outcomes will increase the fusing effect among these two 
phenotypes. More details on the mathematical formulations for the 
solution can be found in the original publication (Kim et al. 2009). 
According to simulation studies, the weighted approach is expected 
to generally outperform the unweighted approach, especially in 
cases with low correlations within outcomes. When using this 
method, the user will need to define the penalty values λ and γ, which 
are usually selected by cross-validation. As a result, GFLasso favors 
the selection of predictors with effects on multiple outcomes, flat
tening the coefficients of each exposure on correlated outcomes. An 
open-source package called “gflasso” is available in R through 
GitHub1for the implementation of this approach. We implemented a 
patch modification to the main functions of the package in order to 
allow the method to correct for the effect of confounders. The cor
rected codes are available at the supplementary GitHub repository.2 

Although the method was developed to work with continuous out
comes only, it could be extended to the case of binary phenotypes 
and logistic regression in the future.  

• The GroupRemMap Method: The main idea behind GroupRemMap is 
quite similar to the solution proposed in GFLasso. However, in this 
case, the types of penalties employed are slightly different (Wang 
et al. 2015a). Here, the main goal of the model is to promote the 
selection of exposures affecting the majority of the outcomes while at 
the same time, considering the relations among predictors. I.e., the 

method favors the selection of groups of related exposures rather 
than single variables. This is achieved through the use of three 
different penalties: an L1 penalty that controls the overall sparsity of 
the output coefficient matrix; a γ-type penalty term that encourages a 
group selection effect (‘bridge’ penalty); and an L2 penalty, which 
combined with the bridge penalty, induces row sparsity in the matrix 
of coefficients, such that groups of exposures that have effects on 
many outcomes are more likely to enter the final model. The com
bination of the L1 penalty and the bridge penalty on L2 norm of 
grouped predictors is presented as the GroupRemMap penalty. As a 
result, GroupRemmap favors selection of predictors with effect in 
majority of outcomes, flattening the coefficients of exposures 
belonging to groups. For that, GroupRemMap relies on the existence 
of expert knowledge for grouping exposures (e.g., according to 
exposome domains, families, biological pathways involved in their 
health effects, etc.). The selection of tuning parameters is again done 
through K-fold cross-validation. An R package called “group
RemMap” is available through CRAN. As it happens with GFLasso, 
GroupRemMap is designed to work only on continuous outcomes. 

2.3. Multi-task learning 

Next, we describe the more sophisticated group of techniques called 
multi-task learning (MTL) (Cao et al. 2018, 2022). MTL with joint pre
dictor selection is based on the concept of cross-task regularization; a 
type of regularization that penalizes the complexity of the whole coef
ficient matrix rather than individual estimates, aiming to identify a row- 
wise sparse structure for it that maximizes prediction accuracy (for all 
tasks/outcomes). That is to say, each selected exposure needs to affect 
all outcomes under study (which is an assumption not always held. This 
model is known as L2,1-norm regularized regression model (MTL_L21) 
and represents a complex optimization model (Liu et al. 2012). In 
MTL_L21, the value of an L1 penalty needs to be specified, and according 
to such value the variable selection (overall sparsity of the matrix of 
coefficients) will be more or less strict. The optimal value for the penalty 
can be determined by cross-validation according to the error of derived 
models. Interestingly, superior prediction performance and biological 
plausibility have been demonstrated for MTL when compared to single- 
task regularized approaches (e.g., standard Lasso or elastic-net recur
sively applied to each outcome) (Cao et al. 2018). Additionally, 
MTL_L21 includes an L2—like penalty for group selection (which is 
optional). This technique was derived in the omics field but has never 
been applied to exposome research. By applying these models to the 
outcome-wide analysis in the exposome context, one may identify ex
posures simultaneously associated with multiple illness phenotypes. 
This and other MTL variants have been implemented in the R library 
“RMTL”, where authors propose to solve the optimization problem by 
means of a solver based on the accelerated gradient descent method 
(Cao et al. 2019). By changing their loss function, these methods are able 
to work on continuous or binary outcomes (logistic loss for classification 
or least square loss for linear regression). Nevertheless, they cannot 
simultaneously model a mix of continuous and binary responses. 

2.4. Dimensionality reduction techniques 

Other suitable models identified are the well-known dimensionality 
reduction techniques, that combine the predictor variables into fewer 
features that can be explained as latent factors that drive the variation in 
the multiple response variables (Chen and Huang 2012; Luo et al. 2018). 
These techniques, in comparison to regularized multivariate linear re
gressions, increase computational efficiency and predictive accuracy, 
especially in the case of high-dimensional settings. Among the different 
techniques, we highlight the group of reduced-rank regression methods 
(RRR). These methods try to identify latent factors that maximize the 
quantity Corr2(X,Y)*Var(Y), where X and Y are centered exposures 
(number of individuals × P) and outcomes (number of individuals × Q) 

1 https://github.com/krisrs1128/gflasso.  
2 https://github.com/AugustoAnguita/exposome_outcomewide. 
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matrices respectively. Therefore, they take advantage of interrelations 
among the outcome variables to improve predictive accuracy. RRR 
makes a restriction on the rank of the output regression coefficient 
matrix, which reduces the number of parameters to be estimated and 
improves the efficiency of estimation. Thanks to that, RRR is also effi
cient dealing with multicollinearity among predictors. Often, these 
techniques also incorporate the use of penalties, such as L1 and L2, 
during parameter estimation so that feature selection is achieved. 
Within the group of RRR, we identified two techniques that could be 
useful for outcome-wide analysis in the exposome context; the sparse 
RRR (sRRR) and the mixed-outcomes RRR (mRRR). sRRR is a variant of 
the reduced-rank regression (RRR) method that incorporates sparsity 
constraints to achieve feature selection. In addition to the standard RRR 
method that imposes a rank constraint on the regression coefficient 
matrix, the sRRR method also incorporates a penalty term in the 
objective function to encourage the sparsity of the coefficient matrix. 
This penalty term is a group-lasso type penalty, which shrinks some rows 
of the coefficient’s matrix towards zero. The use of sparsity constraints 
in sRRR allows for the identification of a small set of important exposure 
variables that are most strongly associated with the outcome variables 
while ignoring irrelevant or weakly associated exposures. On the other 
hand, mRRR integrates multivariate outcomes of mixed types belonging 
to an exponential dispersion family. The types of outcomes, for example, 
cover continuous, binary, and count outcomes, which are commonly 
seen in exposome research. Although mRRR does not incorporate 
feature selection as sRRR, it is able to deal with missing data records in 
the outcomes. Both techniques are implemented in the R package 
“rrpack”. 

2.5. Bayesian approaches 

Bayesian models allow the incorporation of prior knowledge about 
the parameters being estimated, which is particularly useful in low- 
sample size settings such as the ones typically faced in exposome 
research. Bayesian approaches also allow a better quantification of un
certainty about parameters through the posterior probability distribu
tion. Finally, they tend to be more flexible than frequentist techniques 
since they can handle a wide range of models, including complex hier
archical models with multiple levels of uncertainty. All these facts make 
them well-suited for the outcome-wide analysis in exposome research. 
Recently, a method known as sparse multivariate Bayesian estimation 
with shrinkage priors (MBSP) has become available (Bai and Ghosh 
2018). This method is a multivariate Bayesian technique that in
corporates a Bayesian version of lasso penalties (known as global–local 
shrinkage (GL) priors) for the generation of a sparse model of predictors 
affecting multiple outcomes. Particularly, it uses GL priors belonging to 
the “three parameter beta normal (TPBN) family”, which includes the 
horseshoe, the Strawderman-Berger, and the normal-exponential- 
gamma (NEG) priors. Interestingly, this method may be used for 
sparse multivariate estimation for P, and Q of any size, showing good 
performance even in the scenario of ultra-high-dimensional settings 
where P is allowed to grow nearly exponentially with the number of 
individuals. By examining the 95 % posterior credible intervals for every 
element in each row of the posterior conditional distribution of esti
mated coefficients, the MBSP model can also be used for variable se
lection. The level of sparsity of the final model in MBSP can be 
controlled locally through the choice of prior and at the global level 
through an hyperparameter, here called tau (τ). Finally, MBSP is able to 
account for the effect of confounders, which can be forced into the 
model. MBSP is implemented in a comprehensive R package called 
MBSP. For applying the model, the user needs to set which exact type of 
GL shrinkage priors to use, and the additional parameter τ (which 
controls the amount of global shrinkage). The selection of which GL 
shrinkage priors to use will shape the prior beliefs about the importance 
and distribution of the different coefficients for exposure-outcome as
sociations, thereby influencing the variable selection and the estimation 

procedure. Nevertheless, the choice among the three priors is not a 
trivial question, especially if the researcher has no strong preconceived 
beliefs on the underlying associations. In general, according to previous 
simulation studies (Kundu et al. 2021), the horseshoe prior has a 
reasonably good performance across a variety of empirical experiments 
and situations and is more computationally efficient than other ap
proaches. The NEG prior could be of preference if the researcher is 
specifically interested in capturing both common effects shared across 
multiple outcomes and individual effects specific to each outcome. The 
MBSP R package incorporates a strategy to help researchers identifying 
the most appropriate prior for each situation. For that, the user can try 
different priors and finally determine the optimal model by the inspec
tion of goodness of fit criteria such as the Deviance Information Criterion 
(DIC) or the Watanabe–Akaike information criterion (WAIC). For that 
task, WAIC may be preferred since it averages over the posterior prob
abilities and it does not require the them to be approximately normal. 

2.6. Overview of the properties of the different methods 

A general overview of all selected methods and their solutions for 
outcome-wide analysis in exposome research can be found in Table 1. 
These techniques differ a bit conceptually, but they also differ in the 
situations they are able to accommodate. Most of the techniques are 
specially designed to deal with high-dimensional datasets. Among all 
methods, MBSP was specially designed to work in high or ultra-high 
dimensional settings, being able to retrieve a small number of expo
sures affecting the multiple outcomes even when input data contain 
hundreds of thousands of variables, favoring interpretability and sum
marization of the problem. Although most of the techniques are 
designed to work only on continuous outcomes, an option for mixed- 
type outcomes has been proposed (e.g., mRRR). Regarding missing 
data in the outcomes, again only the mRRR is able to deal with incom
plete records, which suggests this functionality is a key aspect to be 
considered by future methodological developments. Since the methods 
GFLasso, MTL_L21, sRRR and MBSP did not incorporate a solution for 
accounting for the effect of confounders, whenever possible, we imple
mented this functionality. The new versions of these functions are 
available either in their latest CRAN releases (for sRRR and MBSP) or in 
our GitHub repository3(for GFLasso). The only method in which it was 
not possible to add this implementation was the MTL approach. In this 
case, therefore, it is advisable to conduct alternative ways of con
founding treatment (such as residualization of predictors/outcomes on 
confounders (partialling-out approach)) (Demissie and Cupples 2011). 

One of the key disadvantages of the proposed methods, and of most 
machine learning methods in general, is their inability to quantify un
certainty, focusing on accurately producing a point estimate (e.g., via 
solving an optimization problem) but neglecting the reproducibility/ 
replicability of the results. This, given the small sample sizes that are 
usually faced with in exposome research, can result in a high rate of false 
positives and negatives. Among the proposed techniques, only MBSP 
addresses the lack of uncertainty quantification in high-dimensional 
inferences, attempting to approximate the full posterior distribution 
by quantifying uncertainty instead of simply producing a point estimate. 

Although the level of the sparsity of the output models will depend 
on the chosen size of penalties, the ability to obtain a parsimonious 
model with optimal hyperparameters for each technique is variable. The 
methods deriving a less sparse model are GFlasso and mRRR; the ones 
with medium level are MTL and sRRR; while the rest are able to retrieve 
a highly sparse model (GroupRemMap, MBSP), with no need of post- 
curation of findings. 

Differences can also be found among methods in the type of re
lationships they look at. While GFLasso, GroupRemMap and MBSP allow 
intra-exposure sparsity (an exposure not necessarily need to affect all 

3 https://github.com/AugustoAnguita/exposome_outcomewide. 
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outcomes under study), the rest of the methods rely on the assumption 
all outcomes need to share the same set of associated exposures. 

Finally, it is important to state that, previous to data analysis, for all 
these methods it is critical to scale all predictor and outcomes to the 
same scale. This way, we avoid the bias of methods toward the selection 
variables with highest variance and wide domains, further allowing the 
inter-outcome comparison of coefficients. 

3. Approaches for the curation of outcome-wide findings: post- 
selection inference 

Some of the proposed methods are far from retrieving a parsimonious 
final model as shown in Table 1. In some cases, it is because they do not 
include a proper feature selection step (mRRR), while in others, despite 
including it, the optimal penalty does not always result in the desired 
level of sparsity (GFLasso, GroupRemMap, and sRRR). In these cases, 
therefore, we need a post-selection inference strategy to further filter out 
the output variables, resulting in a reduced list of associated exposures. 
This strategy is known as valid inference after data exploration (VIDE) 
(Kuchibhotla et al. 2022). For this, although no specific strategy has 
been defined in the literature for outcome-wide analysis, we propose 
several alternatives. It is important to note that for these approaches, it is 
mandatory to have standardized beta coefficients (where the scales of 
the exposures and outcomes have been standardized previous to data 
modelling):  

1) Selection of exposures based on the magnitude of their individual 
estimated effects: In this procedure, we propose a basic filtering 
strategy in which we keep for interpretation only those exposures 

presenting a β estimate above a certain threshold for a certain per
centage of the outcomes. The choice of the threshold for estimated 
effect, and the percentage of affected outcomes will rely on the 
characteristics of the problem and the preferences of the researcher. 
A reasonable but arbitrary option could be to select only those ex
posures presenting a β higher than the 50th percentile of estimates in 
at least 60 % of the outcomes under study. 

2) Selection by row-wise norm: This approach tends to filter out expo
sures according to their estimated overall effect on all outcomes 
under the study, thereby promoting the selection of “master-regu
lators”. This approach consists of calculating the Euclidean norm for 
each pth row of the coefficient matrix. The Euclidean norm (also 
called the vector magnitude, Euclidean length, or 2-norm) of a vector 

v with Q elements is defined by 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Q

k=1|βk|
2

√

. A higher value will 
indicate a higher overall effect of the pth exposure on the outcomes 
under study. Once this value is calculated for all exposures, one could 
select a number of exposures presenting the top values for the norm. 
The choice of the final set of selected exposures will depend on the 
initial dimensionality of the dataset and the desired level of 
interpretability. 

3) Resampling strategies: Bootstrapping and other resampling tech
niques have been proposed in the literature as useful VIDE tech
niques. In this case, we adapt the idea of Bolasso (bootstrap-enhanced 
least absolute shrinkage operator) (Francis R. Bach 2008), in which 
Lasso is run for several bootstrapped replications of a given sample, 
and then the results of the Lasso bootstrap estimates are intersected 
to provide consistent model selection. In the context of our problem, 
we recommend running this bootstrapping procedure at a minimum 
of 1000 times. Then, a P-value-like inference could be estimated with 

Table 1 
Comparison of selected methods for outcome-wide analysis in exposome research.   

GFLasso GroupRemMap MTL_L21 mRRR sRRR MBSP 

Group Regularized 
multivariate regression 
framework 

Regularized multivariate 
regression 
framework 

Multitask Learning 
based on regularized 
regression  

Dimensionality 
reduction techniques 

Dimensionality 
reduction techniques 

Sparse multivariate 
Bayesian estimation 
with shrinkage priors 

Goal Uses penalties to 
promote the selection of 
exposures affecting 
multiple outcomes.  

Uses penalties to 
promote the selection of 
exposures affecting the 
majority of the 
outcomes.  

Uses cross-task 
regularization to 
promote the selection 
of exposures affecting 
all outcomes. 

Promotes the 
selection of 
exposures affecting 
all the outcomes. 

Promotes the 
selection of 
exposures affecting 
all the outcomes.  

Promotes the selection 
of only few exposures 
affecting the majority 
of the outcomes.  

Strategy It considers the 
correlation structure 
existing among 
outcomes encouraging 
similar (or dissimilar) 
responses to be 
explained by a similar 
(or dissimilar) 
predictors. 

It considers the 
correlation structure 
existing among 
predictors favoring the 
selection of groups of 
related exposures 
affecting multiple 
outcomes rather than 
single variables. 

It also allows 
considering the 
correlation structure 
existing among 
predictors favoring the 
selection of groups of 
correlated exposures 
affecting all outcomes. 

Assume that all the 
outcomes and 
exposures are 
associated 
through a shared 
low 
dimensional 
subspace. It allows 
considering the 
correlation 
structure existing 
among outcomes. 

Assume that all the 
outcomes and 
exposures are 
associated 
through a shared 
low 
dimensional 
subspace. It allows 
considering the 
correlation 
structure existing 
among outcomes. 

It considers the 
correlation structure 
existing among 
outcomes encouraging 
similar (or dissimilar) 
responses to exhibit 
similar (or dissimilar) 
coefficients for the same 
predictor. 

Type of 
outcomes 

Only continuous Only continuous All continuous or All 
binary 

Mixed outcomes Only continuous Only continuous 

Missing data in 
Outcomes 

No No No Yes No No 

Variable 
Selection 

Yes Yes Yes No Yes Yes 

Allow adjusting 
for the effect 
of confounders 

Yes (functionality 
added) 

Yes No (partialling-out as 
an alternative) 

Yes Yes 
(functionality added) 

Yes 
(functionality added) 

Quantification of 
uncertainty 

No No No No No Yes (95 % credible 
intervals) 

Level of sparsity Low High Medium Low Medium High 
Reference Kim et al. (2009) 

Bioinformatics 
Wang et al. (2015) 
Stat Biosciences   

Han et al. (2018) 
Bioinformatics 

C. Luo et al. (2018) 
Journal of 
Multivariate 
Analysis 

Chen et al. (2012) 
Journal of the 
American Statistical 
Association 

R Bai et al. (2018) 
Journal of Multivariate 
Analysis  
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“H0: exposure is not selected”. For a specific exposure, if it is selected N 
times out of 1000 runs, the P-value is calculated as (1000-N)/1000. 
The derived P-values can be used to reduce the number of selected 
features. Of note, for this approach, it is necessary to identify the 
optimal hyperparameters in each of the runs. Likewise, these ap
proaches can only be applied if the output models already incorpo
rate variable selection, i.e. they provide a list of selected or non- 
selected variables. 

The selection of one or another approach should be made carefully 
by the researcher depending on the specific characteristics of the 
problem and the desired interpretability of the final output model. 

4. Code availability 

As an online companion to this paper, we have created a GitHub 
repository4and Rpubs website,5 where we provide scripts and a simu
lated multivariate dataset for running each of these methods. In this 
repository, we cover all required steps for applying these techniques; 
including data standardization, model parameters calibration, output 
curation strategies and visualization. 

5. Application of selected methods on a real exposome dataset: 
the helix study 

In this section, we apply all selected methods to a real exposome 
dataset demonstrating their suitability and giving recommendations for 
implementation. The research dataset employed here derives from the 
HELIX project (Human Early-Life Exposome). The HELIX project gathers 
data from 6 longitudinal European birth cohorts with the aim of eval
uating the effect of environmental risk factors on mothers’ and chil
dren’s health. HELIX cohorts include the BIB (Born in Bradford) (United 
Kingdom), EDEN (Étude des Déterminants pré et postnatals du 
développement et de la santé de l’ENfant) (France), INMA (INfancia y 
Medio Ambiente) (Spain), KANC (Kaunus Cohort) (Lithuania), MoBa 
(Norwegian Mother and Child Cohort Study) (Norway), and Rhea 
(Mother-Child Cohort in Crete) (Greece). General details of the study 
design can be found elsewhere (Maitre et al. 2018; Warembourg et al. 
2019). Here, we focus on a HELIX subcohort of 881 children according 
to the following criteria of eligibility: 1) age 6 to 11 years at the moment 
of outcome evaluation; 2) complete address history; 3) no serious health 
problems that may affect the clinical testing or the child safety; and 4) 
having complete data on all health outcomes. In the 881 children, many 
environmental exposures were evaluated to define childhood exposome 
(age 6 to 11 years). Collected exposures comprise three main parts of the 
exposome: outdoor exposures, chemical exposures, and lifestyle and 
social factors. All variables incorporated in the dataset have been 
appropriately pre-processed previous to analysis (normalized and 
scaled, outliers removed, and missing values imputed) as described 
elsewhere (Maitre et al. 2018; Warembourg et al. 2019). In total, early- 
life exposome data was composed of 133 variables. A detailed descrip
tion of all included exposures can be found in Supplementary Table 1. 
Regarding outcome data, 9 continuous health outcomes were investi
gated (Supplementary Table 2). Outcomes were assessed at the same 
time as the exposome and included parameters related to (1) obesity and 
cardiometabolic health, (2) respiratory health, and (3) cognition and 
mental health. 

In total, our dataset included 133 exposures (Supplementary Table 1) 
and 9 outcomes (Supplementary Table 2) in 881 individuals. The main 
research question was to identify exposures simultaneously affecting 
multiple health outcomes. The way exposures affect each outcome does 
not need to be necessarily the same, so we identified both overall risk 

exposures negatively affecting most of the outcomes and also ambiguous 
factors (being protective for some outcomes but risky for others). For a 
fair comparison of all presented methods, we selected only continuous 
outcomes. Within the exposures, we restricted only to continuous or 
ordinal variables. Previous to the analysis, we inverted the domain of 
those outcomes in which higher values represent a healthy status so that 
the interpretation of β estimates always goes in the same direction; a 
positive/negative β value will always indicate a risk/protective rela
tionship among the p-th exposure and the q-th outcome. In all the ap
proaches, both outcomes and predictors were centered and scaled in 
order to obtain comparable estimates. 

Additional details on the implementation of each method (input 
sequence of hyperparameters, details on cross-validation procedures, 
post-inference selection technique, or computing efficiency) can be 
found in Supplementary Table 4. 

The strategy adopted for confounding control involved considering 
as potential confounders all variables temporally prior to the measured 
exposures that might affect the exposures, and at least one of the out
comes. Selected potential confounders included paternal age, maternal 
age, maternal body mass index, gestational age, trimester of conception, 
educational level of both parents, parity, maternal marital status, history 
of asthma for both parents, child height, child sex, child age, sibling 
position, child age of first nursery attendance, cohort of recruitment and 
child ethnicity. In GFLasso, GroupRemMap, sRRR, mRRR and MBSP, 
confounder adjustment was done during the modelling by forcing their 
inclusion into final models. In MTL_L21 model, this strategy was not 
possible due to method limitations. Thus, we opted for the alternative of 
regressing out the effect of confounders on both outcomes and exposures 
before the data analysis (partialling-out approach). 

The whole matrix of estimated coefficients for all exposures and 
outcomes by each of the methods can be found in Supplementary 
Table 5. Output models were quite different in terms of sparsity degree 
(Fig. 1 and Supplementary Fig. 1-6). The sparsest model was generated 
by the Bayesian approach MBSP (with only 4 selected exposures 
affecting studied outcomes: copper, lead, DDE and HCB). On the con
trary, the least sparse model was obtained by the GFLasso method (45 
selected exposures). In general, all methods were quite consistent in the 
identification of exposures with effects on the multiple outcomes. 
Especially, the most overlapping findings were evidenced for the pairs 
(sRRR-MTL_L21, and mRRR-sRRR). The methods showing more 
consistent results (selected exposures more repeated in the rest of the 
methods) were the MBSP, GroupRemMap, and sRRR, while the ones 
deriving the most singular results were the mRRR and GFLasso. This 
may be because these models were the ones selecting higher number of 
features. The specific results obtained in each approach can be explored 
in Supplementary Fig. 1-6. Besides selected methods, a single-outcome 
approach (Exposome-Wide Association Study) was also used as a com
parison against the multi-outcome approaches. Results can be found at 
Supplementary figure 7. After focusing exclusively on the overlapping 
findings of outcome-wide approaches, we can derive some interesting 
conclusions. On the one hand, the methods were able to identify “mas
ter-regulators” negatively or positively affecting most of the outcomes 
under study. This was the case for exposure to copper, indoor pollutants 
like benzene or PM2.5, tobacco smoking, and sedentariness, which were 
evidenced as global risk factors for all outcomes under study (obesity 
and cardiometabolic health, respiratory health, and cognition and 
mental health). On the opposite, the size of green spaces near children’s 
schools, or exposure to certain chemicals such as PBDEs and PCBs were 
shown to be protective factors, especially for cognition and behavioral 
outcomes. As expected, ambiguous risk factors were also identified, 
highlighted in orange in Fig. 1. Examples are sleep duration, which was 
reported as a protective factor for most of the outcomes but negatively 
associated with respiratory health, and the Family Affluence score, 
which was a negative factor for obesity and cardiometabolic traits, but 
protective for the rest. Other interesting findings involved the global 
protective role of family richness or the practice of moderate-to-vigorous 

4 https://github.com/AugustoAnguita/exposome_outcomewide.  
5 https://rpubs.com/aanguita/outcome_wide_analysis. 
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physical activity for all outcomes under study. Regarding the single- 
outcome approach, it only revealed associations for three group of ex
posures (metals and chemicals) and barely affected two groups of out
comes, thereby possibly reflecting an under-selection problem. 

6. Discussion 

In this work, we present outcome-wide analysis as an interesting 
approximation for the study of the exposome and its multiple effects on 
health. Particularly, we take advantage of the recent emergence of 
advanced statistical multivariate techniques from the field of omics to 
propose a group of methods that could help in the discovery of envi
ronmental exposures with simultaneous effects on multiple chronic non- 
communicable diseases. For selected methods, we present a general 
overview highlighting their suitability for dealing with the typical 
challenges of exposome data, pros and cons, and also give 

recommendations for their application. Identified methods are grouped 
into four categories: regularized multivariate regression techniques, 
multi-task learning approaches, dimensionality reduction approaches, 
and Bayesian extensions of the multivariate regression framework. Ac
cording to simulations conducted in previous studies, selected methods 
have shown better performance than the standard single-outcome 
approach, in which one fits separate models on each response, 
ignoring the possible interrelations among response variables (Bai and 
Ghosh 2018; Cao et al. 2022; Chen and Huang 2012; Kim et al. 2009; Luo 
et al. 2018; Wang et al. 2015a). Thanks to that, they offer increased 
power to detect weak signals which could be not strong enough to be 
detected by the standard approach. On the other hand, single-outcome 
analyses allow a more tailored analysis, particular sensitivity analyses, 
a better discussion of results, and a more focused interpretation. 

In Table 1, we present a general overview of each selected method. 
Initially developed for dealing with omics data, most of these techniques 

Fig. 1. Selected exposures in each of the methods. The upset plot provides an efficient way to visualize intersections of more than 5 sets compared to the 
traditional approaches (i.e. the Venn Diagram). Here, the top part of the upset plot shows the number of selected exposures by each of the methods (according to 
criteria defined in Supplementary table 4). The horizontal red lines and the histogram on the right part (Y-axis) of the figure refer to the overlapping findings between 
models (e.g., the first horizontal line connecting GroupRemMap, MTL_L21, sRRR, mRRR, and gflasso indicates that all these methods identified the same exposure (in 
this case, MnBP) affecting multiple outcomes). Thereby, the bar plot (findings intersections) refers to the number of exposures selected for each group or combination 
of methods. For all groups of exposures identified by at least two models, we indicate the name of one of them on top of each histogram bar. The red/green colour in 
exposure names indicates that the exposure has been evidenced as a global risk/protective factor for all outcomes in at least one method. The orange colour refers to 
exposures reported as ambiguous risk factors (i.e. risk factor for some outcomes and protective factor for others). The last rows showing red dots without lines 
connecting them, represent the exposures identified exclusively by each method, Abbreviations; GFLasso: Graph-Guided Fused Lasso, MBSP: sparse multivariate 
Bayesian estimation with shrinkage priors, mRRR: mixed-outcomes reduced-rank regression, MTL: Multi-task Learning, sRRR: Sparse reduced-rank regression. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

A. Anguita-Ruiz et al.                                                                                                                                                                                                                          



Environment International 182 (2023) 108344

9

can accommodate high dimensional datasets without suffering a loss of 
estimation efficiency. Likewise, some of them also allow correcting for 
the effect of confounders, which is a crucial step in environmental 
epidemiology. According to the specificities of each problem, and 
depending on the goal of each research, one could navigate through 
Table 1 to choose the most suitable approach. For example, we may not 
always expect that evaluated exposures affect all outcomes under study. 
In this situation, MTL_L21, mRRR and sRRR (which do not allow intra- 
row sparsity) might not be preferred options. 

Despite all the benefits highlighted in the manuscript for these ap
proaches, some drawbacks have also been identified. For example, the 
need for priori knowledge about the grouping structure of predictors and 
the long computing times for the identification of hyperparameters in 
GroupRemMap pose a burden for applying the method. The lack of 
proper confounding adjustment strategies in MTL_L21 may be a concern 
as well, especially in the context of multi-cohort exposome data, where 
cohort-specific effects are usually expected. In that case, alternatives 
such as partialling-out the effect of confounders on both predictors and 
outcomes should be considered. In some cases, we also found that the 
level of sparsity of output models is sometimes not the one we could 
desire for an adequate interpretation of findings. In that case, we have 
proposed three different strategies that could help researchers further 
curate selected exposures (e.g., restricting to those having a higher 
impact on most of the studied outcomes). On the other hand, we find the 
important issue of dealing with mixed-type outcomes. In exposome 
research, we often are interested in assessing the effect of exposures on 
both continuous measurements (scores, biochemical measurements) and 
clinical diagnoses (presence or not of a disease). This functionality is at 
the moment only possible with the method mRRR. In the rest of the 
methods, the only alternative is to restrict the analysis to a single type of 
outcome and further incorporate proper standardization strategies so 
exactly the same importance is given to each outcome during the 
modeling. Regarding their ability to deal with false positives, even 
though penalized approaches provide better control of false discovery 
rates than unpenalized ones, the rate of false discoveries is not formally 
controlled. Therefore, future work could consider recent developments 
connecting penalization and false discovery rate control to be applied to 
the techniques presented here (Miller and Breheny 2023). Finally, the 
issue of dealing with missing data records in outcomes is another 
functionality that is only implemented in mRRR. These two critical as
pects, along with the inclusion of a proper strategy for adjusting for the 
effects of confounders are key points that should be addressed in future 
developments. We especially encourage the development of more 
Bayesian-type methods which, given their flexibility, can properly deal 
with all these aspects. For future work, we also encourage the release of 
statistical analysis packages accompanying each technical development 
since this is key point for their spreading among the exposome analysts’ 
community. 

Our paper was not exhaustive and other tools are available for multi- 
outcome exposome analysis that were not selected because of: 1) their 
similarity with these approaches, or 2) they did not include an imple
mentation in the R software. These include some lasso-type techniques 
(Guo et al. 2010; Obozinski et al. 2011; Turlach et al. 2005), dimen
sionality reduction techniques such as sparse partial least squares (sPLS) 
(Chun and Keleş 2010), sparse canonical correlation analysis (sCCA) 
(Chen et al., 2017) or parallel independent component analysis (pICA) 
(Hardoon and Shawe-Taylor, 2011), as well as some other Bayesian 
approaches (Ando 2011; Kundu et al. 2021). 

Despite their potential usefulness, most outcome-wide methods have 
not been applied to exposome research yet. On the contrary, the few 
outcome-wide analyses that can be found in the literature with envi
ronmental exposure data are restricted to the application of standard 
multivariate regressions (Amadou et al. 2023; Kim et al. 2022; Okuzono 
et al. 2023). To date, only one example of using one of the proposed 
methods with exposome data has been found, in which the relation of 
138 exposures and 32 reproductive biomarkers are screened in 796 

Chinese men using the GFLasso (Wang et al. 2021). On the contrary, 
successful applications of some of the proposed methods can be found in 
the literature in the field of molecular and biomedical data (Curtis et al. 
2013; de Abreu e Lima et al. 2018; Li et al. 2017). For example, MTL has 
been successfully applied in the past for the identification of shared 
imaging features that simultaneously predict two subtypes of bipolar 
disorders (Wang et al. 2015b), or for the study of the shared behavioral 
rhythms that simultaneously predict ten symptoms of Schizophrenia 
(Tseng et al. 2020). 

In order to discuss the applicability of each method to exposome data 
and give more specific details on their implementation, we decided to 
apply them all to a real dataset from the HELIX project. From the results, 
it seems that the GFLasso tends to estimate more homogeneous effects 
(the same exposure tends to affect most of the outcomes similarly). On 
the other hand, MBSP, GroupRemMap, and GFlasso are the only ones 
allowing intra-exposure sparsity (the same exposure does not necessarily 
affect all outcomes under study). This is important since in the exposome 
context we do not expect all exposures to systematically affect all 
assessed outcomes. Another big difference encountered among methods 
is the level of the sparsity of output models, which in some cases 
required the application of additional curating strategies. In the current 
application, MSBP derived the sparsest model with only 4 selected ex
posures. Normally, the variables that are included in an exposome 
analysis are pre-selected because there is some plausibility that they may 
have an effect (usually small) on studied outcomes, so a situation with 
many causal hits is in principle plausible. Nevertheless, this will always 
depend on the context, facing sometimes scenarios with just a few causal 
exposures or others with many of them. Future work should therefore 
include simulation studies for the identification of the most suitable 
outcome-wide method for the identification of causal exposures in the 
different scenarios (e.g., few causal exposures, or numerous causal 
exposures). 

As mentioned above, a key disadvantage of most of the proposed 
methods, and of machine learning methods in general, is their inability 
to quantify uncertainty, focusing on accurately producing a point esti
mate (e.g., via solving an optimization problem) but neglecting the 
reproducibility/replicability of the results in other cohorts. This, given 
the small sample sizes we usually are faced with in exposome research, 
often drives us to deal with false positives and negatives in our results. 
Among the included techniques, only MBSP addresses the lack of un
certainty quantification in high-dimensional inferences. Therefore, this 
should be another key issue to be considered in future developments, as 
others have discussed (Dunson 2018). Fortunately, there is growing 
literature seeking to address the lack of uncertainty quantification in 
high-dimensional inferences; for example, focused on penalized opti
mization methods, such as Lasso (Basu et al. 2021; Miller and Breheny 
2023). On this matter, and considering the growing popularity of ma
chine learning approaches, exposome researchers should clearly state 
that highly predictive black box algorithms, along with an estimate of 
the important variables, are not enough. Instead, we crucially need tools 
to tell us how reliable our variable selection decisions are given the 
sample size, dimensionality, and correlation structure of the data at 
hand. 

In general, there is not a unique method with solutions for all 
exposome data challenges. Therefore, the selection of the most suitable 
technique will depend on the characteristics of each specific problem (e. 
g., some methods will deal better with collinearity among predictors and 
outcomes than other). 

Returning to the HELIX showcase, we found high consistency among 
the exposures affecting multiple health parameters identified by each of 
the methods, with some key exposures identified by almost all the ap
proaches (Fig. 1 and Supplementary Fig. 1-7). According to most of the 
methods, exposure to copper, indoor pollutants (like benzene or PM2.5), 
tobacco smoking, and sedentary habits were found to be global risk 
factors for obesity and cardiometabolic health, respiratory health, and 
cognition and mental health. On the other hand, the size of green spaces 
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close to schools and exposure to chemicals such as PBDEs and PCBs were 
protective factors, especially for cognition and behavioral outcomes. 
The findings related to PBDEs and PCBs were unexpected, and highlight 
a more complex exposure system than expected. Specifically, previous 
literature have been inconsistent for these associations in the childhood 
stage, with some findings supporting our results and some others in the 
opposite direction (Julvez et al. 2021; Maitre et al. 2021). Among the 
plausible explanations, it highlights the strong lipophilic nature of these 
components (they are stored mainly in fat tissue and not in blood, where 
they were measured), and a derived residual confounding due to obesity 
trajectories or other unmeasured factors. In any case, this association 
remains inconclusive and cautious interpretation should be made. We 
also identified ambiguous risk factors, such as sleep duration, which was 
reported as protective for most outcomes but not for respiratory health. 
Family Affluence score was found to be harmful for obesity and car
diometabolic traits, but protective for the rest of outcomes. Additionally, 
interesting findings included the protective role of family richness, blue 
spaces in cities and the practice of moderate-to-vigorous physical ac
tivity for all outcomes under study (Supplementary Fig. 1-6). Individu
ally, these exposures have been previously evidenced by HELIX papers 
but as factors affecting isolated outcomes (Agier et al. 2019, 2021; 
Granum et al. 2020; Julvez et al. 2021; Maitre et al. 2021; Nieu
wenhuijsen et al. 2019; Vrijheid et al. 2020; Warembourg et al. 2019, 
2021), reinforcing the importance of conducting more holistic ap
proaches. In comparison to outcome-wide multivariate approaches, the 
single-outcome analysis identified only four exposure-health associa
tions out of the nine assessed outcomes Supplementary figure 7. These 
outcomes were those related to cardiometabolic health, which are 
probably the ones showing stronger effects from environmental expo
sures. Therefore, this might indicate the higher risk of false negatives 
and the decreased ability to detect weak associations of the single- 
outcome approach, which otherwise is overcome in an outcome-wide 
analysis. 

Another approach to deal with multiple outcomes in exposome 
research is to combine them all into a composite score in the form of a 
general health score (also known as multimorbidity index). This 
approach was recently applied to the HELIX project data (Amine et al. 
2023). In that study, results highlighted the same exposures that were 
highlighted here as having multiple effects on health. Interestingly, 
some of the identified relations were unexpected associations (e.g., 
exposure to HCB was evidenced as a protective factor for the general 
health score). In our showcase, as a result of the modeling of each 
exposome-outcome association separately and not as a composite score, 
we actually see how many of these factors are not actually protective but 
ambiguous risk factors. The same was observed for the exposures 
“having a pet in the family”, or “contact with friends and family”, which 
in our use case are evidenced as good for some health parameters but 
harmful for others. 

With the present methodological work, we provide a valuable 
resource for researchers in the field of exposome analysis seeking to 
investigate the complex relationships among environmental exposures 
and comorbidity patterns. In our comparison, we noticed some problems 
that should be addressed in future developments and encourage the 
exposome community embrace the use of these multivariate techniques. 
Future lines of research might involve the systematic comparison of 
these techniques through simulation studies emulating an exposome- 
like scenario. 
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