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Detection of wildtype Merkel cell polyomavirus genomic sequence and VP1 transcription
in a subset of Merkel cell carcinoma

Aims: Merkel cell carcinoma (MCC) is frequently full-length LT expression considered as incompatible

caused by the Merkel cell polyomavirus (MCPyV).
Characteristic for these virus-positive (VP) MCC is
MCPyV integration into the host genome and trunca-
tion of the viral oncogene Large T antigen (LT), with

with MCC growth. Genetic analysis of a VP-MCC/
trichoblastoma combined tumour demonstrated that
virus-driven MCC can arise from an epithelial cell.
Here we describe two further cases of VP-MCC
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combined with an adnexal tumour, i.e. one tricho-
blastoma and one poroma.

Methods and results: Whole-genome sequencing of
MCC/trichoblastoma again provided evidence of a
trichoblastoma-derived MCC. Although an MCC-
typical LT-truncating mutation was detected, we
could not determine an integration site and we addi-
tionally detected a wildtype sequence encoding full-
length LT. Similarly, Sanger sequencing of the

combined MCC/poroma revealed coding sequences for
both truncated and full-length LT. Moreover, in situ
RNA hybridization demonstrated expression of a late
region mRNA encoding the viral capsid protein VP1
in both combined as well as in a few cases of pure
MCC.

Conclusion: The data presented here suggest the
presence of wildtype MCPyV genomes and VP1 tran-
scription in a subset of MCC.

Keywords: Merkel cell carcinoma, polyomavirus, replication, trichoblastoma, VP1

Introduction

Merkel cell carcinoma (MCC) is a rare aggressive skin
cancer with a 5-year overall survival estimated at
40%." In 2008, Feng et al. discovered a polyomavirus
integrated into the genome of MCC cancer cells.”
Indeed, association of MCC with Merkel cell polyoma-
virus (MCPyV) is observed in about 80% of cases,
and the virus-encoded two T antigens, i.e. small t (st)
and Large T (LT), are considered the crucial drivers of
oncogenesis of VP-MCC.” Importantly, the viral LT
has so far always been found to be encoded as a
truncated protein (trLT) in MCC, due to stop codon
mutations or integration-related deletions in the viral
sequence. This suggests that the C-terminus of LT
containing a helicase and an origin binding-domain
necessary for MCPyV genome replication and expres-
sion of the capsids proteins,>*> might be incompati-
ble with tumour development.* Indeed, the growth
inhibitory properties of the C-terminus of LT have
been demonstrated.® Besides trLT, the only other viral
protein found to be regularly expressed in MCC
tumour cells is small T, whereas the structural capsid
proteins, i.e. VP1 and VP2, appear not to be
expressed.>*> Moreover, replication of the viral
genome could not be detected in VP-MCC.?*° In con-
trast, MCPyV replication might occur in dermal fibro-
blasts, which have been suggested as the primary
target cells of MCPyV in the skin.” However, the cell
in which MCC originates was for a long time a matter
of debate, with either epithelial progenitors or none-
pithelial cells being discussed as candidates.”” !
Combined tumours associating an MCC tumour with
another differentiation subset account for 5 to 10% of
all MCC cases.'? Most of these cases are composed of a
malignant squamous cell carcinoma component and
an MCPyV-negative MCC.'>"'®> However, we recently
demonstrated expression of the MCPyV LT in two
exceptional tumour specimens comprising a

trichoblastoma and an MCC part.'® Moreover, massive
parallel sequencing of one case demonstrated that
MCPyV integration in a trichoblastoma cell gave rise to
the VP-MCC component,'® demonstrating that VP-
MCC can have an epithelial origin. Importantly, in
addition to the integrated MCPyV encoding trLT in the
MCC part, wildtype MCPyV genome as well as LT
expression was detected in the trichoblastoma part of
the combined tumour. This not only suggests that
MCPyV replication might have occurred in these epi-
thelial follicular cells, but also that the presence of a
wildtype MCPyV expressing full-length LT is tolerated
under certain circumstances by tumour cells.

To further exploit the combined VP-MCC as a
model for MCPyV-induced MCC oncogenesis, we here
present analysis of two further combined tumours
comprising MCC and an adnexal component and
compare these cases with a large cohort of pure MCC.
Surprisingly, we provide evidence for wildtype MCPyV
genome replication and VP1 mRNA expression in
some combined and pure MCC cases.

Methods

PATIENTS AND SAMPLES

Combined Case #1 was identified from our consulta-
tion cases, cases #2 was extracted from the literature.
Other MCC cases (local ethics committee, Tours,
France; no. ID RCB2009-A01056-51) were selected
from an historical/prospective cohort of MCC patients
from six French hospital centers, as described previ-
ously with only MCPyV-positive cases included in the
present analysis.'”

CLINICAL AND FOLLOW-UP DATA

Age, sex, immunosuppression (HIV infection, organ
transplant recipient, haematological malignancies),

© 2023 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology

85101 SUOWILLIOD AR 3|0 (ddke au Aq pauLeAob a1 SSpILE YO BN J0 SB[ 10} ALRIGIT 8UIIUO A3 UO (SUOIPUOD-PLE-SLLLBY W00 AB ] 1M Ae.q U Uo//SIIu) SUOIIPUOD PLE SWLB 1 841 305 *[£202/2T/90] U0 ARIGITUIIUO ABIM ‘SOUIA A-LB-UNLBNY)-IUES S| BS A 9D 91S10AIUN Ad 890ST SIU/TTTT0T/I0p/L00" A8 ARe.q1 Ul UO//SANY WOJJ POPEOIUMOQ ‘0 ‘6SGZG9ET



American Joint Committee on Cancer (AJCC) stage at
the time of surgery,'® location of the primary tumour,
and follow-up were collected from patient files.

IMMUNOHISTOCHEMISTRY

Immunohistochemical staining for Cytokeratin 20,
Large T Antigen (AB3 and CM2B4), and SATB2 was
performed using a BenchMark XT Platform as
instructed.!”'” Antibodies and dilutions are provided
in the Supplementary Materials.

IN SITURNA HYBRIDIZATION ANALYSIS

Detection of VP1 RNA was performed using the RNA-
scope 2.5 HD Reagent Kit-BROWN with the RNA-
scope Probe VP1 (ACD, Bio-Techne SAS, France)
according to the manufacturer’s instructions. Briefly,
after a drying step for 1 h at 60°C, tissue sections
were deparaffinized and pretreated with RNAscope
Hydrogen Peroxide for 10 min at room temperature
(RT). Antigen retrieval was carried out by boiling the
slides at 100°C for 15 min in the RNAscope Target
Retrieval Reagents. Then slides were dried before the
proteolytic treatment with the RNAscope Protease
Plus for 30 min at 40°C in the ACD HybEZ II Hybrid-
ization System. All washes were performed in distilled
water. The hybridization signal was revealed with the
chromogen diaminobenzidine (DAB). Slides were
counterstained with haematoxylin, dehydrated, and
mounted with Eukitt.

DNA ISOLATION AND MCPYV QUANTITATIVE
POLYMERASE CHAIN REACTION (QPCR)

After microdissection of the two tumour components
and of the healthy tissue under a binocular magnifier,
genomic DNA was isolated with the use of the Maxwell
16 Instrument (Promega, Madison, WI, USA) with the
Maxwell 16 formalin-fixed and paraffin-embedded Plus
LEV DNA purification kit (Promega). Of note, dissection
of the trichoblastoma was performed in areas devoid of
LT expression. MCPyV-LT real-time PCR was performed
as described using albumin as reference gene for nor-
malization and the 272 method for quantification.”
Sequences of the primers used for qPCR are available in
the Supplementary Materials.

PCR AMPLIFICATION AND SANGER SEQUENCING

Nested PCRs with primers listed in the Supplementary
Materials were performed to amplify the respective
regions. PCR reactions were carried out in a total
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volume of 20 pl containing 1x HF buffer, 1 uM of
each primer, 200 M dNTPs, 1 unit Q5 Phusion
(NEB), and 1 pl of template. After an initial denatur-
ation at 98°C for 1 min, the thermal profile consisted
of denaturation at 98°C for 10 sec, annealing at the
optimal temperature for 30 sec, and elongation at
72°C for 1 min (30 cycles for preamplification and
40 cycles for amplification). After PCR purification
the amplicons were sent to Seqlab (Microsynth, Bal-
gach, Switzerland) for sequencing.

NEXT-GENERATION SEQUENCING

For the library preparation of the exomes (both
tumours and their paired healthy tissue sample) the
SureSelectXT Library Prep Kit (Agilent, Palo Alto,
CA, USA) was used. Enrichment was performed using
Agilent’s SureSelectXT Human All Exon V6 Kit. The
genomic library (MCC only) was prepared using Tru-
Seq Nano DNA (Illumina, San Diego, CA). Paired end
sequencing with a read length of 150 bps was per-
formed on a NovaSeq 6000 (Illumina).

DATA ANALYSIS

An initial quality assessment was performed using
FastQC, v0.11.3%° (Andrews S., 2010. Available online
at:  http://www.bioinformatics.babraham.ac.uk/projects/
fastqc). Low-quality reads were trimmed with TrimGalore,
v0.6.1 (Krueger, F., 2012: Available online at: http://
www.bioinformatics.babraham.ac.uk/projects/trim_galore/)
powered by Cutadapt, Illumina, v2.3.%" The trimmed reads
were mapped to the human reference genome (hg19) using
BWA mem, v0.7.17%* and sorted and indexed using Picard,
v1.125 (available online at: http://broadinstitute.github.io/
picard/) and SAMtools, v1.3,%* respectively. Duplicates were
marked with Picard. For the exomes, local realignment
around indels was executed with GATK, v4.0.11.0.%*
GATK, v3.5 was used for coverage calculations.

SOMATIC VARIANT CALLING

MuTectl, v 1.1.4%° was used to identify somatic single
nucleotide variants (SNVs) as well as small somatic inser-
tions and deletions (indels). All variants were annotated
with ANNOVAR, v2019-10-24.?° Eight somatic variants
shared by the trichoblastoma and the MCC were visually
examined using the Integrative Genomics Viewer,
v2.3.68,%” and confirmed with Sanger sequencing if they
have an impact on the protein sequence or affect a splice
site, are rare in the population (below a frequency of 2%
in 1000g2015aug_all, ExAC_nontcga_ALL, gnomA-
D_exome_ALL and gnomAD_genome_ALL), and the
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position is covered by at least 20 reads and the alterna-
tive allele is covered by at least eight reads and frequency
is at least 5%. Mutational signatures were identified using
COSMIC Mutational ~Signatures v2”® investigating
somatic variants with at least 10% frequency.

DETECTION OF THE VIRUS INTEGRATION SITE

Seeksv, v1.2.3%? was used with the human reference

genome sequence (hgl9) and the MCPyV MCC350
genome sequence (GenBank EU375803) to detect the
virus integration site.

Results

POSSIBLE MCPYV-INDUCED ONCOGENESIS OF
COMBINED MCCS HARBOURING A BENIGN
ADNEXAL COMPONENT

MCC associated with a trichoblastoma is a very rarely
observed tumour combination. Nevertheless, in addi-
tion to the recently published two combined trichoblas-
toma/MCC'® we could identify a further case of a
combined tumour harbouring benign trichoblastoma
and MCC components (Case #1). Clinical and micro-
scopic features of the case are given in Figure 1,
Table S1. Briefly, the specimen consisted of a 4-mm
diameter nodule located on the eyelid. Microscopic
examination revealed a well-delimitated tumour
located in the dermis and consisting of two distinct
components, i.e. trichoblastoma and MCC, with some
transition areas containing tumour cells with MCC-like
cytological features included in the trichoblastoma
component (Figure 1). Real-time PCR revealed the
presence of MCPyV, suggesting a virus-induced carci-
nogenesis of the MCC, and detection of MCPyV LT
expression in the MCC cells by immunohistochemistry
supported this view. Importantly, however, LT expres-
sion was also observed in the trichoblastoma part and
was not restricted to the cells expressing Merkel cell
markers, but was additionally detected in pure tricho-
blastoma areas (Figure 1). This was associated with a
very high viral load of 240 copies/cell determined in
DNA derived from the complete specimen.

After having confirmed the MCPyV presence in a
total of three combined trichoblastoma/MCC, we asked
whether other combined MCC harbouring a benign
adnexal component might—in contrast to the proto-
typic combined SCC/MCC—be characterized by pres-
ence of MCPyV. By carefully reviewing the literature
(Table S1) we could identify 10 additional cases
describing MCC combined with trichilemmal (n = 4),
follicular cysts (n = 3), or with poroma (n = 3).>9°
Among them, one MCC/poroma case (Case #2) (Fig-
ure 2) was available for further immunohistochemical
and molecular characterization.’? Poromas are rare
benign tumours originating from the intraepidermal
portion of the sweat gland duct.’® Immunohistochem-
istry of the combined MCC/poroma revealed expression
of MCPyV-LT in both components, with staining inten-
sities varying from strong/moderate in the MCC to
weak/inconspicuous in the poroma part (Figure 2).
Real-time PCR, performed with DNA derived from the
complete specimen, confirmed again a relatively high
(mean) viral load of 80 MCPyV copies/cell.

Together with the two previously published cases,'®
these data demonstrate involvement of MCPyV in four
out of four analysed combined tumours comprising an
MCC and an adnexal component.

COEXISTENCE OF WILDTYPE AND MUTATED
MCPYV ENCODING FULL-LENGTH AND TRUNCATED
LT, RESPECTIVELY

To further characterize such combined tumours, pure
areas of trichoblastoma and MCC from Case #1 were
microdissected, allowing DNA extraction and massive
parallel sequencing using healthy tissue (peripheral
blood mononuclear cells) as reference (Tables S2 and
S3). In line with a potential virus-induced oncogene-
sis in this case, our analysis revealed low tumour
mutational burden and a lack of UV signature in the
MCC component, but also in the trichoblastoma.
Importantly, all eight somatic variants detected in
the trichoblastoma part were shared by the MCC,
implying a shared clonal origin of the two tumour
components (Table S3). Both components were distin-
guishable by only the MCC harbouring MCPyV

Figure 1. Microscopic and molecular features of the trichoblastoma/VP-MCC combined tumour. (A) Combined tumour consisting of a MCC
and trichoblastoma component. (B) Transition areas between the two tumour components were present and highly mitotic tumour cells
were found in the MCC part. In some areas, trichoblastic cells expressed LT without evidence of MCC transformation, while in another part
small clusters of tumours cells with MCC morphology and KRT20 expression were entrapped into the trichoblastoma. RNAscope analysis
demonstrated VP1 expression throughout all parts. (C) Whole-genome sequencing identified two distinct MCPyV sequences distinguishable
by deletions and single nucleotide polymorphisms. (D) Sanger sequencing revealed the coexistence of wildtype and mutated MCPyV genome

in the MCC component and only a WT sequence in the trichoblastoma.
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Figure 2. Microscopic and molecular features of the poroma/VP-MCC combined tumour. (A) Microscopic inspection revealed a tumour con-
sisting of dermal and subcutaneous well-delimitated tumour nodules with massive and “Pinkus-like” growth pattern. (B) The tumour was
mostly composed of small nonatypical poroid cells associated in the periphery with small clusters of MCC tumour cells expressing KRT20
and MCPyV LT. LT protein and VP1 mRNA expression were observed in both the trichoblastoma and MCC part with high intensity only in
the latter. (C) PCR amplification of LT encoding MCPyV sequences followed by Sanger sequencing revealed the coexistence of a wildtype and

a mutated genome in this specimen.

sequences encoding a trL.T of 306 amino acids (stop
codon created by frameshift causing deletion).
Although this hallmark of VP-MCC was present,* in
addition to the mutated MCPyV genome, wildtype
sequences were not only detectable but even predomi-
nant (around 76% of the reads) in the MCC. Interest-
ingly, the mutant viral DNA was probably not a
derivative of the copresent wildtype virus since, in
addition to the truncating mutation, the two viral
sequences differed with respect to several single
nucleotide polymorphisms (SNPs) and two short
in-frame deletions (Figure 1). In the trichoblastoma-
derived DNA we detected only wildtype MCPyV. Nei-
ther in the trichoblastoma, but surprisingly also not
in the MCC DNA, we were able to detect insertion of
viral sequences in the host cell genome by our
sequencing approach.

Unfortunately, for the second combined MCC (Case
#2) we did not have sufficient tumour material
allowing whole-exome or genome sequencing. There-
fore, PCR amplification of MCPyV sequences followed
by Sanger sequencing was performed on the whole
specimen, leading to the identification of an MCC-
characteristic stop codon mutation in LT following
the Rb binding motif, confirming this hallmark of
MCPyV-induced MCC development. Importantly, how-
ever, again the mutated MCPyV sequence (S276%*)
yielded only a background signal within a predomi-
nant MCPyV wildtype sequence (Figure 2).

In summary, on the one hand, the presence of the
virus and characteristic LT-truncating mutations sug-
gest frequent MCPyV-induced oncogenesis of com-
bined MCCs harbouring an additional benign adnexal
component. On the other hand, however, the coexis-
tence of replicative competent wildtype and replica-
tive deficient mutated MCPyV in the MCC cells is
unexpected, and might be a characteristic feature of
this subgroup.

EVIDENCE OF MCPYV REPLICATION IN A SUBSET
OF COMBINED AND PURE MCC

To evaluate whether the observed presence of wild-
type MCC represents a specific feature of MCC com-
bined with adnexal tumours, we compared those

with pure MCCs. The presence of wildtype MCPyV
might imply ongoing viral replication in the tumour
cells, i.e. genome replication leading to high viral load
and expression of capsid proteins. To test this, we first
compared MCPyV viral loads determined by real-time
PCR in the combined tumours and in a previously
described large cohort of VP-MCC (n = 174) (median
MCPyV load of the whole cohort = 10 copies/cell,
Q1-03:6-17) (Figure 3). Interestingly, the two com-
bined cases described here'® were among the MCCs
with the highest viral loads (Ranks: 6, and 7/177,
respectively). Together with five pure MCCs they con-
stituted, with respect to viral load, a clearly distinct
subgroup (MCPyV load >70, Median: 358 copies/cell,
Q1-03: 247-7861) compared to the remaining MCCs
(Median MCPyV load: 9, Q1-Q3: 6-17). Characteris-
tics of these five high viral load pure MCC cases are
available in Table S4.

Next we tested whether wildtype MCPyV might
also contribute to the high viral load in pure MCCs.
To this end, PCR amplification of MCPyV and Sanger
sequencing was performed in the five cases with the
highest MCPyV load. Indeed, this analysis demon-
strated the presence of both mutant and wildtype
MCPyV sequences encoding full-length LT in two
cases (Figure 3, Table S4) and in one other MCC,
which had the highest MCPyV load, even only the
wildtype sequence was detectable. In one case we
detected only mutant MCPyV sequences, while for
the fifth case we did not get interpretable sequencing
results due to poor DNA quality.

Since expression of wildtype LT can be expected to
result in VP1 expression,* we assessed VP1 gene
transcription using in situ RNA hybridization on tis-
sue sections of the two combined cases (Cases #1 and
#2; Figures 1 and 2) and in the complete MCC cohort
included in a tissue microarray (Figure 3). Such anal-
ysis revealed in both combined tumours expression of
VP1 in the two components with higher levels
observed in the MCC part. Moreover, in the complete
MCC cohort, diffuse, intense signal present in all
tumour cells was detected in 10 cases (Table S4),
including five of the previously identified MCCs har-
bouring a very high viral load. Interestingly, in one
case, analysis of primary tumour and metastasis
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Wildtype MCPyV in Merkel cell carcinoma 9

Figure 3. Detection of wildtype genome and VP1 transcription in a subset of pure MCC tumours. (A) Real-time PCR to determine MCPyV
viral loads in DNA derived from a large cohort (n = 177) of pure VP-MCC cases and the two combined tumours described here. Results
(genome copy number/cells) are depicted from high to low viral loads. Black stars indicate the cases in which intense VP1 expression was
detected by RNAscope. (B) PCR amplification of LT encoding MCPyV sequences followed by Sanger sequencing revealed the coexistence of a
wildtype and a mutated genome in Case #6 (MCPyV load = 358 copies/cell). (C) Representative illustration of VP1 transcript in situ detec-

tion by RNAscope (MCC Case #6).

revealed the same features, i.e. high MCPyV viral load
and diffuse VP1 expression in both specimens.

MCPYV INFECTION OF HUMAN HAIR FOLLICLE
CELLS

In line with recently published mouse models demon-
strating TA-induced MCC-like tumour formation in
the hair follicle,''*” derivation of VP-MCC from tri-
choblastoma cells suggests that hair follicle cells
might contain the cells of origin for MCPyV-induced
carcinogenesis. A prerequisite for such a scenario
would be the capability of MCPyV to infect the hair
follicle. Indeed, among the 10 pure MCC cases expres-
sing VP1 transcripts, we identified an MCC case con-
sisting of a small dermal 1.2-mm diameter tumour
located on the cheek. Microscopic examination of this
specimen revealed in addition to the dermal invasive
part, an in situ MCC component located in the inner
root sheath of the hair follicle (Figure 4). Immunohis-
tochemistry using two different antibodies revealed
expression of MCPyV LT in cells of the inner root
sheath. As suggested by their morphology and the
absence of MCC markers, these LT-positive hair folli-
cle cells were not tumour cells. Sanger sequencing of
LT in DNA derived from a complete tumour section
(microdissection was not feasible) identified both wild-
type and truncated LT encoding MCPyV (Figure 4).
Wide expression of VP1 was further demonstrated in
both hair follicle and MCC tumour cells by in situ
hybridization. These results are in line with an ongo-
ing MCPyV infection by a wildtype MCPyV in cells of
the inner root sheath of the patient’s hair follicle.
Hence, cells from the epithelial lineage might be a site
of MCPyV infection and replication.

Discussion

Although identification of recurrent genomic MCPyV
integration in MCC has been a main achievement in
our understanding of MCC biology,” the early steps
leading to MCC development are still elusive. In this
context, the nature of the cells in which MCPyV
infection, replication, and integration occur is still a
matter of debate.'?"'%*%3% Moreover, it has yet to be

clarified how in MCC development the co-occurrence
of LT truncation and MCPyV integration is achieved.*
In the present study, analyses of two combined
tumours composed of a benign adnexal and an MCC
component confirmed the conclusion of previous
reports'''1®37 that skin epithelial cells can give rise
to VP-MCC. Furthermore, we demonstrate the coexis-
tence of MCPyV-genomes encoding either wildtype or
truncated LT in the combined tumours, as well as in
a small portion of pure MCC cases. Together with the
observed high MCPyV viral load as well as the detec-
tion of VP1, these findings suggest ongoing MCPyV
replication in these tumours.

A quite diverse set of potential MCC ancestors such
as neuronal cells, epithelial progenitors, fibroblasts,
and pre/pro B cells in which MCPyV integration can
give rise to an MCC has been proposed.'?103?
Recently, we characterized a rare skin tumour combin-
ing an VP-MCC and a trichoblastoma, i.e. a benign
tumour exhibiting hair follicle differentiation.'® Mas-
sive parallel sequencing of the two components demon-
strated common genetic alterations in both parts of the
tumour while MCPyV integration was only observed in
the MCC region. Thus, this case demonstrated that
MCPyV integration in a trichoblastoma cell, i.e. a follic-
ular epithelial cell, gave rise to a VP-MCC. Further sup-
port for this finding comes from two recently published
mouse models. Weber et al. observed induction of neu-
roendocrine and Merkel cell markers upon combined
sT expression and Rb inactivation (functionally mim-
icking LT expression) in hair follicle cells,>” while Ver-
haegen et al. demonstrated development of MCC
precursor lesions only in the hair follicle upon com-
bined MCPyV T Antigens and Atoh1 expression in epi-
dermal cells."’

In the present study, we investigated two human
combined tumours harbouring an VP-MCC and a
benign adnexal component characterized by the coex-
istence of MCPyV coding for truncated as well as
wildtype LT, resulting in high MCPyV viral load and
VP1 expression.

Two independent genetic events, i.e. genomic inte-
gration and mutation/deletion of the MCPyV genome
resulting in an encoded trLT, are virtually constantly
observed in MCC tumours.” While mutation of an
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Wildtype MCPyV in Merkel cell carcinoma 11

Figure 4. Morphologic and molecular features of a pure VP-MCC tumour with invasive and in situ follicular components. (A) The specimen
consists of a predominant invasive part of small nodular tumour formation located in the dermis and an associated in situ MCC component
within a hair follicle. (B) Immunohistochemical investigation, using two different antibodies (Ab3 and CM2B4), revealed LT expression in
both, the invasive and the in situ tumour part. Moreover, LT was detectable in the hair follicle surrounding the in situ tumour, although no
expression of the MCC markers KRT20, SATB2 was detected. VP1 mRNA was detected by RNAscope in tumour and hair follicle cells. (C)
Sanger sequencing revealed the coexistence of a wildtype and mutated MCPyV in this specimen.

episomal MCPyV genome leading to the expression of a
trLT would result in the loss of replicative abilities,
resulting in virus strand elimination, integration of a
wildtype MCPyV genome and subsequent expression of
the full-length LT obviously does not lead to MCC
tumour formation.*” As potential reasons for incompati-
bility of full-length LT with tumour formation, growth-
inhibitory activities of the LT C-terminus® as well as
induction of replication fork collisions by the combina-
tion of full-length LT with integrated MCPyV* have been
suggested. However, expression of full-length LT in an
MCC cell line led to induction of VP1 expression without
observing DNA damage or increased cell death in this
model.* Similarly, our observations suggest that expres-
sion of full-length LT in association with truncated LT
can be tolerated by MCC cells, although trLT always
being encoded in the tumours indicate their essential
role for tumour formation.

Whether LT-truncating mutations occur in the
MCPyV genome before or after integration has been a
matter to debate.* However, the same stop codons in
several concatemerically integrated MCPyV copies
suggest that mutations occurred either before or dur-
ing MCPyV integration.*' Interestingly, while we
detected a premature stop codon in the LT sequence
in Case #1, no integration site could be identified.
Although this may be due to technical reasons, like
the large amount of wildtype sequences and/or insuf-
ficient sequencing depth, an alternative explanation is
that full-length LT expression allows propagation of
episomal wildtype and a mutated MCPyV genome,
therefore making virus integration unnecessary.
Interestingly, a similar MCC case in which automatic
analysis of the sequencing data did not yield an inte-
gration site has recently been reported (reference of
the case MCC0037).*> Manual screening of the
sequencing data of this MCC, which is also character-
ized by a very high viral load, led the authors to pro-
pose that the MCPyV genome might be integrated
into a retrotransposon element.*? A similar integra-
tion event might also explain our case. However, the
observed VP1 expression, the high viral loads, and
coexistence of wildtype and mutated MCPyV are in
favour of some episomally replicating virus. Indeed,
evidence for ongoing MCPyV replication in some

MCC cases has already been reported. Applying DIPS-
PCR to a series of 10 MCC cases, Sastre-Garrau et al.
identified one MCC with high viral load (62.2 copies
per cells) containing wildtype episomal MCPyV coex-
isting with an integrated mutated form of the virus.**
Furthermore, Haugg et al. reported a subpopulation
of MCC (n = 7/62) characterized by high MCPyV
viral load and a diffuse detection pattern of MCPyV
genomes by fluorescence in situ hybridization
(FISH).** Therefore, in combination with these previ-
ous studies, our results suggest that replication of epi-
somal MCPyV is present in some MCC cases.

Transformation of a trichoblastoma/poroma to an
MCC following MCPyV infection suggests that the T
antigens are capable of inducing Merkel cell-like fea-
tures. In this context it is worth noting that two of the
key transcription factors involved in Merkel cell differ-
entiation, i.e. ATOH1 and SOX2, are both induced
and/or stabilized by MCPyV LT.>®*>*¢ Accordingly,
ectopic expression of the T antigens in keratinocytes
and hair follicle cells in vitro led to the induction of
Merkel cell markers like cytokeratin 8, 20, or
SATB2.***7 Notably, SATB2 positivity was also
detected in T-antigen-expressing hair follicle cells.*®*”
Accordingly, in one case of the present study, we
detected, in a hair follicle close to the tumour, LT and
VP1 expression together with SATB2 positivity, while
other MCC markers, however, were not detected.

MCPyV-induced transformation of skin appendage-
derived cells or even directly of cells from the hair follicle
or other appendages suggests that MCPyV is able to
infect these cells. Interestingly, expression of MCPyV T
antigens in hair follicles has been reported in a case of
alopecia.*® In addition, we also describe LT/VP1 expres-
sion in hair follicle cells in the current study. The respec-
tive small-sized (1.2 mm diameter) MCC sample may
represent a “young” tumour, which, due to its visible
location on the face, was excised early enough to still
display initial steps of MCC development allowing detec-
tion of a follicular “in situ” MCC component as well as
adjacent MCPyV-infected hair follicle cells.

To conclude, the current study provides further
support for an epithelial origin of MCC by demon-
strating that VP-MCC can arise from adnexal
tumours. Moreover, evidence of MCPyV replication in
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appendages, adnexal, and MCC tumour cells suggests
the epithelial lineage as a site of replicative MCPyV
infection.
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