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This paper provides experimental evidence on the economic determinants of inter-
mediation networks by considering two pricing rules—respectively, criticality and
betweenness—and three group sizes of subjects—10, 50, and 100 subjects. We find that
when brokerage benefits accrue only to traders who lie on all paths of intermediation,
stable networks involve interconnected cycles, and trading path lengths grow while
linking and payoff inequality remain modest as the number of traders grows. By
contrast, when brokerage benefits are equally distributed among traders on the shortest
paths, stable networks contain a few hubs that provide the vast majority of links, and
trading path lengths remain unchanged while linking and payoff inequality explode as
the number of traders grows.

brokerage | linking | inequality | intermediation

Intermediation is a salient feature of the modern economy. In some contexts, as in online
retail, there exist dominant intermediaries with direct links to vast numbers of buyers and
sellers while in other cases, as in tea and coffee supply chains and financial instruments,
there exist long paths of intermediation (1–4). The goal of this paper is to examine the
economic determinants of these different types of intermediation networks.

Our focus will be on the role of pricing rules that allocate the surplus from trades.
The first pricing rule—criticality pricing—assumes that a trader earns rents for a trade
between two other traders if it lies on all paths of the network that connects these
traders (5–7). This reflects situations where network path lengths do not matter because
goods can easily be processed and/or replicated (financial instruments, digital goods). By
contrast, in environments where multiple links are a reflection of physical distances or
there are significant costs of processing at every node, path lengths are important. To
reflect such situations, the second pricing rule—betweenness pricing—presumes that a
trader earns rents from a trade between two other traders only if it lies on the shortest
path between them. This leads to payoffs that are proportional to betweenness centrality.

The economic theory of network formation helps us in identifying strategically stable
networks under these pricing protocols. With criticality pricing, the networks involve
(one or more interconnected) cycles; with betweenness pricing, the networks contain
prominent hubs (who support a disproportionate share of all links). As a result, under
criticality pricing, distances grow but degree and payoff inequality remain modest as
the number of traders grows; under betweenness pricing, distances remain unchanged
but degree and payoff inequality grow massively as the number of traders grows. This
theory also tells us that the selected networks—cycle and star—maximize the sum total
of payoffs of the traders. And it suggests that stable networks can exhibit egalitarian
earnings (like a cycle) or very unequal earnings (like a star network), depending on the
pricing protocol (see Fig. 1 below).

This difference in stable networks is due to subtle variations in linking incentives
under the two pricing rules. An individual’s linking problem is complicated because the
attractiveness of links depends on the overall network. As the number of traders grows,
the informational and computational requirements to make correct decisions become
progressively more challenging. So it is quite unclear, a priori, if actual traders will abide
by the incentives that drive the dynamics in the theoretical model. This motivates an
experimental investigation of the pricing rules and their impact on networks and the
distribution of payoffs.

The work of refs. 8–11 suggests that continuous time experiments offer subjects
better prospects for learning and experimentation than discrete time experiments. Our
experimental platform builds on this insight. We consider a design with criticality and
betweenness pricing rules and with three group sizes (10, 50, and 100). This allows us
to systematically examine how incentives matter and how they interact with group size.

The first experimental finding is that pricing rules have strong effects on the
macroscopic features of the network. Under the criticality rule, networks with
multiple cycles with long path lengths are observed, and they generate modest payoff
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Fig. 1. Prominent limit networks and statistics from computer simulations. (A) presents a limit network, cycle-star network, emerging in the Criticality & n = 50
treatment. (B) shows a limit network with multiple hubs in the Betweenness & n = 50 treatment. (C) presents key outcomes of limit networks emerging after
80 runs of myopic best response dynamics in computer simulations in each of the treatments.

inequality across all group sizes. Under betweenness pricing,
networks with multiple hubs emerge and they support extreme
degree and payoff inequality in large groups. These findings are
consistent with the theory.

Our second experimental finding concerns efficiency: Under
criticality, subjects create efficient networks very early on and
sustain them across time, for all group sizes. Under betweenness,
subjects create efficient networks early on and sustain them for
the group of 10, but for the 50 and 100 groups the networks
are initially inefficient and efficiency grows gradually over time.
This initial inefficiency is due to excessive linking activity, which
can be explained by substantial noise in individual decision-
making. Moreover, such excessive linking is largely caused by
a few subjects making many link proposals in an attempt to
become hubs (and earn large rents). Other subjects instead
reciprocate these link proposals to economize on rents involved
in long intermediation chains. These incentives are absent under
criticality pricing.

Our paper is a contribution to the study of brokerage and
intermediation in networks. There is a long tradition of research
on power and exchange in networks; prominent contributions
include (7, 12–29). Building on this research, a recent literature
in computer science and economics examines how surpluses and
market power emerge through the deliberate creation of links
in a network formation setting (5, 30–35); for an overview of
this research, see ref. 4. Our contributions may be summarized
as follows: We offer a model of betweenness pricing and
the demonstration of selection of networks under different
pricing protocols and best response dynamics and we offer an
experimental test of how different brokerage pricing rules shape
incentives to form links and create great payoff inequality in
networks.

The rest of the paper is organized as follows. In Section 1,
we describe the pricing models and formulate our hypotheses.
Section 2 describes the design of the experiment. Section 3
presents the main experimental findings. Section 4 provides a
discussion on efficiency and individual behavior. Supplemen-
tary materials (including theoretical analyses and experimental
instructions) are presented in SI Appendix.

1. Theory

We consider a game with N = {1, 2, ..., n} individuals, where
n ≥ 3. Denote by gij ∈ {0, 1} a relationship between two nodes
i and j. The variable gij takes on a value of 1 if there exists a
link between i and j and 0, otherwise. Links are undirected, i.e.,
gij = gji. The set of nodes taken along with the links between
them defines the network; this network is denoted by g and the
collection of all possible networks on n nodes is denoted by G.
Let Ni(g) = {j|gij = 1} denote the nodes with whom node i has
a link, i.e., the neighbors of i. Let ηi(g) = |Ni(g)| be the number
of links or degree of i.

Individuals propose links to each other. The strategy of a player
i is a vector of link proposals si = [sij]j∈N\{i}, with sij ∈ {0, 1} for
any j ∈ N\{i}. The strategy set of player i is denoted by Si. A link
between agents i and j is formed if both propose a link to each
other, i.e., gij = sijsji. A strategy profile s = (s1, s2, . . . , sn) induces
an undirected network g(s). With a slight abuse of notation, for
simplicity, we will write g instead of g(s). There exists a path
between i and j in a network g if either gij = 1, or if there is a
distinct set of players i1, . . . , in such that gii1 = gi1i2 = gi2i3 =
. . . = ginj = 1. Let d(i, j; g) denote the geodesic distance or
length of the shortest path between i and j in network g. Ci(g) is
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the set of players with whom i has a path in network g; it is the
component to which i belongs.

Players are traders who can exchange goods and this exchange
creates a surplus of V . We assume this exchange is carried out
whenever there exists a path between a pair of traders. There
is a fixed (marginal) cost c per individual for every link that
is established. On the other hand, any proposal that is not
reciprocated carries no cost.

The central issue here is how potential surpluses are allocated
between the different parties to the trade. In the case where two
traders have a link, it is natural that they split the surplus equally,
each earning V

2 . If they are linked indirectly, then the allocation
of the surplus depends on the nature of competition between the
intermediary agents.

Following (5), we shall say that a trader i is said to be critical
for trader j and k if i lies on every path between j and k in the
network. Denote by T (j, k; g) the set of players who are critical
for j and k in network g and let t(j, k; g) = |T (j, k; g)| denote
the number of critical players between j and k. Following (5) and
(7), for every strategy profile s = (s1, s2, . . . , sn) the net payoffs
to player i are given by:

5crit
i (s) =

∑
j∈Ci(g)

V
t(i, j; g) + 2︸ ︷︷ ︸

Access Benefits

+
∑

j,k∈Ci(g)\{i}

V
Ii∈T (j,k;g)

t(j, k; g) + 2︸ ︷︷ ︸
Brokerage Rents

−ηi(g)c,

[1]
where Ii∈T (j,k;g) ∈ {0, 1} stands for the indicator function
specifying whether i is critical for j and k in network g. Under
criticality pricing, the surplus is equally divided between two
traders and all critical intermediaries connecting them. Recall,
from ref. 7 that, under posted pricing by traders, the unique
outcome is that traders will pay rents to intermediaries only if
they are critical, and these rents will be roughly equal to all critical
traders. SI Appendix illustrates this pricing rule with the help of
examples.

In the criticality pricing model, trade can take place along
arbitrarily long paths even when shorter paths are available, and
that too without any costs. However, in practice, there is likely to
be costs of transiting long paths. To take this factor into account,
we propose a model of intermediation that emphasizes the role
of shortest paths between traders. Let njk = (d(j, k; g) − 1)
denote the number of intermediaries on a shortest path between
j and k in network g. Trade surplus between j and k is equally
distributed among the source and destination j and k, and among
the intermediaries on the shortest path. In the case of multiple
shortest paths, one of them is randomly chosen (SI Appendix
illustrates this pricing rule with the help of examples). Therefore,
the (ex ante) expected return for any trader i is in proportion
to the shortest paths between j and k that i lies on. We write
bi

jk(g) ∈ [0, 1] to denote betweenness of player i between j and
k. Formally,

bi
jk(g) =

# shortest paths between j and k on which i lies
# shortest paths between j and k

.

Given a strategy profile s = (s1, s2, . . . , sn), the net payoffs to
player i under betweenness pricing are given by:

5btwn
i (s) =

∑
j∈Ci(g)

V
nij + 2︸ ︷︷ ︸

Access Benefits

+
∑

j,k∈Ci(g)\{i}

V
bi

jk

njk + 2︸ ︷︷ ︸
Brokerage Rents

−ηi(g)c.

[2]

The model of betweenness pricing is inspired by a model
presented in ref. 30, according to which trade only occurs between
directly connected traders or traders that are two links apart. We
modify two dimensions of their model—we allow for trading
along arbitrary paths and we introduce brokerage rents as being
proportional to the length of the shortest paths. It is possible
to show that a model of markup pricing by traders located
in a network will yield payoffs proportional to betweenness
centrality.*

Following (38), a network is said to be pairwise stable if no
one can benefit by removing any existing link, and no pair can
mutually benefit by adding a nonexisting link with each other.
SI Appendix provides a formal definition of this concept and
a general description of pairwise stable networks. SI Appendix,
Fig. S1 presents examples of pairwise stable networks. The figure
shows that the theory of pairwise stability is permissive: When
c > V /2 the empty network and the hub-based networks are
stable under both pricing rules. However, the cycle and hybrid
cycle-star networks are also stable under criticality pricing but
they are not stable under betweenness pricing. These networks
vary greatly in their architecture and they also differ greatly on
economically relevant dimensions that we now discuss.

The efficiency of a network is measured as the ratio between the
sum of individual payoffs and the maximum sum of individual
payoffs that can be achieved:

E(s) =
∑

i 5i(s)
maxs′

∑
i 5i(s′)

. [3]

It follows that E(s) ≤ 1. A network is said to be socially
efficient if it maximizes social welfare, i.e., E(s) = 1.

From standard considerations, we know that an efficient
network is either empty or minimally connected (5), i.e., either
there are no links at all or every pair of traders has a path that
connects them in the network. The total payoffs in a minimally
connected network are Vn(n−1)

2 − 2(n− 1)c, and they are equal
to 0 in the case of an empty network. So an efficient network
is minimally connected if c < Vn

4 , and empty otherwise. A
prominent example of a minimally connected network is the
star network (with n − 1 links); as it contains the same number
of links, a minimally connected network with multiple hubs is
also efficient. We note that a cycle network contains n links and
is connected, so it is (approximately) efficient for large n, i.e.,
E(cycle) is close to 1 for large n.

We define degree inequality as the ratio of the highest degree
to the median degree, and we define payoff inequality as the ratio
of the highest payoff to the median payoff.

I(s) =
maxi(5i(s))
medi(5i(s))

. [4]

It follows that I(s) ≥ 1. The outcome is equal if I(s) = 1,
which is true for a cycle network. On the other hand, in the star

*Here is a sketch of how this can be done. We start from the theory of markup pricing
(36, 37) and proceed as follows: Suppose that there is a small cost c > 0 to crossing a
node and suppose that nodes use markup pricing and markup is fixed and exogenous and
given by m > 0: so pricing for every node is c(1 +m). Suppose trade opportunities arise
for every pair of traders; the pairs are designated origin and destination nodes. Suppose
the designated pair chooses the cheapest path and if there are multiple cheapest paths,
then they pick one at random. Then, intermediation payoffs to node x for trade between
two nodes A and B will arise only if x lies on a shortest path between A and B. Moreover,
the share of surplus accruing to x will be bAB × cm, where bAB is the betweenness of x
for the pair of traders, A and B. By aggregating across all possible pairs of traders, we
see that the payoffs of x are proportional to its betweenness centrality in the network.
To facilitate comparison with criticality pricing, we would like to allow for general path
lengths. To avoid placing restrictions on the value of c,m, and size of surplus, we felt it was
simpler to work with the smoother model in which brokerage rents vary with the length of
the shortest path. This leads to the formulation used in the paper and reflected in payoffs
Eq. 2 above.
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network, under both criticality and betweenness pricing, the hub
and spoke earn, respectively:

V (n−1)
[

1
2

+
n− 2

6

]
− (n−1)c V

[
1
2

+
n− 2

3

]
− c.

[5]
The median payoff corresponds to the spoke’s payoff; the ratio

of hub payoffs to the median payoff is unbounded in the number
of players.

Our interest is in the role of pricing protocols in determining
the architecture and the economic properties of networks. With
this goal in mind, we examine the dynamics of linking and show
that the limit networks under the two pricing protocols are quite
different.

A. Dynamics of Linking and Testable Hypotheses. Building on
refs. 39–43, we define the dynamics as follows: Start from an
initial random network and suppose that at each point a single
individual (picked at random) makes a decision. This individual
considers the potential payoffs that can be attained (according
to either pricing rule) by adding or deleting a single link with
any other player. The individual chooses the option with the
highest immediate payoff. In an iteration of the simulation, every
individual gets 100 opportunities to make a decision.

In order to ensure that the predicted networks are not an
artifact of initial networks, we consider both egalitarian as well as
inegalitarian networks and sparse as well as dense networks (we
use Erdos–Renyi and Barabasi–Albert models with either low or
high link density as initial networks—the details are provided
in SI Appendix). The model parameters used in the simulations
are as follows (the same parameters are used in the experiment):
The value of trade between any two traders is given by V = 10;
there are three group sizes, 10, 50, and 100. The cost of a link
is adjusted across group sizes to keep incentives as similar as
possible: so c = 8 for n = 10, c = 40 for n = 50, and c = 80
for n = 100.

The simulations yield sharp selection across pricing rules.
Under criticality pricing, networks with (one or more dominant)
cycles are common; under betweenness pricing, networks with
multiple hubs are common (the number of hubs increases with
the number of players). We present representative networks in
Fig. 1. Fig. 1C presents the average statistics in the resulting
network structures at the end of the 80 simulations run for
three group sizes, under both pricing rules. Further details of the
procedure and statistics corresponding to each initial network
can be found in SI Appendix, Tables S1–S4.

Fig. 1C tells us that limit networks are connected, i.e., there is
a path in the networks between every pair of traders. Distances
grow under criticality but remain small under betweenness across
group size. Under criticality pricing, degree and payoff inequality
remain modest across group sizes; under betweenness pricing,
they grow massively with group size. Finally, as the limit networks
are connected and have very low average degree, they attain
efficiency in all cases. These observations motivate the following
testable hypotheses.

Hypothesis A. Under criticality pricing networks are connected.
An increase in group size leads to i) larger average distances and
ii) a small change in degree and payoff inequality.

Hypothesis B. Under betweenness pricing networks are connected.
An increase in group size leads to i) a small change in average
distances and ii) a large increase in degree and payoff inequality.

Hypothesis C. Networks attain full efficiency under both pricing
protocols, for all group sizes.

2. Materials and Methods
A. Experimental Design. The experiment uses the same parameters as the
simulations and consists of 6 treatments: 3 group sizes (10, 50, and 100) and
two pricing protocols (criticality, betweenness). In each treatment, 4 independent
groups participated in 4 separate sessions; a total of 1,280 subjects took part
in the experiment. In each experimental session, a continuous time game is
played over 6 min and is referred to as a round: The first minute is a trial period,
and the subsequent 5 min of the game are payoff relevant. Every group played
six rounds. In a round, at any moment, the subject is shown the entire network
of reciprocated links. In addition, every subject is shown all outstanding link
proposals—made and received—that involve them. Every subject is also provided
full information on the payoffs of everyone. SI Appendix, Fig. S10 presents the
decision screen observed by subjects. At any instant in the 6-min game, a subject
can make or remove a proposal to another subject by simply double-clicking
on the corresponding node on the computer screen. Any reciprocated proposal
leads to the formation of a link. Nonreciprocated links were represented through
different node shapes (see SI Appendix for details).

At the end of each round, subjects’ earnings are determined based on the
network structure observed at a randomly selected moment within the last 5 min.
In analyzing the data, we will focus on subjects’ behavior and group outcomes
from these last 5 rounds. Further details about the procedure are provided in
SI Appendix.

B. Ethics Approval. The local ethics committee of University of Valencia ap-
proved the study (under the heading IBSEN Project Number H1454277593524),
and written informed consent was obtained from all participants.

3. Experimental Results

For simplicity, in the empirical analyses, the data are organized
on a second-to-second basis. So, every round yields us 360
observations on every subject’s choices. Although some infor-
mation about choice dynamics between two time intervals may
be lost, we believe that the second-by-second record is adequate
for our purposes. Moreover, unless otherwise stated, all analyses
are focused on data from the last 5 (payoff relevant) minutes
of each round of the game. Using this dataset, we run panel
regressions for the treatment effects with time-fixed effects and
standard errors clustered at the group level and report regression
results in SI Appendix, Table S7.

Fig. 2 A and B show the snapshots of the criticality and
betweenness treatments, respectively, for a large group (n = 100)
at the end of a representative round of the experiment.† These
snapshots draw attention to three points: One, under both pricing
protocols, subjects create sparse and connected networks; two,
we see equal and dispersed networks under criticality pricing and
unequal and small distance networks under betweenness pricing;
and three, recalling the payoff functions (1) and (2), we can infer
that there is little payoff inequality under criticality pricing but
great inequality under betweenness pricing. We now analyze the
experimental data more systematically.

We begin with a summary of the findings on connectedness:
Connectivity is very high and similar across treatments: on
average, 98.6% for n = 10, 99% for n = 50, 98.7% for n = 100
under criticality pricing; 97.5% for n = 10, 99.4% for n = 50,
98.1% for n = 100 under betweenness pricing. This is in line
with the prediction of connectedness under Hypotheses A and B.

We next turn to the treatment effects on distance, degree, and
payoff inequality (Fig. 2). Fig. 2 C and F show that as group size

†Behavioral dynamics of the groups that generated the network structures presented
in Fig. 2 A and B can be viewed through our interactive tool at the following
websites: https://networks.econ.cam.ac.uk/net_formation/animation_brokerage_critical.
php (Fig. 2A), and https://networks.econ.cam.ac.uk/net_formation/animation_brokerage_
betweenness.php (Fig. 2B).
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Fig. 2. Network structure, dynamics, and statistics. (A) and (B) show the snapshots of the criticality and betweenness treatments for n = 100 at the end of a
representative game. (C-H) present the dynamics of experimental outcomes—distance, degree inequality, and payoff inequality—in two pricing protocols and
for the three group sizes. (I) reports key outcomes of limit networks in the last 10 seconds of each experimental game.

grows, distances grow under criticality pricing but they change
only slightly under betweenness pricing. Under criticality pricing,
the average distance is around 2 in the small group, around
4 in n = 50, and above 4 in n = 100. Under betweenness
pricing, average distance lies between 2 and 3 in both small

and large groups. Recall from Fig. 1C that the average distance
grows sharply with group size under criticality but remains
around 2 for all group sizes under betweenness. We attribute
the relatively small increase in average distances under criticality
to the existence of a few excess links (this is consistent with the
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work of ref. 44; a few extra links can lower average distances in
a ring network very sharply). The regression analysis in the first
column of SI Appendix, Table S7 confirms the treatment effects
on distance at the 1% significance level.

Fig. 2 D, E , G, and H show that as group size increases, degree
and payoff inequality remain modest under criticality pricing but
become very large under betweenness pricing. In particular, under
criticality pricing, payoff inequality lies between 2 and 3 across all
group sizes, while under betweenness pricing, payoff inequality
explodes with group size—from around 2 to 16 to 35 as we
move up from group sizes of 10 to 50 to 100. The regression
analysis in the second and third columns of SI Appendix, Table
S7 confirms the treatment effects on degree and payoff inequality
at the 1% significance level. These findings on network properties
and payoff inequality are consistent with Hypotheses A and B
(see Fig. 2I for summary statistics that compare with Fig. 1).

Result 1. The networks are (close to) connected in all cases. Under
criticality pricing, average distance grows, while degree and payoff
inequality remain modest across group sizes. By contrast, under
betweenness pricing, average distance remains small while degree
inequality and payoff inequality grow massively as we increase group
size.

We next turn to efficiency. Fig. 3A shows that under criticality,
high efficiency—over 70% of the maximum welfare—is attained
early and is sustained throughout, for all group sizes. By contrast,
under betweenness, Fig. 3C shows that high efficiency—over
60% of the maximum possible welfare—is attained early and is
sustained for group size 10; but, for groups of size 50 and 100,
efficiency is initially low—around 30% of maximum welfare—
and it grows steadily over the course of the experiment. The
regression analysis in the fourth column of SI Appendix, Table S7
confirms the treatment effects on efficiency at the 1% significance

level. The gradual increase in efficiency observed in large groups
under betweenness is broadly consistent (although it is slower)
with the simulations on best response dynamics that are presented
in SI Appendix, Fig. S4.

Result 2. Under criticality pricing, high efficiency is attained early
and is sustained throughout, for all group sizes. Under betweenness
pricing, high efficiency is attained early and is sustained for group
size 10, but for groups of size 50 and 100 efficiency is low initially
and it grows steadily over the course of the experiment.

We now examine the reasons for the lower efficiency under
betweenness pricing.

4. Discussion on Efficiency and Behavior

Efficiency of a network is a function of the connectedness of the
network and the number of links in the network—connectedness
enhances welfare, additional links once connectedness is attained,
however, lower welfare. We have already noted that subjects
create (almost) connected networks in all cases. So the differences
in efficiency must be due to differences in the number of links.
Indeed, Fig. 3 B and D show that under criticality pricing, average
degree lies between 2 and 3 and changes only slightly as group size
increases. On the other hand, under betweenness pricing, average
linking grows substantially as group size grows. The regression
analysis in the fifth column of SI Appendix, Table S7 confirms the
treatment effect on average degree (at the 1% significance level).
Thus, pricing protocol and group size interact to push up linking
activity. We now examine the reasons for this excessive linking.

Can noisy behavior explain such excessive linking? To address
this question, we consider a simple model of myopic best response
with noise in SI Appendix. We estimate the level of noise in each
treatment during the payoff effective period (i.e., the last 5 min)

A B

DC

Fig. 3. Efficiency and degree. (A) and (C) present the dynamics of efficiency achieved in Criticality and Betweenness treatments for the three group sizes,
respectively. (B) and (D) show the dynamics of average degree per subject in the Criticality and Betweenness treatments for the three group sizes, respectively.

6 of 8 https://doi.org/10.1073/pnas.2301929120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
A

M
B

R
ID

G
E

 U
N

IV
E

R
SI

T
Y

 o
n 

Ju
ly

 3
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

13
1.

11
1.

18
4.

3.

https://www.pnas.org/lookup/doi/10.1073/pnas.2301929120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2301929120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2301929120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2301929120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2301929120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2301929120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2301929120#supplementary-materials


A B C

D E F

Fig. 4. Link proposals (normalized by n − 1). Three types of subjects in terms of the number of links they receive—the most popular individual, the second
most popular individual, and all the other individuals. (A-F ) show the dynamics of link proposals, normalized by n − 1, for the three types of subjects in each
treatment.

in SI Appendix, Fig. S23, and find that it is very similar for
both pricing protocols in the small group (n = 10), but in
the large groups (n = 50 and n = 100) subjects exhibit less
noise under betweenness pricing. This behavior helps explain the
efficiency increase (and the decrease of average degree) observed
in Fig. 3. However, this analysis remains silent on the large
inefficiency initially produced during the trial period (i.e., the
fist minute, which is not payoff relevant). To further identify
behavioral differences, we then estimate noise during this period
in SI Appendix, Fig. S30.

We find higher levels of noise across all treatments in the first
minute as compared to the last 5 min of the experiment. Since
behavior in the first minute is payoff irrelevant, this is intuitive.
Perhaps more interestingly, our analysis of the first minute also
reveals greater noise under betweenness pricing as compared to
criticality pricing, which is in line with the larger excessive linking
activity observed under betweenness pricing. This is consistent
with the idea that there is a stronger need to reduce trading paths
to cut intermediation rents under betweenness. After forming
many links at random in the first minute, subjects aim to increase
their payoffs by deleting redundant links during the last 5 min
of the experiment.

Is excessive linking activity homogeneous in the large groups?
To answer this question, we define three types of subjects in
terms of the number of links they receive—1) the most popular
individual, 2) the 2nd most popular individual, and 3) all the
other individuals. Fig. 4 plots the time series of the number of
link proposals normalized by n − 1 for each type of player. We
see that, in the large groups, there is a major difference in this
ratio across the two pricing rules. Let us next examine the reason
for this difference by examining incentives for links under the
two pricing rules.

Under criticality pricing, most subjects form 2 links and no
one forms a very large number of links; this keeps the average
degree close to 2. Turning to linking incentives, note that, once
a cycle is formed, there are no brokerage rents to be earned under

criticality pricing. Matters are quite different under betweenness
pricing: In this case, there are brokerage rents to be earned even
after a connected network or a cycle is created. This encourages
individuals to seek to become hubs. On the other hand, nonhubs
reciprocate such proposals because that enables them to shorten
paths involved in trading. Both these incentives are greater in big
groups. SI Appendix, Table S8 elaborates on these points.

The rents to being a hub grow with group size. So we should
expect greater competition to become a hub as group size grows.
This is indeed what we see: The number of link proposals by
the most popular individual is large and grows over time (Fig.
4 E and F ). Moreover, an increase in group size also leads to
the second most popular subject to propose many links. The
second most popular subject withdraws links at a later point
in time as group size grows. SI Appendix, Fig. S20 shows that
the resulting fraction of realized links follow the same patterns
as link proposals for the three types of individuals, confirming
that subjects indeed respond to incentives. At the start of the
experiment, the proposals are reciprocated by other subjects
embedded in long paths, who seek to reduce intermediation
rent payments. This leads to significant linking in large groups.
Linking by traders has positive externalities on other traders, as it
reduces their trading path lengths and hence their intermediation
rent payments. Over time, this leads to deletion of links and a
fall in average degree (while the average distance remains stable)
as seen in Figs. 2 and 3.

5. Concluding Remarks

We have studied the influence of pricing—criticality versus
betweenness—on intermediation networks. The static theory is
permissive—under each of the two pricing rules, there exist many
pairwise stable networks and it is ex ante difficult to say whether
there is a trade-off between efficiency and inequality. Building
on the theoretical literature, we study best response dynamics
starting from random initial networks. The analysis reveals a
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sharp difference in network outcomes under the two pricing
protocols. The experimental findings of this paper are consistent
with these dynamics and suggest the following general message:
When the incentive to shorten trading paths is present, in large
groups purposeful linking will push toward excessive linking and
unequal earnings. When there is no pressure toward shortening
paths, there will be little excessive linking, and networks will be
more dispersed, more efficient, and earnings will be more equal.

We have studied the implications of two prespecified pricing
protocols. In view of our findings, it is natural to ask what
happens to networks and earning distributions when individuals
choose both link proposals and prices? This is an important open
question for future research.

Data, Materials, and Software Availability. For the raw data files, and the
other for the Matlab scripts for data analyses: https://github.com/FredMoisan/
Brokerage-rents-and-intermediation-networks-PNAS-. All study data are in-
cluded in the article and/or SI Appendix.
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