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Abstract 

Introduction. Prolonged Hospital Length of Stay (PLOS) is an indicator of deteriorated 

efficiency in Quality of Care. One goal of public health management is to reduce PLOS by 

identifying its most relevant predictors. The objective of this study is to explore Machine 

Learning (ML) models that best predict PLOS. 

Methods. Our dataset was collected from the French Medico-Administrative database (PMSI) 

as a retrospective cohort study of all discharges in the year 2015 from a large university hospital 

in France (APHM). The study outcomes were LOS transformed into a binary variable (long vs. 

short LOS) according to the 90th percentile (14 days). Logistic regression (LR), classification 

and regression trees (CART), random forest (RF), gradient boosting (GB) and neural networks 

(NN) were applied to the collected data. The predictive performance of the models was 

evaluated using the area under the ROC curve (AUC). 

Results. Our analysis included 73,182 hospitalizations, of which 7,341 (10.0%) led to PLOS. 

The GB classifier was the most performant model with the highest AUC (0.810), superior to all 

the other models (all p-values<0.0001). The performance of the RF, GB and NN models (AUC 

ranged from 0.808 to 0.810) was superior to that of the LR model (AUC=0.795); all p-

values<0.0001. In contrast, LR was superior to CART (AUC=0.786), p<0.0001. The variable 

most predictive of the PLOS was the destination of the patient after hospitalization to other 

institutions. The typical clinical profile of these patients (17.5% of the sample) was the elderly 

patient, admitted in emergency, for a trauma, a neurological or a cardiovascular pathology, 

more often institutionalized, with more comorbidities notably mental health problems, 

dementia and hemiplegia. 

Discussion. The integration of ML, particularly the GB algorithm, may be useful for health care 

professionals and bed managers to better identify patients at risk of PLOS. These findings 

underscore the need to strengthen hospitals through targeted allocation to meet the needs of an 

aging population. 

Keywords: Machine learning; Neural network; Prediction; Health Services Research; Public 

Health.  
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Introduction 

In 2019, healthcare expenditure (consumption of care and medical goods, CSBM) 

amounted to €208 billion in France, of which €97 billion was for hospital care (46.7%) [1]. In 

addition to being the largest contributor to health care spending, hospital expenditure 

accelerated in 2019 (+2.4%) to the point of increasing faster than the CSBM [1]. In France as 

in other Western countries, strategies to control health expenditure are similar and are notably 

based on the reduction in length of stay (LOS) [2]. Numerous studies show that some of the 

beds occupied in hospitals in France are inadequately occupied, with approximately 10% of 

medical and surgical beds being inadequately occupied on a given day (5% in surgery, 17.5% 

in medicine) [3]. LOS, defined as the interval time between admission and discharge (i.e., total 

bed-days occupied by a patient), is thus considered as an important indicator to evaluate quality 

of care and hospital performance. Prolonged LOS (PLOS) is associated with more consumption 

of hospital resources and costs, more complications (e.g., hospital-acquired infection, falls), 

increased mortality and deteriorated patient experience [4], [5]. In addition, PLOS may impact 

negatively on admission of critically ill patients and denies timely access to treatment [6]. For 

all these reasons, we need to better identify patients at high risk of PLOS to improve the quality 

of care and reduce associated health care costs. 

Over the last years, machine learning (ML) methods have gained momentum in health 

service research as an alternative to traditional statistical approaches such as logistic regression 

[7]–[10]. ML methods do not require most of the assumptions used in traditional models and 

are able to account for interactions without having to explicitly model them [11]. More and 

more ML models have now started to explore LOS. A recent study used a ML approach from 

a dozen different models to predict LOS in patients hospitalized for COVID-19 (N=966 

patients) [12]. Another recent study explored two ML methods, the Random Forest (RF) and 

the Gradient Boosting model (GB), using an open-source available dataset [13]. Last, Bacchi 

et al. applied neural network model to 313 patients admitted in general medical stay [14]. 

Altogether, these findings suggest that ML approach may help hospital systems prepare for bed 

capacity needs. These studies, however, have been limited to either relatively small or very 

specific datasets, or only to a few models. 

Thus, the objective of this work was to predict LOS using ML methods on a large 

population-based study from a French hospital medico-administrative database, based on the 

area under the receiving operating characteristic curve. For this purpose, we selected the 

following ML methods [15]: random forest (RF), neural networks (NN), gradient boosting 

(GB), decision trees (CART), Logistic Regression (LR). 
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Methods 

Study design 

The design is based on a retrospective cohort study of all acute-care inpatient 

hospitalization cases discharged from January 1 to December 31, 2015, from the largest 

university health center in the South of France (Assistance Publique – Hôpitaux de Marseille, 

APHM). It used a dataset collected from the French Hospital database for all hospitalizations 

(PMSI - Programme de Médicalisation des Systèmes d’Information) [16]. Research on 

retrospective data such as ours do not require compliance to the French Law Number 2012-300 

of 5 March 2012 relating to the research involving human participants, as modified by the Order 

Number 2016-800 of 16 June 2016. In this context, it does not require approval from the French 

competent authority (Agence Nationale de Sécurité du Médicament et des Produits de Santé, 

ANSM) nor from the French ethics committee (Comités de Protection des Personnes, CPP). 

Study setting and inclusion criteria 

The APHM with its four hospitals (La Timone, La Conception, Sainte-Marguerite, and 

Hôpital Nord) is a public tertiary-care center with 3,400 beds and 2,000 physicians. It processes 

approximately 300,000 hospitalizations and 210,000 patients every year. The inclusion criteria 

were all acute-care hospitalizations for patients older than 18 years old and with a length of stay 

(LOS) > 24 hours (to exclude ambulatory care such as ambulatory surgery, radiotherapy, 

dialysis, chemotherapy, and transfusions that we did not want to predict). Were also excluded 

in-hospital mortalities and obstetrical stays. 

Study outcomes 

The study outcome was LOS transformed into a binary variable (short or ordinary LOS 

vs long or prolonged LOS - PLOS). There is no consensus on the choice of the cut point for 

PLOS and different cut points have been used in different studies [41]. Some use ad-hoc values 

such as 3 days [42], 7 days [42], [43], or more frequently 14 days [44]–[46], up to 21 days [47], 

[48]. Others use statistical criteria such as 75th, 90th or 95th percentile [49]–[51]. Tukey’s 

criterion [17], [18] is also statistical in nature. It defines a cut point beyond which observations 

are considered outliers. It is computed as 𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒 3 + 1.5 × (𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒 3 − 𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒 1) 

which in our case coincides with the 90th percentile (14 days).  

Collected data 
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The dataset collected from the PMSI used 27 predictor variables: 

- sociodemographic features: age, gender, state-funded medical assistance (the French AME 

i.e., health coverage for unregistered migrants), and free universal health care (the French CMU 

i.e., universal health coverage for those not covered by private or professional insurance); 

- clinical features: category of disease based on the 10th revision of the International Statistical 

Classification of Diseases and 17 comorbidities from the Charlson comorbidity index [19]; 

- hospitalization features: patient origin (home or other hospital institution), hospitalization via 

emergency departments, destination after hospital discharge (home or transfer to other hospital 

institution), and hospitalization via emergency departments in the previous 6 months. 

Statistical models 

Five distinct types of ML models were trained with the data: LR, CART, RF, GB, and 

three-hidden layers NN. Although detailed explanations are given elsewhere [20], a brief 

summary is presented here. 

LR is a general linear model of the exponential family such that ln (
𝜋

1−𝜋
) = 𝛽𝑇𝑥, where 𝜋 =

 𝑃(𝑦 = 1|𝑥), 𝑦 is a binary outcome, 𝑥 the predictors and 𝛽 is the weight vector to be estimated 

from the data by minimizing a given loss function. 

CART [21] “is a binary decision tree (DT) method that involves segmenting the predictor space 

into a number of simple regions. CART can be applied to both regression and classification 

problems, as in our study. A DT is constructed through an iterative process by applying a binary 

splitting rule. For each explanatory variable 𝑥𝑗 in the data, a rule of the form 𝑥𝑗 < 𝑎 (a ∈ R is a 

threshold) is used to split the initial set of observations (denoted 𝑡0, the root of the tree) into 

two subsets 𝑡𝑙 and 𝑡𝑟 (the sibling nodes). Each observation falling in those regions is then 

predicted by the highest frequency class. The best split is defined as the one minimizing a loss 

function (e.g., the Gini index, or the Entropy). Once the best split has been defined, the same 

process is applied to the two nodes 𝑡𝑙 and 𝑡𝑟 and repeated until a predefined minimum number 

of observations is reached. Then, a pruning algorithm can be used to search for an optimal 

subtree, given a penalty criterion (complexity parameter) applied to the objective function. A 

DT can be represented graphically and thus can be directly interpretable, given its simple 

structure” [62, p. 3]. 

RF [22] “is an ensemble learning method based on aggregating n_estimators trees similar to 

the ones constructed with CART, each one grown using a bootstrap sample of the original data 

set. Each tree in the forest uses only a random subset of max_features predictors to determine 
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the best split at each node. The trees are not pruned. The prediction by RF is the majority vote 

over the predictions made by the n_estimators trees. Other hyperparameters such as the 

minimum number of samples required to split an internal node (min_samples_split) or the 

maximum depth of a tree (max_depth) may be used to tune further the RF model.” [62, p. 3]. 

GB [23] “is also an ensemble learning method based on DT but does not involve bootstrap 

sampling. It is built sequentially using a weak learner (e.g., shallow classification trees). The 

GB is initialized with the best guess of the response (e.g., the majority vote), then the gradient 

is calculated, and a model is then fit to the residuals to minimize the loss function. The current 

model thus obtained is added to the previous model, adjusted by a learning_rate parameter. 

The user may specify the number of trees (n_estimators), a tree depth equal to max_depth and 

a given minimum number of observations in the trees terminal nodes, min_samples_leaf.” [62, 

p. 3]. 

NN [24] “are nonlinear statistical models for regression or classification. They are structured in 

layers of “neurons” where the input layer is made of the predictor variables, followed by 

intermediate layers called hidden layers, and the output layer. Each neuron is a linear 

combination of the neurons of the previous layer, to which is applied a non-linear activation 

function, typically the relu function: 𝑟𝑒𝑙𝑢(𝑥) =  max (0, 𝑥). Usually, the activation function 

used in the output layer is the softmax for multiclass classification and the sigmoid for binary 

classification. Thus, the output layer contains as many neurons as there are classes, but only 

one for binary classification. The weights of the linear combinations are the parameters of the 

model, and they are estimated through an optimization algorithm called (stochastic) gradient 

descent. The loss function optimized in binary classification is the cross-entropy to which a 

decay penalty may be applied” [62, p. 3]. 

Statistical analyses 

Descriptive analyses for the sociodemographic, clinical, and hospitalization data were 

expressed as frequencies and percentages. For each predictor (sociodemographic, clinical, and 

hospitalization data), the two categories of LOS (long vs. short) were compared by estimating 

their difference in proportions through a statistical test of proportions. The effect size of this 

difference is then estimated with Cohen’s d standardized difference (SD). SD use effect size 

methods to identify meaningful differences between groups that, unlike p-values, are not 

influenced by sample size. Values greater than 0.20 are clinically significant [25].  

In the following, model performance is estimated through the area under the receiver 

operating characteristic curve (ROC, AUC). Indeed, given that our outcome class proportions 
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are quite imbalanced (90% short vs 10% PLOS), threshold-dependent measures of performance 

such as the accuracy or the F1 are less reliable [26], [27], [53]. 

To train and evaluate the different models (i.e., LR, CART, RF, NN, and GB), the 

dataset was split into 80% full training sample and 20% hold out test sample, stratified on the 

outcome variable. The first step was to tune each of the different model (i.e., CART, RF, NN, 

and GB - LR, as the reference model has no hyperparameter to be tuned). The 80% full training 

sample is again split into 80% training set and 20% validation set. We performed a 10-fold 

cross validation to tune the hyperparameters with the training set, then assessed model 

performance with the validation set for that specific resampling split, and the optimal 

hyperparameters for that resampling split is saved. This process is repeated 10 times over 10 

different resampling splits. The hyperparameters corresponding to the highest performance over 

these 10 resampling splits are now used to compare each of the 5 models 100 times over 100 

different resampling splits. The performance of each model is saved for each split and the mean 

performances of the different models over 100 splits are compare using paired t-test (post hoc 

tests with Bonferroni correction). Given the large sample size, the p-value of the test statistic is 

completed with the Cohen’s size effect, to appreciate the amplitude of the difference in 

performance. In addition, we computed the performance of each model (classifier) on the hold 

out test sample which the model has never “seen”– this is not only a supplementary indication 

on the classifier’s performance but also provides the means to check for overfitting. 

Lastly, we computed variable importance (VI), averaged over the 100 resampling splits. 

VI provides a simple way to inspect each model and gain insights on which variables are most 

influential in predicting the outcome, and to what extent. Here, permutation feature importance 

is used to estimate variable importance. Permutation feature importance is defined as the 

decrease in a model score when a single feature value is randomly shuffled [22], [28]. The 

larger the decrease in score, the more important the variable. 

All analyses were implemented in Python 3.7 [29] with Sci Kit Learn 0.24.1 [30] and 

Keras 2.4.0 [31] 

 

 

Results 

 

Characteristics of the population 

The initial dataset of the 2015 cohorts contains 118650 admissions. After exclusion of 

non-adult stays with death and hospitalizations for ambulatory and obstetrical care, 73,182 
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hospitalizations were retained. The most common diseases were digestive disease and nervous 

system conditions. In total, 7341 (10.03%) hospitalizations resulted in PLOS. The 

characteristics of the sample are presented in Table 1. 

Factors associated with LOS 

Based on the Cohen’s d standardized difference in proportions, the destination of 

discharge to other institutions shows a significant and sizeable higher proportion of PLOS than 

to home (d=0.727 p-value < 0.0001). Next comes those who are admitted for Chemotherapy 

and Radiotherapy who display a sizeable and significant lower level of PLOS (d=-0.390, p-

value < 0.0001), followed by the origin of patient where other institutions are associated to 

higher proportion of PLOS (d=0.294, p-value<0.0001). Table 1 displays all the significant 

difference in proportion of LOS for which the size effect is at least equal to 0.2 (small effect). 

Predictive model performance 

The predictive performance of each model is presented in Table 2, and the comparison 

of each model’s AUC is presented in Table 3. The GB classifier was the most performant model 

with the highest AUC (0.810), superior to all the other models (all p-values<0.0001). The 

performance of the RF, GB and NN models (AUC ranged from 0.808 to 0.810) was superior to 

that of the LR model (AUC=0.795); all p-values<0.0001. In contrast, LR was superior to CART 

(AUC=0.786), p<0.0001. As the values are close, the size effects are also provided by the 

Cohen’s d, which confirms small effects between GB and RF or NN but large effects between 

all others. Thus, the seemingly small difference in value between the AUC of LR and the other 

classifiers, when accounting for their standard errors are in fact very large ones. However, the 

performance of NN and RF are identical. The ROC curve for the best model (i.e., GB) is 

presented in Figure 1.  

Variable importance 

The variable importance of the best model (i.e., GB) is presented in Figure 2. In the GB 

classifier as well as in all the others, the variable most predictive of the categorical LOS was 

the destination of the patient after hospitalization. Destination to other institutions but not home 

was associated to PLOS. The typical clinical profile of these patients (17.5% of the sample) 

was the elderly patient, admitted in emergency, for a trauma, a neurological or a cardiovascular 

pathology, more often institutionalized, with more comorbidities, notably dementia and 

hemiplegia (supplementary file #1). This is coherent with the bivariate analysis. Two of the 

other most important variables were also identified in the bivariate analysis: the origin of the 
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patient from other institutions was predictive of PLOS, whereas the admission for 

chemotherapy or radiotherapy was associated with short LOS. The model also included 

admission for orthopedic trauma and surgical type of hospital stay to be predictive of PLOS. 

The variable importance of the other models is presented in supplementary file #2. 

Discussion 

One of the strategies to address the sustainability of health care systems is to reduce the 

length of inpatient hospital stay. Reducing LOS is expected to release bed capacity as well as 

staff time and to reduce costs associated with inappropriate patient days in hospital. In addition, 

PLOS is associated with more medical complications and longer discharge delays. Therefore, 

improving LOS prediction with the best artificial intelligence method remains a key challenge, 

especially to enable better bed planning, care delivery and cost optimization. Linear and logistic 

regression methods have been supplanted by ML and deep learning (DL) models, yet it remains 

challenging to identify, benchmark and select optimal prediction methods given the discrepancy 

in data sources, inclusion criteria, choice of input variables, and metrics used [32], [33]. 

In our study, GB displays the best performance level for predicting LOS. In a recent 

study [34], LOS prediction was modeled with multiple linear regression, support vector 

machine, RF and GB. GB outperformed all the other models using a basic training-test split 

with a 70%-30% ratio. In another study, RF slightly outperformed GB [13]. NN as a multiple 

layer perceptron (MLP) is often used as a benchmark to other ML models but GB consistently 

outperforms NN on tabular datasets [14], [15]. This is verified again here for the three-hidden 

layers NN (5 layers MLP). 

 Scientific efforts to provide accurate prediction of LOS have been steady for half of a 

century [32]. While the use of ML in health-related research has become more and more 

popular, its application on LOS remains scattered. A recent systematic review conducted by 

Bacchi et al. [33] identified only 21 articles predicting LOS including regression and 

classification as well as different medical specialties group patients. Several shortcomings have 

been highlighted by the authors and considered in our work.  

- The failure to provide the criteria of inclusion as well as the lack of demographic and clinical 

information such as disease prevalence details: this issue has been carefully considered in 

our work with detailed clinical and organizational information. 
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- The lack of information regarding the distribution of the LOS outcome and the handling of 

the outliers: in our study, we considered as a prolonged stay any potential outlier of the 

quantitative LOS variable, according to a valid and reproducible criterion: Tukey’s criterion 

[17], [18]. The distribution of long and short LOS is provided for the whole dataset and for 

each variable.  

- The absence of separate datasets for training and assessment leading to overfitting (i.e., 

inflation of the model performance) [33]: model assessment must be implemented on a 

dataset never seen by the trained model. Selecting randomly a test-training split of the data 

set might lead to an overly optimistic or pessimistic outcome [20], [32]. Hence, cross 

validation is recognized as an alternative. However, k-fold cross validation may also lead 

to overfitting unless separate validation sets are used [33], [35]. Thus, some authors suggest 

that rigorous performance evaluation requires multiple randomized partitioning of the 

available data, with model selection performed separately in each trial [35, p. 2103]. In this 

study, we have used separate validation sets for model selection and hyperparameter tuning 

and another different holdout test set to check for overfitting. 

Beyond the limitations noted in these reviews, we suggest other areas in which 

improvements may be needed. 

First of these is a systematic reporting of the feature importance. One reason why this is not 

implemented is that most of the learners use their inbuilt feature importance computation, while 

others do not. Permutation importance may be called for estimating feature importance in a way 

that is equivalent for all ML models. Thus, in our case all the learners concur that the feature 

most predictive (by far) of PLOS is the Destination of Patient on Discharge to other but home. 

Another potential area of improvement lies in the use of resampling-based statistical tests to 

compare performance. To account for any randomness involved in training-validation splits we 

may supplement any performance comparison with, say 100 resampling of the training and 

validation set. From this perspective, each learner becomes comparable to an experimental 

condition and each resampling to a statistical unit. It now becomes possible to apply a means 

comparison between the learners over 100 samples, using for example post-hoc methods and 

Bonferroni correction. And the observed difference can, not only be estimated in terms of 

statistical significance, but also in terms of effect size [36]. Under this perspective, the use of 

the holdout test sample becomes at best a way of verifying the absence of overfitting. 

Finally, our findings identify important levers for action for health care professionals, 

planners and health policy. Destination to other institutions, especially for elderly patient, 
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admitted in emergency, for a trauma, a neurological or a cardiovascular pathology, more often 

institutionalized and with more comorbidities were associated with substantial PLOS. Previous 

studies have shown that discharge destination have significant impact on LOS. In a sample of 

313 144 medical records of all patients older than 18, discharge destination was one of the main 

LOS predictors [37]. In addition, another study confirmed that older patients’ PLOS (>17 days) 

was associated with discharge to places other than usual residence [38]. Indeed, hospitalizations 

are frequently associated in older people with an increased risk of functional decline both during 

hospitalization and following discharge [39]. These findings provide a rationale for increased 

staffing for elderly patients requiring intensive care in hospitals, particularly for those with 

cognitive impairment and multiple comorbidities. Needing more caring time than usual was 

reported for 20% of older patients in general and for 57% of the patients with dementia [40]. 

Considering the demographic change, this situation will worsen and there is thus an urgent need 

to strengthen hospitals with targeted allocation to meet the needs of an aging population.  

Perspectives and limitations. Some of our variables are collected before or during 

hospitalization, whereas others are collected at or after discharge (different time sequence). 

However, as mentioned earlier, ours is a retrospective study, thus all the data have been 

collected from the past anyway (2015). These are but only a part of all the challenges and 

limitations inherent to retrospective studies [54], [55]. Furthermore, there are many other 

predictors that could have been relevant for this study, not the least of which are all the biology 

related variables such as the vital constants and the lab analyses as well as the clinical notes. 

Some of these variables are time sequential (collected periodically every given number of 

hours). So indeed, the timing of the data collection is a central one, much easier to handle with 

retrospective studies than in any other design [54]. Unfortunately only a subset of these 

variables was available for our study. 

 Over the last recent years, GB and its subsequent improvements, such as XGBoost, Light GBM 

and Catboost have proven to be superior to the traditional GB [56]–[58] which has consistently 

outperformed the best classical Machine Learning and Statistical Models [14],[15]. More 

recently authors and researchers have made tremendous progress in the field of explainable AI, 

thus allowing for an interpretability of the ML predictions no less relevant than the classical LR 

models [19], [20]. Finally, some very accessible Auto Machine Learning models (AutoML) 

have also been developed over the last several months such as the AutoGluon package [21] 

which offers the possibility of implementing rather advanced ML with the most current and 

best performing models using only very few lines of code. ML is quickly becoming mainstream 
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and may easily be deployed at least in a hospital’s information system to help detect risks in 

Quality of Care such as the deterioration of the patients’ experience or the efficiency of bed 

management. 

 

 

Conclusion 

The integration of ML, particularly the GB algorithm, may be useful for health care 

professionals and planners to better identify patients at risk of PLOS. These findings underscore 

the need to strengthen hospitals through targeted allocation to meet the needs of an aging 

population.  
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Appendix 

A github of the codes used in this article is available here :  

https://github.com/jaotombo/jmahp_2022 
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