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SUMMARY

This paper proposes a Generalized Finite Element Method based on the use of parametric solutions as
enrichment functions. These parametric solutions are precomputed off-line and stored in memory in the form
of a computational vademecum so that they can be used on-line with negligible cost. This renders a more
efficient computational method than traditional Finite Element Methods (FEM) at performing simulations of
processes. One key issue of the proposed method is the efficient computation of the parametric enrichments.
These are computed and efficiently stored in memory by employing Proper Generalized Decompositions
(PGD). Although the presented method can be broadly applied, it is particularly well suited in manufacturing
processes involving localized physics which depend on many parameters, such as welding. After introducing
the V-GFEM formulation, we present some numerical examples related to the simulation of thermal models
encountered in welding processes.
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1. INTRODUCTION

Currently, the most advanced industries such as those involved with aerospace, automotive, nuclear,
naval or energy technologies demand computer simulations of complex manufacturing processes.
These simulations can save both time and resources in designing and industrial manufacturing due
to the “in-silico” optimization of the process. Thus, slow and costly test campaigns can be avoided
and the trial and error approach is significantly minimized.
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Numerical simulation makes it possible to obtain variables that are difficult to observe
experimentally and at a much lower cost than in a test campaign. Because of this, they can be
integrated into the earliest stages of product design. In other words, today’s advanced simulations
have the potential to optimize the entire production cycle like never before. It is not surprising that
its development is a strategic objective for industries and governments [1].

However, most manufacturing processes are very complex and involve a large number of physical
phenomena that must be suitably modeled. The simulation of welding, one of the processes that has
aroused the most interest in the industry and in many research groups [2] is a good example of
this. If one analyzes the state-of-the-art simulation codes, the interaction of the electrode and the
workpiece can be simulated within an electromagnetic model, the thermal model can be coupled
with a metallurgical one, and finally, the whole thermal history can interact with an elasto-plastic
mechanical model.

Even if one assumes that we have sufficient physical models that accurately represent reality,
classical computational approaches are usually unworkable due to the demands they place on both
resources and time.

Model Order Reduction (MOR) has helped formulate responses to this challenge in recent
years [3–6], not only providing very powerful methods, but reformulating classical approaches to
significantly improve their computational efficiency. This is precisely the objective of this work.

Within this realm, one could think of an ideal simulation method that uses very crude meshes,
providing results at very high feedback rates, and is also capable of capturing complex physics.
Undoubtedly, the Generalized Finite Element Method (GFEM) [13–17] is one candidate that fits
this description well. By using enrichment functions, GFEM is able to provide solutions that capture
subgrid features of the physics underneath. The main difficulty associated with GFEM methods is
the development of an efficient and accurate strategy to compute these enrichment functions.

Ideally, this enrichment should be composed of one single function, so as to minimize the
computational cost of the resulting method. But, as can easily been imagined, one single function
can hardly serve for the enrichment of every element in the mesh, regardless of the physics at that
particular region.

For this reason, the main objective of the work presented here is the development of a method
which is able to capture sharp features of the solution, in a variety of different scenarios, with
minimal extra degrees of freedom. To obtain such an ideal enrichment function, one can imagine a
sort of parametric function dependent on boundary conditions, material characteristics, load values
and other parameters that could be particularized to fit the approximation space at every region of
the model.

Obtaining such a solution is of course not an easy task. However, computational techniques exist
which are capable of obtaining such response surfaces efficiently. Among these techniques, Proper
Generalized Decompositions (PGD) [5] is particularly attractive, due to its ability to efficiently
construct the aforementioned parametric functions.

The resulting method, which we have called Vademecum-GFEM (V-GFEM), is no more than a
finite element method that introduces, transparently to the user, an enrichment consisting of just one
single function.

V-GFEM is a general-purpose method. However, it is particularly well adapted to transient
problems involving localized physics dependent on several technological parameters. This is the
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case, for example, of welding and surface heat treatments. In this paper, the V-GFEM formulation
and some numerical examples related to the mentioned processes are presented.

After this introduction, the paper is organized as follows. In Section 2, GFEM is presented as
well as the major approaches that exist in the literature to introduce the enrichment functions, a
crucial issue in this method. In Section 3, the V-GFEM is presented, the adaptative enrichment
using the Computational Vademecum à la PGD is explained, giving the main ideas underpinning its
construction. In this section, details about its implementation are also included. In Section 4 , the
suitability of the V-GFEM for transient problems is presented through several numerical examples.
Finally, in Section 5, we present our conclusions and discuss developments and future applications
of the V-GFEM.

2. GENERALIZED FINITE ELEMENT METHOD

The accuracy obtained with a numerical method, and in particular with FEM, largely depends on
how suitably the method has been adapted to the specific problem. In practice, we can follow
different strategies to adapt our FEM formulation to the problem at hand. Some traditional strategies
are h-adaptivity, p-adaptivity or hp-adaptivity [7]. These classical strategies are implemented in most
commercial simulation tools. The GFEM can be seen as a generalization of the classical h, p and hp
adaptivity techniques.

For the sake of completeness, it is interesting to revisit one of the first attempts in creating
advanced adaptive strategies. In 1992, J. Fish et al. proposed the S-FEM [8], in which a fine
discretized patch is superimposed on a coarse discretized domain at the region of interest. In this
way, the approximation of the variables reads:

uh =
∑
i

N c
i (x)U ci +

∑
j

Nf
j (x)Ufj ,

where one can see two different kinds of shape functions: the set of N c(x) functions associated to
the coarse mesh (global domain) and the set of Nf (x) functions associated to the fine one (patch).
The continuity between the patch and the global domain can be ensured imposing Uf = 0 at the
boundary of the patch. In this manner, S-FEM tries to avoid remeshing, a real bottleneck in 3D
simulations. However, some precautions should be taken to handle two computational meshes [9]:

• Numerical quadratures are in general difficult to perform. A special mesh (intersection of the
coarse and the fine one) should be created to achieve accurate results.

• Rank deficiency must be prevented.

We have applied this technique in [10], [11] and [12] for locally-enriching solutions expressed in
a reduced basis.

Some years later, the Generalized Finite Element Method (GFEM) was proposed by Melenk
and Babuška [13]. The main idea of this method is to introduce in the trial space the available
information about the solution.

There are many other techniques based on the same idea such as PUM, PUFEM, XFEM or Special
FEM [14–20]. The GFEM is based in two properties:
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• Local approximability. GFEM is able to construct space of functions which can approximate
the solution even better than the FE space of piece-wise polynomials.

• Conformity. The method is able to preserve the inter-element continuity without losing the
approximation properties.

The first property will depend on the suitability of the so-called enrichment functions for a given
problem. This question will be discussed in detail in subsection 2.1 because it is a key aspect of this
work. With respect to the second one, the inter-element continuity is guaranteed if the enrichment
is introduced in a space which satisfies the partition of unity. The formal definition of partition of
unity can be found in [13], and it can be used to construct these spaces in a general manner, even
without a mesh. In our context it is enough to say that in any traditional finite element discretization
of a domain Ω, the trial space satisfies the partition of unity if and only if:∑

i

Ni(x) = 1, ∀x ∈ Ω,

where Ni(x) are the shape functions.
When this property is satisfied, the GFEM approximation uh of our solution u reads,

uh =
∑
i∈I

Ni(x)Ui +
∑

e∈Ienr⊂I

Ne(x)
∑
j

φjbje, (1)

where the first term is a traditional FEM approximation and the second one is the enrichment added.
The set of nodes is represented in I and Ienr is the subset of enriched nodes. The functions φj are
responsible for introducing the prior information we have of the solution, and therefore depend on
the problem being solved.

Eq. (1) shows that the traditional shape functions are also present in the enrichment term,
multiplying each of the φj functions. This means that, regardless of whether φj were local or global
functions, each of the new shape functions Neφj are local. In other words, the new shape functions
also have compact support. This property is vital for an easy and efficient implementation of the
method [21].

The enriched nodes, the subset Ienr in Eq. (1), are just located in areas of interest where a
greater accuracy is desired. These zones may be those where strong gradients occur or there are
certain localized phenomena, for example cracks or damage. Thus, we can expect that the number
of enriched nodes is relatively small compared to the total number of nodes of the discretization.

Moreover, GFEM has a very interesting meshless character which extends its applicability. Since
the local features of a solution can be described in terms of nodal values at the nodes of the original
mesh, neither remeshing nor structured meshes are needed. This is the case of welding processes.
With a traditional h-adaptive strategy, the computational mesh is refined in the welding locations.
However, due to the deformations induced in the process or in the assembly with other pieces, these
locations could change. Thus, the reference configuration is not useful anymore and the mesh should
be recomputed. Using GFEM this issue is circumvented, since the enrichment can be added to the
original mesh where necessary and no refinement is needed.

As a counterpart, the degrees of freedom (DOFs) of the problem will be those attached to the
nodes of the discretization, Ui, plus those attached to each enriched node and each of the enrichment
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functions bje. Moreover, GFEM will typically require the use of a large number of integration
points [22]. This is a consequence of using enriched shape functions which are in general non-
polynomial and require accurate enough quadrature rules.

Thus, from the point of view of computational efficiency, for any given accuracy, it is desirable
to use a coarse mesh using the fewest enriched nodes and enrichment functions possible. In the
limit, the best GFEM method will use only one enrichment function with the best possible local
approximation properties of the solution. This is, as we will see, the fundamental advantage of the
V-GFEM.

2.1. The functional enrichment issue

The main difficulty of the construction of a GFEM solution is the selection of the set of enrichment
functions. The superiority of the GFEM compared with a conventional FEM depends directly on the
efficacy of the enrichment functions chosen for a given application. In the literature, the following
approaches can be found:

• Analytical constructions [18,23]. They exploit the structure of the differential equation or use
some fundamental solution of it.

• Global-Local technique (GFEMgl) [22, 24–26]. The enrichment function is the solution of
a fine online-local problem with essential boundary conditions which come from an online-
coarse global one.

• Proper Orthogonal Decomposition (POD) [27]. The enrichment functions are the principal
POD modes of a set of snapshots of the problem.

Analytical enrichment functions are problematic since they are hardly available for most
applications of practical interest. Because of this, the construction of enriched functions by
computational methods (Global-Local and POD) has become more relevant in recent years. The
Global-Local implies solving iteratively both an online-global problem (coarse) and a online-local
one (fine problem). Lastly, construction by POD has two drawbacks: firstly, the reduced basis indeed
cannot in general capture all the details related to the solutions of models different from the one from
which the reduced basis has been extracted [28] and secondly, the number of relevant modes could
be very large causing GFEM to be too expensive.

When the problem is time dependent, the issue of selecting shape functions is complicated further.
In the literature, one can find analytical time-dependent enrichment functions, but they are for very
specific applications [22]. With a Global-Local approach it is possible to build time dependent
enrichment functions, but the iterative process must be repeated at each time step. Lastly, with a
POD approach the time-dependent could be potentially numerous.

Our work aims at overcoming these difficulties by proposing the use of a Computational
Vademecum (also known as Computational Handbook) à la PGD for generating an improved
approximation space. That is, an online-global and off-line local enrichment procedure is proposed.
We believe that this approach has noteworthy advantages over existing methods.
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3. VADEMECUM-GFEM

The method proposed in this paper, the V-GFEM, is composed of two main elements: the GFEM
as the framework, described in the previous section, and the vademecum as the key ingredient for
constructing off-line the optimal enrichment function.

It is important to note that, in the V-GFEM, the computational vademecum is used to construct
a better approximation space, not the solution in any subdomain. The GFEM framework provides
many advantages since neither remeshing nor conformal meshes are needed, as is usually the case
for Domain Decomposition techniques. Moreover, to construct the vademecum some phenomena
can be neglected, such as transient effects, since they are accounted for in the global problem. This
fact is in accordance with the results presented in [25].

In this section we elaborate the construction of the latter, which constitutes a true precomputed
adaptive enrichment. Moreover, a general scheme of the V-GFEM is presented, providing further
details of its implementation.

3.1. Introducing a precomputed adaptive enrichment using the PGD

PGD constitutes an efficient multidimensional solver that allows introducing model parameters
(such as boundary conditions, initial conditions, geometrical parameters or material and
process parameters) as extra-coordinates. Then by solving only once and off-line the resulting
multidimensional model we have access to the parametric solution that can be viewed as a sort
of handbook or Computational Vademecum than can be then used on-line [28].

Its use allows us to perform efficient inverse analysis, data-driven applications and optimal design
in large parametrical spaces [5]. Unlike other MOR approaches, PGD does not assume the form of
the basis functions of the model. Consequently, it emerges from the physics of the problem itself on
the fly.

In the V-GFEM, the computational vademecum is used to generate the proper enrichment function
that depends on technological and material parameters of the process which are treated as extra-
coordinates.

Let us assume the mathematical model related to a certain physics. In general, this model will be
expressed in terms of a system of partial differential equations (PDEs), defined in a spatial domain
under given boundary conditions. The variational formulation of one PDE of this generic problem
reads,

B(u, v; p1, p2, ..., pn) = L(v; q1, q2, ..., qm), (2)

where u and v are the trial and test functions respectively and pi and qj , with i = 1, .., n and
j = 1, ..,m are parameters on which the problem depends. The functions u and v are defined in
the appropriate functional spaces [29].

Using traditional numerical methods (FEM, finite differences, spectral methods), the solution
u of the variational form (2) is an approximation uh(x; p̂1, p̂2, · · · , p̂n, q̂1, q̂2, · · · , q̂m) for each
particularization p̂i, p̂j of the parameters pi and qj . Then, if one wants to explore the parametrical
space to obtain optimal solutions, the solution process must be repeated for any possible
combination of particularizations of the parameters. If the number of parameters is large, this
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strategy becomes very costly, if not impossible. This limitation is often referred to in the literature
as the “curse of dimensionality” [30].

Surrogate models consider the problem solution for some choices of the parameters and then use
appropriate interpolation (e.g. Kriging). POD or RB-based techniques circumvent this difficulty by
generating a reduced approximation basis from some solution snapshots after extracting the relevant
information.

The PGD, on the other hand, constructs the approximated solution as follows,

uh =

N∑
k=1

F k(x)
∏
i

P ki (pi)
∏
j

Qkj (qj),

where the parameters appear explicitly in the solution as extra-coordinates. Even if the problem
becomes highly multidimensional in most cases the use of separated representations allows
circumenting the aforementioned “curse of dimensionality”. Thus, once the parametric solution is
computed, the PGD solution provides all the possible solutions to the problem within the parametric
domain pi ∈ [pmini , pmaxi ], qj ∈ [qminj , qmaxj ]. It is worth highlighting that the construction of the
vademecum does not rely on the linearity of the problem. It can be also obtained in cases involving
non-linear materials with state variables. However, the number of required modes, N , may depend
on the complexity of the problem. For many applications of interest, tens of them are often enough.

The most successful implementation of the PGD involves a simple fixed-point alternated
directions algorithm, that computes alternatively the problem involving the functions of a
coordinate, assuming all the functions related to the remaining coordinates known (calculated at the
previous iteration). This implementation has proved to be very robust and computationally efficient,
circumventing the curse of dimensionality, since it only needs to solve one low-dimensional problem
at a time. The interested reader can consult [28] to find all the details or Appendix A that summarizes
the most important elements.

In the V-GFEM, the computational vademecum is introduced in a GFEM framework, which
provides a performance that goes beyond the proposals made so far. This method is able to generate
real-time customized approximation spaces, which accounts not only for material and technological
parameters, but also for the value of the variable on the boundaries of the enriched region. This
means that the enrichment region can “see” the changes that may occur in the global problem and
adapt accordingly. All these parameters can vary during the simulation without loss of applicability
and without compromising the solver efficiency.

The V-GFEM formulation can be expressed in the following compact form:

uh =
∑
i∈I

Ni(x)Ui +
∑

e∈Ienr⊂I

Ne(x)φ(x, p1, ..., pn, q1, ..., qm)be, (3)

where the enrichment function φ, is nothing but a parametric general solution computed à la PGD.
One can observe that, the trial space now depends explicitly of the parameters introduced in the
vademecum.

The selection of these parameters should be done wisely, and should not be limited to
technological parameters. Others, such as the values of the main variable at the border of the
enriched region, uΓe are of great interest in order to build a good enrichment function [22]. In
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this case, uΓe should be represented in a global basis respect to the domain of the vademecum. This
basis can be, for example, a polynomial one. In 2D, for each side of the domain uΓe reads,

uiΓe = a1 + a2si + a3s
2
i + ...+ ans

n−1
i , (4)

where si is the local coordinate and uiΓe the value of uΓe on the i−side. The uniqueness of uΓe must
be enforced at the corners of the domain.

The set of enriched nodes Ienr is a subset of the nodal set of the discretized problem. This set
is determined by a geometric region (the so-called enrichment region) which is generally much
smaller than the global domain. In the following examples, the enrichment region is attached to the
movement of a heat source, where the thermal gradients are important and the solution cannot be
found accurately using a coarse mesh.

3.2. General scheme and implementation

For the sake of clarity, let us assume a thermal transient problem with a moving heat source s(x, t)
in a domain Ω and in the temporal interval T ∈ (0, T ),



ut −∇ · (k∇u) = s(x, t) in Ω× T

u = uD on ΓD × T
∂u

∂n
= uN on ΓN × T

u(x, 0) = u0(x) at t = 0

(5a)

(5b)

(5c)

(5d)

where the main variable u is the temperature, k the thermal diffusivity, the essential and natural
boundary conditions uD and uN are imposed on ΓD and ΓN respectively and the initial temperature
is u0.

Attached to the source, an enrichment region, Ωe, is set. Its size must be determined for each
particular case, taking into account that it should be large enough to capture the finer features of
the solution. The geometry of this moving region is fixed and, at each time step, the nodes located
inside are affected with the optimal enrichment function that simply consist in particularizing the
parametric solution (computational vademecum) precomputed off-line. In short, in this region the
trial space is more suitable to approximate the solution than the traditional FEM.

The V-GFEM can be divided into two stages: off-line and on-line stages, as is presented in Fig. 1.
In the off-line stage, the vademecum is computed introducing the technological parameters of the

process, p = [p1, p2, · · · , pn], and the essential boundary conditions, uΓe, as extra-coordinates. The
size of the domain of the computational vademecum is equivalent to the enriched region and a very
fine discretization can be used because it is computed off-line. The model to solve is the same as in
the original problem, but considering a moving reference frame Ωl. Thus, in this case, the movement
of the heat source is considered from a convective operator and the problem reads

v · ∇φ(xl)−∇ · (k∇φ(xl)) = s(xl) in Ωl, (6)

where the main variable φ(xl) is the enrichment function of the global problem.



V-GFEM: OPTIMAL ENRICHMENT FOR TRANSIENT PROBLEMS 9

Figure 1. V-GFEM stages

Supposing a rectilinear motion, at each time t, Ωe can be defined as Ωe = {x|x− vt− r0 ∈ Ωl},
where r0 is the position vector between the vademecum reference system and Ωe at initial time.

The essential boundary conditions in this problem uΓe are not imposed since they are extra-
coordinates of the solution, like other technological parameters. In this way, using the PGD, the Eq.
(6) can be solved in an extended domain Ωl × Ip1 × · · · × Ipn × Ia1 × · · · × Iam to obtain,

φ(xl,p,a) =

N∑
k=1

F k(xl)

n∏
i=1

P ki (pi)

m∏
j=1

Akj (aj), (7)

where p = [p1, · · · , pn] ∈ Ip1 × · · · × Ipn are the technological parameters of the problem (thermal
source velocity, power and shape of the heat source...) and a = [a1, · · · , am] ∈ Ia1 × · · · × Iam are
the coefficients of the polynomial basis of uΓe in Eq. (4).

It is important to note that the computational vademecum generates steady enrichment functions,
suitable when a stationary regime in the global problem is reached. Being rigorous, that means
that to introduce the best approximation space in the pure transient phases of the simulation, the
acceleration of the source should also be included as an extra-coordinate. The interested reader can
consult [31] for more details about the this methodology. However, in most practical applications,
the presented approach is enough.

In the on-line phase, at the time step t, the global problem is solved within the GFEM framework
with the enrichment function obtained from particularizing the parametric local problem. This can
be carried out in two ways:

• Explicitly: The particularization is carried out according to the technological parameters at
the current time step but the solution at the enrichment domain boundary at the previous time
step, i.e. φt(pt, ut−1

Γe ). This explicit scheme works well if the time step is not very large and
the solution evolves smoothly as is the case, for example, in welding simulation.

• Implicitly: Using a point-fixed strategy, the global problem is solved iteratively updating uΓe

until the enrichment function φt converges. This scheme is presented in Fig. 2, where φ̂ is an
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auxiliary function to check this convergence and the upper index t− 1 represents a value at
the previous time step of the current one.

It should be noted that, the explicit strategy is a particularization of the implicit one where φ̂ is
not computed, omitting the decision block. For the examples presented here, the explicit scheme
provides excellent results.

Figure 2. Online stage of V-GFEM
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At each time step, a good initial guess is the enrichment function from the boundary conditions
in the parametric solution coming from the previous time step. For stationary problems, a simple
and effective idea is to introduce the particularization of the vademecum with uΓe = 0, a sort of
“fundamental solution” of the problem, performing the fixed-point iterations if necessary. Note that
this point-fixed iteration does not imply a great computational effort, since the updating of the
enrichment function is performed at negligible cost. In addition, to solve the global problem, because
the domain remains fixed, several reanalysis techniques can be used, alleviating the computational
cost of the solution [22].

This strategy is analogous to the iterative strategy concerned with improving the local boundary
conditions in the GFEMgl presented in [24, 25] and analyzed in [32]. In these references an
alternative strategy is proposed, the introduction of a buffer zone. This zone enlarges the local
domain using layers of coarse elements in order to introduce smoother boundary conditions to the
local problem. In the context of the V-GFEM, this implies changing the domain of the computational
vademecum with no other alterations to the general scheme.

In order to extract utΓe at each time step, the global solution ut has to be projected at the borders
of the enriched area in the basis given by (4). In this work a simple L2 projection is carried out.

It should be noticed that, depending on the values of the simulation parameters, inside the
enriched region, the enriched solution in a coarse element could be approximated by the coarse
shape functions, leading to a rank deficiency. Two techniques could be introduced to avoid this rank
deficiency: a perturbation method [33], in which all the nodes are still enriched, and the off-line
computation of a new vademecum which gives the reduced set of nodes that must be enriched.
The latter solution not only circumvents the issue, but also reduces the number of enriched nodes
increasing the efficiency of the V-GFEM. In the Appendix B the details of this technique can be
found.

4. NUMERICAL EXAMPLES

As it was said in the introduction, the V-GFEM is particularly well suited for the simulation of
processes involving moving heat sources, such as welding or surface heat treatments. This is because
there is a small region where the physical changes are much more pronounced (Heat Affected Zone,
HAZ) and the process strategy should be optimized in large parametric spaces.

In this section, several numerical examples using the V-GFEM for an unsteady heat equation are
shown. This equation is encountered in the thermal analysis of the mentioned processes [2]. The
examples presented in this section are relatively simple with the purpose of illustrating the potential
of the V-GFEM for these kind of simulations: the domain is 2D and the technological and material
parameters do not correspond to any real process. However, the method can be applied to the 3D
simulation of real industrial processes.
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4.1. Statement of the problem

Let us consider the transient PDE (5) in the domain Ω depicted in Fig. 3, where s(x, t) reads

s(x, t) =
Q

σ
√

2π
exp

(
1

2

(
x− (xc + V t)

σ

)2

− 1

2

(y − yc
σ

)2
)
,

where x = (x, y), Q controls the power of the heat source and σ is related with the size of the area
of incidence of the heat source. V is the magnitude of the velocity v = V ux where ux is the unitary
vector of the coordinate x. The starting point of the heat source is (xc, yc).

Figure 3. Scheme of the problem

Let us assume homogeneous Dirichlet boundary conditions on ΓDH and homogeneous Neumann
boundary conditions on ΓN . On ΓD a Dirichlet boundary condition is imposed and its value depends
on the example. The coefficient of diffusivity takes the value 1 and the other parameters will vary
depending on the example.

To perform the V-GFEM, an enrichment region, Ωe, is defined attached to the heat source, as
can be seen in Fig. 3. This region, a subdomain of the global domain, moves with the source
whilst retaining its shape and size. Then, in an off-line stage, the computational vademecum for
this problem is computed in a moving reference frame. Moreover, the velocity of this reference
frame is considered as an extra-coordinate.

In this example, the next parameters were introduced in the vademecum as extra-coordinates: the
power of the heat source Q, the magnitude of the thermal source velocity V , the region of incidence
of the heat source described by σ and the temperature at the boundary of the enrichment region uΓe.
To introduce the latter a polynomial basis of order three was used. Thus, the parametric enrichment
function reads:

φ = φ(x, Q, V, σ, a1, · · · , a12) =

N∑
k=1

F k(x)Gki (Q)Hk
i (V )Iki (σ)

12∏
j=1

Akj (aj).

In Fig. 4, the computational vademecum constructed for this example is presented. The visualization
can be easily done with the Paraview open source plugin developed in our research group [34].

Then, the variational formulation of the problem (5) is constructed,(
ut+1∗,

ut+1

∆t

)
+ a

(
ut+1∗, ut+1

)
=

(
ut+1∗,

ut

∆t

)
+
(
ut+1∗, st+1

)
(8)

where a Galerkin spatial discretization and an implicit α-method, with α = 1, as a temporal scheme
are used. For clarity, the argument of the functions have been omitted.
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Figure 4. Computational Vademecum

In Eq. (8), a
(
ut+1∗, ut+1

)
is the Laplacian operator and the trial and test functions, ut+1 and

ut+1∗
respectively, are constructed using the approximation given by the V-GFEM in Eq. (3). It is

important to realize that, exactly as in the GFEMgl [24,25], in the V-GFEM the enrichment function
is time dependent. Thus, the operator

(
ut+1∗, u

t

∆t

)
on the right hand side should be carefully

computed since it involves two functions, ut+1∗ and ut which are represented using different
approximation spaces. For this purpose, two particularizations of the vademecum must be stored
when using this temporal integration scheme.

In this example, to perform the numerical integration, the coarse mesh equipped with a large
number of integration points (of the order of 100) at the enriched elements has been used. The
number of points has been determined by numerical tests as in [24]. Advanced integration strategies,
taking into account the off-line/in-line nature of the presented work are still in progress.

In the next section we will analyze the solution of this problem solved with the V-GFEM
formulation under different scenarios. The computational vademecum, computed off-line, is the
same and the algorithm described in Fig. 2 was followed in all of these cases.

4.2. V-GFEM VS FEM

Let us start illustrating the important improvement that can be achieved with an enriched trial space
in comparison with a traditional FEM space. In this example the following boundary conditions and
technological parameters were selected: Q = 10 W/m2, V = 1 m/s, σ =

√
0.05 and u = 0 on ΓD.

The V-GFEM and the FEM simulations were carried out using the same coarse mesh depicted in
Fig. 5. For clarity, the temperature field is represented as a relief map. As can be seen in Fig. 5, the
V-GFEM solution, in solid color, significantly improves the FEM solution, wire-frame represented,
at the vicinity of the heat source. Differences up to 30% in the maximum temperature value were
observed.

Here, the enrichment function is trivially updated, since the technological parameters are constant
and the temperature field at the border of the enriched region does not change significantly during the
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Figure 5. V-GFEM solution vs FEM solution

simulation. Thus, in this case, the advantage of having a computational vademecum is the possibility
of performing just one calculation for a given family of problems.

Adaptation to the boundary conditions Let us now consider different boundary conditions of the
global problem, setting u = 1 on ΓD in the upper part of the narrow zone. Then, when the source
enters in this narrow region, the global essential boundary conditions affects the optimal trial space.
With the V-GFEM, due to the fact that the enrichment function is an explicit function of uΓe, the best
approximation space is always achieved. In Fig. 6 one can observe how the vademecum generates
different enrichment functions φ at different instants during the simulations according to the global
boundary conditions.

Figure 6. Adaptivity of the enrichment function
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This allows us to obtain a considerably improved solution with respect to the FEM one using
the same coarse mesh, as is shown in Fig. 7. The V-GFEM solution, in wire-frame, is equipped
with the optimal trial space at the current time step. In solid color, the FEM solution using the
same coarse mesh is represented. If the enrichment function is not updated as is indicated in Fig.
6, the improvement obtained with the V-GFEM will be reduced by 15%-20% as we will see in the
following sections.

Figure 7. V-GFEM solution vs FEM solution with change in BCs

4.3. Accounting for variable technological parameters

We move forward now to analyze the key feature of the V-GFEM: the adaptation in real time to
changes in the technological parameters of the simulation.

Let us consider an thermal source velocity which changes from 30 m/s to 5 m/s at a certain
point during the process. The other technological parameters take the fixed values Q = 10 W/m2

and σ =
√

0.025. All the Dirichlet and Neumann BCs are homogeneous.
In Fig. 8, the two enrichment functions generated by the vademecum at the two different velocities

are shown. The function φ1 was particularized at 30 m/s and the function φ2 at 5 m/s.
Then, two simulations were carried out, in the first one, we chose φ = φ1 and we keep it constant

during the complete simulation. In the second one, on the other hand, φ was updated conveniently
to the thermal source velocity change. In Fig. 9 the relative errors of both of the simulations are
presented. It can be seen that updating the enrichment function diminishes the maximum relative
error from 27% to 5% with respect to a reference solution (a FEM solution with a very fine mesh).

Let us now see another example. In this case, is the area of incidence of the heat source, controlled
by the parameter σ, which changes during the simulation. The essential and natural boundary
conditions are homogeneous again. We set the other technological parameters, Q = 10 W/m2,
V = 10 m/s. We started the simulation with σ =

√
0.05 and at a certain point it changes to
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Figure 8. Enrichment functions at different advance velocities

Figure 9. Relative errors with and without adapting the enrichment function

σ =
√

0.005. The two enriched functions generated by the computational vademecum at those
instants are φ1 and φ2 respectively as can be seen in Fig. 10.

Figure 10. Enrichment functions at different areas of incidence of the heat source

As before, we performed two simulations. In the first one, we set φ = φ1 and we keept it constant
during the entire simulation. In the second one, φ was updated conveniently, adapting it to the
change of area of incidence. In this case, the fact of updating or not the enrichment function results
in a difference of 25% in maximum temperature with respect to the reference solution, as can
be observed in Fig. 11. In this figure, the reference FEM solution is in wire-frame and in solid
color the solution without updating the enrichment function and by updating it within the V-GFEM
framework.

In the last example, one can see that the thermal history of a given point could be significantly
affected if an adaptation of the enrichment fuction is not carried out. If a GFEM without updating is
considered, the maximum temperature in the point drops around a 25% respect to the reference
solution. Conversely, if the V-GFEM is used, the results are in very good agreement with the
reference solution as can be observed in Fig. 12. It should be noted that, since updating the
vademecum has a negligible cost, this improvement is obtained with no additional computational
effort.
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Figure 11. Difference between solution with and without updating the enrichment function
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Figure 12. Thermal history of a material point

In simulation of welding, the thermal analysis is usually coupled with a metallurgical model to
obtain the changes in phases and in the microstructure of the material. For this analysis, a thermal
history with errors of the order of 25% may represent in practice obtaining a completely wrong
numerical prediction of mechanical properties.

4.4. Timing

In order to obtain a measure of the relative computational savings we obtain with the just presented
technique, we solved the problems with a sequence of FEM meshes refined by bisection (i.e., each
mesh contained four times the number of degrees of freedom of its parent mesh.)

Our conclusion is that, in general, the proposed V-GFEM technique could obtain the same level
of accuracy of its equivalent FEM mesh, but refined twice more. The resulting CPU savings turns
out to be of one order of magnitude.

We strongly believe, nevertheless, that the advantages to be obtained in three-dimensional meshes
will be even more important. Moreover, due to the fact that the enrichment function is known
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(computed off-line), advanced integration strategies, as in [35], can be used to significantly reduce
the number of integration points with the consequent saving in computational time.

Their analysis constitutes our current effort of research and will be published elsewhere.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, a new numerical method, the V-GFEM, for efficient simulations of manufacturing
processes has been presented. Its main advantage consists in adapting the trial space in real-time
to approximate the solution of the problem optimally. This is achieved thanks to the key ingredient
of V-GFEM, the Computational Vademecum, which is computed off-line. Thus, it can be build in a
very accurate way with no impact on the computational cost of the global simulation.

The V-GFEM, not only inherits the good features of the GFEM formulations such as local
approximability, conforming and meshless character of the enrichment, but also brings an important
advantage: it only needs one enrichment function which is the best possible for a given family of
problems at any instant of the simulation.

The computational cost of the V-GFEM is the same as any other GFEM approach in which only
one analytical enrichment function is used, for example in initial versions of XFEM [18]. In the
examples presented here, in general, we have obtained a difference of an order of magnitude between
the V-GFEM solution and FEM solution with a h-adapted mesh to obtain the same accuracy.

There could be a plethora of possible applications of the V-GFEM since it is a general framework
as is GFEM. In particular, in future research, we will address the mechanical part of manufacturing
processes with localized physics, as we have been done here for the thermal problem. In this case,
the main challenge will be the construction of a vademecum taking into account internal variables
which depend on the thermomechanial history of the material considering elasto-plastic models.

ACKNOWLEDGMENTS

The authors wish to thank the ESI Group for its financial support through the ESI group - ECN Chair.
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A. CONSTRUCTION OF A COMPUTATIONAL VADEMECUM À LA PGD

In this annex the construction of a computational vademecum for a V-GFEM strategy is elaborated.
Without losing generality, a one-dimensional problem similar to the benchmarks presented in [24] is
used. Let us consider the following transient equation defined in Ω = (0, L) and in the time interval
T = (0, T ),
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Figure 13. Reference and coarse solutions for the 1D example


∂u

∂t
− ∂2u

∂x2
= Q(x, t) in Ω× T

u(0, t) = u(0, L) = 0

u(x, 0) = 0,

(9a)

(9b)

(9c)

with the following moving source:

Q(x, t) = 2γ(x− (x0 + vt)) exp(−γ(x− (x0 + vt))2)

− 4γ2(x− (x0 + vt))2 exp(−γ(x− (x0 + vt))2)

+ 2γ exp(−γ(x− (x0 + vt))2). (10)

In the above problem L = 500, T = 500, x0 = 0, v is the advance velocity of the source and γ is
a parameter which controls the shape of the source.

The solution of this problem presents a localized zone with high gradients, which travels with
the same advance velocity v and cannot be captured with a coarse mesh. In Fig. 13 the reference
solution and the solution obtained with a coarse mesh with a constant size of elements of L/50 for
v = 1 and γ = 0.1 at t = 400 is presented. The coarse approximation space is not able to represent
the solution even if sufficient quadrature rule is used. In order to apply the V-GFEM, a moving
subdomain Ωl = (x̂− δ, x̂+ δ) attached to the source is defined, where x̂ = x0 + vt is the middle
point and δ the half length. Then, the same physics but in a moving reference frame should be
solved: − v

∂φ

∂xl
− ∂2φ

∂x2
l

= Ql(xl) in Ωl

φ(−δ) = φ(δ) = 0.

(11a)

(11b)
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where the source, in this reference frame, reads:

Ql(xl) = 2γ(xl − x̂) exp(−γ(xl − x̂)2)

− 4γ2(xl − x̂)2 exp(−γ(xl − x̂)2) + 2γ exp(−γ(xl − x̂)2). (12)

The half length δ should be large enough to correctly integrate the localized source. In this
example δ = 50 has been chosen. In order to precompute the solution to the former problem for
a family of different heat sources and different advance velocities, one can consider both parameters
as extra-coordinates, v ∈ Iv and γ ∈ Iγ . Then, in an extended domain (xl, v, γ) = Ωl × Iv × Iγ ,
the PGD can be used to construct the solution in the following form,

φ(xl, v, γ) ≈
N∑
i=1

Xi(xl) · Vi(v) ·Gi(γ). (13)

For that purpose we consider the weighted residual form related to Eq. (11)∫
Ωl×Iv×Iγ

φ∗ ·
(
−v ∂φ

∂xl
− ∂2φ

∂x2
l

−Ql
)

dxl · dv · dγ = 0. (14)

At iteration n < N the solution φn(xl, v, γ) reads

φn(xl, v, γ) =

n∑
i=1

Xi(xl) · Vi(v) ·Gi(γ), (15)

and the new trial function φn+1(xl, v, γ) is searched according to

φn+1(xl, v, γ) =

n+1∑
i=1

Xi(xl) · Vi(v) ·Gi(γ) = φn(xl, v, γ) +Xn+1(xl) · Vn+1(v) ·Gn+1(γ), (16)

with the test function φ? given by

φ?(xl, v, γ) = X?(xl) · Vn+1(v) ·Gn+1(γ)+

+Xn+1(xl) · V ?(v) ·Gn+1(γ) +Xn+1(xl) · Vn+1(v) ·G?(γ). (17)

By introducing the trial and test functions, Eqs. (16) and (17) respectively, into the weak form,
Eq. (14), and using an appropriate linearisation, functions Xn+1(xl), Vn+1(v) and Gn+1(γ) are
calculated. When considering the simplest linearisation strategy, the alternated direction fixed point
algorithm, the following steps are repeated until reaching convergence:

1. With V (r−1)
n+1 (v) and G(r−1)

n+1 (γ) given at the previous iteration of the non linear solver (r − 1)

(arbitrarily initialized at the first iteration: V (0)
n+1(v) and G(0)

n+1(γ)), all the integrals in Iv × Iγ
are performed, leading to a boundary value problem involving X(r)

n+1(xl).
2. With X(r)

n+1(xl) just calculated and G(r−1)
n+1 (γ) given at the previous iteration of the non linear

solver (r − 1), all the integrals in Ω× Iγ are performed, leading to an algebraic problem
involving V (r)

n+1(v).
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3. With X(r)
n+1(xl) and V (r)

n+1(v) just updated, all the integrals in Ω× Iv are performed, leading
to an algebraic problem involving G(r)

n+1(γ).
4. The convergence is checked by calculating

Er = ‖X(r)
n+1(xl)−X(r−1)

n+1 (xl)‖

+ ‖V (r)
n+1(v)− V (r−1)

n+1 (v)‖+ ‖G(r)
n+1(γ)−G(r−1)

n+1 (γ)‖. (18)

When Er becomes small enough the just computed functions are incorporated into the
approximation of the solution: 

Xn+1(xl) = X
(r)
n+1(xl);

Vn+1(v) = V
(r)
n+1(v);

Gn+1(γ) = G
(r)
n+1(γ).

(19)

The convergence of the enrichment iteration is checked as soon as the non-linear iteration
converges, by evaluating the norm of the just computed term ‖Xn+1(x) · Tn+1(t) ·Kn+1(k)‖; the
residual norm, or any appropriate error estimator based on quantities of interest [36].

In Fig. 14, some particularizations of the vademecum of this simple example are shown.

Figure 14. Particularizations of the vademecum

This computational vademecum can be used to enrich the coarse finite element space as presented
in this work. Theoretical results about errors and convergence of GFEM global-local methods can
be found in [17, 32].

B. CIRCUMVENTING THE RANK DEFICIENCY

For certain values of the parameters the parametric solution in certain regions of its domain of
definition could be accurately represented by the subjacent FE coarse approximation, leading to
rank deficiency. This fact indicates that as soon as the enriched solution in a particular region
of the domain in which the enrichment is performed can be accurately described by the coarse
approximation, the associated nodes should be removed from the enrichment nodal list Ie. For this
purpose we generate a second vademecum, by projecting, again offline, the parametric solution,
φ(x, Q, V, σ, uΓe), from which the enrichment function is extracted, on different coarse FE element
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approximations associated with different mesh size h ∈ [h1, · · · , hM ]. This projection writes∫
Ω

uhi∗uhi dω =

∫
Ω

uhi∗φ dω,

with uhi(x, Q, V, σ, uΓe) the projected solution on a mesh of size hi, and then the projection must
be performed for each considered mesh characterized by its size hi, even if the mesh size could
be introduced as an extra-coordinate within the PGD framework. Then, as soon the projected
parametric solutions uhi are available, the parametric residual,

r(x, Q, V, σ, uΓe) = φ− uhi , (20)

could be computed and compared to a threshold value ε according to

r2 < ε2. (21)

As soon as for the given parameters the parametric solution constituting the GFEM enrichment
is particularized, at each node in the enrichment region (domain in which the enrichment solution
id defined) we particularize the residual (20), and if the inequality (21) holds, we remove from the
enrichment nodal list that node. This procedure ensure an optimal enrichment while avoids rank
deficiency.
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