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The Clayton copula is a mathematical tool used in copula theory to model dependence between random variables. It is a notable member of the Archimedean copula family and is mainly known for its ability to capture tail dependence. In this article, we present a new modified variant of the Clayton copula that aims at improving its flexibility. The proposed modification scheme perturbs its Archimedean nature by integrating a bivariate product of logarithmic functions and an additional tuning parameter. The elaborated copula benefits from a more nuanced representation of the copula density, and the negative dependence can be reached in a regular manner. We investigate its properties, including limit results revealing some connection with the Gumbel-Barnett copula, important related functions, modifications, and extensions, various lower and upper bounds, diverse tail dependences, and the correlation properties through the medial correlation and the Kendall tau. As an example of probability application, a new modified bivariate Gaussian distribution is presented via equations and graphics.

Finally, two special copula cases are discussed, including a simple one with a single parameter that is designed to be a practical alternative to the Clayton copula. The overall finding contributes to advancing the theoretical foundations of copula-based modeling techniques.

Introduction 1.Context

In the field of statistical modeling, the copula concept has emerged as a powerful tool for characterizing dependence structures between random variables. It was introduced by Sklar in 1959 (see [START_REF] Sklar | Fonctions de repartition à n dimensions et leurs marges[END_REF]), and has gained importance over time in various fields such as finance, insurance, hydrology, genetics, neuroscience, environmental science, telecommunications, and reliability engineering. The basis of copula theory lies in the Sklar theorem, which states that any multivariate distribution can be decomposed into its marginal distributions and a copula function. This separation allows researchers and practitioners to independently analyze particular dependence behaviors, facilitating a more nuanced understanding of complex data sets. The established copulas are numerous, as evidenced by the books of [START_REF] Joe | Multivariate Models and Dependence Concepts[END_REF], [START_REF] Nelsen | An Introduction to Copulas[END_REF] and [START_REF] Sempi | Principles of Copula Theory[END_REF]. From the fundamental Gaussian copula, often used in financial modeling due to its simplicity, to the more complex copulas of the Archimedean family, like the Ali-Mikhail-Haq, Clayton, Gumbel, and Frank copulas, each differs in their features for capturing dependence structures and tail dependence characteristics. They provide a versatile toolbox for modeling different degrees of association, from linear to nonlinear and asymmetric relationships. We may refer to [START_REF] Nelsen | An Introduction to Copulas[END_REF] and, for a modern and global study, to [START_REF] Kularatne | On the use of Archimedean copulas for insurance modelling[END_REF]. Recent copula creation works include the diverse extended FGM copula families (see [START_REF] Bairamov | Dependence structure and symmetry of Huang-Kotz FGM distributions and their extensions[END_REF], [START_REF] Amini | Aspects of dependence in generalized Farlie-Gumbel-Morgenstern distributions[END_REF], and [START_REF] Domma | A copula-based approach to account for dependence in stress-strength models[END_REF])) and the variablepower copula families (see [START_REF] Chesneau | Theoretical validation of new two-dimensional one-variable-power copulas[END_REF] and [START_REF] Chesneau | Some new developments on variable-power copulas[END_REF]). Additionally, the introduction of vine copulas further expands this diversity by allowing the combination of simpler copulas to represent complex dependence structures in high-dimensional data (see [START_REF] Kurowicka | Dependence Modeling: Vine Copula Handbook[END_REF]).

On the Clayton copula

To comprehend the underlying motivation behind this article, a retrospective examination of the Clayton copula is imperative. To begin, it was created by Clayton in 1978 (see [START_REF] Clayton | A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence[END_REF]) and, as mentioned previously, it is one of the most famous Archimedean copulas (see again [START_REF] Joe | Multivariate Models and Dependence Concepts[END_REF], [START_REF] Nelsen | An Introduction to Copulas[END_REF] and [START_REF] Sempi | Principles of Copula Theory[END_REF]). By considering a parameter a > 0, the standard version of the Clayton copula is derived from the following strict generator function:

φ † (t) = t -a -1, t > 0,
and can be expressed as

C † (u, v) = φ -1 † [φ † (u) + φ † (v)] = u -a + v -a -1 -1/a , (u, v) ∈ [0, 1] 2 .
The coefficients of lower and upper dependence are λ l = 2 -1/a and λ u = 0, respectively, implying that the Clayton copula is lower tail dependent but not upper tail dependent. Furthermore, the Clayton copula converges to the independence copula when a → 0 + , and to the minimum copula C • (u, v) = min(u, v) when a → +∞. The Kendall tau has the unit range [0, 1]. Hence, it can only take into account the positive dependence. On the other hand, a well-known modified Clayton copula allowing the negative dependence can be presented. By considering a ∈ [-1, +∞)/{0}, it is derived from the following (non-strict) generator function:

φ ‡ (t) = t -a -1 a , t > 0,
and the related pseudo-inverse function φ

[-1] ‡ (t), i.e., φ [-1] ‡ (t) = φ -1 ‡ (t) = (at + 1) -1/a for t ∈ [0, φ ‡ (0)], and φ [-1] ‡ (t) = 0 for t > φ ‡ (0) (with φ ‡ (0) = -1/a for a ∈ [-1, 0)
), and can be expressed as

C ‡ (u, v) = φ [-1] ‡ [φ ‡ (u) + φ ‡ (v)] = max u -a + v -a -1 , 0 -1/a = (u -a + v -a -1) -1/a , (u, v) ∈ [0, 1] 2 such that u -a + v -a > 1, 0, elsewhere.
When a → -1 + , it tends to the maximum copula C (u, v) = max(u + v -1, 0). The negative dependence is achieved for a ∈ [-1, 0). In this case, this modified Clayton copula is nonregular; its support depends on a and corresponds to a restricted region, breaking the symmetry about the diagonal from the corner points (0, 1) to (1, 0). Furthermore, it is also proved that it cannot properly capture higher negative dependence (see [START_REF] Joe | Multivariate Models and Dependence Concepts[END_REF], [START_REF] Nelsen | An Introduction to Copulas[END_REF] and [START_REF] Sempi | Principles of Copula Theory[END_REF]).

The Clayton copula, in its standard or maximum modified form, has been at the heart of several important applied studies, including [START_REF] Darabi | Application of Clayton copula in portfolio optimization and its comparison with Markowitz mean-variance analysis[END_REF], [START_REF] El-Sherpieny | Bivariate generalized rayleigh distribution based on Clayton Copula[END_REF], [START_REF] Novianti | Application of Clayton copula to identify dependency structure of COVID-19 outbreak and average temperature in Jakarta Indonesia[END_REF], [START_REF] Schneider | Clayton copula for survival data with dependent censoring: An application to a tuberculosis treatment adherence data[END_REF] and [START_REF] Michimae | Likelihood inference for copula models based on left-truncated and competing risks data from field studies[END_REF]. It has also served as the main example to test an artificial intelligence system in [START_REF] Górecki | Pair programming with ChatGPT for sampling and estimation of copulas[END_REF], mainly because of its simple expression and all the deep computational knowledge around it.

In order to provide suitable alternatives with the same mathematical ingredients, several articles have focused on extensions of the Clayton copula by modifying its strict generator function. In particular, in [START_REF] Cooray | Strictly Archimedean copulas with complete association for multivariate dependence based on the Clayton family[END_REF], the following weighted Clayton strict generator function is proposed:

φ (t) = t -a -1 a (1 -bt a ), t > 0,
under the following parameter conditions: b ∈ [0, 1], a ≥ 0, or b < 0 and b(a -1) + a + 1 ≥ 0. The associated Archimedean copula has a sophisticated expression (see [START_REF] Cooray | Strictly Archimedean copulas with complete association for multivariate dependence based on the Clayton family[END_REF]Remark 2.2]), but it has the advantages of being regular and reaching negative dependence thanks to the combined action of the parameters a and b. It is shown in [START_REF] Cooray | Strictly Archimedean copulas with complete association for multivariate dependence based on the Clayton family[END_REF]Subsection 3.4] that the corresponding Kendall tau has the optimal range [-1, 1]. In the same vein, a more simple approach was studied in [START_REF] Chesneau | Parametric extensions of some referenced two-dimensional strict Archimedean copulas[END_REF]. It consists of considering the following parameter-extended Clayton strict generator function:

φ (t) = (at -b -1) c -(a -1) c , t > 0,
under the following parameter conditions: b > 0, c > 0 and a ≥ max[1, (b + 1)/(bc + 1)]. The corresponding Archimedean copula is expressed as

C (u, v) = φ -1 [φ (u) + φ (v)] = a 1/b [(au -b -1) c + (av -b -1) c -(a -1) c ] 1/c + 1 -1/b , (u, v) ∈ [0, 1] 2 .
This copula is regular, and it can reach the negative dependence thanks to the combined action of the parameters a, b, and c. For some parameter-value tests, it is shown in [3, Tables 1 and2] that the corresponding Kendall tau has the range [-0.31, 0.75], but a more large numerical analysis suggests the range [-0.31, 1]. The two above copulas thus provide interesting alternatives to the Clayton copula because of their regularity and possible negative dependence. However, this is achieved with the direct modification of the generator function and the manipulation of several parameters.

Contributions

In this article, we develop an original approach to extend the standard Clayton copula beyond the modification of the corresponding strict generator function. We aim to determine a simple bivariate function ψ(u, v) such that

C(u, v) = u -a + v -a + ψ(u, v) -1 -1/a , (u, v) ∈ [0, 1] 2 , (1) 
is a valid copula that is regular, covers both negative and positive dependence, and depends on a reasonable number of parameters. It can also be expressed as

C(u, v) = φ -1 † [φ † (u) + φ † (v) + ψ(u, v)] or C(u, v) = [C † (u, v)] -a + ψ(u, v) -1/a .
In this way, we intentionally perturb the Archimedean structure inherent in the standard Clayton copula while retaining its fundamental mathematical components in an effort to broaden its modeling capabilities. Our approach considers ψ(u, v) as a product of logarithmic functions modulated by a single tuning parameter, strategically designed to establish a connection with the Gumbel-Barnett copula, a well-known copula exhibiting negative dependence (refer to [START_REF] Nelsen | An Introduction to Copulas[END_REF]). We first establish the conditions on the parameters that make the new copula valid. Subsequently, we conduct a comprehensive examination of its properties, encompassing limit results, associated functions, random number generation, natural extensions, exhaustive bounds, tail dependences, correlation measures elucidating both negative and positive dependences, and bivariate distribution generation with an example related to the bivariate Gaussian distribution. We supplement the analysis with pertinent figures and numerical tables. Additionally, we showcase two practical versions of the copula. In light of the widespread applications of the Clayton copula, we anticipate a similar perspective on our proposed modification. The applied aspect is, however, left to future work.

Article organization

The rest of the article is as follows: Section 2 describes the proposed Clayton copula. Section 3 is devoted to its main properties. Some special cases are discussed in Section 4. A conclusion is provided in Section 5.

Modified Clayton copula

Let us present the copula concept in the standard bivariate absolutely continuous setting, as recalled below (see [START_REF] Nelsen | An Introduction to Copulas[END_REF]).

Definition 1 Under the bivariate absolutely continuous setting, the following definition of a copula is adopted: A copula is a function defined on [0, 1] 2 , say A(u, v), (u, v) ∈ [0, 1] 2 , differentiable on (0, 1) and satisfying the two assumptions below.

(a) A(u, 1) = u, A(1, v) = v, A(u, 0) = A(0, u) = 0, (b) ∂ 2 ∂u∂v A(u, v) ≥ 0.
Throughout the article, the bivariate absolutely continuous setting will be taken into consideration. Mathematically speaking, proving assumption (b) can be more difficult than

proving assumption (a); it may require extensive mathematical developments (tedious differentiations, factorizings, inequalities, etc.).

In light of Definition 1 and the copula construction elucidated in Equation ( 1) with a judicious function ψ(u, v), the proposition below introduces our modified Clayton copula.

Proposition 2.1 Let us consider the following bivariate function:

C(u, v) = u -a + v -a + b log(u) log(v) -1 -1/a , (u, v) ∈ [0, 1] 2 . ( 2 
)
Then it is a copula for a > 0 and a(a + 1) ≥ b ≥ 0.

Proof. The proof is based on the verification of (a) and (b) in Definition 1. First, let us focus on (a). For any u ∈ [0, 1], since log(1) = 0, we immediately have

C(u, 1) = u -a + 1 -a + b log(u) log(1) -1 -1/a = (u -a ) -1/a = u.
By using a similar approach, for any v ∈ [0, 1], we also obtain

C(1, v) = v.
On the other hand, for any u ∈ [0, 1], since a > 0, we have lim v→0 + v a log(v) = 0. This implies that

C(u, 0) = lim v→0 + u -a + v -a + b log(u) log(v) -1 -1/a = lim v→0 + v u -a v a + 1 + bv a log(u) log(v) -v a -1/a = lim v→0 + v × (0 + 1 + 0 -0) -1/a = 0.
With a similar rationale, for any v ∈ [0, 1], we obtain C(0, v) = 0. As a result of the above developments, (a) is fulfilled.

Let us now consider (b). For any (u, v) ∈ (0, 1) 2 , through the use of several differentiation rules and appropriate factorizings, we establish that

∂ 2 ∂u∂v C(u, v) = 1 a 2 [bu a v a log(u) log(v) + u a (1 -v a ) + v a ] 2 × u a-1 v a-1 u -a + v -a + b log(u) log(v) -1 -1/a [aJ(u, v) + K(u, v)] ,
where

J(u, v) = a 2 + bu a (v a -1) -(a + 1)bu a log(v) -bv a + a and K(u, v) = -bv a log(u) a 2 -bu a log(v) + a .
Therefore, given a > 0, proving J(u, v) ≥ 0 and K(u, v) ≥ 0 are sufficient to establish

∂ 2 C(u, v)/(∂u∂v) ≥ 0, i.e., (b). 
Since a > 0 and b ≥ 0, we have -bv a log(u) ≥ 0, a 2 ≥ 0 and -bu a log(v) ≥ 0, which imply that K(u, v) ≥ 0. On the other hand, under the assumptions a > 0 and a(a

+ 1) ≥ b ≥ 0, since b(1 -u a )(1 -v a ) ≥ 0 and -(a + 1)bu a log(v) ≥ 0, we have J(u, v) = a 2 + bu a v a -bu a -bv a + a -(a + 1)bu a log(v) = a(a + 1) -b + b(1 -u a )(1 -v a ) -(a + 1)bu a log(v) ≥ a(a + 1) -b ≥ 0.
Hence, (b) is satisfied, ending the proof.

Let us call the copula in Equation ( 2) the logarithmic-modified Clayton (LMC) copula. It corresponds to the copula described in Equation ( 1) with

ψ(u, v) = b log(u) log(v).
Clearly, by taking b = 0, it corresponds to the standard Clayton copula and, for any b ≥ 0, the following copula ordering holds: For any (u, v)

∈ [0, 1] 2 , since b log(u) log(v) ≥ 0, we have C(u, v) ≤ C † (u, v).
This inequality implies that certain correlation measures associated with the LMC copula are smaller than those of the Clayton copula, among other considerations. Further exploration of this assertion will be conducted in greater detail in Subsection 3.5. While the conditions a > 0 and a(a + 1) ≥ b ≥ 0 may seem stringent due to the interdependence of a and b, practical alternatives exist, such as b = ac with c ∈ [0, 1], or b = a(a + 1). These specific configurations will be discussed in Section 4.

In order to have a representative idea of the LMC copula, Figure 1 displays it for some values of a and b satisfying the required assumptions. The package plotly of the R software was used in this regard (see [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF] and [START_REF] Sievert | Interactive Web-Based Data Visualization with R, plotly, and shiny[END_REF]). This illustrates the validity of the copula on the one hand and its versatility on the other.

(i) (ii) (iii) (iv)
In the rest of the study, we will investigate the main properties of the LMC copula, and discuss how it contributes to the developments on modified Clayton copulas.

Properties

In this section, a focus is put on limit results, related functions, number generation, copula bounds, tail dependence, certain correlation measures, and a new bivariate Gaussian distribution, all derived from the LMC copula.

Limit results

Some copula limits on the LMC copula are now examined. The next proposition investigates the limit of the LMC copula when a → 0 + and an additional assumption on b.

Proposition 3.1 Let (u, v) ∈ [0, 1]
2 and C(u, v) be the LMC copula with a > 0 and a(a + 1) ≥ b ≥ 0. Suppose that lim a→0 + b = 0 and lim a→0 + b/a = c with c ∈ [0, 1], then we have

lim a→0 + C(u, v) = C (u, v), where C (u, v) = uv exp [-c log(u) log(v)]
is the Gumbel-Barnett copula with parameter c (see [START_REF] Nelsen | An Introduction to Copulas[END_REF]). When c = 0, it is reduced to the independence copula.

Proof. By the basic properties of a copula, the result is immediate for the corner points (0, 0), (0, 1), (1, 0) and (1, 1), so let us consider (u, v) ∈ (0, 1) 2 . Owing to the equivalence exp(t) ∼ 1 + t when t → 0, we get

lim a→0 + C(u, v) = lim a→0 + u -a + v -a + b log(u) log(v) -1 -1/a = lim a→0 + exp - 1 a log {exp[-a log(u)] + exp[-a log(v)] + b log(u) log(v) -1} = lim a→0 + exp - 1 a log [1 -a log(u) -a log(v) + b log(u) log(v)] .
Using the limit assumptions lim a→0 + b = 0, it is clear that lim a→0 + a log(u) + a log(v)b log(u) log(v) = 0. This, combined with the equivalence log(1 + t) ∼ t when t → 0, gives

lim a→0 + C(u, v) = lim a→0 + exp log(u) + log(v) - b a log(u) log(v) = uv lim a→0 + exp - b a log(u) log(v) .
The assumption lim a→0 + b/a = c with c ∈ [0, 1] implies that

lim a→0 + C(u, v) = uv exp [-c log(u) log(v)] = C (u, v
), which ends the proof.

These limit results are sufficient to justify the study of the LMC copula. Indeed, it means that, for a and b/a closed to 0, the LMC copula can have the behavior of the Gumbel-Barnett copula, and it is known that the Gumbel-Barnett copula can reach the negative dependence (with a Kendall tau of the range [-0.361, 0]). Therefore, under some values of the parameters, it is expected that the LMC copula attains both negative and positive dependences. This comment will be illustrated numerically in Subsection 3.5.

The proposition below shows that the limit property of the standard Clayton copula for a → +∞ still holds for the LMC copula. Proposition 3.2 Let (u, v) ∈ [0, 1] 2 and C(u, v) be the LMC copula with a > 0 and a(a + 1) ≥ b ≥ 0. Then we have

lim a→+∞ C(u, v) = C • (u, v). We recall that C • (u, v) = min(u, v).
Proof. By the basic properties of a copula, the result is immediate for the corner points (0, 0), (0, 1), (1, 0) and (1, 1), so let us consider (u, v) ∈ (0, 1) 2 . We have

lim a→+∞ C(u, v) = lim a→0 + u -a + v -a + b log(u) log(v) -1 -1/a = lim a→+∞ exp - 1 a log {exp[-a log(u)] + exp[-a log(v)] + b log(u) log(v) -1} .
For any a(a + 1) ≥ b ≥ 0, even if b depends on a (such as b = a(a + 1) at the maximum order with respect to a), for a → +∞, since u -a = exp[-a log(u)] → +∞ and v -a = exp[-a log(v)] → +∞ with an exponential rate, we have

u -a + v -a + b log(u) log(v) -1 ∼ u -a + v -a ∼ [min(u, v)] -a = [C • (u, v)] -a .
Therefore, we have

lim a→+∞ C(u, v) = lim a→+∞ exp - 1 a log [C • (u, v)] -a = C • (u, v).
The proof is achieved.

Hence, the important min-copula limit property of the Clayton copula is conserved for the LMC copula.

These comprehensive results are advantages for the LMC copula, among other properties to be examined in the next sections.

Related functions

Several important functions derived from the LMC copula are now described.

Useful functions

The LMC copula density is a hidden ingredient of the proof of (b) in Proposition 2.1; it is given by

c(u, v) = ∂ 2 ∂u∂v C(u, v) = 1 a 2 [bu a v a log(u) log(v) + u a (1 -v a ) + v a ] 2 × u a-1 v a-1 u -a + v -a + b log(u) log(v) -1 -1/a × a a 2 + bu a (v a -1) -(a + 1)bu a log(v) -bv a + a -bv a log(u) a 2 -bu a log(v) + a , (u, v) ∈ [0, 1] 2 ,
with the limit values at the corner points (0, 0), (0, 1), (1, 0), and (1, 1). In full generality, the copula density is of interest because the more flexible the copula density, the more the related copula model is adaptable to versatile dependence structures. Due to the functional complexity of c(u, v), a graphical study is preferable to an analytical study. Thus, Figure 2 displays it for some values of a and b, satisfying the required assumptions. On the other hand, the two conditional LMC copulas are given by

(i) (ii) (iii) (iv)
C 1 (u, v) = ∂ ∂u C(u, v) = - 1 au b log(v) -au -a u -a + v -a + b log(u) log(v) -1 -1-1/a (3) 
and

C 2 (u, v) = ∂ ∂v C(u, v) = C 1 (v, u) = - 1 av b log(u) -av -a u -a + v -a + b log(u) log(v) -1 -1-1/a , (u, v) ∈ [0, 1] 2 . ( 4 
)
These functions are useful for simulating a couple of values (u ι , v ι ) from a random vector (U, V ) having the LMC copula as a cumulative distribution function. The standard simulation scheme is as follows:

• Simulate a couple of independent values (u ι , w), each from the uniform distribution over [0, 1].

• Determine numerically the value v ι satisfying the following nonlinear equation: w = C 1 (u ι , v ι ), where C 1 (u, v) is given by Equation (3).

• Consider (u ι , v ι ) as the generated couple of values.

For any positive integer n, we can repeat the process n times to have n couples of values from (U, V ). As an illustration, for four different parameter configurations on a and b, Figure 3 depicts n = 100 such simulated couples of values. The package rootSolve of the R software was used for the second step of the process (see [START_REF] Soetaert | rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of ordinary differential equations[END_REF]). From this figure, we see the different kinds of dependence trends, with a more or less clear structure and with some specific clusters of points.

(i) (ii) (iii) (iv)
Simulated couples of values can also be used to test the behavior of diverse parametric estimation procedures by varying the number n; the larger n is, the more the procedures must be proved to be efficient. We leave this practical aspect for future studies.

On the other hand, the conditional copulas are also involved in the definition of correlation measures, such as the Kendall tau, as shown later.

Derived copulas

The LMC copula can be used to derive other new copulas with little effort. Based on some schemes presented in [START_REF] Nelsen | An Introduction to Copulas[END_REF], still under the assumptions a > 0 and a(a + 1) ≥ b ≥ 0, a short list of them is given below.

• We define the x-flipping LMC copula by

C(u, v) = v -C(1 -u, v) = v -(1 -u) -a + v -a + b log(1 -u) log(v) -1 -1/a , (u, v) ∈ [0, 1] 2 .
• We introduce the y-flipping LMC copula by

C(u, v) = u -C(u, 1 -v) = u -u -a + (1 -v) -a + b log(u) log(1 -v) -1 -1/a , (u, v) ∈ [0, 1] 2 .
• We define the survival LMC copula by

C(u, v) = u + v -1 + C(1 -u, 1 -v) = u + v -1 + (1 -u) -a + (1 -v) -a + b log(1 -u) log(1 -v) -1 -1/a , (u, v) ∈ [0, 1] 2 .
All of them offer a new dependence model on a Clayton copula basis.

Another interesting scheme is the one elaborated in [START_REF] Durante | Construction of non-exchangeable bivariate distribution functions[END_REF]. It allows for flexibility and asymmetry of a given copula. In particular, with the use of power functions as in [10, Corollary 4], the following result holds: For any a > 0, a(a + 1) ≥ b ≥ 0, c ∈ [0, 1] and d ∈ [0, 1], we define a new copula by

C (u, v) = u c v d C(u 1-c , v 1-d ) = u c v d u -a(1-c) + v -a(1-d) + b(1 -c)(1 -d) log(u) log(v) -1 -1/a , (u, v) ∈ [0, 1] 2 .
Clearly, for c = d, it is not diagonally symmetric. The parameters c and d inject more versatility into the LMC copula but complicate it on the mathematical plan; there is a risk of the over-parameterization phenomenon from a practical viewpoint.

Other copula-generated schemes are possible; the LMC copula may offer new possibilities for advancing research in this direction.

Copula bounds

As for any copula, the Fréchet-Hoeffding result holds (see [START_REF] Nelsen | An Introduction to Copulas[END_REF]). It ensures that the LMC copula satisfies the following copula inequalities:

C (u, v) ≤ C(u, v) ≤ C • (u, v), i.e., max(u + v -1, 0) ≤ u -a + v -a + b log(u) log(v) -1 -1/a ≤ min(u, v).
In fact, for the LMC copula, these general bounds can be improved under some additional assumptions on a and b. An improved lower bound that has a quadrant dependence interpretation is described below.

Proposition 3.3 Let (u, v) ∈ [0, 1] 2 and C(u, v) be the LMC copula with a > 0 and a 2 ≥ b ≥ 0. Then we have

C(u, v) ≥ uv.
Proof. For a > 0 and b ≤ a 2 , we have

u -a + v -a + b log(u) log(v) -1 ≤ u -a + v -a + a 2 log(u) log(v) -1 = u -a + v -a + log(u -a ) log(v -a ) -1.
Now, by using the inequality log(t) ≤ t -1 for t > 0, since u -a ≥ 1 and v -a ≥ 1, we have 0

≤ log(u -a ) ≤ u -a -1 and 0 ≤ log(v -a ) ≤ v -a -1, which imply that log(u -a ) log(v -a ) ≤ (u -a -1)(v -a -1)
. Therefore, we have

u -a + v -a + b log(u) log(v) -1 ≤ u -a + v -a + (u -a -1)(v -a -1) -1 = u -a v -a .
By raising the two sides at the negative power -1/a, we get

C(u, v) = u -a + v -a + b log(u) log(v) -1 -1/a ≥ (u -a v -a ) -1/a = uv.
The desired limit result is demonstrated.

It follows from Proposition 3.3 that, under the assumptions a > 0 and a 2 ≥ b ≥ 0, the lower bound C (u, v) is improved and that the LMC copula has the positive quadrant dependence property. This was known for the Clayton copula, i.e., b = 0, and now extends to the LMC copula with a 2 ≥ b ≥ 0.

Under a complementary assumption, the next result suggests an improved upper bound for the LMC copula.

Proposition 3.4 Let (u, v) ∈ [0, 1] 2 and C(u, v) be the LMC copula with a > 0 and a 2 ≤ b ≤ a(a + 1). Then we have

C(u, v) ≤ [C • (u, v)] -α + (1 -u a )(1 -v a ) -1/a , upper bound which is cleary smaller than C • (u, v).
Proof. For a > 0 and a 2 ≤ b ≤ a(a + 1), we have

u -a + v -a + b log(u) log(v) -1 ≥ u -a + v -a + a 2 log(u) log(v) -1 = u -a + v -a + log(u -a ) log(v -a ) -1.
Now, by using the inequality log(t) ≥ (t -1)/t for t > 0, since u -a ≥ 1 and v -a ≥ 1, we have log(u -a ) ≥ (u -a -1)/u -a ≥ 0, log(v -a ) ≥ (v -a -1)/v -a ≥ 0, implying that log(u -a ) log(v -a ) ≥ (u -a -1)(v -a -1)/(u -a v -a ). Therefore, we have

u -a + v -a + b log(u) log(v) -1 ≥ u -a + v -a + 1 u -a v -a (u -a -1)(v -a -1) -1 = u -a + v -a -u a -v a + (uv) a ≥ [min(u, v)] -α + 1 -u a -v a + (uv) a = [C • (u, v)] -α + (1 -u a )(1 -v a )
By raising the two sides at the negative power -1/a, we get

C(u, v) = u -a + v -a + b log(u) log(v) -1 -1/a ≤ [C • (u, v)] -α + (1 -u a )(1 -v a ) -1/a .
The stated upper bound is obtained.

The interest in the obtained bounds is mainly theoretical but contributes to the comprehension of the LMC copula.

Tail dependence

Diverse kinds of tail dependence in the LMC copula are now investigated. To begin, the lower left tail dependence parameter is given by

λ 1 = λ l = lim u→0 + C(u, u) u = lim u→0 + {2u -a + b[log(u)] 2 -1} -1/a u = 2 -1/a .
It is the same as the standard Clayton copula; the parameter b plays no role in it. Thus, the LMC copula is lower left tail dependent. In fact, it is the only tail dependence it has. Indeed, the lower right tail dependence parameter is obtained as

λ 2 = lim u→0 + u -C(1 -u, u) u = lim u→0 + u -[(1 -u) -a + u -a + b log(1 -u) log(u) -1] -1/a u = 0, since C(u, v
) is symmetric, the corresponding upper left tail dependence parameter is determined by

λ 3 = lim u→0 + u -C(u, 1 -u) u = λ 2 = 0
and the upper right tail dependence parameter is given by

λ 4 = λ u = lim u→1 - 1 -2u + C(u, u) 1 -u = lim u→1 - 1 -2u + {2u -a + b[log(u)] 2 -1} -1/a 1 -u = 0.
Thus, we have λ 2 = λ 3 = λ 4 = 0, supporting the claim.

Correlation measures

Let us now examine some correlation measures associated with the LMC copula, namely the medial correlation and Kendall tau. We again refer to [START_REF] Nelsen | An Introduction to Copulas[END_REF] for the details on these measures.

Medial correlation

First, the medial correlation of the LMC copula is indicated as follows:

M = 4C 1 2 , 1 2 -1 = 4 2 a+1 + b[log(2)] 2 -1 -1/a -1.
In particular, it is non-positive for a > 0 and

a(a + 1) ≥ b ≥ max 1 [log(2)] 2 1 + 2 2a -2 a+1 , 0 .
These conditions happen when a is small enough, which is consistent with the limit copula result described in Proposition 3.1. We illustrate this claim in Tables 1 and2 by calculating M for selected values of a and b satisfying a > 0 and a(a + 1) ≥ b ≥ 0. In fact, Table 2 focuses on the special case b = a(a + 1) and small values for a.

Table 1: Values of the medial correlation of the LMC copula for some values of a and b satisfying a > 0 and a(a + 1) ≥ b ≥ 0 (when it is not true, the cross symbol × is put). From these tables, based on the selected values of the parameters only, we find that M ∈ [-0.377, 0.812], but more numerical tests with large a extend this interval to [-0.377, 1].

× × × × × × × × a = 0.1 0.046 -0.15 -0.307 × × × × × × × × × × ×
This demonstrates the fact that the LMC copula can reach both negative and positive dependences. This is particularly true for the single-parameter LMC copula defined with b = a(a + 1) and a > 0, as observed in Table 2.

Kendall's tau

Based on C 1 (u, v) and C 2 (u, v) specified in Equations ( 3) and ( 4), respectively, the Kendall tau of the LMC copula has the following integral expression:

τ = 1 -4 1 0 1 0 C 1 (u, v)C 2 (u, v)dudv = 1 -4 1 0 1 0 1 a 2 uv b log(v) -au -a b log(u) -av -a × u -a + v -a + b log(u) log(v) -1 -2-2/a dudv.
The integrated term is too sophisticated from an analytical viewpoint to expect a nice expression. Nevertheless, based on the behavior of the medial correlation and the limit result in Proposition 3.1, it is plausible that this measure is negative for small values of a.

We support this claim in Tables 3 and4 with a numerical work; we determine τ for selected values of a and b satisfying a > 0 and a(a + 1) ≥ b ≥ 0. Table 4 focuses on the special case b = a(a + 1) and small values for a. For the considered parameter scenarios, we find that τ ∈ [-0.356, 0.778], but more numerical tests with large a extend it to τ ∈ [-0.356, 1]. Thus, the analysis of the Kendall tau also confirms that the LMC copula can reach both negative and positive dependences.

Again, this is particularly true for the single-parameter LMC copula defined with b = a(a+1)

and a > 0, as seen in Table 4.

The LMC Gaussian distribution

The LMC copula can be used to generate a plethora of bivariate distributions. In particular, by considering the LMC copula and the standard Gaussian distribution for the marginal distributions, we define a new bivariate Gaussian distribution by the following cumulative distribution function:

F (x, y) = C[Φ(x), Φ(y)] = [Φ(x)] -a + [Φ(y)] -a + b log[Φ(x)] log[Φ(y)] -1 -1/a , (x, y) ∈ R 2 ,
where Φ(x) denotes the cumulative distribution function of the standard Gaussian distribution, i.e.,

Φ(x) = 1 √ 2π x -∞ exp - u 2 2 du, x ∈ R.
Let us call the corresponding bivariate distribution the LMC Gaussian distribution. Based on the LMC copula density, the corresponding probability density function is obtained as

f (x, y) = ϕ(x)ϕ(y)c[Φ(x), Φ(y)] = ϕ(x)ϕ(y) a 2 {b[Φ(x)] a [Φ(y)] a log(u) log(v) + [Φ(x)] a {1 -[Φ(y)] a } + [Φ(y)] a } 2 × [Φ(x)] a-1 [Φ(y)] a-1 [Φ(x)] -a + [Φ(y)] -a + b log[Φ(x)] log[Φ(y)] -1 -1/a × a a 2 + b[Φ(x)] a {[Φ(y)] a -1} -(a + 1)b[Φ(x)] a log[Φ(y)] -b[Φ(y)] a + a -b[Φ(y)] a log[Φ(y)] a 2 -b[Φ(x)] a log[Φ(y)] + a , (x, y) ∈ R 2 ,
where ϕ(x) denotes the probability distribution function of the standard Gaussian distribution, i.e.,

ϕ(x) = 1 √ 2π exp - x 2 2 , x ∈ R.
In order to see the shape ability of this probability density function, Figure 4 depicts it for some values of a and b satisfying the required assumptions. From this figure, we see how the classical Gaussian bell shape is simultaneously skewed and deformed at its basis, with various weights on the tails. For the configuration (ii), we see a multimodal phenomenon, certainly caused by the large value of a, the reasonable value of b, and the combined presence of power and logarithmic functions. This versatility in shape makes the LMC Gaussian distribution of interest for further investigation in various bivariate modeling scenarios (bivariate noise, regression modeling, bivariate data analysis beyond the standard Gaussian case, etc.).

Special copulas

Two special cases of the LMC copula are now highlighted because of their practical designs.

Two-parameter practical LMC copula

By choosing b = ac with c ∈ [0, 1], which is possible since ac ≤ a ≤ a(a + 1), the LMC copula can be expressed as

C(u, v) = u -a + v -a + ac log(u) log(v) -1 -1/a , (u, v) ∈ [0, 1] 2 .
It is of particular interest because a and c are totally independent, since lim a→0 + b = 0 and lim a→0 + b/a = c with c ∈ [0, 1], owing to Proposition 3.1, the Gumbel-Barnett copula with parameter c is obtained as a limit when a → 0 + , the Clayton copula is recovered with c = 0, and it can reach negative and positive dependences. This last claim is supported by Table 5. Despite a slight restriction on the parameter domain, this variant can be viewed as a practical version of the LMC copula because of the independence of the parameters and the fact that the main properties are conserved. Therefore, it is sufficiently motivated for various applications where the Clayton copula model is not the optimal choice.

Single-parameter LMC copula

A special single-parameter LMC copula has been sketched in several parts of the article. It is defined by choosing b = a(a + 1) with a > 0, and is expressed as

C(u, v) = u -a + v -a + a(a + 1) log(u) log(v) -1 -1/a , (u, v) ∈ [0, 1] 2 .
This version is of interest because, with the tune of only one parameter, since lim a→0 + b = 0 and lim a→0 + b/a = 1, owing to Proposition 3.1, the Gumbel-Barnett copula with parameter 1 is obtained as a limit when a → 0 + , and it can reach the negative and positive dependences as already demonstrated in Tables 2 and4. However, the Clayton copula cannot be recovered.

For this reason, it must be viewed as a real alternative with similar mathematical ingredients. 

Conclusion

In conclusion, this article introduces a novel modification to the Clayton copula, deviating from its Archimedean nature to enhance flexibility. The proposed variant is characterized by an additional bivariate product of logarithmic functions and a tuning parameter. It offers a nuanced representation of the corresponding copula density. Regularity and negative dependence can be achieved simultaneously. The study explores the properties of the new copula, connecting it with the Gumbel-Barnett copula, elucidating various bounds and tail dependences, and examining correlation properties. Additionally, the article gives a probability application with a modified bivariate Gaussian distribution. Furthermore, two special copula cases are discussed. The findings contribute to the advancement of theoretical foundations in copula-based modeling techniques. Some possible perspectives on this work are formulated below.

• One can consider other choices for the function ψ(u, v) in Equation (1), perhaps of not constant sign for a higher level of perturbation of the Clayton copula.

• One can investigate a higher-dimensional version of the proposed copula, such as the trivariate variant indicated as C(u, v, w) = u -a + v -a + w -a + b log(u) log(v) log(w) -1 -1/a , (u, v, w) ∈ [0, 1] 3 , with a and b are two parameters in ranges of values to determine (even if the values of b are logically negative to make sense to the power -1/a).

• More generally, beyond the Clayton copula setting, based on a well-established strict generator function φ (t) and a well-chosen perturbation function ψ(u, v), one can explore the modeling horizons opened by copulas of the following form:

C (u, v) = φ -1 [φ (u) + φ (v) + ψ(u, v)] , (u, v) ∈ [0, 1] 2 .
These ideas need further examination, which we leave for future work.
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 1 Figure 1: Contour plots of the LMC copula for (i) a = 1 and b = 2, (ii) a = 10 and b = 1, (iii) a = 0.1 and b = 0.05, and (iv) a = 1.5 and b = 2.

Figure 2 :

 2 Figure 2: Contour plots of the LMC copula density for (i) a = 1 and b = 2, (ii) a = 10 and b = 1, (iii) a = 0.1 and b = 0.05, and (iv) a = 1.5 and b = 2.

Figure 3 :

 3 Figure 3: Plots of n = 100 simulated couples of values from a random vector (U, V ) having the LMC copula as cumulative distribution function for (i) a = 1 and b = 2, (ii) a = 10 and b = 1, (iii) a = 0.1 and b = 0.05, and (iv) a = 1.5 and b = 2.

Figure 4 :

 4 Figure 4: Contour plots (left column) and shape plots (right column) of the LMC Gaussian probability density for (i) a = 1 and b = 2, (ii) a = 10 and b = 1, (iii) a = 0.1 and b = 0.05, and (iv) a = 1.5 and b = 2.

Remark 4 . 1

 41 The choice b = a 2 in the LMC copula is really different from the choice b = a(a + 1) because it does not permit the negative dependence. This can be deduced from Proposition 3.3, the inequality C(u, v) ≥ uv implying that M ≥ 0 and τ ≥ 0.

Table 2 :

 2 Values of the medial correlation of the LMC copula for some small values of a > 0 and b = a(a + 1).

	a	0.01	0.11	0.21	0.31	0.41	0.51	0.61	0.71	0.81	0.91

Table 3 :

 3 Values of the Kendall tau of the LMC copula for some values of a and b satisfying a > 0 and a(a + 1) ≥ b ≥ 0.

	b	0.0	0.05	0.1	0.2	0.5	0.9	1.1	1.3	1.5	2	2.5	3	4	5
	a = 7	0.778	0.778	0.778	0.778	0.777	0.777 0.776 0.776 0.776 0.775 0.775 0.774 0.773 0.772
	a = 2	0.5	0.498	0.496	0.491	0.478	0.462 0.453 0.445 0.438 0.418	0.4	0.382 0.349 0.317
	a = 1	0.333	0.324	0.314	0.296	0.244	0.183 0.154 0.127 0.101 0.041	×	×	×	×
	a = 0.5	0.2	0.17	0.142	0.09	-0.043	×	×	×	×	×	×	×	×	×
	a = 0.1 0.048 -0.142 -0.286	×	×	×	×	×	×	×	×	×	×	×

Table 4 :

 4 Values of the Kendall tau of the LMC copula for some small values of a > 0 and b = a(a + 1).

	a	0.01	0.11	0.21	0.31	0.41	0.51	0.61	0.71	0.81	0.91
		-0.356 -0.306 -0.259 -0.214 -0.171 -0.131 -0.092 -0.056 -0.021 0.013

Table 5 :

 5 Values of the Kendall tau of the LMC copula for some some values of a and b such that b = ac with a > 0 and c ∈ [0, 1].

	c	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	a = 0.1 0.048 0.004 -0.036 -0.073 -0.108 -0.142 -0.173 -0.203 -0.232 -0.259 -0.286
	a = 0.4 0.167 0.134	0.103	0.074	0.047	0.020	-0.005 -0.029 -0.052 -0.075 -0.096
	a = 1	0.333 0.314	0.296	0.278	0.261	0.244	0.228	0.213	0.197	0.183	0.168
	a = 6	0.750 0.749	0.748	0.746	0.745	0.744	0.743	0.742	0.741	0.739	0.738
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