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Abstract

We analyze the impact of risk and ambiguity aversion using a lifecycle re-

cursive utility model. Both risk and ambiguity aversion are shown to reduce

annuity demand and enhance bond holdings. We obtain this result using

an intertemporal framework in which we can vary both risk and ambiguity

aversion, while preserving preference monotonicity.
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1 Introduction

Risk and ambiguity aversion are two central behavioral traits affecting economic

lifecycle problems, such as saving and portfolio choices. A natural question is

whether ambiguity and risk aversion have different impacts, or whether they gen-

erate qualitatively similar effects, especially when risk and ambiguity aversion are

considered simultaneously. Although these traits appear to have certain similari-

ties, with both traits aiming to model attitudes towards (objective or subjective)

uncertainty, they have generally been studied in two separate strands of the eco-

nomic literature. As pointed out in Guetlein (2016), the reason for the lack of joint

analysis is that the problem is complicated and may in general lead to non-clear-cut

results. Some insights have been given in static setups for portfolio choice prob-

lems (see e.g., Dow and Werlang 1992, Gollier 2011), and for self-insurance and

self-protection questions (see among others, Treich 2010, Snow 2011, and Alary

et al. 2013). However, the question has never really been theoretically addressed

in intertemporal problems.

In this paper, we succeed in deriving non-ambiguous results regarding the joint

role of risk and ambiguity aversion in a lifecycle model. A lifecycle model with un-

certain lifetime is a natural workhorse for such an analysis. Not only is mortality

a large risk in life but life expectancies are highly heterogeneous, as measured by

so-called life disparity. Furthermore, even if life disparity can be partly explained

by socio-economic factors, or differences in health systems, significant unexplained

factors remain (Shkolnikov et al. 2003, Edwards and Tuljapurkar 2005, or Shkol-

nikov et al. 2011). Mortality can therefore be seen as both risky and ambiguous.

Formally, we focus on a smooth ambiguity model à la Hayashi and Miao (2011),

which nests some standard models such as that of Klibanoff et al. (2009) or the

recursive specification of Epstein and Zin (1989). We analyze the saving decisions

of an agent who is both ambiguity and risk averse, and who may invest both in

risk-free bonds and in annuities. Mortality is the sole risk faced by the agent and

she can live at most for two periods. The key feature of our approach is that

we additionally assume that the agent’s preferences are monotone with respect to

first-order stochastic dominance. This property enables us to jointly characterize

the respective roles of ambiguity and risk aversion.
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What does the monotonicity property imply? In a nutshell, monotonicity pre-

vents agents from opting for dominated choices. More precisely, if two choices

are available, with the first one yielding preferred outcomes in all circumstances,

then an agent with monotone preferences will always prefer the first choice to the

second. This property has already been studied in a risk setting. Bommier et al.

(2017b) show that the only Kreps and Porteus (1978) monotone preferences able

to disentangle risk aversion and intertemporal elasticity of substitution are the so-

called risk-sensitive preferences introduced by Hansen and Sargent (1995). These

preferences have proved to be useful for characterizing the role of risk aversion

for various consumption-saving problems. For instance, in a very general infinite-

horizon setting, Bommier and Le Grand (2019) show that once monotonicity is

imposed, risk aversion unambiguously increases precautionary savings.

While the impact of monotonicity has already been explored in a risk setting,

we are not aware of any extension to an uncertainty setting, apart from the repre-

sentation results provided in Bommier and Le Grand (2014a) and Bommier et al.

(2017b). In particular, no application has been developed, leaving the practical

implications of using monotone preferences in an ambiguity setting unclear. The

current paper fills this gap, showing that monotone preferences can be used to de-

rive clear-cut and intuitive predictions regarding the impact of risk and ambiguity

aversion on savings and annuity purchases. More precisely, we prove that a higher

ambiguity aversion, while maintaining risk aversion constant, leads to higher hold-

ings of riskless bonds but smaller holdings of annuities.1 There are different ways

to define what is an increase in risk aversion. An increase in risk aversion in the

sense introduced by Guetlein (2016) – which does not preserve ambiguity atti-

tudes – typically leads to non-clear-cut results. However, a compensated or “net”

change in risk aversion, where the ambiguity parameter is modified together with

the risk aversion parameter so as to keep ambiguity attitudes unchanged, is shown

to have unambiguous implications, with an impact on asset demands similar to

that of an increase in ambiguity aversion. Our results are consistent with intuition,

since in the presence of mortality uncertainty alone, the annuity – which only pays
1This result holds for interior solutions, where agents purchase positive quantities of bonds

and annuities. We also derive slightly different results for corner solutions, where either annuity
or bond holdings hit non-negativity constraints and are equal to zero.
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off in good states of the world, when the agent remains alive – is a risk-taking de-

vice. Unsurprisingly, agents exhibiting greater ambiguity aversion or greater (net)

risk aversion are less willing to take a bet on their survival through annuity saving,

and therefore invest fewer resources in annuities.

Interestingly, our results tend to indicate that ambiguity and risk aversion have,

qualitatively speaking, very similar impacts. In other words, what matters is the

degree of uncertainty aversion (encompassing both risk and ambiguity aversion),

rather than whether uncertainty is objective or subjective. Of course, quantitative

results are likely to depend on whether uncertainty is objective or subjective, and

on whether agents exhibit greater or smaller aversion for objective and subjective

uncertainty. Nonetheless, the overall message is that greater uncertainty aversion

(be it greater risk aversion or greater ambiguity aversion) tends to reduce annuity

purchases and enhance investments in bonds. Uncertainty aversion in particu-

lar appears to be a natural candidate for explaining the low annuitization level

observed in the data (see Johnson et al. 2004 for empirical evidence in the US).

This confirms the early findings of Bommier and Le Grand (2014b), who examined

risk aversion, or those of d’Albis and Thibault (2018), who focused on ambiguity

aversion in a static, one-period model.

To the best of our knowledge, this is the first paper to derive clear-cut results

regarding the joint impact of risk and ambiguity aversion in an intertemporal

framework. Our article obviously connects to the literature that discusses the roles

of risk and ambiguity aversion separately. In the risk setting, there is an abundant

literature on precautionary savings (see, among others, Drèze and Modigliani 1972,

Kimball 1990, Bleichrodt and Eeckhoudt 2005, Courbage and Rey 2007, Kimball

and Weil 2009, Jouini et al. 2013, Nocetti 2016) and on annuity choices (Yaari 1965,

Davidoff et al. 2005, Lockwood 2012, Pashchenko 2013, among many others). The

role of risk aversion is, however, not often studied because most of the literature

relies on the standard time-additive setup, which makes it impossible to isolate

the role of risk aversion, since intertemporal elasticity of substitution and risk

aversion are intertwined. Among the exceptions, we find papers that use recursive

frameworks, such as van der Ploeg (1993), Weil (1993), Kimball and Weil (2009),

and several others. Nevertheless, most of these contributions rely on non-monotone
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preferences (notably those using the most popular Epstein-Zin specification with

an intertemporal elasticity of substitution different from 1), with recursivity and

monotonicity being combined in very few papers, including van der Ploeg (1993),

Tallarini (2000) and Bommier and Le Grand (2014b, 2019). None of these articles

feature ambiguity aversion.

In an ambiguity setting, intertemporal problems are typically addressed using

recursive extensions of standard static ambiguity models, though without having

enough flexibility to change both risk and ambiguity aversion. We note, among

others, the analyses of Osaki and Schlesinger (2014), Berger (2014), and Kajii and

Xue (2016), who examine the precautionary savings of ambiguity averse agents,

or the study of Collard et al. (2018), who investigate whether ambiguity aversion

can explain historical values of the equity premium. All of these papers focus

on ambiguity aversion, while restricting their analyses to models that reduce to

the standard time-additive model when uncertainty is purely objective (in cases

where there is no ambiguity). In other words, they retain the lack of flexibility

of the standard time-additive model, which makes it impossible to explore the

role of risk aversion. An exception is Peter (2019), who considers a more flexible

framework, relying on a non-separable, two-period utility function, although the

author does not investigate the role of risk aversion. The current paper introduces

flexibility by using the recursive framework of Hayashi and Miao (2011), a route

also followed by more quantitatively oriented papers (see e.g., Backus et al. 2015).

Our contribution is notable for its use of monotone preferences, which in addition

to being an intuitive assumption, affords great tractability and the ability to derive

formal results.

2 Risk and ambiguity aversions in intertemporal

frameworks

2.1 The recursive smooth ambiguity model

To study the effect of risk and ambiguity aversion on the optimal decisions of

an agent who faces an ambiguous mortality risk, we adopt the recursive smooth
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ambiguity utility model axiomatized by Hayashi and Miao (2011), in which Seo

(2009)’s construction of a static smooth ambiguity model using Anscombe and

Aumann (1963) acts is embedded into an infinite horizon setting.

Let Ω be the finite state space and let X be the set of consequences. The

set of Anscombe-Aumann acts is G0 ≡
(
∆ (X )

)Ω, where ∆ (X ) denotes the set of

Borel probability measures defined on the Borel subsets of X . We refer to Hayashi

(2005) for the formal construction of the domain of compound lottery-acts, which

are defined as the subset of dynamically coherent acts in the product space ∏∞t=0 Gt,

where the spaces Gt are defined by the recursion Gt =
(
∆ (X × Gt−1)

)Ω.
The representation result of Hayashi and Miao (2011) states that the following

exist: an aggregator W : X × R → R, continuous and increasing in its second

argument; two continuous and strictly increasing functions ψA, ψR : R → R; and

a probability measure µ ∈ ∆
(
∆ (Ω)

)
over the set of objective distributions, such

that the utility of (x, g) ∈ X × G is given by:

V (x, g) = W

x, ψ−1
A

(∫
∆(Ω)

ψA ◦ ψ−1
R

(∑
ω∈Ω π (ω) (1)

×
∫
C×G

ψR
(
V (x′, g′)

)
g (ω) (dc′, dg′)

)
µ(dπ)


 .

Preferences exhibit ambiguity aversion if ψA ◦ ψ−1
R is concave.

2.2 Monotone preferences

For our analysis, we will additionally require preferences to be monotone with re-

spect to first order stochastic dominance. Loosely speaking, monotonicity property

means that if an agent prefers the outcomes of a given action to those of another

action in all states of the world, she should always prefer the former action to the

latter. This property is a consistency requirement between preferences for deter-

ministic outcomes, subjective beliefs, and preferences in the presence of risk and

ambiguity.

Monotonicity has already been analyzed in risk settings. It has straightforward

implications for saving behaviors. Consider, for instance, an agent who is likely

to live for one or two periods. With monotone preferences, her savings in the
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presence of mortality risk will be bound by her savings when she is sure to live for

either one or two periods. These savings will, in particular, be smaller than her

savings when she is sure to live for two periods. With non-monotone preferences,

and for certain parameterizations, the agent is likely to save more in the presence

of mortality risk than she would save knowing that she is sure to live for two

periods.2 Aside from this implication regarding saving behaviors, monotonicity

imposes strong restrictions on preference representations, as shown in Bommier

et al. (2017b). This latter contribution shows, in particular, that risk-sensitive

preferences are the only Kreps and Porteus (1978) monotone preferences able to

disentangle risk aversion and the elasticity of intertemporal substitution. Because

of monotonicity, these preferences may yield clear-cut insights into the role of risk

aversion (see Bommier and Le Grand 2019 for precautionary savings).

In the setting of Hayashi and Miao (2011), monotonicity requires the represen-

tation in (1) to have an affine aggregator W and functions ψR and ψA to be of the

“constant absolute risk aversion” kind. See Bommier and Le Grand (2014a) for a

formal proof. The specification (1) can then be written as:

V (x, g) = f(x)− β

kA
log
∫

∆(Ω)
exp

(
kA
kR

log
(∑

ω∈Ω π (ω) e−kRV
))

µ(dπ)
 , (2)

where f : X → R+ is the instantaneous utility function. The parameters kA
and kR drive ambiguity and risk aversion. Formally, two agents are comparable

in terms of ambiguity aversion if they only differ by the parameter kA, the agent

with greater kA being more ambiguity averse. Two agents are comparable in terms

of risk aversion if they only differ by the parameter kR, the agent with greater kR
being more risk averse. It is therefore natural to refer to kA as being the ambiguity

aversion parameter, and to kR as being the risk aversion parameter.

However, as emphasized by Guetlein (2016), the smooth model does not offer

a straightforward separation between ambiguity and risk attitudes. In particular,

whether the agent is ambiguity averse or ambiguity lover depends on whether the

ratio kA

kR
is greater or smaller than one. Ambiguity neutrality is obtained when

this ratio is equal to one. It follows that increasing the risk aversion parameter kR
while keeping kA constant will change ambiguity attitudes. For example, an agent

2See Bommier et al. (2017a) for a detailed example.
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who is more risk averse than an agent who is ambiguity neutral will necessarily be

ambiguity lover (see discussion in Section II of Guetlein).

To avoid such shortcomings, Guetlein (2016) suggests considering a simulta-

neous increase in both risk aversion and ambiguity aversion that leaves ambiguity

attitudes unchanged (see Section III of her paper). In the general framework of

Guetlein (2016), such joint increases can be rather complex, involving different

transformations of the risk aversion and ambiguity aversion functions. Under the

assumption of preference monotonicity considered in the current paper, the situa-

tion is, however, much simpler. Increasing uncertainty aversion – to use Guetlein’s

terminology – while preserving ambiguity attitudes, is obtained by increasing both

kA and kR, while keeping the ratio kA

kR
constant. To avoid confusion, we will in-

troduce the terminology “net” vs. “gross” to distinguish two possible forms of the

increase in risk aversion. By definition, an increase in “gross risk aversion” in-

volves increasing kR while keeping kA constant. An increase in “net risk aversion”

involves increasing kA and kR, while keeping keeping the ratio kA

kR
unchanged, so

as to preserve ambiguity attitudes. Here, the adjective “net” refers to an approach

where risk aversion would be defined residually by looking at the difference (in

fact the ratio here) between uncertainty aversion and ambiguity aversion.

3 Results in a two-period framework

3.1 Preference specifications

We use the above setting to study the effect of risk and ambiguity aversion on the

optimal annuitization of an agent who faces an ambiguous mortality risk.

There are two periods, indexed by t = 1, 2. The agent is alive in the first

period, and can be either dead or alive in the second period. When alive, the agent

consumes, when dead she may bequeath wealth to her heirs. The formal connection

between our two-period setting and the infinite horizon setting of Hayashi and Miao

(2011) can be made by assuming that the first two periods are always followed by

an infinite sequence of periods where the agent is dead and bequeaths nothing.

In the second period, the state of the agent can be described by two variables:

(i) a dummy variable d ∈ {alive, dead}, indicating whether the agent is alive
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or dead, and (ii) a real number indicating how much she consumes (if alive) or

bequeaths (if dead). Thus, formally, the set of consequences for the second period

is X = {alive, dead} × R+. Because of our assumption that the agent is always

alive in period 1, the first-period set of consequences is simply {alive} × R+ and

the domain of choice is
(
{alive} × R+

)
×
(
∆ (X )

)Ω, where Ω is a finite subjective

state-space.

This can be simplified since we assume that mortality is the only source of

uncertainty. The agent’s subjective prior can then be described by a probability

distribution over survival probabilities, i.e. a list of pairs (mi, pi) ∈ [0, 1]2 for i =

1, . . . , n such that ∑n
i=1mi = 1. The interpretation is that there are n subjective

states and that the agent (subjectively) associates the probability mi with the

state i ∈ {1, . . . , n} that corresponds to a survival probability equal to pi (and a

mortality probability equal to 1−pi). A setting with no ambiguity is one in which

mi = 1 for some i and mj = 0 for all j 6= i: The agent is certain to survive with

probability pi. Conversely, ambiguity occurs whenever there are two states i and

j with pi 6= pj and mi,mj 6= 0.

The instantaneous utility function f that appears in specification (2) is formally

defined on X = {alive, dead} × R+. In other words, f : (d, x) ∈ {alive, dead} ×

R+ 7→ f(d, x) ∈ R. To simplify the notation, rather than introducing the dummy

variable d to indicate whether the agent is alive or dead, we will simply use different

letters c and w to indicate whether it refers to a level of consumption or a bequest

level. A number c ∈ R+ must therefore be interpreted as an element (alive, c) ∈ X ,

while a number w ∈ R+ must be interpreted as an element (dead, w) ∈ X . We

will introduce the notation u(c) = f(alive, c) for the instantaneous utility of con-

sumption (if alive) and v(w) = f(dead, w) for the instantaneous utility of bequest

(if dead). As is standard, functions u and v are both assumed to be twice contin-

uously differentiable, strictly increasing, and concave. In representation (2), the

instantaneous utility f is defined up to a constant and we can assume without loss

of generality that v(0) = 0. Note that once this normalization has been adopted,

adding or subtracting a constant to u cannot then be seen as mere normalization.

The utility gap u(c) − v(w) in fact measures how much the agent values being

alive and consuming c versus being dead and bequeathing wealth w. The larger
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the utility gap, the more attractive being alive and consuming becomes compared

to being dead and bequeathing. The baseline situation corresponds to the one

where the agent exhibits no altruism towards her heirs, that is to the case in

which v is constant (and thus equal to 0).

More generally, the utility gap u− v closely relates to the value of life concept,

which quantifies how much an agent is willing to pay for increasing her survival

probabilities. As shown in Bommier et al. (2017b), the sign of the value of life

is crucial for understanding the role of risk aversion on savings. There is a wide

empirical literature on value of life estimates, both from academics (see for instance

Viscusi and Aldy 2003 for a survey of value-of-life estimates throughout the world)

and from institutions (see the US Environmental Protection Agency Office of Air

and Radiation 2011 report, for instance). Despite the heterogeneity in estimates,

there is a strong consensus that the value of life is positive and large. For instance,

a reasonable estimate for the US is around 7 million US dollars.

Using the above notation and representation (2), the utility of an agent who

consumes c1 in period 1 and consumes c2 or bequeaths w in period 2 (depending

on whether she survives or not) is given by:

U(c1, c2, w) = u(c1)− β

kA
log

 n∑
i=1

mi

(
pie
−kRu(c2) + (1− pi)e−kRv(w)

) kA
kR

 . (3)

The utility specification U(c1, c2, w) in equation (3) is the objective function that

the agent maximizes, subject to the budget constraints that will be introduced

later on. We will derive comparative statics results related to the ambiguity and

risk aversion parameters kA and kR, while assuming that individuals’ beliefs (the

mi and pi) are unchanged.

3.2 Particular cases

The general preference representation (3) embeds several particular cases that we

describe below.
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No ambiguity. The no-ambiguity case corresponds to mi0 = 1 for some i0 and

mi = 0 for i 6= i0. The preference representation (3) becomes:

U(c1, c2, w) = u(c1)− β

kR
log

(
pi0e

−kRu(c2) + (1− pi0)e−kRv(w)
)
, (4)

which corresponds to the risk-sensitive preferences of Hansen and Sargent (1995).

In particular, the parameter kA no longer plays a role and risk aversion is driven

by the parameter kR, where more risk averse agents correspond to larger values of

the parameter kR.

The case kR = 0, can be obtained by taking the limit of expression (4) when

kR → 0, and corresponds to the the standard additive model where U(c1, c2, w) =

u(c1) + β
(
pi0u(c2) + (1− pi0)v(w)

)
.

Ambiguity neutrality. Ambiguity neutrality corresponds to kA = kR. The

utility expression (3) becomes:

U(c1, c2, w) = u(c1)− β

kR
log

(
pe−kRu(c2) + (1− p)e−kRv(w)

)
, (5)

where p = ∑n
i=1mipi is the average mortality probability. Formally, this setup is

similar to the no-ambiguity case and expression (5) looks very much like expression

(4). Again, when kR = 0, we fall back on the additive model.

Temporal risk neutrality. The case kR = 0 implies temporal risk neutrality.

By continuity, for kR → 0 from expression (3), we deduce that the utility expression

becomes:

U(c1, c2, w) = u(c1)− β

kA
log

 n∑
i=i

mi exp
(
−kA

(
piu(c2) + (1− pi)v(w)

)) .
This fits into the Klibanoff et al. (2009) recursive framework and exactly corre-

sponds to the specification in Collard et al. (2018).

No objective probabilities. The last case corresponds to a setup where all

information is subjective. In other words, a situation where, for all i, we have

either pi = 0 or pi = 1. This situation reduces to a two (subjective)-state model,

where p1 = 0 occurs with subjective probability m1 and p2 = 0 with subjective
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probability m2 = 1−m1. We then have:

U(c1, c2, w) = u(c1)− β

kA
log

(
m1e

−kAu(c2) + (1−m1)e−kAv(w)
)
,

similar to expressions (4) and (5), with kA instead of kR.

3.3 The agent program

We consider an ambiguity-and-risk-averse agent, whose preferences are assumed to

be represented by the utility function defined in equation (3). In the first period,

the agent is endowed with an initial wealth W > 0. She has no other source of

income during the two periods but can transfer consumption from the first period

to the second through savings in a bond and in an annuity. These savings are

denoted by s and a, respectively, and the first period budget constraint is simply

W = c1 + s + a. The bond pays off the riskless gross interest rate r > 0 in the

second period, regardless of whether the agent is alive or not. Bond payoffs, in

particular, can be bequeathed to the agent’s heirs. The annuity pays off the gross

rate ra > r, which is assumed to be higher than the riskless rate. Annuity payoffs

are only made in cases of survival. This means that the second period budget

constraints are c2 = raa + rs when the agent lives for two periods and consumes

the outcomes of her savings and w = rs when the agent dies and bequeaths her

bond savings.

We make two observations regarding the annuity return ra. First, in our am-

biguity setting, the notion of an actuarially fair annuity is not a very relevant

concept. An objective survival probability can still be defined, as can an objec-

tive definition of actuarially fair annuities. However, from the agent’s perspective,

what actually matters is a subjective notion of fairness, which is not generally un-

equivocally defined due to the ambiguity setting. We therefore define the annuity

return simply by using the gross rate ra, higher than r, instead of defining it using

the riskless interest rate and some survival probability. The second observation

is that the annuity return rate ra is not affected by ambiguity and is assumed

to be perceived as constant by the agent. This implicitly means that the return

ra actually comes from pooling the heterogeneous mortality risk, such that the

agent cannot infer her objective survival probability from the gross rates ra and

12

Electronic copy available at: https://ssrn.com/abstract=3769365



r. Another (nonexclusive) possibility would be to assume that the annuity return

embeds a fee that cannot be observed by the agent.

Using the previous notation, the agent’s program can therefore be written as:

max
(s,a)∈R2

u(W − a− s)− β

kA
log
 n∑
i=1

mi

(
pie
−kRu(raa+rs) + (1− pi)e−kRv(rs)

) kA
kR

, (6)

s.t. W − a− s ≥ 0, s ≥ 0, a ≥ 0, (7)

where we exclude negative consumption levels, borrowings, and annuity short-

sellings.

3.4 The role of risk and ambiguity aversion

The impact of kA and kR on saving choices is summarized in the following propo-

sition, whose proof is given in the Appendix.

Proposition 1 Consider the consumption-saving program of equations (6) and

(7) with kA ≥ kR > 0. We denote by a(kA, kR) ≥ 0 and s(kA, kR) ≥ 0 the optimal

savings in annuities and bonds, respectively.

We assume that the optimum is characterized by a positive value of life, i.e.,

formally, u(raa(kA, kR) + rs(kA, kR)) > v(rs(kA, kR)).

We distinguish three cases (besides the trivial case a(kA, kR) = s(kA, kR) = 0).

1. Case a(kA, kR) > 0 and s(kA, kR) > 0.

(a) Ambiguity aversion. We have: ∂a(kA,kR)
∂kA

∣∣∣
kR

< 0, ∂s(kA,kR)
∂kA

∣∣∣
kR

> 0, as

well as ∂(raa(kA,kR)+rb(kA,kR))
∂kA

∣∣∣
kR

< 0.

(b) Net risk aversion. We have: ∂a(kA,kR)
∂kR

∣∣∣
kA/kR

< 0, ∂s(kA,kR)
∂kR

∣∣∣
kA/kR

> 0,
∂(raa(kA,kR)+rb(kA,kR))

∂kR

∣∣∣
kA/kR

< 0.

2. Case a(kA, kR) > 0 and s(kA, kR) = 0: ∂a(kA,kR)
∂kA

∣∣∣
kR

< 0 and ∂a(kA,kR)
∂kR

∣∣∣
kA/kR

<

0.

3. Case a(kA, kR) = 0 and s(kA, kR) > 0: ∂s(kA,kR)
∂kA

∣∣∣
kR

and ∂s(kA,kR)
∂kR

∣∣∣
kA/kR

have

the same sign as
(
v′
(
rs(kA, kR)

)
− u′

(
rs(kA, kR)

))
.

The proposition characterizes the role of ambiguity and net risk aversion for

an ambiguity-and-risk averse agent (kA ≥ kR > 0). It distinguishes three cases
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depending on whether saving is constrained to one instrument. The interior case,

corresponding to unconstrained annuity and bond holdings, is reported in case 1.

Varying the ambiguity aversion parameter kA – while keeping the risk aversion

parameter kR fixed – has an unambiguous impact on security holdings. A larger

ambiguity aversion diminishes the demand for annuities but increases the demand

for bonds. The overall impact is such that second period consumption (equal to the

quantity raa(kA, kR) + rb(kA, kR)) also diminishes when ambiguity aversion rises.

The only condition required to derive these results is that, at the optimum, the

utility of being alive in the second period and consuming is greater than the utility

of being dead and bequeathing one’s wealth. In other words, the condition simply

means that life is worth living, or that the value of life is positive. As already

mentioned, despite some measurement heterogeneity, there is plenty of empirical

evidence that the value of life is large and positive. This assumption is therefore

reasonable and not very restrictive.

The role of the “net” risk aversion parameter is obtained by increasing kR

and kA while maintaining a constant ratio kA/kR. We find that the impact of

an increase in net risk aversion is qualitatively similar to that of an increase in

ambiguity aversion.

Case 2, which corresponds to constrained bond savings, is very similar to case

1. Since only one saving instrument is available and no portfolio choice is possible,

the result is much simpler to state. A higher ambiguity aversion – or a higher net

risk aversion – implies smaller annuity holdings.

Case 3 corresponds to constrained annuity holdings. The result, be it for the

role of ambiguity aversion or the role of net risk aversion, depends on the sign of

the difference between the marginal utility of survival and the marginal utility of

bequest. The intuition is as follows. An increase in ambiguity aversion – or in net

risk aversion – translates into the willingness to increase lifetime utility in the bad

state (i.e., death). With monotone preferences, this necessarily reduces the lifetime

utility in the good state (i.e., survival) and diminishes the dispersion in lifetime

utilities. In the absence of an annuity holding, the dispersion in lifetime utilities

amounts to β(u(rs)− v(rs)), which is positive because the value of life is positive.

The way in which the riskless saving s should be varied to reduce the dispersion
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in lifetime utilities therefore depends on whether u(rs) − v(rs) is increasing or

decreasing with s and thus on the sign of the derivative u′(rs) − v′(rs). When

the marginal utility in the good state is higher than the marginal utility in the

bad state (u′(rs) − v′(rs) > 0), reducing the dispersion in lifetime utilities will

involve smaller savings. Conversely, if u′(rs)−v′(rs) < 0, an increase in ambiguity

aversion or in net risk aversion will increase savings.

In the absence of a bequest motive (v′ = 0), the sign of the derivatives in

case 3 is clear, and an increase in either net risk aversion or ambiguity aversion

diminishes both savings and second period consumption. With non-trivial bequest

motives, a very common specification (up to a normalization constant) is v(w) =

θ(u(w+w)−u(w)), where θ ≥ 0 reflects the intensity of the altruistic motive, and

w > 0 makes a bequest a luxury good. Furthermore, the intertemporal elasticity

of substitution is also often assumed to be constant, with u′(c) = c−σ.3 In such a

case, the sign of u′(rs) − v′(rs) is not clear-cut: it is typically positive for small

values of s and becomes negative for larger values. The impact of ambiguity and

net risk aversion will then depend on this sign, as shown in the proposition.

4 Discussion

We have proved that the comparative statics of ambiguity and net risk aversion

yield non-ambiguous results in an ambiguity setting à la Anscombe-Auman. A

larger ambiguity aversion or a larger net risk aversion means a smaller demand for

annuities and a larger demand for riskless bonds. To obtain the intuition, note

that annuities are uncertain assets that pay off in the good state of the world (i.e.,

when the agent lives a long life) and pay nothing in the bad state (i.e., in case of an

early death). By analogy with finance, we can therefore consider that an annuity

has the fundamental properties of a pro-cyclical asset. It is then quite natural that

uncertainty aversion, be it ambiguity or risk aversion, reduces investment in such

an asset. We would of course have found a converse result if we had considered

hedging assets (such as life-insurance products that only pay in the case of death).

While our results may look intuitive, we emphasize that they go against the
3Such calibrations can be found, for instance, in De Nardi (2004), De Nardi et al. (2010),

Ameriks et al. (2011), Lockwood (2012), or Pashchenko (2013), among many others.
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common claim that annuities being insurance products, the demand for annuities

should increase with uncertainty aversion. Since mortality risk makes preferences

state-dependent, the link between insurance demand and risk aversion is not that

obvious. As our results indicate, there are cases where the demand for insurance

may decrease (and not increase) with risk aversion.

Preference monotonicity is the key ingredient as it enables us to highlight the

fundamental assumptions required for our analysis, and in particular the assump-

tions related to the value of life. Because of the monotonicity assumption, we

may view the agent’s decision as being a trade-off between welfares in different

states (without monotonicity the agent may want to reduce welfare in all states).

Uncertainty aversion then has a fairly clear role, dictating how much weight to

put on bad states compared to good ones. To derive the impact of an increase

in uncertainty aversion it is therefore necessary to properly identify good and bad

states – or in our framework to identify whether survival should be viewed as a

good or a bad realization. In the tradition of revealed preferences, this involves

looking at the literature on endogenous mortality, which clearly indicates that the

value of life is positive.

A final take-home message is that to make predictions regarding the impact of

uncertainty aversion in the presence of an exogenous, non-monetary background

risk (mortality risk in our paper, although this could also be health risk, for in-

stance), it is necessary to use information that can only be gleaned from decisions

where the degree of background risk is endogenous.
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Appendix: Proof of Proposition 1

A Proof: Interior case a, s > 0

The program can be written as:

max
(s,a)∈R2

+

u(W − a− s)− β

kA
log

 n∑
i=1

mi

(
pie
−kRu(raa+rs) + (1− pi)e−kRv(rs)

) kA
kR

 .
Assuming an interior equilibrium, the first-order conditions are:

u′(W−a−s)=βrau
′(raa+rs)

∑n
i=1mipi

(
pi + (1− pi)ekR(u(raa+rs)−v(rs))

) kA
kR
−1

∑n
i=1mi

(
pi + (1− pi)ekR(u(raa+rs)−v(rs))

) kA
kR

, (8)

u′(W−a−s)=βru′(raa+rs)

∑n
i=1 mipi

(
pi + (1− pi)ekR(u(raa+rs)−v(rs))

) kA
kR
−1

∑n
i=1mi

(
pi + (1− pi)ekR(u(raa+rs)−v(rs))

) kA
kR

(9)

+βrv′(rs)ekR(u(raa+rs)−v(rs))
∑n
i=1mi(1− pi)

(
pi + (1− pi)ekR(u(raa+rs)−v(rs))

) kA
kR
−1

∑n
i=1mi

(
pi + (1− pi)ekR(u(raa+rs)−v(rs))

) kA
kR

.

We introduce the following notation:

ηi = pi + (1− pi)ekR(u(raa+rs)−v(rs)), (10)

as well as the expectation Em[·] and the covariance Covm (when well-defined):

Em [X] =
∑n
i=1miη

kA
kR
i Xi∑n

i=1miη
kA
kR
i

, (11)

Covm(X, Y ) = Em[XY ]− Em[X]Em[Y ], (12)

Using this notation, the first-order condition (8) and (9) become:

u′(W − a− s) = βrau
′(raa+ rs)Em

[
p

η

]
, (13)(

1− r

ra

)
u′(W − a− s) = βrv′(rs)ekR(u(raa+rs)−v(rs))Em

[
1− p
η

]
. (14)
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A.1 Impact of kA

A.1.1 First-order condition (13)

Computing the derivative of (13) with respect to kA yields, using the notation ηi
defined in (10):

− u′′(W − a− s)
(
∂a

∂kA
+ ∂s

∂kA

)
=βra

(
ra
∂a

∂kA
+ r

∂s

∂kA

)
u′′(raa+ rs)

∑n
i=1mipiη

kA
kR
−1

i∑n
i=1miη

kA
kR
i

+ βrau
′(raa+ rs)

u′(raa+ rs)
(
ra
∂a

∂kA
+ r

∂s

∂kA

)
− v′(rs)r ∂s

∂kA

ekR(u(raa+rs)−v(rs))

×

(kA − kR)
∑n
i=1mipi(1− pi)η

kA
kR
−2

i∑n
i=1miη

kA
kR
i

−kA
∑n
i=1mi(1− pi)η

kA
kR
−1

i

∑n
i=1mipiη

kA
kR
−1

i

(∑n
i=1miη

kA
kR
i )2



+βra
kR
u′(raa+ rs)


∑n
i=1mipi log (ηi) η

kA
kR
−1

i∑n
i=1miη

kA
kR
i

−
∑n
i=1mipiη

kA
kR
−1

i∑n
i=1miη

kA
kR
i

∑n
i=1mi log (ηi) η

kA
kR
i∑n

i=1miη
kA
kR
i

.
Introducing the operator Em of equation (11), we obtain after dividing both sides

of equality by βrau′(raa+ rs) and using (13):

−Em
[
p

η

]
u′′(W − a− s)
u′(W − a− s)

(
∂a

∂kA
+ ∂s

∂kA

)
=
(
ra
∂a

∂kA
+r ∂s

∂kA

)
u′′(raa+ rs)
u′(raa+ rs)Em

[
p

η

]
(15)

+
u′(raa+ rs)

(
ra
∂a

∂kA
+ r

∂s

∂kA

)
− v′(rs)

(
r
∂s

∂kA

) ekR(u(raa+rs)−v(rs))

×

(kA − kR)Em
[
p(1− p)
η2

]
−kAEm

[
1− p
η

]
Em

[
p

η

]+
Covm

(
p
η
, log(η)

)
kR

.

A.1.2 First-order condition (14)

We now compute the derivative of equation (14) with respect to kA. The compu-

tation is similar to the one for (13) and we get:

− u′′(W − a− s)
u′(W − a− s)Em

[
1− p
η

](
∂a

∂kA
+ ∂s

∂kA

)
= r

∂s

∂kA

v′′(rs)
v′(rs)Em

[
1− p
η

]
(16)

−

u′(raa+ rs)
(
ra
∂a

∂kA
+ r

∂s

∂kA

)
− v′(rs)

(
r
∂s

∂kA

)
×

(kA − kR)Em
[
p(1− p)
η2

]
−kAEm

[
1− p
η

]
Em

[
p

η

]+
Covm

(
1−p
η
, log(η)

)
kR

.
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A.1.3 Conclusion

With matrix notation, equations (15) and (16) can be rewritten as:

M

 ra
∂a
∂kA

r ∂s
∂kA

 = 1
kR

 Covm
(
p
η
, log(η)

)
Covm

(
1−p
η
, log(η)

)
 , (17)

with M = (Mij)1≤i,j≤2 and:

M11 = − 1
ra
Em

[
p

η

]
u′′(W − a− s)
u′(W − a− s) −Em

[
p

η

]
u′′(raa+ rs)
u′(raa+ rs) +ekR(u(raa+rs)−v(rs))

× u′(raa+ rs)
kAEm

[
1− p
η

]
Em

[
p

η

]
−(kA − kR)Em

[
p(1− p)
η2

],
M12 = −1

r
Em

[
p

η

]
u′′(W − a− s)
u′(W − a− s) − Em

[
p

η

]
u′′(raa+ rs)
u′(raa+ rs) +ekR(u(raa+rs)−v(rs))

×
(
u′(raa+ rs)− v′(rs)

)kAEm
[

1− p
η

]
Em

[
p

η

]
−(kA − kR)Em

[
p(1− p)
η2

],
M21 = − 1

ra
Em

[
1− p
η

]
u′′(W − a− s)
u′(W − a− s)

− u′(raa+ rs)
kAEm

[
1− p
η

]
Em

[
p

η

]
− (kA − kR)Em

[
p(1− p)
η2

] ,
M22 = −1

r
Em

[
1− p
η

]
u′′(W − a− s)
u′(W − a− s) − Em

[
1− p
η

]
v′′(rs)
v′(rs)

−
(
u′(raa+ rs)− v′(rs)

)kAEm
[

1− p
η

]
Em

[
p

η

]
−(kA − kR)Em

[
p(1− p)
η2

].
We also define:

κ = kAEm

[
1− p
η

]
Em

[
p

η

]
− (kA − kR)Em

[
p(1− p)
η2

]

= kREm

[
p(1− p)
η2

]
− kACovm

(
1− p
η

,
p

η

)
. (18)
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We compute the determinant of the matrix M :

detM = Em

[
1− p
η

]
Em

[
p

η

](
1
r
− 1
ra

)
u′′(raa+ rs)
u′(raa+ rs)

u′′(W − a− s)
u′(W − a− s)

+ Em

[
1− p
η

]
Em

[
p

η

](
− u′′(W − a− s)
rau′(W − a− s)

−u
′′(raa+ rs)
u′(raa+ rs)

)(
−v
′′(rs)
v′(rs)

)

+ κv′(rs)Em
[
p

η

](
− 1
ra

u′′(W − a− s)
u′(W − a− s) −

u′′(raa+ rs)
u′(raa+ rs)

)

+ κu′(raa+ rs)Em
[
p

η

](
1
r
− 1
ra

)(
−u

′′(W − a− s)
u′(W − a− s)

)

+ κekR(u(raa+rs)−v(rs))Em
[

1− p
η

](
− 1
ra

u′′(W − a− s)
u′(W − a− s) v

′(rs)

+u′(raa+ rs)
( 1

ra
− 1
r

)
u′′(W − a− s)
u′(W − a− s) −

v′′(rs)
v′(rs)


 .

Since ra ≥ r, we deduce that detM > 0 and that the matrix M is invertible.

We deduce from (17) the expression of partial derivatives ∂s
∂kA

and ∂a
∂kA

.
 ra

∂a
∂kA

r ∂s
∂kA

 = 1
kR detM

 M22Covm
(
p
η
, log(η)

)
−M12Covm

(
1−p
η
, log(η)

)
−M21Covm

(
p
η
, log(η)

)
+M11Covm

(
1−p
η
, log(η)

)
 .
(19)

Partial derivative ∂s
∂kA

. Equality (19) yields:

kR detMr
∂s

∂kA
= κu′(raa+ rs) (20)

×

Covm
(
p

η
, log(η)

)
+ekR(u(raa+rs)−v(rs))Covm

(
1− p
η

, log(η)
)

− u′′(raa+ rs)
u′(raa+ rs)Em

[
p

η

]
Covm

(
1− p
η

, log(η)
)

− 1
ra

u′′(W − a− s)
u′(W − a− s)

−Em
[

1− p
η

]
Covm

(
p

η
, log(η)

)
+Em

[
p

η

]
Covm

(
1− p
η

, log(η)
).

From the definition (10), we deduce:

p

η
= ekR(u(raa+rs)−v(rs))

ekR(u(raa+rs)−v(rs)) − 1
1
η
− 1
ekR(u(raa+rs)−v(rs)) − 1

, (21)

1− p
η

= 1
ekR(u(raa+rs)−v(rs)) − 1

− 1
ekR(u(raa+rs)−v(rs)) − 1

1
η
. (22)
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These two values imply the following equality:

Covm

(
p

η
, log(η)

)
+ ekR(u(raa+rs)−v(rs))Covm

(
1− p
η

, log(η)
)

(23)

= ekR(u(raa+rs)−v(rs))

ekR(u(raa+rs)−v(rs)) − 1

Covm
(

1
η
, log(η)

)
− Covm

(
1
η
, log(η)

) = 0

and the determinant expression (10) simplifies into:

kR detMr
∂s

∂kA
= −u

′′(raa+ rs)
u′(raa+ rs)Em

[
p

η

]
Covm

(
1− p
η

, log(η)
)

(24)

− 1
ra

u′′(W − a− s)
u′(W − a− s)

−Em
[

1− p
η

]
Covm

(
p

η
, log(η)

)
+Em

[
p

η

]
Covm

(
1− p
η

, log(η)
).

Definitions (21) and (22) imply that Covm
(
p
η
, log(η)

)
< 0 and Covm

(
1−p
η
, log(η)

)
>

0. Since detM,kR > 0, we obtain from (24) that: ∂s
∂kA

> 0.

Partial derivative ∂a
∂kA

. Using equation (23) stating that Covm
(
p
η
, log(η)

)
+

ekR(u(raa+rs)−v(rs)) Covm
(

1−p
η
, log(η)

)
= 0, equality (19) yields:

kR detMra
∂a

∂kA
= u′′(raa+ rs)
u′(raa+ rs)Em

[
p

η

]
Covm

(
1− p
η

, log(η)
)

(25)

− v′′(rs)
v′(rs)Em

[
1− p
η

]
Covm

(
p

η
, log(η)

)

− 1
r

u′′(W − a− s)
u′(W − a− s)

Em
[

1− p
η

]
Covm

(
p

η
, log(η)

)
−Em

[
p

η

]
Covm

(
1− p
η

, log(η)
) .

As for (24), Covm
(
p
η
, log(η)

)
< 0 and Covm

(
1−p
η
, log(η)

)
> 0, which implies with

kR detMra > 0 that: ∂a
∂kA

< 0.

Sum of partial derivatives r ∂s
∂kA

+ ra
∂s
∂kA

. We deduce from (20) and (25):

kR detM
(
r
∂s

∂kA
+ ra

∂a

∂kA

)
= −v

′′(rs)
v′(rs)Em

[
1− p
η

]
Covm

(
p

η
, log(η)

)

−
(

1
r
− 1
ra

)
u′′(W − a− s)
u′(W − a− s)

Em
[

1− p
η

]
Covm

(
p

η
, log(η)

)
−Em

[
p

η

]
Covm

(
1− p
η

, log(η)
),

which is negative since Covm
(
p
η
, log(η)

)
< 0 and Covm

(
1−p
η
, log(η)

)
> 0. We

deduce: r ∂s
∂kA

+ ra
∂a
∂kA

< 0.
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A.2 Impact of kR

We will compute the derivatives of (13) and (14) with respect to kR, while keeping

the ratio kA/kR unchanged. For the sake of clarity, we will denote such a derivative

of a function f as ∂f
∂kR

instead of ∂f
∂kR

∣∣∣
kA/kR

. Computing the derivative of (13) yields:

−Em
[
p

η

]
u′′(W − a− s)
u′(W − a− s)

(
∂a

∂kR
+ ∂s

∂kR

)
=
(
ra
∂a

∂kR
+r ∂s

∂kR

)
u′′(raa+ rs)
u′(raa+ rs)Em

[
p

η

]
(26)

− κ

u′(raa+ rs)
(
ra
∂a

∂kR
+ r

∂s

∂kR

)
−v′(rs)r ∂s

∂kR

 ekR(u(raa+rs)−v(rs))

− κ

kR

(
u(raa+ rs)− v(rs)

)
ekR(u(raa+rs)−v(rs)).

Similarly, computing the derivative of (14) yields:

−Em
[

1− p
η

]
u′′(W − a− s)
u′(W − a− s)

(
∂a

∂kR
+ ∂s

∂kR

)
=βr2 ∂s

∂kR

v′′(rs)
v′(rs)Em

[
1− p
η

]
(27)

+ κ

u′(raa+ rs)
(
ra
∂a

∂kR
+ r

∂s

∂kR

)
− v′(rs)

(
r
∂s

∂kR

)
+ κ

kR

(
u(raa+ rs)− v(rs)

)
.

In matrix notation, we deduce from (26) and (27):ra ∂a
∂kR

r ∂s
∂kR

 = u(raa+ rs)− v(rs)
kR detM︸ ︷︷ ︸

=Λ−1>0

κ

 M22 −M12

−M21 M11


−ekR(u(raa+rs)−v(rs))

1

 . (28)

The matrixM is defined in (17) and detM > 0, κ > 0 and u(raa+rs)−v(rs) > 0.

A.2.1 Partial derivative ∂s
∂kR

.

Using the expressions of M11 and M21, we obtain from (28):

Λr ∂s
∂kR

= 1
ra
Em

[
1− p
η

](
−u

′′(W − a− s)
u′(W − a− s)

)
ekR(u(raa+rs)−v(rs)) (29)

+ Em

[
p

η

](
− 1
ra

u′′(W − a− s)
u′(W − a− s) −

u′′(raa+ rs)
u′(raa+ rs)

)
,

which unambiguously yields: ∂s
∂kR

> 0.
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A.2.2 Partial derivative ∂a
∂kR

.

The expressions of M12 and M22 imply using (28)

Λra
∂a

∂kR
= −Em

[
1− p
η

](
−1
r

u′′(W − a− s)
u′(W − a− s) −

v′′(rs)
v′(rs)

)
ekR(u(raa+rs)−v(rs)) (30)

− Em
[
p

η

](
−1
r

u′′(W − a− s)
u′(W − a− s) −

u′′(raa+ rs)
u′(raa+ rs)

)
.

which is negative and implies that: ∂a
∂kR

< 0.

A.2.3 Sum of partial derivatives ra ∂a
∂kR

+ r ∂s
∂kR

.

Summing equations (29) and (30) leads to:

Λ
(
ra
∂a

∂kR
+ r

∂s

∂kR

)
= −Em

[
1− p
η

](
−v
′′(rs)
v′(rs)

)
ekR(u(raa+rs)−v(rs))

−
(

1
r
− 1
ra

)
Em

[
1− p
η

](
−u

′′(W − a− s)
u′(W − a− s)

)
ekR(u(raa+rs)−v(rs))

−
(

1
r
− 1
ra

)
Em

[
p

η

](
−u

′′(W − a− s)
u′(W − a− s)

)
,

which implies since ra ≥ r that: ra ∂a
∂kR

+ r ∂s
∂kR

< 0.

B Proof: Corner case: a = 0

The annuity choice is zero and the riskless saving choice is determined by the

following first-order condition (which is (9) with a = 0):

u′(W − s) = βru′(rs)

∑n
i=1mipi

(
pi + (1− pi)ekR(u(rs)−v(rs))

) kA
kR
−1

∑n
i=1mi

(
pi + (1− pi)ekR(u(rs)−v(rs))

) kA
kR

(31)

+βrv′(rs)ekR(u(rs)−v(rs))
∑n
i=1mi(1− pi)

(
pi+(1− pi)ekR(u(rs)−v(rs))

) kA
kR
−1

∑n
i=1mi

(
pi + (1− pi)ekR(u(rs)−v(rs))

) kA
kR

.
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B.1 Role of kA

Computing the derivative of (31) with respect to kA (with kR constant) yields after

some manipulation:

−u′′(W − s) ∂s
∂kA

= βr2 ∂s

∂kA

u′′(rs)Em
[
p

η

]
+ v′′(rs)ekR(u(rs)−v(rs))Em

[
1− p
η

]
− κβr

(
u′(rs)− v′(rs)

)2
ekR(u(rs)−v(rs))

(
r
∂s

∂kA

)

+ βr

kR

(
u′(rs)− v′(rs)

)
Covm

(
p

η
, log(η)

)
.

Since Covm
(
p
η
, log(η)

)
< 0, this proves that ∂s

∂kA
has the same sign as u′(rs)−v′(rs).

B.2 Role of kR

Computing the derivative of (31) with respect to kR (with kA/kR constant) yields:

−u′′(W − s) ∂s
∂kR

= βr2 ∂s

∂kR

u′′(rs)Em
[
p

η

]
+ ekR(u(rs)−v(rs))v′′(rs)Em

[
1− p
η

]
− κβr

(
u′(rs)− v′(rs)

)2
(
r
∂s

∂kR

)
ekR(u(rs)−v(rs))

− κβr
kR

(
u′(rs)− v′(rs)

) (
u(rs)− v(rs)

)
ekR(u(rs)−v(rs)),

which implies that ∂s
∂kR

has the same sign as u′(rs)− v′(rs).

C Proof: Corner case s = 0

The annuity choice is determined by the following first-order condition – which is

(8) with a = 0:

u′(W − a) = βrau
′(raa)

∑n
i=1mipi

(
pi + (1− pi)ekR(u(raa)−v(0))

) kA
kR
−1

∑n
i=1mi

(
pi + (1− pi)ekR(u(raa)−v(0))

) kA
kR

. (32)
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C.1 Role of kA

Computing the derivative of (32) with respect to kA (with kR constant) yields:

−u′′(W − a)
(
∂a

∂kA

)
= βra

(
ra
∂a

∂kA

)
u′′(raa)Em

[
p

η

]
(33)

− κβrau′(raa)2
(
ra
∂a

∂kA

)
ekR(u(raa)−v(0)) + βra

kR
u′(raa)Covm

(
p

η
, log(η)

)
,

which implies since κ > 0 and Covm
(
p
η
, log(η)

)
< 0 that ∂a

∂kA
< 0.

C.2 Role of kR

Computing the derivative of (32) with respect to kR (with kR/kA constant) yields:

−u′′(W − a− s)
(
∂a

∂kR

)
= βra

(
ra
∂a

∂kR

)
u′′(raa)Em

[
p

η

]
(34)

− κβrau′(raa)2
(
ra
∂a

∂kR

)
ekR(u(raa)−v(0))

− κβra
kR

u′(raa)2ekR(u(raa)−v(0)),

which implies since κ > 0: ∂a
∂kR

< 0.
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