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A Tight Analysis of Geometric Local Search

Bruno Jartoux · Nabil H. Mustafa

Abstract The last decade has seen the resolution of several basic NP-complete prob-
lems in geometric combinatorial optimisation—interestingly, all with the same al-
gorithm: local search. This includes the existence of polynomial-time approxima-
tion schemes (PTASs) for hitting set, set cover, dominating set, independent set,
and other problems for some basic geometric objects. More precisely, it was shown
that for many of these problems, local search with radius λ gives a (1+O(λ−

1
2 ))-

approximation with running time nO(λ ). Setting λ = Θ(ε−2) yields a PTAS with a
running time of nO(ε−2).

On the other hand, hardness results suggest that there do not exist PTASs for these
problems with running time poly(n) · f (ε) for any arbitrary computable f . Thus the
main question left open in previous work is in improving the exponent of n to o(ε−2).

Our main result is that the approximation guarantee of the standard local search
algorithm cannot be improved for any of these problems, which we show by con-
structing instances with poor “locally optimal solutions”. The key ingredient, of in-
dependent interest, is a new lower bound on locally expanding planar graphs. Our
construction extends to other graph families with small separators.
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1 Introduction

Within the past decade polynomial-time approximation schemes (PTASs) have been
proposed for a number of long-standing open problems in geometric approximation
algorithms, including the following NP-hard problems (see [20,13] for hardness re-
sults). A family of pseudodisks is a set of planar regions whose boundaries are Jor-
dan curves and such that the boundaries of any pair of pseudodisks intersect at most
twice.

Hitting set for pseudodisks [26]: given a set P of points and a family D of pseu-
dodisks in the plane, compute a smallest subset of P that intersects all pseu-
dodisks in D .

Independent set of pseudodisks [1,12]: given a family D of pseudodisks in the plane,
compute a maximum size subset of pairwise disjoint pseudodisks in D .

Dominating set of pseudodisks [17,6]: given a family D of pseudodisks in the plane,
compute a smallest subset of pseudodisks of D that together intersect all other
pseudodisks of D .

Set cover for disks [11,5]: given a set P of points and a family D of disks in the
plane, return a smallest subset of disks in D whose union cover all points of P .

Constant-capacity point-packing: given a set P of points, a set D of disks and a
positive integer k ≤ |P|, compute a largest subset of P that hits no disk of D
more than k times [15,28].

1.1 Local search

Surprisingly, the PTAS for all these problems is essentially the same: local search.
Let X be the set of base elements of the problem, and let the search radius λ ≥ 3 be
an integer. Then start with any feasible solution S ⊆ X and increase (in the case of a
maximization problem, e.g., maximum independent set) or decrease (in the case of a
minimization problem, e.g., minimum hitting set) its size by local improvement steps
while maintaining feasibility. Here a local improvement step is to swap a subset
S ′ of at most λ elements of the current solution S for a subset of X \S of size
at least |S ′|+1 (for maximization problems) or at most |S ′|−1 (for minimization
problems), as long as the new solution is still feasible. The algorithm finishes when
no local improvement step is possible. Such a solution is called λ -locally optimal.

All these algorithms are analysed in a similar way, as follows. Let S be a λ -
locally optimal solution and O 6= S be an optimal solution. We can assume that
these solutions are disjoint by considering S \O and O \S rather than S and O:
as

|S |
|O|

=
|S \O|+ |S ∩O|
|O \S |+ |S ∩O|

,

if we prove (say) that |S \O|/|O \S | ≤ 1+ ε then this is also true of |S |/|O|. To
relate the cardinalities of S and O , a bipartite exchange graph is built on vertex sets
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S and O with the following local vertex expansion property1:

Minimization: for all S ′ ⊆S of size at most λ , |N(S ′)| ≥ |S ′|. (1)
Maximization: for all O ′ ⊆ O of size at most λ , |N(O ′)| ≥ |O ′|. (2)

The construction of exchange graphs exploits the geometric properties of locally opti-
mal solutions and was initially problem-specific. For example, in the minimum vertex
cover problem on a graph G this would simply be the bipartite subgraph of G induced
by S and O; condition (1) follows from the local optimality of S . However, in a re-
cent paper Raman and Ray show that the problems listed above are subcases of a
more general problem about the intersection hypergraph of two families of pseu-
dodisks [28]. They propose a single algorithm to build exchange graphs for all said
problems.

The key in the analysis lies in a general theorem on local expansion in sparse
graphs. A bipartite graph on vertex sets (B,R) is λ -expanding if for all B′ ⊆ B of
size at most λ we have |N(B′)| ≥ |B′|. Note that the roles of B and R in this defini-
tion are not symmetric. A (vertex) separator of a graph on n vertices is a subset of
vertices whose removal leaves connected components of cardinality at most 2

3 n. A
class of graphs G has the separator property with parameter s ∈ [0,1] if there exists
a positive constant c such that any graph in G has a separator of size at most cn1−s,
where n is the number of vertices. For example, trees have this property with s = 1
(constant-sized separators) whereas planar graphs have the separator property with
parameter s = 1

2 . In fact, the separator property with s = 1
2 actually holds for graphs

excluding fixed minors and in particular for minor-closed classes other than the class
of all graphs, e.g. graphs of bounded genus [2]. A class of graphs closed under taking
subgraphs is called monotone.

The following result can be pieced together from the analysis of local search by
Aschner et al. [5] and is also implicit in previous papers [26,12] for s = 1/2.

Theorem A ([26,12,5]). If a λ -expanding bipartite graph on (B,R) belongs to a
monotone family with the separator property with parameter s ∈ (0,1) and λ ≥ λs,
then |B| ≤ (1+ csλ

−s) · |R|, where cs and λs are positive constants that depend only
on s.

Cabello and Gajser [9] describe a subcase of this theorem for Kh-minor-free
graphs, which have separators of size O

(
h3/2√n

)
. Finally, Har-Peled and Quanrud

[18,19] observe that intersection graphs of low-density objects in Rd have the sepa-
rator property with s = 1

d .
To complete the analysis for minimization problems, apply Theorem A with B =

S and R =O , and get |S | ≤ (1+csλ
−s) · |O|. For maximization problems, take B =

O and R=S , and get |O| ≤ (1+csλ
−s) · |S | or equivalently |S | ≥ (1−c′sλ

−s) · |O|.

1 For a graph G = (V,E) (which will always be clear from the context) and a set V ′ ⊆V , N(V ′) denotes
the set of neighbors of the vertices of V ′ in G.
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1.2 Computational efficiency of geometric local search

Given a parameter ε > 0, local search with radius λ = Θ(ε−
1
s ) provides a (1+ ε)-

approximate solution to problems whose exchange graphs have the separator property
with parameter s. This can be implemented in nO(λ ) time by considering all possible
local improvements, thus yielding a PTAS in time nO(ε−1/s). In particular, this gives
a PTAS in time nO(ε−2) for the five problems listed in section 1.

The parameterized versions of these problems are W[1]-hard: even for unit disks,
independent set is W[1]-complete [23], dominating set is W[1]-hard [24], and dom-
inating set of unit disks is easily reduced to our other three problems. The details and
reductions are explained in section 5. Under the common assumption that FPT(W[1],
which follows from the exponential-time hypothesis, these problems do not admit
PTASs with time complexity poly(n) · f (ε) for any arbitrary computable function f .
In other words, the dependence of the exponent of n on ε is necessary.

Still, the running time of local search is prohibitively expensive as soon as λ is
greater than 3 or 4. There have been two complementary approaches towards fur-
ther progress: firstly, careful implementations that find local improvements more ef-
ficiently than by brute force [8]. The second, more structural approach is to better
analyze the quality of solutions resulting from local search algorithms, mainly by
studying the properties of exchange graphs [3].

2 Our results

2.1 Tightness of Theorem A

Our main result is a construction, given in section 3, showing that Theorem A is
asymptotically tight whenever 1

s is an integer.

Theorem 1. Given a positive integer d, there are positive constants cd and λd such
that for every integer λ ≥ λd , there is a family of bipartite graphs (Bn,Rn;En)n∈N
such that each graph in this family

– is λ -expanding,
– has the separator property for s = 1

d , and so does its subgraphs,

– satisfies |Rn|= n+o(n) and |Bn| ≥ (1+ cd ·λ−
1
d )|Rn|−o(|Rn|) as n→ ∞.

Furthermore when d = 2 they are Gabriel graphs.

A graph (V,E) is called Gabriel if there exists a mapping f of the vertices of
V to points in the plane such that

{
vi,v j

}
∈ E if and only if the circumdisk of the

segment f (vi) f (v j) contains no other point of f (V ). Gabriel graphs are subgraphs of
Delaunay triangulations and thus planar.

Remark. Since our construction for d = 2 is planar, previous analogues of Theo-
rem A restricted to planar graphs are also tight.
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2.2 Algorithmic consequences

The analysis of local search in terms of the radius achieving a (1+ε)-approximation
is tight for the five problems listed earlier (which all had s = 1

2 ), as well as for a few
other problems with small separators (section 4).
Theorem B ([26]). Local search with radius O(ε−2) is a (1 + ε)-approximation
algorithm for the minimum hitting set problem for pseudodisks.
Corollary 1. There is a positive constant C and a positive integer λ0 such that for
every integer λ ≥ λ0 there is a positive integer nλ such that for every integer n≥ nλ

there is a set D of at least n disks and two disjoint sets B and R of at least n points in
R2 each such that both B and R are hitting sets for D , |B| ≥ (1+Cλ−

1
2 )|R| and B is

a λ -locally optimal solution to the hitting set problem for D with P = B∪R.
Theorem C ([12]). Local search with radius O(ε−2) is a (1 + ε)-approximation
algorithm for the maximum independent set problem for pseudodisks.
Corollary 2. There is a positive constant C and a positive integer λ0 such that for
every integer λ ≥ λ0 there is a positive integer nλ such that for every integer n≥ nλ

there are two independent sets B and R of at least n disks in R2 such that |B| ≥
(1+Cλ−

1
2 )|R| and R is a λ -locally optimal solution to the independent set problem

in B∪R.
Theorem D ([5,11]). Local search with radius O(ε−2) is a (1+ ε)-approximation
algorithm for the minimum set cover problem for disks.
Corollary 3. There is a positive constant C and a positive integer λ0 such that for
every integer λ ≥ λ0 there is a positive integer nλ such that for every integer n≥ nλ

there are a set P of Θ(|R|) points in R2 and two sets B and R of at least n disks in
R2, each covering all of P , and such that |B| ≥ (1+Cλ−

1
2 )|R| and B is a λ -locally

optimal solution to the set cover problem for P in B∪R.
Theorem E ([17,6]). Local search with radius O(ε−2) is a (1+ ε)-approximation
algorithm for the minimum dominating set problem for pseudodisks.
Corollary 4. There is a positive constant C and a positive integer λ0 such that for
every integer λ ≥ λ0 there is a positive integer nλ such that for every integer n≥ nλ

there is a set D of disks in R2 and two dominating sets B and R of D of at least n
disks each such that |B| ≥ (1+Cλ−

1
2 )|R| and B is a λ -locally optimal solution to the

dominating set problem for D .
Theorem F ([15]). Local search with radius O(ε−2) is a (1+ ε)-approximation al-
gorithm for the maximum unit-capacity point-packing problem for disks.
Corollary 5. There is a positive constant C and a positive integer λ0 such that for
every integer λ ≥ λ0 there is a positive integer nλ such that for every integer n≥ nλ

there are two sets B and R of at least n points in R2 and a set D of Θ(|R|) disks
in R2 such that every disk of D contains one point from B and one point from R,
|B| ≥ (1+Cλ−

1
2 )|R| and R is a λ -locally optimal solution to the unit-capacity point-

packing problem for D in B∪R.
Borrowing a term from Arya et al. [4] we could say that: “The locality gap for

independent set of disks, dominating set of disks, etc. is 1+Θ(λ−1/2)”.
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3 Proof of Theorem 1

In this section we build a family of graphs that have the properties stated in Theorem
1. Namely, given parameters d, a large enough λ and n, we construct a bipartite graph
G with vertex set (B,R) such that:

1. |R|= n+o(n) as n→+∞,
2. G is λ -expanding,
3. |B| ≥ (1+ cλ

− 1
d ) · |R|−o(|R|) as n→+∞, where c depends only on d,

4. any subgraph of G on m vertices has a separator of size O(m1− 1
d ), and

5. G is a Gabriel graph when d = 2.

The vertices of the set R will be called the red vertices, and the vertices of the
set B the blue vertices. Our construction is geometric, in that vertices correspond
to points in Rd . Thus we use the terminology vertex and point interchangeably. We
denote the i-th coordinate of a point p ∈ Rd by xi (p).

Construction of G. Let L≥ 2 and t be two positive integers whose values will be fixed
later as a function of the parameters d, λ and n. Let Ξ be a L×·· ·×L regular integer
grid in Rd consisting of the (L+1)d points in {0, . . . ,L}d . It has Ld cells, each being
a unit d-cube defined by precisely 2d vertices of Ξ . In every cell of Ξ , the vertex with
the lexicographically minimum coordinates among the 2d vertices defining the cell
is called the anchor vertex of that cell. Each vertex—apart from those with one of
the d coordinate values equal to L—is the anchor vertex of exactly one cell, which is
called its top cell. The cell with anchor vertex (0, . . . ,0) is called the lowest cell of
Ξ .

We define a first bipartite graph G(d,L) as follows. The red vertices of G(d,L)
consist of the (L+1)d points of Ξ . We next place a blue vertex at the center of each of
the Ld cells of Ξ—except for the lowest cell, which contains two blue vertices with
coordinates

( 1
4 , . . . ,

1
4 ,

3
4

)
and

( 3
4 , . . . ,

3
4 ,

1
4

)
. Thus G(d,L) has precisely Ld + 1 blue

vertices. The edges of G(d,L) consist of 2d edges from each blue vertex to the 2d red
vertices of its cell. Of the two blue vertices in the lowest cell of Ξ , one is connected
to all the red vertices of the cell except for (0, . . . ,0,1) and the other to all red vertices
except for (1, . . . ,1,0).

Our second and final graph G(d,L, t) = (B,R;E) is defined as a t × . . .× t grid
composed of td translates of G(d,L). Each translate of G(d,L) is indexed by a vec-
tor τ ∈ {0, . . . , t− 1}d , where Gτ denotes the translate of G(d,L) by L · τ . The blue
vertices of G(d,L, t) are simply the disjoint union of the blue vertices of each Gτ ; the
red vertices are also the union of the red vertices of each Gτ , except that we identify
duplicate red vertices shared by the boundary of two adjacent grids. See Figure 1 for
an example for the case d = 2.
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Fig. 1: The graph G(d,L) (left, with d = 2 and L = 3) has Ld grid cells. It is the basic
building block of the graph G(d,L, t) (right, with t = 5). Red vertices are denoted by
squares while the blue vertices are denoted by disks.

Fig. 2: The three-dimensional lowest cell of G(3,L).

A formal description of G(d,L, t) = (B,R;E) is:

R = {0, . . . , tL}d ,

B =

{(
1
2
, . . . ,

1
2

)
+x : x ∈ {0, . . . , tL−1}d \{0,L, . . . ,(t−1)L}d

}
⋃{

(µ, . . . ,µ,1−µ)+L ·x : x ∈ {0,1, . . . , t−1}d , µ ∈
{

1
4
,

3
4

}}
,

E =

{
(b,r) ∈ B×R : min

i∈{1,...,d}
|xi(b)− xi(r)| ≤

1
2
, max

i∈{1,...,d}
|xi(b)− xi(r)| ≤ 1

}
.

The Ld +1 blue vertices of the translate Gτ form the set Bτ . For the red vertices,
note that the outer red vertices of each translate of G(d,L) may be shared between up
to 2d translates. To avoid this overlap, let Rτ consist only of the Ld red vertices v∈Gτ

such that xi(v)< L(τ i +1) for each i. In two dimensions, this amounts to peeling off
the 2L+1 red vertices located on the top and right boundaries of Gτ .



8 Bruno Jartoux, Nabil H. Mustafa

Let Rb be the set of red vertices with at least one coordinate value equal to tL. We
have

B =
⋃
τ

Bτ and R = Rb∪
⋃
τ

Rτ ,

where all unions are disjoint. Observe that

|B|= td(Ld +1) and |R|= (tL+1)d . (3)

This concludes the construction of G(d,L, t), although the values of L and t are
still to be chosen. We now prove that this graph has the desired expansion and sepa-
rator properties.

Local expansion. To prove that G(d,L, t) is locally expanding, we fix a subset B′

of B and let R′ = N(B′) be the set of its (red) neighbors in G(d,L, t). We show that
|R′| ≥ |B′| whenever B′ is smaller than some function of L and d; later we will set L
such that this function turns out to be at least λ .

A grid cell is called non-empty if it contains a vertex of B′ and otherwise empty.
A vertex of R′ that belongs to Rb or whose top cell is empty is called a boundary
vertex.

We first sketch a proof in two dimensions based on a charging argument (a one-
to-one mapping from B′ to R′): each vertex of B′ is charged to a vertex of R′ such that
each vertex of R′ receives at most one charge, implying that |R′| ≥ |B′|. To this end
charge each vertex of B′ to the anchor red vertex of its cell. For those Gτ containing
two blue vertices of B′ in the lowest cell, one of them remains uncharged. On the
other hand, each vertex of R′ receives one charge, except the boundary vertices which
receive zero charge. Now for each τ for which Gτ contains at least two boundary red
vertices in R′, charge the uncharged blue vertex of B′ in Gτ (if it exists) to any one of
these (at least two) boundary vertices.

There still remain some uncharged blue vertices, namely one in each of those
Gτ that have less than two boundary red vertices. However, for each such τ , we
show (Lemma 1 below) that Gτ must contain at least L2

2 vertices of B′. Thus overall,

there are at most |B
′|

L2/2 = 2|B′|
L2 such τ’s and therefore at most that many uncharged

blue vertices of B′. On the other hand, we argue that the total number of bound-
ary red vertices is at least c2 ·

√
|B′|, for some constant c2 (see the isoperimetric

inequality below). By our charging scheme, at least half of them, i.e. c2
2 ·
√
|B′|,

are still uncharged. Thus when 2|B′|
L2 ≤ c2

2 ·
√
|B′|, or equivalently |B′| ≤

( c2
4

)2 · L4,
the number of uncharged blue vertices will be less than the number of uncharged
red vertices. Now setting L = Θ

(
λ

1
4

)
and t =

√
n

L implies that |R| = n + o(n),

|B|= n
(

1+ 1
L2

)
= n

(
1+Θ

(
1

λ 1/2

))
, and we are done.

Now we present the complete proof for general d. We need two preliminary state-
ments, Lemma 1 and Equation 6. Let the indicator variable ητ be 1 if both blue ver-
tices in the lowest cell of Gτ belong to B′ and 0 otherwise. Also let δτ be the number
of boundary vertices in Rτ . The total number of boundary vertices in R′ is thus

δ = |Rb∩R′|+∑
τ

δτ . (4)
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Lemma 1. For each index τ , if ητ = 1 and δτ < 2, then |B′∩Bτ | ≥ Ld

2 .

Proof. As B′ contains both blue vertices from the lowest cell of Gτ , R′ contains the
2d red vertices of this cell. If δτ = 0, that is, Rτ contains no boundary vertex, then the
blue vertex in each of the other cells of Gτ is present in B′, and so B′ includes all of
Bτ , which consists of Ld +1 blue vertices.

It remains to consider the case when Rτ contains a unique boundary vertex vr ∈
R′∩Rτ . Without loss of generality, assume that τ = (0, . . . ,0). As both blue vertices
from the lowest cell of Gτ belong to B′, the boundary vertex vr cannot be the lowest
vertex of Gτ , which has coordinates (0, . . . ,0). Thus there must be some j∈{1, . . . ,d}
for which x j(vr) > 0. Consider the grid slab Ξ ′ consisting of all cells whose anchor
vertex v has x j(v) = 0. Note that Ξ ′ contains the lowest cell of Gτ , which has two
vertices of B′. Thus no other cell of Ξ ′ can be empty, as otherwise that would imply
the existence of another boundary red vertex anchoring one of the cells of Ξ ′. Now
take any cell c of Ξ ′ whose anchor vertex differs in at least one coordinate other than
x j from vr; there are Ld−1− 1 such cells. All the L cells of Gτ whose anchor vertex
only differs in the j-th coordinate value from the anchor vertex of c must also be
non-empty, as otherwise it would imply the existence of another boundary red vertex
in one of these L cells.

Thus there are at least L
(
Ld−1−1

)
non-empty cells in Gτ , i.e., |B′∩Bτ | ≥ Ld−L

which is at least Ld

2 since L≥ 2.

Let T be the set of indices τ with ητ = 1 and δτ < 2. As a consequence of the
previous lemma, for every such τ ∈ T , the translate Gτ contains at least Ld

2 vertices
of B′, and thus |T | ≤ 2|B′|L−d . Now consider the quantity ητ − δτ

2 . If τ ∈ T , we have
ητ = 1 and 0≤ δτ < 2 and so ητ − δτ

2 is at most 1. Otherwise for any τ /∈ T , it is 0 or
negative. Therefore

∑
τ

(
ητ −

δτ

2

)
≤ |T | ≤ 2|B′|

Ld . (5)

An isoperimetric inequality. Consider the set S of all grid cells containing vertices
of B′. As each cell contains at most two blue vertices, |B′| ≤ 2|S|. In the orthogonal
projection along the i-th coordinate, i∈ [d], S is sent to a set Si of (d−1)-dimensional
cells. The preimage of each cell of Si is a column of d-dimensional cells. As such, it
contains at least one boundary vertex: among its vertices with maximum i-th coordi-
nate, the lexicographically smallest is either in Rb or the anchor vertex of an empty
cell. Thus the total number δ of boundary vertices is at least |Si|. The combinatorial
Loomis–Whitney inequality [22] relates d- and (d−1)-dimensional volumes:

d

∏
i=1
|Si| ≥ |S|d−1 ≥

(
|B′|
2

)d−1

,

from which it follows that

δ
d ≥

d

∏
i=1
|Si| ≥

(
|B′|
2

)d−1

. (6)
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Now we come to the key claim: the graph G(d,L, t) is (21−3dLd2
)-expanding.

Lemma 2. If 23d−1|B′| ≤ Ld2
, then |R′| ≥ |B′|.

Proof. For every index τ , by definition, each vertex in the set Rτ ∩R′ either has its
top cell non-empty or is a boundary vertex of Gτ . The number of non-empty top cells
in Gτ is |Bτ ∩B′|−ητ , while the number of boundary vertices is δτ . Thus

|R′|= |Rb∩R′|+∑
τ

|Rτ ∩R′|= |Rb∩R′|+∑
τ

(
|Bτ ∩B′|−ητ +δτ

)
= |Rb∩R′|+ |B′|−∑

τ

(ητ −δτ)

≥ |B′|−∑
τ

(
ητ −

δτ

2

)
+

1
2

(
|Rb∩R′|+∑

τ

δτ

)
= |B′|−∑

τ

(
ητ −

δτ

2

)
+

δ

2
,

with the last equality following from Equation (4). Use the lower bounds Equation (5)
and Equation (6) for the second and third summands to get

|R′| ≥ |B′|− 2|B′|
Ld +

1
2

(
|B′|
2

)(d−1)/d

.

Now |R′| ≥ |B′| follows when

2|B′|
Ld ≤

1
2

(
|B′|
2

)(d−1)/d

23−1/d |B′|1/d ≤ Ld

or equivalently 23d−1|B′| ≤ Ld2
.

Setting parameters. Given d, λ and n, choose

L = max
{

2,
⌈(

23d−1
λ

)1/d2⌉}
and t = dn1/dL−1e.

Note that L does not depend on n and Ld is Θ(λ
1
d ) when λ → +∞. Using Equa-

tion (3), we obtain the required bounds on R and B:

|R|= (tL+1)d = n+o(n),

|B|
|R|

=
td
(
Ld +1

)
(tL+1)d = 1+

1
Ld +o(1) as n→+∞

≥ 1+ cdλ
− 1

d +on(1) for λ ≥ λd ,

where the positive constants cd and λd depend only on d. Since 21−3dLd2 ≥ λ , it
follows from Lemma 2 that property (2) holds: G is λ -expanding. This achieves the
proof of Theorem 1.

Finally, the stated separator properties are a consequence of the specific geometric
structure of G(d,L, t).
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Ball graph structure. A ball graph is the intersection graph of a family of n balls in
Rd and is p-ply if no point in Rd belongs to more than p balls of this family. Such
graphs have separators of size O(p1/dn1− 1

d ) [25].
A bounded-ply ball graph is obtained from G(d,L, t) by only adding some edges:

put a d-dimensional ball of radius
√

d
4 at each vertex of G(d,L, t). The resulting edge

set includes that of G(d,L, t)—they coincide when d ≤ 3—so that G(d,L, t) inherits
separator properties of ball graphs. In other words, any subgraph of G(d,L, t) on m
vertices has a separator of size O(m1− 1

d ) (this is property (4)).

Remark. The ply is bounded by a function of d only: each of the balls covering some
given point of x ∈Rd is centered on a different vertex of B∪R at distance at most

√
d

4
of x. In other words, the ply is at most the maximum number of points of B∪R inside
any ball of radius

√
d

2 . See e.g. [14] for estimates on such bounds.

Gabriel graph structure. For d = 2, the circumdisk of each blue–red edge in G(d,L, t)
contains no vertex but its endpoints, so in this case G(d,L, t) is a Gabriel graph and
property (5) is proved.

Remark. With the understanding that a one-dimensional cell is an interval, the con-
struction covers the case d = 1. The graph G(1,L, t) is a path of length 2tL+1, seen
as blue–red bipartite, with every L-th blue vertex duplicated. It has |R| = tL+1 and
|B|= t(L+1) and is (L+2)-expanding.

Fig. 3: The graph G(1,3,3).

4 Algorithmic consequences

4.1 Geometric problems in the plane

We construct arbitrarily large instances of our five optimization problems with a λ -
locally optimal solution that is a factor of 1+Ω(λ−1/2) worse than the optimal solu-
tion. Since our instances consist of disks rather than just families of pseudodisks, the
bound applies also to the restrictions of these problems to disk families.

For d = 2 and any given λ ≥ λd and n, let G = (B,R;E) be the planar and λ -
expanding graph (Bn,Rn;En) described in Theorem 1 and built in section 3. Our in-
stances are based on G: its vertex sets are associated with feasible solutions of the
problems. It then suffices to check that the solution associated with Bn (for minimiza-
tion problems) or Rn (for maximization problems) is locally optimal.
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(a) Detail of the graph G used in “bad” in-
stances.

(b) Hitting set (drawing only a few disks
for readability).

Fig. 4: A tight instance for the hitting set problem.

4.1.1 Hitting set for pseudodisks

Theorem B ([26]). Local search with radius O(ε−2) is a (1 + ε)-approximation
algorithm for the minimum hitting set problem for pseudodisks.

Corollary 1. There is a positive constant C and a positive integer λ0 such that for
every integer λ ≥ λ0 there is a positive integer nλ such that for every integer n≥ nλ

there is a set D of at least n disks and two disjoint sets B and R of at least n points in
R2 each such that both B and R are hitting sets for D , |B| ≥ (1+Cλ−

1
2 )|R| and B is

a λ -locally optimal solution to the hitting set problem for D with P = B∪R.

Proof. Recall that the circumdisk of each edge of G contains only its two endpoints.
The input consists of all such disks, with P = B∪ R, so that the hitting sets are
exactly the vertex covers of G. By construction both B and R are feasible solutions.

On this instance, a λ -local improvement for B would remove a set B′ of blue
vertices with |B′| ≤ λ . To preserve the hitting set property, it would then need to add
to the solution the red endpoints of all edges with their blue endpoint in B′, i.e. the set
N(B′). Because the graph is λ -expanding, there are at least |B′| such red neighbors,
and thus B is λ -locally optimal.

4.1.2 Independent set of pseudodisks

Theorem C ([12]). Local search with radius O(ε−2) is a (1 + ε)-approximation
algorithm for the maximum independent set problem for pseudodisks.

Corollary 2. There is a positive constant C and a positive integer λ0 such that for
every integer λ ≥ λ0 there is a positive integer nλ such that for every integer n≥ nλ

there are two independent sets B and R of at least n disks in R2 such that |B| ≥
(1+Cλ−

1
2 )|R| and R is a λ -locally optimal solution to the independent set problem

in B∪R.
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Proof. Realise the graph G as an intersection graph of red and blue disks. (Because
it is planar, the disks could even be taken interior-disjoint by the Koebe–Andreev–
Thurston theorem [21].) The independent sets of disks correspond to the independent
sets of G. Since G is bipartite both the blue and red families of disks form independent
sets, and the red solution is (λ −1)-locally optimal—in maximization terms: a (λ −
1)-local improvement for the red solution would remove a set R′ of up to λ − 1 red
disks and replace them with a set B′ of blue disks such that N(B′) ⊆ R′ (to preserve
independence) and |B′|> |R′|. If there exists a subset B′′ ⊆ B′ of size |R′|+1, which
is at most λ , then since G is λ -expanding such a set has |B′′| ≤ |N(B′′)| ≤ |R′|, a
contradiction. Thus R is a (λ −1)-locally optimal solution.

4.1.3 Set cover for disks

(a) Independent set. (b) Set cover.

Fig. 5: “Tight” instances for independent set and set cover with disks.

Theorem D ([5,11]). Local search with radius O(ε−2) is a (1+ ε)-approximation
algorithm for the minimum set cover problem for disks.
Corollary 3. There is a positive constant C and a positive integer λ0 such that for
every integer λ ≥ λ0 there is a positive integer nλ such that for every integer n≥ nλ

there are a set P of Θ(|R|) points in R2 and two sets B and R of at least n disks in
R2, each covering all of P , and such that |B| ≥ (1+Cλ−

1
2 )|R| and B is a λ -locally

optimal solution to the set cover problem for P in B∪R.

Proof. As in the proof of Corollary 2, realise G as an intersection graph of blue and
red disks. Take for P one point from each blue–red intersection. The set covers for
this instance are exactly the vertex covers of G.

4.1.4 Dominating set of pseudodisks

Theorem E ([17,6]). Local search with radius O(ε−2) is a (1+ ε)-approximation
algorithm for the minimum dominating set problem for pseudodisks.
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Corollary 4. There is a positive constant C and a positive integer λ0 such that for
every integer λ ≥ λ0 there is a positive integer nλ such that for every integer n≥ nλ

there is a set D of disks in R2 and two dominating sets B and R of D of at least n
disks each such that |B| ≥ (1+Cλ−

1
2 )|R| and B is a λ -locally optimal solution to the

dominating set problem for D .

Proof. The instance that was proposed for set cover (Figure 5b) becomes an instance
of dominating set when the points of P are seen as zero-radius disks, i.e. take D =
P ∪ B∪ R. A feasible solution that involves some of the zero-radius disks of P
can be transformed into a solution of at most the same cardinality whose support is
entirely blue and red since the disks of P are fully included in the other disks. Thus
it suffices to examine the efficiency of local search on blue–red solutions. The blue–
red dominating sets of this instance are exactly the covers of points by blue and red
disks.

4.1.5 Constant-capacity packing problems

Our results hold already for the unit-capacity version of these problems.

Theorem F ([15]). Local search with radius O(ε−2) is a (1+ ε)-approximation al-
gorithm for the maximum unit-capacity point-packing problem for disks.

Corollary 5. There is a positive constant C and a positive integer λ0 such that for
every integer λ ≥ λ0 there is a positive integer nλ such that for every integer n≥ nλ

there are two sets B and R of at least n points in R2 and a set D of Θ(|R|) disks
in R2 such that every disk of D contains one point from B and one point from R,
|B| ≥ (1+Cλ−

1
2 )|R| and R is a λ -locally optimal solution to the unit-capacity point-

packing problem for D in B∪R.

Proof. Take for D the set of all disks associated with the edges, as in the hitting set
instance (see Figure 4b). Since every such disk contains only two points of P , the
“unit-capacity point-packings” of this instance are exactly the independent sets of G.
The result then follows from the analysis in Corollary 2.

The dual problem, defined in [15], is the unit-capacity disk-packing problem,
where we are given a set D of disks and a set P of points and we must return a
largest subset of D that covers every point of P at most once.

Corollary 6. There is a positive constant C and a positive integer λ0 such that for
every integer λ ≥ λ0 there is a positive integer nλ such that for every integer n≥ nλ

there are two sets B and R of at least n disks each and a set P of Θ(|R|) points
such that every point of P is contained in one disk from B and one disk from R,
|B| ≥ (1+Cλ−

1
2 )|R| and R is a λ -locally maximal solution to the unit-capacity disk-

packing problem for B∪R in P .
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4.2 Problems with hereditary separators

The paper by Har-Peled and Quanrud [18] is to the best of our knowledge the most
extensive study of geometric local search in non-planar settings. The authors study
graphs with polynomial expansion, which have strongly sub-linear separators. A sur-
vey on expansion and sparsity is the book by Nešetřil and Ossona de Mendez [27].

In particular, this includes intersection graphs of low-density families of objects.
(A family of objects in Rd has density ρ if for any r ≥ 0 any ball of diameter r
intersects at most ρ objects of diameter larger than r and depth D if no point of Rd

is contained in D+1 objects.)
We are still able to give some lower bounds on the local search radii that achieve

PTASs. Fix positive integers d, λ ≥ λd and n, and let G be the λ -expanding graph
built in section 3 on vertex sets Bn and Rn that has |Bn|, |Rn| = Θ(n) and achieves
|Bn| ≥ (1+ cλ−1/d − o(1))|Rn|. Recall that G and its subgraphs have the separator
property with s = 1/d.

By combining Theorem 3.2.1 and Lemma 2.2.9 from [18], we obtain the follow-
ing.

Theorem G. On graphs with hereditary separators of size O(n1−s), local search with
radius O(ε−s) is a (1+ ε)-approximation algorithm for maximum independent set.

Corollary 7. For every positive integers d and λ , there are arbitrarily large bipartite
graphs on vertex sets (B,R) with hereditary separators of size O(n1−1/d) such that
|B| ≥ 1+Ω(λ−1/d)|R| and R is a λ -locally maximal independent set.

Proof. Since the graph G is bipartite, both Bn and Rn are independent sets, and by the
same analysis as in the proof of Corollary 2 the feasible solution Rn is (λ −1)-locally
optimal.

Theorem H ([18]). On graphs with hereditary separators of size O(n1−s), local
search with radius O(ε−O(1)) is a (1+ε)-approximation algorithm for minimum ver-
tex cover.

Corollary 8. For every positive integers d and λ , there are arbitrarily large bipartite
graphs on vertex sets (B,R) with hereditary separators of size O(n1−1/d) such that
|B| ≥ 1+Ω(λ−1/d)|R| and B is a λ -locally minimal vertex cover.

Proof. In G both Bn and Rn are vertex covers. Since G is λ -expanding, Bn is λ -locally
optimal.

4.3 Matchings and local versions of Hall’s theorem

With our terminology, Hall’s theorem is as follows.

Theorem I (Hall’s marriage theorem). Any bipartite graph on vertex sets (B,R) that
is |B|-expanding has a matching with |B| edges.

Restricting the condition to λ -expansion for some fixed λ breaks this property—
e.g., any matching in K|B|,λ has at most λ edges. However it was observed by Antunes
et al. [3] that a strengthening of Hall’s theorem holds for planar graphs.
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Theorem J. There is an absolute constant c > 0 such that, for every given integer
λ ≥ 3, any bipartite planar graph on vertex sets (B,R) that is λ -expanding has a
matching with at least (1− cλ−

1
2 )|B| edges.

Now it follows from our constructions that this is tight.

Corollary 9. There are absolute constants c0,λ0 > 0 such that, for every given inte-
ger λ ≥ λ0, some bipartite, λ -expanding planar graph on vertex sets (B,R) does not
have matchings with more than (1− c0λ−

1
2 )|B| edges.

5 Parameterized hardness and conditional lower bounds

Lower bounds on the possible running time of PTASs for our problems are derived
from results in parameterized complexity in the manner of [23].

Every combinatorial optimization problem has a decision version parameterized
by k ∈N, informally “Does the instance have solutions smaller than k (minimization)
/ larger than k (maximization)?”.

If this can be answered in time f (k)nc for some arbitrary computable function f
and c≥ 0, then (the decision version of) the problem is fixed-parameter tractable, or
in the class FPT. Parameterized problems that are reducible to the search for a clique
of size k in general graphs—under an appropriate notion of reduction—form the class
W[1]. The inclusion FPT ⊆ W[1] is thought to be proper; this is for example a
consequence of the exponential time hypothesis.

Theorem K ([23]). Maximum independent set of unit disks is W[1]-complete.

Theorem L ([24]). Minimum dominating set of unit disks is W[1]-hard.

This extends to hitting set by a simple reduction.

Corollary 10. Minimum hitting set of unit disks is W[1]-hard.

Proof. Given an instance of dominating set with n unit disks, let P consist of their
centers and D consist of the n radius-2 disks centered at P . The hitting sets of D in
P are exactly the dominating sets of the initial unit disks.

Corollary 11. Minimum set cover by unit disks is W[1]-hard.

Proof. Given an instance of hitting set with unit disks D and points P , let P ′ consist
of the centers of D and D ′ contain one unit disk centerd at each point in P . The set
covers of P ′ in D ′ are exactly the hitting sets of D in P .

Recall the definition of the unit-capacity disk-packing problem on page 14.

Corollary 12. Unit-capacity disk-packing is W[1]-hard, even with unit disks.

Proof. Given an instance of independent set with n unit disks, let D consist of these
disks and P contain one point from each nonempty pairwise intersection in D . The
set P has size O(n2) and can be computed in O(n2). Now the feasible solutions of
unit-capacity disk-packing for D and P are exactly the independent sets of D .
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Finally the disk-packing problem can be reduced to the point-packing one (de-
fined on page 2).

Corollary 13. Unit-capacity point-packing is W[1]-hard, even with unit disks.

Proof. Given an instance of unit-capacity disk-packing with unit disks D and points
P , let D ′ consist one unit disk centerd at each point in P and P ′ contain the centers
of the disks in D . The feasible solutions of unit-capacity disk-packing for D and P
are exactly the feasible solutions of unit-capacity point-packing for D ′ and P ′.

An efficient PTAS is a PTAS that runs in time f (ε)nc for an arbitrary function
f and c≥ 0. The following observation first appeared in C. Bazgan’s master’s thesis
[7,10].

Theorem M. A combinatorial optimization problem with an integral-valued objec-
tive function and an efficient PTAS with f computable is in FPT when parameterized
by the value of its solution.

Proof. Given a minimization problem with an efficient PTAS whose running time
is f (ε)nc, for each instance we can find in time f (0.5/k)nc a solution with value V
such that (

1+
1
2k

)
·OPT≥V ≥ OPT.

If V ≥ k+1, then

OPT≥ 2kV
2k+1

≥ 2k2 +2k
2k+1

> k,

so computing V answers the question “Does the instance have OPT ≤ k?” in time
f (0.5/k)nc, i.e. the problem parameterized by the value of its solution is in FPT.

Since the problems that we consider are W[1]-hard, we conclude that none of
them admit PTASs with running time f (ε)nO(1) for any computable f unless the
inclusion FPT ⊆W[1] is an equality.

6 Perspectives and open questions

We emphasize that our results apply to standard, non-specialized local-search tech-
niques. Although the approximation quality of a previously successful one-size-fits-
all approach cannot be improved, custom algorithms tailored for specific problems
can bypass this bound, especially when the exchange graphs are extremely sparse.
For example we do not know whether our constructions can be transformed into a
local-search-defeating instance for the problem of terrain guarding, a question that
can be formulated as follows.

Question. Are the exchange graphs of Gibson et al. [16] for terrain guarding sparser
than other planar graphs? What is the minimum size of their separators?

Acknowledgements We thank the referees of previous versions of this article for several helpful com-
ments.



18 Bruno Jartoux, Nabil H. Mustafa

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Agarwal, P.K., Mustafa, N.H.: Independent set of intersection graphs of convex objects in 2D. Com-
putational Geometry 34(2), 83–95 (2006). DOI 10.1016/j.comgeo.2005.12.001

2. Alon, N., Seymour, P., Thomas, R.: A separator theorem for nonplanar graphs. Journal of the Ameri-
can Mathematical Society 3(4), 801–808 (1990). DOI 10.1090/S0894--1990-1065053-0

3. Antunes, D., Mathieu, C., Mustafa, N.H.: Combinatorics of local search: An optimal 4-local hall’s
theorem for planar graphs. In: K. Pruhs, C. Sohler (eds.) 25th Annual European Symposium on
Algorithms (ESA 2017), Leibniz International Proceedings in Informatics (LIPIcs), vol. 87, pp. 8:1–
8:13. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2017). DOI 10.4230/
LIPIcs.ESA.2017.8

4. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics
for k-median and facility location problems. SIAM Journal on Computing 33(3), 544–562 (2004).
DOI 10.1137/S0097539702416402

5. Aschner, R., Katz, M.J., Morgenstern, G., Yuditsky, Y.: Approximation schemes for covering and
packing. In: S.K. Ghosh, T. Tokuyama (eds.) WALCOM: Algorithms and Computation: 7th Interna-
tional Workshop, WALCOM 2013, Kharagpur, India, February 14-16, 2013. Proceedings, pp. 89–100.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013). DOI 10.1007/978-3-642-36065-7 10

6. Basu Roy, A., Govindarajan, S., Raman, R., Ray, S.: Packing and covering with non-piercing re-
gions. In: P. Sankowski, C. Zaroliagis (eds.) Proceedings of the 22nd Annual European Sympo-
sium on Algorithms (ESA), Leibniz International Proceedings in Informatics (LIPIcs), vol. 57, pp.
47:1–47:17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2016). DOI
10.4230/LIPIcs.ESA.2016.47
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