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At the line of triple contact of an elastic body with two immiscible fluids, the body
is subjected to a force concentrated on this line, the fluid—fluid surface tension. In
the simple case of a semi-infinite body, limited by a plane, a straight contact line on
this plane, and a fluid-fluid surface tension normal to the plane, the classical elastic
solution leads to an infinite displacement at the contact line and an infinite elastic
energy. By taking into account the body—fluid surface tension (i.e., isotropic surface
stress), we present a new and more realistic solution concerning the semi-infinite
body, which gives a finite displacement and a ridge at the contact line, and a finite
elastic energy. This solution also shows that Green’s formulae, in the volume and on

the surfaces, are valid (these formulae play a central role in the theory).
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I. INTRODUCTION

Surface properties of deformable bodies have many applications, e.g., in adhesion, coating,
thin films and nanosciences. When a deformable body is in contact with two fluids (e.g.,
liquid and air), it is subjected to the fluid-fluid surface tension along the body—fluid—fluid
contact line. The classical solution for the deformation of an elastic body, occupying a semi-
infinite space limited by a plane, and subjected to a fluid—fluid surface tension concentrated
on a straight line of this plane and normal to the plane, leads to an infinite displacement
at this line and an infinite elastic energy.! However, the presence of a ridge at the contact
line was experimentally observed? and then confirmed by other experiments and Fourier
transform calculations.® In our previous work,* by taking into account the body—fluid surface
stresses and surface energies, we showed that there are two equilibrium equations at the
contact line: (i) the equilibrium of the three surface stresses (with no contribution of the
volume stresses); (ii) a scalar equation involving the surface energies, the surface stresses,
and the surface strains, which leads to a generalization of the classical Young’s equation
(only valid for a rigid body) (see Sec. II). The first equation—as an equilibrium of three
forces tangent to the three interfaces—implies a finite displacement and the formation of a
ridge at the contact line. This equation was then experimentally confirmed.? In the present
paper, by taking into account the body—fluid surface tension (i.e., isotropic surface stress),
we obtain a new solution of the above elastic problem concerning the semi-infinite body,

with a finite displacement and a ridge at the contact line, and a finite elastic energy.

II. GENERAL EQUILIBRIUM EQUATIONS

In the previous work Ref. 4 (with additional comments in Ref. 6 and mathematical aspects
in Ref. 7), following the general variational method of Gibbs,® we gave the thermodynamic
definition and properties of the surface stress and obtained the following equilibrium equa-
tions for any deformable body:

1) On each body—fluid surface:
divos+psg+o-n+pn=0 (1)
o, = Os; (2)

S

where o4 is the body—fluid surface stress, ps the surface mass excess per unit area, g the



gravity field, o the body volume stress, n the unit vector normal to the surface (oriented from
the fluid to the body), and p the fluid pressure; g = ¢ - 05, where ¢ is the natural injection of
the tangent plane to the surface T,(S) in the three-dimensional space E (i.e., 6,7 = 028 9,27,
with components o and 3 on the surface, and 7 in E), and div 5 is a special divergence based
on the tensorial product of the covariant derivative on the surface and the usual derivative in
E, defined in Ref. 7 (i.e., with components: (div &,)" = dg(c28 d,2) +Fg7 027 Dpz'). Eq. (1)

has a tangential component
divog+ psgi + (0 -n); =0 (3)

(in which divoy is the usual surface divergence and the subscript ¢ indicates the vector

component tangent to the surface) and a normal component
ln 2 05+ ps Gn + Onn +p =0, (4)

where [ is the curvature fundamental form on the surface, [,, = - n (i.e., with components:

tg = Oapt’ =05 0,3", Iy ap = I3 m;; the symbol : means double contraction of the indices),

1

Gn = g -n, and o,, = (0 -n)-n. The eigenvalues of [,, are the principal curvatures, 7 and

R%? of the surface (a curvature being positive when its center is on the side of n). If oy is
isotropic, i.e., o, = g I (eigenvalue g and I the identity), we have

1 1
l, 0y = 0s(— + —). 5
o=+ ) o)

Similar equations were previously written, but under some particular assumptions, e.g., the
existence of a “surface traction field”® or in the special case of elastic bodies.!%!!
2) On the body—fluid—fluid contact line, there are two equations (as previously found in

the particular case of the elastic thin plate!®!3)

The first one is vectorial (three-dimensional) and corresponds to a line fixed on the body

(but the line can move because the body is deformable):
Obf - Vbt + Obg - Vg + Y v = 0, (6)

in which the subscripts b, f, and f’ respectively denote the body and the two fluids, oy is the
bf surface stress, 14,¢ the unit vector normal to the contact line and tangent to the bf surface
(directed to the inside of bf), idem for ops, vy, and vy, and g is the ff’ surface tension.

This equation expresses the equilibrium of the three surface stresses acting on the contact



line (with no contribution of the volume stresses), and determines the angles of contact ¢y,
wp, and @y, respectively measured in f, f', and b (satisfying ¢r + ¢p + ¢, = 27). This point
was then experimentally verified in Ref. 5.

The second equation is scalar and corresponds to a line moving with respect to the body,
but fixed in space (i.e., the displacement of the material points of the body, due to the
deformation, exactly compensates the displacement of the line with respect to the body, so

that the line remains fixed in space):

(bt — Tof) Qv — (Obr . — Yof7) Oy,

+ O'bf’,ﬂ/(af,-y - aﬂ/) = O: (7)

in which 7 is a unit vector tangent to the line, ovs,, and oy, are respectively the compo-
nents along v,y and 7 of the bf surface stress acting on the line, idem for oy ., and opp 14,
Y and e are respectively the bf and bf’ surface energies, a,, is the surface stretching
deformation, normal to the line, in the bf side, a,, the surface shear deformation, parallel
to the line, in the bf side, and idem for a}, and a’, in the bf’ side. An equivalent form of

this equation is (with the help of Eq. (6))

— Yot + Vbt Qrpy — Yar COS ©f
COS Y1, + Ay

: + Ovt! vy Qr.rp = 07 (8)
sin (y,

— Ve SIN @y

!
Qry —Arv

!
a
where a,,, = - and a,, =

vv (2997

Note that, for a perfectly rigid body, the above Egs. (6) and (7) cannot be written (since
they are based on the possible displacement of the material points, due to the deformation)

and, in this case, we obtain the unique scalar equation

—Ybt + Yorr — Yar cos pr = 0, (9)

which is the classical Young’s equation (in which s and ¢ are surface energies, and not
surface tensions). If the body is deformable, Young’s equation is not valid and the valid

Eq. (8) is the generalization of Young’s equation. Indeed, in the rigid body limit, a, ,, = 1,

cospp+1 0
singpy,

arr = 0, and ¢y, = 7 (thus, lim,, _r ), and Eq. (8) leads to Young’s equation.
Also note that, in the case of a very little deformable body, i.e., an almost rigid body,
the surface (and volume) stresses become almost infinite, so that the two first terms in

Eq. (6) are almost infinite and this equation implies that ¢y, is almost equal to 7 (in order
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to equilibrate the finite fluid-fluid surface tension), i.e., that there is almost no ridge on the
surface. Finally, note that, if the body is a fluid, then op — Y L = op — Yo I = 0 (which
implies that oty — Yof = Tbr . — Yorr = Obe 7 = 0) so that Eq. (7) is useless, and Eq. (6)
expresses the equilibrium of the three fluid—fluid surface tensions.

Eq. (7) expresses that the variation of surface energy (e.g., increase in bf surface and
decrease in bf’ surface, when the line moves with respect to the body) is equal to the work
of the surface stresses acting on the line (due to the displacement of the material points,
on each side of the line), when the line remains fixed in space. This equation gives a
condition on the components a,,, and a,,, of the “relative” surface deformation of the bf’
side with respect to the bf side (we defined the “relative deformation gradient” in Ref. 14).
If ope 7, = 0 (which, e.g., occurs if the surface stress is isotropic), it gives the relative surface

stretching deformation a,,, (normal to the line) of the bf’ side with respect to the bf side.

III. VALIDITY OF GREEN’S FORMULA:
NO CONTRIBUTION OF THE VOLUME STRESSES

The preceding theory is based on Green’s formula

/O:Dwdv:—/diva-wdv—/(a-n)-wda, (10)
v v S

where ¢ is the volume stress tensor, w a virtual displacement, V a volume of the body in
the neighborhood of the contact line, S the boundary surface, n the unit vector normal to
the surface and directed towards the interior of the body, dv an element of volume, and da
an element of area. With the help of a first example of solution, we showed in Ref. 7 that:
1) Owing to the singularity at the contact line, the components of ¢ do not belong to the
Sobolev space H'(V).
2) Nevertheless, Green’s formula remains valid, because all the components 0;u; and oy,

are either bounded or subjected to the inequality
|0juil, |oij| < c|logr|+d (11)

in V (r is the distance to the contact line; ¢ and d being positive constants), and these

inequalities imply that

lim (0-n) -wda=0, (12)
e—0 S(E)



where S(¢g) is the boundary surface of a small tubular volume V(g) of the body, of radius e,
around an element of contact line (V(g) is bounded by (i) the surface of the body and (ii) a
half-cylinder of radius € around the contact line). The validity of Green’s formula is based
on Eq. (12), which directly expresses that the volume stresses have no contribution at the
contact line.

3) The elastic energy is finite (in the neighborhood of the contact line).

These results will be confirmed with the solution given in the present paper.

IV. APPLICATION TO THE SEMI-INFINITE ELASTIC BODY

Let us consider a semi-infinite isotropic elastic body b, occupying the half space x > 0 in
the orthonormal frame (Ox, Oy, Oz'), in contact with a fluid f occupying the region = < 0
and y > 0, and another fluid {f" in the region x < 0 and y < 0. It is subjected to the fluid—
fluid surface tension g/, here denoted oy, which is a force parallel to Oz and concentrated on

the line x = y = 0 (Fig. 1la). Sign convention: o7 > 0 if the direction of the force is opposite

(a) (b) LGI

Fluid f 19! Fluid f  Fluid f' A Fluid f

—#—'
O Y g 0P 5

Elastic|body b Elastic |body b

A

X X

FIG. 1. Semi-infinite elastic body b in contact with two fluids f and f’, and subjected to the
fluid—fluid surface tension o] normal to the surface x = 0 of the body and concentrated on the
line z =y = 0 (a). At the surface of the body, there is a constant surface tension ds. (a) Before

deformation; (b) after deformation.

to Oz (which is the case of a fluid—fluid surface tension), and oy < 0 if the direction of the

force is Ox (in this case, it is a compression). We suppose that the bf and bf’ surface stress
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tensors are isotropic, with the same constant eigenvalue, noted g5 > 0 (surface tension),
and that the bf and bf’ surface energies are equal. In this case, Eq. (7) only implies that
ar ., = 1 (same surface stretching in the bf side and in the bf’ side), which will be obviously
satisfied owing to the symmetry of the problem with respect to the plane y = 0.!5 The other
Eq. (6) may be written as

01 = 20 COS ¥,

where ¢ = ¢1,/2 (see Fig. 1b). Clearly, the elastic displacement components u, and u, are
only functions of (z,y), vy = 0, and, by symmetry, u,(z, —y) = u,(z,y) and u,(z, —y) =
—uy(z,y). In the approximation of small deformations, i.e., when the components of the
displacement and their first derivatives are small, we have cosp ~ dyu,(0,0+) (derivative

at © = 0, y = 0+), and the preceding equation gives
o1 = 205 Oyu,(0,04). (13)

The Egs. (3)-(4) on the surface z = 0 are (in the absence of gravity and using Eq. (5))

(0-n), =0,

1 1
As_ = nn =0
U(R1+R2)+a +p

(divos = 0, because o3 = d5I and d; is constant on the surface). In the case of small
deformations, n is approximately directed along O, R% + RLQ ~ Oyylz, and these equations

lead to

Ozy = 07 (14)

Os Oyylly + 02 +p = 0. (15)

Although we consider the case of no fluid pressure on the surface (i.e., p = 0), we will
represent the tension o, concentrated on the contact line as a Dirac distribution of “pressure”
p = —010(y), which allows to include Eq. (13) in Eq. (15), with the unique equation on the

surface
65 ayyum + Ope = 01 5(y) (16>

Indeed, integrating this equation on the surface, for —¢ <y < ¢, and taking ¢ — 0, gives

€
205 Oyu,(0,0+) + lir% Opady = 01,
E—> _

13



which leads to Eq. (13), because the term involving o,, is equal to 0, as explained in the
preceding section: it is a consequence of Eq. (11) or Eq. (12) (which will be confirmed for the
solution of the present paper) and expresses that the volume stress 0., gives no contribution

at the contact line.

V. THE ANALYTIC FUNCTIONS F AND H

In the following, z will denote the complex variable z+1y and u the complex displacement
Uy +tu, (function of the complex variable z). We use the general Kolosov’s solution of plane

strain elasticity

u(z) = —% (kF(2) + 2 F(2) + G2),

where k = —):\JFT?’:L‘ = 4r — 3 (A, p Lamé’s coefficients, v Poisson’s coefficient; —3 < k < —1;

see Ref. 16, vol. II, ann. XVI), based on the two analytic functions F' and G, which we will
write using the new analytic function H = G — zF’ (i.e., H(z) = G(z) — zF'(z2)):

—2pu=kF+H+ (z+2)F. (17)
AS consequences,

—2udu=kF + H +2F + (2 + 2) F”"
—2udu=ikF'—H — (2 +2) F")
—2u0yu=—(kF"+H'+ (2 +2) F"). (18)

Similarly, Kolosov’s expressions of the volume stresses may be written as

Opw + 104y =F — H — (24 2) F”

Oy — 10y =F' + H +2F + (2 + 2) F”. (19)

Owing to the symmetry u(z) = u(z) of our problem, we look for analytic functions F
and H with the same property, F'(zZ) = F(z) and H(Z) = H(z).
As we expect that 0,,, 04, and d,,u, vanish at the infinity of the body, i.e., for |z| = 400

with 2 > 0 (this will be confirmed on the final solution), Egs. (14) and (16) on the surface

8



x = 0 may be extended at the infinity of the body:

0z =0 onz =0 and at the infinity, (20)
0 d(y) onx =0,

Os OyylUy + Oy = (21)
0 at the infinity,

i.e., using the above expressions

S(F'— H' — (2 + 2) F”) = 0 on & = 0 and at the infinity,
R(F'—H — (2 +2) F")
+ ;—sﬁ%(k:F” +H"+ (2 +z) F")
o
010(y) onx =0,
0 at the infinity.
Assuming that (z + 2) F" and R((z + z) F") vanish at the infinity (which will be confirmed

on the final solution) and since z + 2z = 0 on = = 0, the preceding equations may be written

as

S(F'+ H') =0 onz =0 and at the infinity, (22)
r 00(y) onx =0,

%(F/_Hl_*_g_s(kpl/_i_ﬂ'//)) — 1 ( ) (23)
H 0 at the infinity.

¢ .
¢ and denoting ®(¢) = F(w(()), ¥(¢) = H(w(¢)),

B the disk |¢| < 1, and S the circle |¢| = 1, Eq. (22) becomes

o (140
3( 5

Using the transformation z = w(() =

(®4+9))=0 onS§,

and, since the first member is an harmonic function in B, it leads to

(- (1+¢)?
2

(@ +9')) =0 inB.
The analytic function —%(@’ + U’) is therefore equal to a real constant a in B, hence

F'+ H' = real const. a (for Rz > 0). (24)

9



Eq. (23) then becomes

1
2 s010(y) onz =0,
FraoZg-nr-94=1{2
R( +@ﬁ ) 5)

0 at the infinity,
i.e., using the variable (,

R(Z(C)) = 10(0) on S, where

1 2 3
=0ty (Ot g L gy

(1]

a
57
Js

4p
dd = —2dy at y = 0). The function R(Z(()) being harmonic in B, we apply Poisson’s

formula (see Ref. 17, (23.61.11.2))

REOD) =5 [ Rl S P T

B % -7 |C - 6i9|2

(1—k) >0,and ¢ = ¢€? —7 <0 < 7 (§(6) = L5(y) because, when z = 0,

@ =3

_ o 1-¢P
2m |¢ — 17
o 1+C) .
— Ap(-TS B
o §R<1 —c) e
ie.,
— 1+¢ .
R(E(C) -8 1—) =0 in B,
—C
. o1 . . — 1+¢ .
with 8 = o The analytic function Q(¢) = Z(¢) — N is therefore equal to a pure
. _

imaginary constant in B, and thus equal to 0 (owing to the symmetry property of Q, Q({) =

Q(¢), due to the same property of ®):

i.e., with the variable z,

F'—aF"—g—é:O for Rz > 0 (and z # 0),
2

which implies that F'— o F’ — % — B log z is a real constant (since F'(Z) = F(z), implying the
same property for the preceding expression; we use the usual logarithm defined in C —R._).
We may take this constant equal to 0, since an additive constant in F' (or in H) only
produces an additive constant in v but does'nt change the derivatives of u and the stress

tensor (according to Egs. (17)-(19)):

F—aF’—%—ﬁlogz:O for Rz > 0 (2 £ 0). (25)

10



VI. THE SOLUTION

By extension of the known solution of the differential equation (25) when z is a real
variable (see Ref. 18, chap. IV, § 2, n° 3), we obtain the general solution of this equation

when z is a complex variable, as
F(2) =be** — e*/*P(2),

where P(z) is a primitive in C — R_ of the function e‘z/a(%z + glog z), satisfying P(z) =
P(z), and b a real constant (since F'(z) = F(z)). We then find

P(2) = 8 e5/2(z + ) = B(e/" log 2 — Ei(~2))

where Ei is the “exponential integral” function,'® which we here define as the primitive of
z

e
the function — in C — R, which coincides with the function z — ffoo %tdt when x € R*.
z

This gives (after addition of the constant —f log «)

F(z) =be** + g(z—f— a) + 6(log§ — el Ei(—z)).
From this expression, we obtain
b
(z+2)F”:E(2+2)ez/°‘
Bz+Z 2 jop, 7
- = — e Ei(——) +1 26
DETEC lepi(-2) 4 ), (26)

which shows that b must be equal to 0, in order to satisfy the first assumption preceding
Egs. (22)-(23), because Ze*/*Ei(—2) + 1 — 0 at the infinity, for Rz > 0 (proved in the
Appendix). Note that (with b = 0)

i Bz+2Z, % 2 Bz+Z
F/// __ ~ zla Ei(—=Z 1 ~
(z+2) e, (e E(=) 1)+
also tends to 0 at the infinity, satisfying the second assumption.
Moreover, according to Eqgs. (19), (18) and (24),
Opz + 104y = R2F' —a) — (z+ 2) F”

2 .

YR T TR Sy )
o o

Oyy — 102y = R(2F' —a) +2a+ (z + 2) F”,
—2p0yu=—(kF"—F'+ (2 +2) F"),

11



which shows that o,,, 04y, and dy,u tend to 0 and oy, tends to 2a at the infinity (because
e/*Ei(—2) ~ —2: see Appendix). The assumptions preceding Egs. (20)-(21) are thus
satisfied. In the following, we take a = 0, in order that all the components of the stress
tensor vanish at the infinity (including 0, = v(0,, + 0yy)). According to H = —F (from

Eq. (24), taking the integration constant equal to 0), the final solution is then

2uu=kF—~F+(z+2)F,
z

where F(z) = 5(1og§ — e Ei(~2)). (27)

o
The preceding solution holds for a > 0. Note that, if « = 0 (i.e., g5 = 0), we obtain the

solution
2uu=kF—F+(2+2)F,
with F(z) = flog z, (28)

from Eq. (25) (with a = 0, for the same reason as above), which is exactly the classical

Flamant’s solution.’

VII. DISPLACEMENTS AND STRESSES

From Egs. (18)-(19) (with H = —F') and the above expression of F' (Eq. (27)), we also

have

—2u0u=kF +F +(z+2)F"
—2udu =ik F'+F — (2 +2) F")
Opp + 104y = F +F — (z+2) F"

Oyy — 10,y = F' + F' + (2 +2) F’,  with

F'(z) = —g e*/” Bi(——)
Fr(z) = —%(ez/a Ei(—g) + %). (29)

Introducing the function E(z) = log z — ¢*Ei(—z), we may write

u(z)= D (kBC) 1 BE) - FE T, (30)

B z
_2u o « «o «

which shows that the displacement u is proportional to 3/(2u) and (2u/8)u only depends
on z/a and k (i.e., v). Thus, o = d5(1 —v)/pu and §/(2u) = 01/(4mp) are the characteristic

12



elastocapillary lengths for this solution. Similarly, (2u0/8)0,u and (2pua/B)0,u only depend
on z/a and k, and (a/B)044, (a/B)oy,, and (a/B)o., only depend on z/cv.

. e? o 1 ) anl
Since & = -+ >
n=1

z n!

, we have Ei(z) = log(—2)+ > 2 +const. in C—Ry, the constant
n=1

being equal to the Euler constant v because Ei(z) = [*_ e%dt when z € R*:

o0 Zn
Fi = log(— nC—-R..
()= log(—2) + 3 G-
Then, in C — R_,
— (—2)"
FE = —vye* 1—¢€7)1 — e
(2) vef+ (1 —e*)logz—e ,?:1 i

tends to —y and
(z+2)E'(2) =—€*(2+ 2)log 2

—e* (24 2)(y + Z ﬂ)

nn!

tends to 0, when z — 0, which leads to the finite limit for the displacement

: B 7o
il_I)I(l)u(Z) = —ﬂ(l—k)v— —;;(1—1/). (31)
From the above expressions of F'(z), F"(z), and Ei(z), we obtain

5 F(2) =~y —log ~ +eol2)

= —’y—logZ —i0 + £o(2),
a
zZ+z

—%(2 +2)F"(z) =

where z = re?? 7 > 0, —m < 6 < 7, and g¢(2) denotes any expression of z which tends to 0

+e0(2) = 1+ e 2 +g(2),

when z — 0. Thus,

2
% Oyu=(1—k)f +sin26
—l—i((l—i—k)(fy—i—logg) — 1 —c0s20) + &o(2), (32)
which shows that
. B .
z—0, élgjlnstant ayux B 2/L_Oé<(1 B k)9 + St 26)
o0 sin 20
B ds(ﬂ' * 47r(1 — y))’

+o0 ifop >0
lin% Oyy = (33)
= —00 ifa <0.

13



Obviously, the infinite limit of d,u, (and, below, 0,u,) is in contradiction with the assump-
tion of small deformations and, strictly speaking, the solution is not valid for z close to 0.
The solution may rather be considered as a mathematical description of the singularity at

z = 0. Note that, on the surface x = 0, with y > 0 (i.e., § = 7/2), the above equation shows

that Jyu, tends to 201 when y — 0, y > 0, in agreement with the above Eq. (13). Since

Os
the initial surface x = 0 is, after deformation, represented by the function y — wu,(0,y),

there is thus a finite displacement and the formation of a ridge at z = 0 on the surface,

as shown in Fig. 2a. In this Fig. 2, the displacements u,(0,y) and u,(0,y) on the surface,

-4y(1-v) 1 7£(1-2V) frmmmmmmmeemeeeeeeas

FIG. 2. Displacements u, (a) and u, (b) on the surface x = 0 as functions of y, for v = 0.3.
2 _

The graph u, (a) represents the form of the surface after deformation. Notations: o = M,
1

_a
5_27'("

obtained from Eq. (27), are represented, for v = 0.3. For comparison, the displacements of
the Flamant’s solution (Eq. (28)) are shown in Fig. 3. Note that, except for the presence of
a ridge at the contact line, the behavior on the surface of our solution (Fig. 2) cannot be
compared with the results of Ref. 3 which concern a thin film 0 < x < h of elastic body
with a zero-displacement at x = h.

In a similar way, we have

2
%@Cu:(1+k)(7+10g£)+1+00829
a

+i(—(1 — k)0 4 sin 20) + eo(2), (34)

14



b
L

/| 7(1-2)
; / \ |
T 2,

FIG. 3. The classical Flamant’s solution: displacements u, (a) and u, (b) on the surface z =0 as
functions of y, for v = 0.3. Notation: 8 = 20—1. The graph u, (a) represents the form of the surface
T

after deformation. At x =y = 0, u, is infinite and u, is discontinuous.

which shows that

“+00 if0'1>0

lir% Oplly, =
= —o0 if o < 0,
. o, 0 sin 20
z—0, gg}nstant axuy - O'Ts<_7'r 47]'(1 — I/) )7 (35>

and immediately gives the limits of the strain tensor components e,, = Oy, €yy = Oyty,
and e,y = %((%uy + 0yuy):

in 20
lim ey = o (36)

z—0, 6 constant O% 47T(1 - I/) .

We also obtain

%(Uu +i0y4y) = — 2(7 + log g) + 1+ cos26

+ isin 20 + €o(2),
%(ayy —i04y) = — 2(y + log 2) —1—cos26

—i8in 20 4 €o(2), (37)
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which shows that

_ 400 ifo; >0
limo,, =
z2—0 .
- if o <0,
\
(
+o0o ifop >0
lim o, =
z—0 vy .
—oo if o <0,
\
01 H

I S N N Y
z—0, ngjlnstant Ty OA'S 27‘[’(1 — l/) sin 26 (38>

Since the inequality |1 + ze*Ei(—z2)| < é—| for ¥z > 0 (proved in the Appendix) may
be continuously extended in Rz > 0, z # 0 (let us recall that z — Ei(—z) is analytic in
C —R._), then €*Ei(—z) ~ —2 when |z]| — +00, Rz > 0, and we may write (from Eqs. (27)
and (29))

1 r

—F(z) =log—+1

3 (z) =log - + 16 + oo (2),
1 - / 7_Z+23 z/a _i
B(z—i—z)F(z)— e Ei( a)

=1+4+e 2 4 ¢(2),

where £4,(2) denotes any expression of z which tends to 0 when |z| — 400, Rz > 0. Thus,

2
%u:(l—k)logg—l—cos%

+i(—(14+ k)0 — sin 20) + e (2),
which shows that

] +oo if o >0
lim wu, =
2o —oo if o <0,

lim oy = —(2(1 — 2v)0 — sin 20). (39)

|z]—+00, 6 constant v 47r,u

Clearly, the infinite limit of u, is due to the assumption of a force o, applied on the whole
infinite line z = y = 0 (the 2’ axis). Note that, on the surface x = 0, with y > 0 (i.e.,
6 = 7/2), the preceding equation shows that w, tends to Z—;(l — 2v) when y — +00 (see
Fig. 2b). Also note that, in the limit case v — % (i.e., K+ 1 — 0), the expression of u
(Eq. (27)) shows that u, = 0 on the surface z = 0.
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From the expression of I”(z) in Eq. (29), F'(2) tends to 0 and, from Eq. (26) (with b = 0),
(z+ z) F"(2) tends to 0 when |z| — 400, Rz > 0, which implies that

Jyu and Odyu tend to 0 when |z| — 400, (40)
and
Oy Oy Oy a0 04, tend to 0 when |z| — +oo (41)

(as mentioned in Sec. VI).
The dependence on v is shown in Eq. (30): at z/« fixed, (2u/f)u linearly varies with k,

i.e., with v. In particular, on the surface x = 0,

2 1a(0,y) = 41— ») R(E(Y))

B a

5 .

Ty (0,9) =201 - 20) S(E(2)),

g o
which shows that all the functions y/a — (2u/8)u,(0,y) and y/a — (2u/5)u,(0,y) are
similar to those of Fig. 2, i.e., only multiplied by 11_’0’_’ 5 for u,, and by % for wu,.

In the volume x > 0, the displacements u, and u, are represented in Fig. 4, for v = 0.25.
In Fig. 4a, we observe that u, increases when the distance to (z,y) = (0,0) increases. In the
xy plane of Fig. 4b, the curves u, = constant show asymptotic directions. There are two
lines where u, = 0: the straight line y = 0 (obviously) and a curved line, with an intersection
of the two lines at o > 0, y = 0. If x remains constant, x > x(, and y increases from 0 to
positive values, we observe that u, decreases from 0 to a negative value and then increases to
positive values (after crossing the value 0). These observations are consistent with Eq. (39)
which gives the asymptotic value u, o of u, as a function of the direction 0: (241/5)uy =
2(1 —2v)0 — sin 260, which decreases from 0 to a negative value and then increases to the
positive value 7(1 — 2v) (after crossing the value 0), when 6 increases from 0 to 7/2. In
fact, the asymptotic direction(s) 6 of the curve (2u/8)u, = ¢ (constant) is (are) given by
the equation ¢ = 2(1 — 2v)# — sin260. Thus, for y > 0, the curves (2u/5)u, = ¢ with ¢ > 0
have one asymptotic direction and those with ¢ < 0 have two asymptotic directions, which
is consistent with Fig. 4b. Note that these results concerning u, are consistent with the
experiments and Fourier transform calculations of Ref. 20-Fig. 3a—d, in the neighborhood of

the contact line.
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FIG. 4. Displacements u, (a) and u, (b) in the volume z > 0 as functions of (z,y), for v = 0.25.

Vertical axis x/«, horizontal axis y/«. The values of (2u/5)uy or (2p/8)u, are indicated on each
OA-S(]‘_V)’/BZQ'

I 27

curve. Notations: o« =

As v increases, the distances between the curves of Fig. 4a increase, which means that
(at 2ua/P constant) the gradient of u, decreases, at each point (x/a,y/«). In Fig. 4b, as v
increases to 0.5, xo/a (abscissa of the intersection of the straight line y = 0 and the curved
line u, = 0) decreases to 0. Moreover, if 6y denotes the asymptotic direction of the curved
line u, = 0, i.e., 2(1 — 2v)fy = sin26,, 0 < 6y < 7/2, clearly 6, increases from 0 to 7/2
when v increases from 0 to 0.5. When v reaches the limit value 0.5, this curved line u, = 0

becomes the straight line x = 0.

VIII. THE DISPLACEMENTS BELONG TO H!(V) AND H!(S): FINITE
ELASTIC ENERGY AND VALIDITY OF GREEN’S FORMULAE

Eqgs. (32), (34), and (37) show that dyu,, O,u,, and o,, are bounded for |z| < ry (g

positive constant) and

|0zl [Oyuy|, |0aal, loyy|, and |oz| < c[logr| +d

for |z| < 7o (42)
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(c and d positive constants), as in our preceding paper Ref. 7. If V denotes the volume x > 0,
|z +iy| < ro, 0 < 2/ < ly (Ip positive constant), the preceding inequalities imply that all the
components d;u; and o;; belong to L*(V) (because r(logr)? and r|logr| are integrable on
[0,70]). Since u is continuous (with a finite limit at z = 0), this shows that the components
u; of the displacement belong to the Sobolev space H'(V) (as a consequence, the components
0;; € L*(V)). This point is crucial for the physical validity of the solution because it implies
that:
1) The elastic energy

14
n | e+ g (e de
(4,5)

i
is finite.

2) Green’s formula

/U:Dwdv:—/diva-wdv—/(a-n)-wda (43)
v v S

is valid, because the components w; (as u;) belong to H'(V), the components o;; belong
to L*(V), and the components (dive); belong to L?*(V) (owing to the equilibrium equa-
tion dive = 0; note that the derivatives 9,0;; generally do not belong to L*(V) and the
components o;; do not belong to H'(V)) (see Theorem 4.4.7 in Ref. 21).

Let us recall that, in the classical Flamant’s solution, u is infinite at the contact line, the
derivatives d;u; (and o;;) do not belong to L?(V), and the elastic energy is infinite.

In the theory presented in Ref. 4, we also used Green’s formula on the surface

/J_S:Dswda:—/diva‘s~wda—/(a_s~u)~wdl (44)
S S C

(with the notations of Sec. II and (Dsw)g; = dsw;), where S is a portion of the bf (or bf’)
surface adjacent to the contact line, C the boundary curve, v the unit vector normal to
this curve, tangent to the surface, and directed towards the interior of S, da an element
of area, and dl an element of length. The derivatives 0,u;, being bounded or subjected to
the inequality of Eq. (42), belong to L?(S) (because (logr)? and |logr| are integrable on
0,70]), so that the components u; belong to H'(S). Here also, applying the same Theorem
as above, Green’s formula is valid, because the components w; (as u;) belong to H'(S), the
components ;%" belong to L?(S) (since &, is constant on the surface), and the components

(divay) belong to L%(S) (the tangential component is equal to 0 and the normal component
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i 0s Oyytly = —0gs, for x = 0 and y # 0, which satisfies the inequality of Eq. (42); see
Sec. IV and Eq. (16)).

IX. CONCLUSIONS

When an elastic body is in contact with two immiscible fluids (e.g., an elastic gel in
contact with a liquid and the air), it is subjected to the fluid—fluid surface tension acting on
the body—fluid—fluid triple contact line. This force concentrated on the contact line produces
a singularity on the elastic body. In the simple case of a semi-infinite body, bounded by a
plane, and a force concentrated on a straight line of this plane and normal to the plane, the
classical solution of Flamant! leads to an infinite displacement at this contact line. In the
present paper, a new solution with a finite displacement at the contact line is obtained, by
introducing a surface tension (i.e., isotropic surface stress) at the surface of the semi-infinite
body and applying the general equilibrium equations (on the surface and at the contact
line) of the previous work Ref. 4. Using Kolosov’s approach of plane strain elasticity, in
the complex plane, with a new function H (Sec. V), and the theory of analytic functions,
we are led to a differential equation (Eq. (25)), the solution of which gives the explicit
expression of the displacement u (Eq. (27)), and then the expressions of the derivatives of
the displacement and the strain and stress components (Eq. (29)). The displacement u is
proportional to 8/(2u) = 01/(4mu) (o) the force or fluid—fluid surface tension concentrated
on the contact line, p the Lamé elastic shear modulus) and (2u/8)u only depends on the
coordinates (z/ca,y/a) and v (o = d4(1 — v)/u, ds the surface tension at the surface of the
body, v the Poisson’s coefficient). Thus, a and 3/(2u) are the characteristic elastocapillary
lengths for this solution. The displacement is finite and continuous at the contact line, with
the formation of a ridge (see Eq. (31) and Fig. 2a). At the contact line, the zz and yy strain
and stress components become infinite, but their xy components have different finite limits
when approaching the contact line under different directions (Egs. (33), (35), (36), and (38)).
Moreover, all the stress components and the derivatives of the displacement vanish at the
infinity of the body (Egs. (40)-(41)). The components u, and wu, of the displacement, as
functions of the coordinates (x,y), are shown in Fig. 4.

Moreover, in the neighborhood of the contact line, the derivatives of the displacement

are either bounded or present a logarithmic divergence (Eq. (42); as in the example of
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solution of Ref. 7), which implies that the components u; of the displacement belong to
H'(V) and H'(S) (V being a volume of the body and S a portion of surface of the body, in
the neighborhood of the contact line). This is a crucial point for the physical validity of the
solution because it implies that the elastic energy is finite and both Green’s formulae in the
volume and on the surfaces (Eqgs. (43) and (44), which play a central role in the theory of
Ref. 4) are valid. Note that, in the classical Flamant’s solution, the components u; do not

belong to H*(V) and the elastic energy is infinite.

Appendix A: Expression of Ei(z) when Rz < 0

Since [e*!| = ¢, the function ¢t — &~ is integrable in [1, +ool, for 2 = Rz < 0, and we
note f(z) = — 1+°O L dt.

emot

t t

[1,400], which
implies that f is analytic in Rz < zo (see Ref. 22, (13.8.6)(iii)) for all zy < 0, hence f is

IRz =2 <29 <0, then|t|

analytic in Rz < 0.

Moreover, for z =z € R*, f(x) = — 1+°° Lt = [7.. Sds = Ei(x). The two analytic

functions f and Ei are then equal in Rz < 0, i.e.,

+oo 2zt v
Ei(z) = —/ 6Tdt =~ [ Sdv for Rz < 0,
1

r, v

where I, is the path: ¢t € [1,4+00[— v = 2t € C.

Appendix B: Behavior of Ei at the infinity, when Rz < 0

Since ]ez—j] = <= — 0 when t — 400, for z = Rz < 0, the integration of ()" =

O—e = —Fi(z /—dv ie.,

<%
3

IIt

along the path I', gives

v +oo 2t z
 _Ei(z / € dv= / Cat=1(2),
. 1 12 z
/ (D) dt
1 2

where [(z) =
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1d,z

By integration by parts (e*(""1) = 1 Le=(=1) "we obtain

1 +o0 ez(tfl)
I(z)=—-((0—-1) + 2/ t—3dt), hence
1

2
1 eedr. 2
I < —(1+4+2 —)=—
T R T
le.,
i 2
|1 —ze “Ei(z)] < B for Rz < 0, and then
2
Ei(z) ~ ©  When |z| = 400, Rz <0,
z
or, if Rz > 0,
. 2
|1+ ze*Ei(—2)| < B for ¥z > 0, and
z
Ei(—z) ~ _C when |z| — 400, Rz > 0.
2
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