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At the line of triple contact of an elastic body with two immiscible fluids, the body

is subjected to a force concentrated on this line, the fluid–fluid surface tension. In

the simple case of a semi-infinite body, limited by a plane, a straight contact line on

this plane, and a fluid–fluid surface tension normal to the plane, the classical elastic

solution leads to an infinite displacement at the contact line and an infinite elastic

energy. By taking into account the body–fluid surface tension (i.e., isotropic surface

stress), we present a new and more realistic solution concerning the semi-infinite

body, which gives a finite displacement and a ridge at the contact line, and a finite

elastic energy. This solution also shows that Green’s formulae, in the volume and on

the surfaces, are valid (these formulae play a central role in the theory).
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I. INTRODUCTION

Surface properties of deformable bodies have many applications, e.g., in adhesion, coating,

thin films and nanosciences. When a deformable body is in contact with two fluids (e.g.,

liquid and air), it is subjected to the fluid–fluid surface tension along the body–fluid–fluid

contact line. The classical solution for the deformation of an elastic body, occupying a semi-

infinite space limited by a plane, and subjected to a fluid–fluid surface tension concentrated

on a straight line of this plane and normal to the plane, leads to an infinite displacement

at this line and an infinite elastic energy.1 However, the presence of a ridge at the contact

line was experimentally observed2 and then confirmed by other experiments and Fourier

transform calculations.3 In our previous work,4 by taking into account the body–fluid surface

stresses and surface energies, we showed that there are two equilibrium equations at the

contact line: (i) the equilibrium of the three surface stresses (with no contribution of the

volume stresses); (ii) a scalar equation involving the surface energies, the surface stresses,

and the surface strains, which leads to a generalization of the classical Young’s equation

(only valid for a rigid body) (see Sec. II). The first equation—as an equilibrium of three

forces tangent to the three interfaces—implies a finite displacement and the formation of a

ridge at the contact line. This equation was then experimentally confirmed.5 In the present

paper, by taking into account the body–fluid surface tension (i.e., isotropic surface stress),

we obtain a new solution of the above elastic problem concerning the semi-infinite body,

with a finite displacement and a ridge at the contact line, and a finite elastic energy.

II. GENERAL EQUILIBRIUM EQUATIONS

In the previous work Ref. 4 (with additional comments in Ref. 6 and mathematical aspects

in Ref. 7), following the general variational method of Gibbs,8 we gave the thermodynamic

definition and properties of the surface stress and obtained the following equilibrium equa-

tions for any deformable body:

1) On each body–fluid surface:

div σ̄s + ρs ḡ + σ · n+ p n = 0 (1)

σ∗s = σs, (2)

where σs is the body–fluid surface stress, ρs the surface mass excess per unit area, ḡ the
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gravity field, σ the body volume stress, n the unit vector normal to the surface (oriented from

the fluid to the body), and p the fluid pressure; σ̄s = ι ·σs, where ι is the natural injection of

the tangent plane to the surface Tx(S) in the three-dimensional space E (i.e., σ̄s
βi = σαβs ∂αx

i,

with components α and β on the surface, and i in E), and div σ̄s is a special divergence based

on the tensorial product of the covariant derivative on the surface and the usual derivative in

E, defined in Ref. 7 (i.e., with components: (div σ̄s)
i = ∂β(σαβs ∂αx

i) + Γββγ σ
αγ
s ∂αx

i). Eq. (1)

has a tangential component

div σs + ρs ḡt + (σ · n)t = 0 (3)

(in which div σs is the usual surface divergence and the subscript t indicates the vector

component tangent to the surface) and a normal component

ln : σs + ρs ḡn + σnn + p = 0, (4)

where l is the curvature fundamental form on the surface, ln = l · n (i.e., with components:

liαβ = ∂αβx
i−Γγαβ ∂γx

i, ln,αβ = liαβ ni; the symbol : means double contraction of the indices),

ḡn = ḡ · n, and σnn = (σ · n) · n. The eigenvalues of ln are the principal curvatures, 1
R1

and

1
R2

, of the surface (a curvature being positive when its center is on the side of n). If σs is

isotropic, i.e., σs = σ̂s I (eigenvalue σ̂s and I the identity), we have

ln : σs = σ̂s(
1

R1

+
1

R2

). (5)

Similar equations were previously written, but under some particular assumptions, e.g., the

existence of a “surface traction field”9 or in the special case of elastic bodies.10,11

2) On the body–fluid–fluid contact line, there are two equations (as previously found in

the particular case of the elastic thin plate12,13):

The first one is vectorial (three-dimensional) and corresponds to a line fixed on the body

(but the line can move because the body is deformable):

σbf · νbf + σbf′ · νbf′ + γff′ νff′ = 0, (6)

in which the subscripts b, f, and f ′ respectively denote the body and the two fluids, σbf is the

bf surface stress, νbf the unit vector normal to the contact line and tangent to the bf surface

(directed to the inside of bf), idem for σbf′ , νbf′ , and νff′ , and γff′ is the ff ′ surface tension.

This equation expresses the equilibrium of the three surface stresses acting on the contact
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line (with no contribution of the volume stresses), and determines the angles of contact ϕf ,

ϕf′ , and ϕb, respectively measured in f, f ′, and b (satisfying ϕf +ϕf′ +ϕb = 2π). This point

was then experimentally verified in Ref. 5.

The second equation is scalar and corresponds to a line moving with respect to the body,

but fixed in space (i.e., the displacement of the material points of the body, due to the

deformation, exactly compensates the displacement of the line with respect to the body, so

that the line remains fixed in space):

(σbf,νν − γbf) aνν − (σbf′,νν − γbf′) a
′
νν

+ σbf′,τν(a
′
τν − aτν) = 0, (7)

in which τ is a unit vector tangent to the line, σbf,νν and σbf,τν are respectively the compo-

nents along νbf and τ of the bf surface stress acting on the line, idem for σbf′,νν and σbf′,τν ,

γbf and γbf′ are respectively the bf and bf ′ surface energies, aνν is the surface stretching

deformation, normal to the line, in the bf side, aτν the surface shear deformation, parallel

to the line, in the bf side, and idem for a′νν and a′τν in the bf ′ side. An equivalent form of

this equation is (with the help of Eq. (6))

− γbf + γbf′ ar,νν − γff′ cosϕf

− γff′ sinϕf
cosϕb + ar,νν

sinϕb

+ σbf′,τν ar,τν = 0, (8)

where ar,νν = a′νν
aνν

and ar,τν = a′τν−aτν
aνν

.

Note that, for a perfectly rigid body, the above Eqs. (6) and (7) cannot be written (since

they are based on the possible displacement of the material points, due to the deformation)

and, in this case, we obtain the unique scalar equation

−γbf + γbf′ − γff′ cosϕf = 0, (9)

which is the classical Young’s equation (in which γbf and γbf′ are surface energies, and not

surface tensions). If the body is deformable, Young’s equation is not valid and the valid

Eq. (8) is the generalization of Young’s equation. Indeed, in the rigid body limit, ar,νν = 1,

ar,τν = 0, and ϕb = π (thus, limϕb→π
cosϕb+1

sinϕb
= 0), and Eq. (8) leads to Young’s equation.

Also note that, in the case of a very little deformable body, i.e., an almost rigid body,

the surface (and volume) stresses become almost infinite, so that the two first terms in

Eq. (6) are almost infinite and this equation implies that ϕb is almost equal to π (in order

4



to equilibrate the finite fluid-fluid surface tension), i.e., that there is almost no ridge on the

surface. Finally, note that, if the body is a fluid, then σbf − γbf I = σbf′ − γbf′ I = 0 (which

implies that σbf,νν − γbf = σbf′,νν − γbf′ = σbf′,τν = 0) so that Eq. (7) is useless, and Eq. (6)

expresses the equilibrium of the three fluid–fluid surface tensions.

Eq. (7) expresses that the variation of surface energy (e.g., increase in bf surface and

decrease in bf ′ surface, when the line moves with respect to the body) is equal to the work

of the surface stresses acting on the line (due to the displacement of the material points,

on each side of the line), when the line remains fixed in space. This equation gives a

condition on the components ar,νν and ar,τν of the “relative” surface deformation of the bf ′

side with respect to the bf side (we defined the “relative deformation gradient” in Ref. 14).

If σbf′,τν = 0 (which, e.g., occurs if the surface stress is isotropic), it gives the relative surface

stretching deformation ar,νν (normal to the line) of the bf ′ side with respect to the bf side.

III. VALIDITY OF GREEN’S FORMULA:

NO CONTRIBUTION OF THE VOLUME STRESSES

The preceding theory is based on Green’s formula∫
V

σ : Dw dv = −
∫

V

divσ · w dv −
∫

S

(σ · n) · w da, (10)

where σ is the volume stress tensor, w a virtual displacement, V a volume of the body in

the neighborhood of the contact line, S the boundary surface, n the unit vector normal to

the surface and directed towards the interior of the body, dv an element of volume, and da

an element of area. With the help of a first example of solution, we showed in Ref. 7 that:

1) Owing to the singularity at the contact line, the components of σ do not belong to the

Sobolev space H1(V).

2) Nevertheless, Green’s formula remains valid, because all the components ∂jui and σij

are either bounded or subjected to the inequality

|∂jui|, |σij| ≤ c| log r|+ d (11)

in V (r is the distance to the contact line; c and d being positive constants), and these

inequalities imply that

lim
ε→0

∫
S(ε)

(σ · n) · w da = 0, (12)
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where S(ε) is the boundary surface of a small tubular volume V(ε) of the body, of radius ε,

around an element of contact line (V(ε) is bounded by (i) the surface of the body and (ii) a

half-cylinder of radius ε around the contact line). The validity of Green’s formula is based

on Eq. (12), which directly expresses that the volume stresses have no contribution at the

contact line.

3) The elastic energy is finite (in the neighborhood of the contact line).

These results will be confirmed with the solution given in the present paper.

IV. APPLICATION TO THE SEMI-INFINITE ELASTIC BODY

Let us consider a semi-infinite isotropic elastic body b, occupying the half space x ≥ 0 in

the orthonormal frame (Ox,Oy,Oz′), in contact with a fluid f occupying the region x < 0

and y > 0, and another fluid f ′ in the region x < 0 and y < 0. It is subjected to the fluid–

fluid surface tension γff′ , here denoted σl, which is a force parallel to Ox and concentrated on

the line x = y = 0 (Fig. 1a). Sign convention: σl > 0 if the direction of the force is opposite

FIG. 1. Semi-infinite elastic body b in contact with two fluids f and f ′, and subjected to the

fluid–fluid surface tension σl normal to the surface x = 0 of the body and concentrated on the

line x = y = 0 (a). At the surface of the body, there is a constant surface tension σ̂s. (a) Before

deformation; (b) after deformation.

to Ox (which is the case of a fluid–fluid surface tension), and σl < 0 if the direction of the

force is Ox (in this case, it is a compression). We suppose that the bf and bf ′ surface stress
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tensors are isotropic, with the same constant eigenvalue, noted σ̂s > 0 (surface tension),

and that the bf and bf ′ surface energies are equal. In this case, Eq. (7) only implies that

ar,νν = 1 (same surface stretching in the bf side and in the bf ′ side), which will be obviously

satisfied owing to the symmetry of the problem with respect to the plane y = 0.15 The other

Eq. (6) may be written as

σl = 2σ̂s cosϕ,

where ϕ = ϕb/2 (see Fig. 1b). Clearly, the elastic displacement components ux and uy are

only functions of (x, y), uz′ = 0, and, by symmetry, ux(x,−y) = ux(x, y) and uy(x,−y) =

−uy(x, y). In the approximation of small deformations, i.e., when the components of the

displacement and their first derivatives are small, we have cosϕ ≈ ∂yux(0, 0+) (derivative

at x = 0, y = 0+), and the preceding equation gives

σl = 2σ̂s ∂yux(0, 0+). (13)

The Eqs. (3)-(4) on the surface x = 0 are (in the absence of gravity and using Eq. (5))

(σ · n)t = 0,

σ̂s(
1

R1

+
1

R2

) + σnn + p = 0

(div σs = 0, because σs = σ̂s I and σ̂s is constant on the surface). In the case of small

deformations, n is approximately directed along Ox, 1
R1

+ 1
R2
≈ ∂yyux, and these equations

lead to

σxy = 0, (14)

σ̂s ∂yyux + σxx + p = 0. (15)

Although we consider the case of no fluid pressure on the surface (i.e., p = 0), we will

represent the tension σl concentrated on the contact line as a Dirac distribution of “pressure”

p = −σl δ(y), which allows to include Eq. (13) in Eq. (15), with the unique equation on the

surface

σ̂s ∂yyux + σxx = σl δ(y). (16)

Indeed, integrating this equation on the surface, for −ε ≤ y ≤ ε, and taking ε→ 0, gives

2σ̂s ∂yux(0, 0+) + lim
ε→0

∫ ε

−ε
σxxdy = σl,
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which leads to Eq. (13), because the term involving σxx is equal to 0, as explained in the

preceding section: it is a consequence of Eq. (11) or Eq. (12) (which will be confirmed for the

solution of the present paper) and expresses that the volume stress σxx gives no contribution

at the contact line.

V. THE ANALYTIC FUNCTIONS F AND H

In the following, z will denote the complex variable x+iy and u the complex displacement

ux+ iuy (function of the complex variable z). We use the general Kolosov’s solution of plane

strain elasticity

u(z) = − 1

2µ
(k F (z) + z F ′(z) +G(z)),

where k = −λ+3µ
λ+µ

= 4ν − 3 (λ, µ Lamé’s coefficients, ν Poisson’s coefficient; −3 < k < −1;

see Ref. 16, vol. II, ann. XVI), based on the two analytic functions F and G, which we will

write using the new analytic function H = G− zF ′ (i.e., H(z) = G(z)− zF ′(z)):

−2µu = k F +H + (z + z̄)F ′. (17)

As consequences,

−2µ ∂xu = k F ′ +H ′ + 2F ′ + (z + z̄)F ′′

−2µ ∂yu = i(k F ′ −H ′ − (z + z̄)F ′′)

−2µ ∂yyu = −(k F ′′ +H ′′ + (z + z̄)F ′′′). (18)

Similarly, Kolosov’s expressions of the volume stresses may be written as

σxx + iσxy = F ′ −H ′ − (z + z̄)F ′′

σyy − iσxy = F ′ +H ′ + 2F ′ + (z + z̄)F ′′. (19)

Owing to the symmetry u(z̄) = u(z) of our problem, we look for analytic functions F

and H with the same property, F (z̄) = F (z) and H(z̄) = H(z).

As we expect that σxx, σxy, and ∂yyux vanish at the infinity of the body, i.e., for |z| → +∞

with x > 0 (this will be confirmed on the final solution), Eqs. (14) and (16) on the surface
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x = 0 may be extended at the infinity of the body:

σxy = 0 on x = 0 and at the infinity, (20)

σ̂s ∂yyux + σxx =

σl δ(y) on x = 0,

0 at the infinity,
(21)

i.e., using the above expressions

=(F ′ −H ′ − (z + z̄)F ′′) = 0 on x = 0 and at the infinity,

<(F ′ −H ′ − (z + z̄)F ′′)

+
σ̂s

2µ
<(k F ′′ +H ′′ + (z + z̄)F ′′′)

=

σl δ(y) on x = 0,

0 at the infinity.

Assuming that (z + z̄)F ′′ and <((z + z̄)F ′′′) vanish at the infinity (which will be confirmed

on the final solution) and since z + z̄ = 0 on x = 0, the preceding equations may be written

as

=(F ′ +H ′) = 0 on x = 0 and at the infinity, (22)

<(F ′ −H ′ + σ̂s

2µ
(k F ′′ +H ′′)) =

σl δ(y) on x = 0,

0 at the infinity.
(23)

Using the transformation z = ω(ζ) =
1− ζ
1 + ζ

and denoting Φ(ζ) = F (ω(ζ)), Ψ(ζ) = H(ω(ζ)),

B the disk |ζ| < 1, and S the circle |ζ| = 1, Eq. (22) becomes

=(−(1 + ζ)2

2
(Φ′ + Ψ′)) = 0 on S,

and, since the first member is an harmonic function in B, it leads to

=(−(1 + ζ)2

2
(Φ′ + Ψ′)) = 0 in B.

The analytic function − (1+ζ)2

2
(Φ′ + Ψ′) is therefore equal to a real constant a in B, hence

F ′ +H ′ = real const. a (for <z ≥ 0). (24)
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Eq. (23) then becomes

<(F ′ +
σ̂s

4µ
(k − 1)F ′′ − a

2
) =


1
2
σl δ(y) on x = 0,

0 at the infinity,

i.e., using the variable ζ,

<(Ξ(ζ)) = σl δ(θ) on S, where

Ξ(ζ) = −(1 + ζ)2

2
Φ′ − α(1 + ζ)3

2
(Φ′ +

1 + ζ

2
Φ′′)− a

2
,

α =
σ̂s

4µ
(1 − k) > 0, and ζ = eiθ, −π ≤ θ < π (δ(θ) = 1

2
δ(y) because, when x = 0,

dθ = −2 dy at y = 0). The function <(Ξ(ζ)) being harmonic in B, we apply Poisson’s

formula (see Ref. 17, (23.61.11.2))

<(Ξ(ζ)) =
1

2π

∫ π

−π

1− |ζ|2

|ζ − eiθ|2
σl δ(θ) dθ

=
σl

2π

1− |ζ|2

|ζ − 1|2

=
σl

2π
<
(1 + ζ

1− ζ

)
in B,

i.e.,

<
(
Ξ(ζ)− β 1 + ζ

1− ζ
)

= 0 in B,

with β =
σl

2π
. The analytic function Ω(ζ) = Ξ(ζ) − β

1 + ζ

1− ζ
is therefore equal to a pure

imaginary constant in B, and thus equal to 0 (owing to the symmetry property of Ω, Ω(ζ̄) =

Ω(ζ), due to the same property of Φ):

Ξ(ζ)− β 1 + ζ

1− ζ
= 0 in B,

i.e., with the variable z,

F ′ − αF ′′ − a

2
− β

z
= 0 for <z ≥ 0 (and z 6= 0),

which implies that F −αF ′− az
2
−β log z is a real constant (since F (z̄) = F (z), implying the

same property for the preceding expression; we use the usual logarithm defined in C−R−).

We may take this constant equal to 0, since an additive constant in F (or in H) only

produces an additive constant in u but does’nt change the derivatives of u and the stress

tensor (according to Eqs. (17)–(19)):

F − αF ′ − az

2
− β log z = 0 for <z ≥ 0 (z 6= 0). (25)
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VI. THE SOLUTION

By extension of the known solution of the differential equation (25) when z is a real

variable (see Ref. 18, chap. IV, § 2, n◦ 3), we obtain the general solution of this equation

when z is a complex variable, as

F (z) = b ez/α − ez/αP (z),

where P (z) is a primitive in C−R− of the function e−z/α( a
2α
z + β

α
log z), satisfying P (z̄) =

P (z), and b a real constant (since F (z̄) = F (z)). We then find

P (z) = −a
2
e−z/α(z + α)− β(e−z/α log z − Ei(− z

α
)),

where Ei is the “exponential integral” function,19 which we here define as the primitive of

the function
ez

z
in C−R+, which coincides with the function x→

∫ x
−∞

et

t
dt when x ∈ R∗−.

This gives (after addition of the constant −β logα)

F (z) = b ez/α +
a

2
(z + α) + β(log

z

α
− ez/α Ei(− z

α
)).

From this expression, we obtain

(z + z̄)F ′′ =
b

α2
(z + z̄) ez/α

− β

α

z + z̄

z
(
z

α
ez/α Ei(− z

α
) + 1), (26)

which shows that b must be equal to 0, in order to satisfy the first assumption preceding

Eqs. (22)-(23), because z
α
ez/α Ei(− z

α
) + 1 → 0 at the infinity, for <z > 0 (proved in the

Appendix). Note that (with b = 0)

(z + z̄)F ′′′ = − β

α2

z + z̄

z
(
z

α
ez/α Ei(− z

α
) + 1) +

β

α

z + z̄

z2

also tends to 0 at the infinity, satisfying the second assumption.

Moreover, according to Eqs. (19), (18) and (24),

σxx + iσxy = <(2F ′ − a)− (z + z̄)F ′′

= <(−2β

α
ez/α Ei(− z

α
))− (z + z̄)F ′′,

σyy − iσxy = <(2F ′ − a) + 2a+ (z + z̄)F ′′,

−2µ ∂yyu = −(k F ′′ − F ′′ + (z + z̄)F ′′′),

11



which shows that σxx, σxy, and ∂yyu tend to 0 and σyy tends to 2a at the infinity (because

ez/α Ei(− z
α

) ∼ −α
z
: see Appendix). The assumptions preceding Eqs. (20)-(21) are thus

satisfied. In the following, we take a = 0, in order that all the components of the stress

tensor vanish at the infinity (including σz′z′ = ν(σxx + σyy)). According to H = −F (from

Eq. (24), taking the integration constant equal to 0), the final solution is then

−2µu = k F − F + (z + z̄)F ′,

where F (z) = β(log
z

α
− ez/α Ei(− z

α
)). (27)

The preceding solution holds for α > 0. Note that, if α = 0 (i.e., σ̂s = 0), we obtain the

solution

−2µu = k F − F + (z + z̄)F ′,

with F (z) = β log z, (28)

from Eq. (25) (with a = 0, for the same reason as above), which is exactly the classical

Flamant’s solution.1

VII. DISPLACEMENTS AND STRESSES

From Eqs. (18)-(19) (with H = −F ) and the above expression of F (Eq. (27)), we also

have

−2µ ∂xu = k F ′ + F ′ + (z + z̄)F ′′

−2µ ∂yu = i(k F ′ + F ′ − (z + z̄)F ′′)

σxx + iσxy = F ′ + F ′ − (z + z̄)F ′′

σyy − iσxy = F ′ + F ′ + (z + z̄)F ′′, with

F ′(z) = −β
α
ez/α Ei(− z

α
)

F ′′(z) = − β

α2
(ez/α Ei(− z

α
) +

α

z
). (29)

Introducing the function E(z) = log z − ezEi(−z), we may write

u(z) =
β

2µ
(−k E(

z

α
) + E(

z

α
)− z + z̄

α
E ′(

z

α
)), (30)

which shows that the displacement u is proportional to β/(2µ) and (2µ/β)u only depends

on z/α and k (i.e., ν). Thus, α = σ̂s(1− ν)/µ and β/(2µ) = σl/(4πµ) are the characteristic
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elastocapillary lengths for this solution. Similarly, (2µα/β)∂xu and (2µα/β)∂yu only depend

on z/α and k, and (α/β)σxx, (α/β)σyy, and (α/β)σxy only depend on z/α.

Since ez

z
= 1

z
+
∞∑
n=1

zn−1

n!
, we have Ei(z) = log(−z)+

∞∑
n=1

zn

nn!
+const. in C−R+, the constant

being equal to the Euler constant γ because Ei(x) =
∫ x
−∞

et

t
dt when x ∈ R∗−:

Ei(z) = γ + log(−z) +
∞∑
n=1

zn

nn!
in C−R+.

Then, in C−R−,

E(z) = −γ ez + (1− ez) log z − ez
∞∑
n=1

(−z)n

nn!

tends to −γ and

(z + z̄)E ′(z) =− ez(z + z̄) log z

− ez(z + z̄)(γ +
∞∑
n=1

(−z)n

nn!
)

tends to 0, when z → 0, which leads to the finite limit for the displacement

lim
z→0

u(z) = − β

2µ
(1− k)γ = −γ

π

σl

µ
(1− ν). (31)

From the above expressions of F ′(z), F ′′(z), and Ei(z), we obtain

α

β
F ′(z) = −γ − log

z

α
+ ε0(z)

= −γ − log
r

α
− iθ + ε0(z),

−α
β

(z + z̄)F ′′(z) =
z + z̄

z
+ ε0(z) = 1 + e−2iθ + ε0(z),

where z = reiθ, r > 0, −π < θ < π, and ε0(z) denotes any expression of z which tends to 0

when z → 0. Thus,

2µα

β
∂yu = (1− k)θ + sin 2θ

+ i((1 + k)(γ + log
r

α
)− 1− cos 2θ) + ε0(z), (32)

which shows that

lim
z→0, θ constant

∂yux =
β

2µα
((1− k)θ + sin 2θ)

=
σl

σ̂s

(
θ

π
+

sin 2θ

4π(1− ν)
),

lim
z→0

∂yuy =

+∞ if σl > 0

−∞ if σl < 0.
(33)
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Obviously, the infinite limit of ∂yuy (and, below, ∂xux) is in contradiction with the assump-

tion of small deformations and, strictly speaking, the solution is not valid for z close to 0.

The solution may rather be considered as a mathematical description of the singularity at

z = 0. Note that, on the surface x = 0, with y > 0 (i.e., θ = π/2), the above equation shows

that ∂yux tends to
σl

2σ̂s

when y → 0, y > 0, in agreement with the above Eq. (13). Since

the initial surface x = 0 is, after deformation, represented by the function y → ux(0, y),

there is thus a finite displacement and the formation of a ridge at z = 0 on the surface,

as shown in Fig. 2a. In this Fig. 2, the displacements ux(0, y) and uy(0, y) on the surface,

FIG. 2. Displacements ux (a) and uy (b) on the surface x = 0 as functions of y, for ν = 0.3.

The graph ux (a) represents the form of the surface after deformation. Notations: α =
σ̂s(1− ν)

µ
,

β =
σl

2π
.

obtained from Eq. (27), are represented, for ν = 0.3. For comparison, the displacements of

the Flamant’s solution (Eq. (28)) are shown in Fig. 3. Note that, except for the presence of

a ridge at the contact line, the behavior on the surface of our solution (Fig. 2) cannot be

compared with the results of Ref. 3 which concern a thin film 0 ≤ x ≤ h of elastic body

with a zero-displacement at x = h.

In a similar way, we have

2µα

β
∂xu = (1 + k)(γ + log

r

α
) + 1 + cos 2θ

+ i(−(1− k)θ + sin 2θ) + ε0(z), (34)

14



FIG. 3. The classical Flamant’s solution: displacements ux (a) and uy (b) on the surface x = 0 as

functions of y, for ν = 0.3. Notation: β =
σl

2π
. The graph ux (a) represents the form of the surface

after deformation. At x = y = 0, ux is infinite and uy is discontinuous.

which shows that

lim
z→0

∂xux =

+∞ if σl > 0

−∞ if σl < 0,

lim
z→0, θ constant

∂xuy =
σl

σ̂s

(− θ
π

+
sin 2θ

4π(1− ν)
), (35)

and immediately gives the limits of the strain tensor components εxx = ∂xux, εyy = ∂yuy,

and εxy = 1
2
(∂xuy + ∂yux):

lim
z→0, θ constant

εxy =
σl

σ̂s

sin 2θ

4π(1− ν)
. (36)

We also obtain

α

β
(σxx + iσxy) = − 2(γ + log

r

α
) + 1 + cos 2θ

+ i sin 2θ + ε0(z),

α

β
(σyy − iσxy) = − 2(γ + log

r

α
)− 1− cos 2θ

− i sin 2θ + ε0(z), (37)

15



which shows that

lim
z→0

σxx =

+∞ if σl > 0

−∞ if σl < 0,

lim
z→0

σyy =

+∞ if σl > 0

−∞ if σl < 0,

lim
z→0, θ constant

σxy =
σl

σ̂s

µ

2π(1− ν)
sin 2θ. (38)

Since the inequality |1 + z ezEi(−z)| ≤ 2
|z| for <z > 0 (proved in the Appendix) may

be continuously extended in <z ≥ 0, z 6= 0 (let us recall that z → Ei(−z) is analytic in

C−R−), then ezEi(−z) ∼ −1
z

when |z| → +∞, <z ≥ 0, and we may write (from Eqs. (27)

and (29))

1

β
F (z) = log

r

α
+ iθ + ε∞(z),

1

β
(z + z̄)F ′(z) = −z + z̄

z

z

α
ez/α Ei(− z

α
)

= 1 + e−2iθ + ε∞(z),

where ε∞(z) denotes any expression of z which tends to 0 when |z| → +∞, <z ≥ 0. Thus,

2µ

β
u = (1− k) log

r

α
− 1− cos 2θ

+ i(−(1 + k)θ − sin 2θ) + ε∞(z),

which shows that

lim
|z|→+∞

ux =

+∞ if σl > 0

−∞ if σl < 0,

lim
|z|→+∞, θ constant

uy =
σl

4πµ
(2(1− 2ν)θ − sin 2θ). (39)

Clearly, the infinite limit of ux is due to the assumption of a force σl applied on the whole

infinite line x = y = 0 (the z′ axis). Note that, on the surface x = 0, with y > 0 (i.e.,

θ = π/2), the preceding equation shows that uy tends to
σl

4µ
(1 − 2ν) when y → +∞ (see

Fig. 2b). Also note that, in the limit case ν → 1
2

(i.e., k + 1 → 0), the expression of u

(Eq. (27)) shows that uy = 0 on the surface x = 0.
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From the expression of F ′(z) in Eq. (29), F ′(z) tends to 0 and, from Eq. (26) (with b = 0),

(z + z̄)F ′′(z) tends to 0 when |z| → +∞, <z ≥ 0, which implies that

∂xu and ∂yu tend to 0 when |z| → +∞, (40)

and

σxx, σxy, σyy, and σz′z′ tend to 0 when |z| → +∞ (41)

(as mentioned in Sec. VI).

The dependence on ν is shown in Eq. (30): at z/α fixed, (2µ/β)u linearly varies with k,

i.e., with ν. In particular, on the surface x = 0,

2µ

β
ux(0, y) = 4(1− ν)<(E(

iy

α
))

2µ

β
uy(0, y) = 2(1− 2ν)=(E(

iy

α
)),

which shows that all the functions y/α → (2µ/β)ux(0, y) and y/α → (2µ/β)uy(0, y) are

similar to those of Fig. 2, i.e., only multiplied by 1−ν
1−0.3

for ux, and by 1−2ν
1−0.6

for uy.

In the volume x ≥ 0, the displacements ux and uy are represented in Fig. 4, for ν = 0.25.

In Fig. 4a, we observe that ux increases when the distance to (x, y) = (0, 0) increases. In the

xy plane of Fig. 4b, the curves uy = constant show asymptotic directions. There are two

lines where uy = 0: the straight line y = 0 (obviously) and a curved line, with an intersection

of the two lines at x0 > 0, y = 0. If x remains constant, x > x0, and y increases from 0 to

positive values, we observe that uy decreases from 0 to a negative value and then increases to

positive values (after crossing the value 0). These observations are consistent with Eq. (39)

which gives the asymptotic value uy,∞ of uy as a function of the direction θ: (2µ/β)uy,∞ =

2(1− 2ν)θ − sin 2θ, which decreases from 0 to a negative value and then increases to the

positive value π(1 − 2ν) (after crossing the value 0), when θ increases from 0 to π/2. In

fact, the asymptotic direction(s) θ of the curve (2µ/β)uy = c (constant) is (are) given by

the equation c = 2(1 − 2ν)θ − sin 2θ. Thus, for y ≥ 0, the curves (2µ/β)uy = c with c > 0

have one asymptotic direction and those with c ≤ 0 have two asymptotic directions, which

is consistent with Fig. 4b. Note that these results concerning uy are consistent with the

experiments and Fourier transform calculations of Ref. 20-Fig. 3a–d, in the neighborhood of

the contact line.
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FIG. 4. Displacements ux (a) and uy (b) in the volume x ≥ 0 as functions of (x, y), for ν = 0.25.

Vertical axis x/α, horizontal axis y/α. The values of (2µ/β)ux or (2µ/β)uy are indicated on each

curve. Notations: α =
σ̂s(1− ν)

µ
, β =

σl

2π
.

As ν increases, the distances between the curves of Fig. 4a increase, which means that

(at 2µα/β constant) the gradient of ux decreases, at each point (x/α, y/α). In Fig. 4b, as ν

increases to 0.5, x0/α (abscissa of the intersection of the straight line y = 0 and the curved

line uy = 0) decreases to 0. Moreover, if θ0 denotes the asymptotic direction of the curved

line uy = 0, i.e., 2(1 − 2ν)θ0 = sin 2θ0, 0 ≤ θ0 ≤ π/2, clearly θ0 increases from 0 to π/2

when ν increases from 0 to 0.5. When ν reaches the limit value 0.5, this curved line uy = 0

becomes the straight line x = 0.

VIII. THE DISPLACEMENTS BELONG TO H1(V) AND H1(S): FINITE

ELASTIC ENERGY AND VALIDITY OF GREEN’S FORMULAE

Eqs. (32), (34), and (37) show that ∂yux, ∂xuy, and σxy are bounded for |z| < r0 (r0

positive constant) and

|∂xux|, |∂yuy|, |σxx|, |σyy|, and |σz′z′ | ≤ c| log r|+ d

for |z| < r0 (42)
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(c and d positive constants), as in our preceding paper Ref. 7. If V denotes the volume x > 0,

|x+ iy| < r0, 0 < z′ < l0 (l0 positive constant), the preceding inequalities imply that all the

components ∂jui and σij belong to L2(V) (because r(log r)2 and r| log r| are integrable on

[0, r0]). Since u is continuous (with a finite limit at z = 0), this shows that the components

ui of the displacement belong to the Sobolev space H1(V) (as a consequence, the components

σij ∈ L2(V)). This point is crucial for the physical validity of the solution because it implies

that:

1) The elastic energy

µ

∫
V

(
∑
(i,j)

ε2
ij +

ν

1− 2ν
(
∑
i

εii)
2) dv

is finite.

2) Green’s formula∫
V

σ : Dw dv = −
∫

V

divσ · w dv −
∫

S

(σ · n) · w da (43)

is valid, because the components wi (as ui) belong to H1(V), the components σij belong

to L2(V), and the components (divσ)i belong to L2(V) (owing to the equilibrium equa-

tion divσ = 0; note that the derivatives ∂lσij generally do not belong to L2(V) and the

components σij do not belong to H1(V)) (see Theorem 4.4.7 in Ref. 21).

Let us recall that, in the classical Flamant’s solution, u is infinite at the contact line, the

derivatives ∂jui (and σij) do not belong to L2(V), and the elastic energy is infinite.

In the theory presented in Ref. 4, we also used Green’s formula on the surface∫
S

σ̄s : Dsw da = −
∫

S

divσ̄s · w da−
∫

C

(σ̄s · ν) · w dl (44)

(with the notations of Sec. II and (Dsw)βi = ∂βwi), where S is a portion of the bf (or bf ′)

surface adjacent to the contact line, C the boundary curve, ν the unit vector normal to

this curve, tangent to the surface, and directed towards the interior of S, da an element

of area, and dl an element of length. The derivatives ∂αui, being bounded or subjected to

the inequality of Eq. (42), belong to L2(S) (because (log r)2 and | log r| are integrable on

[0, r0]), so that the components ui belong to H1(S). Here also, applying the same Theorem

as above, Green’s formula is valid, because the components wi (as ui) belong to H1(S), the

components σ̄s
βi belong to L2(S) (since σ̂s is constant on the surface), and the components

(divσ̄s)
i belong to L2(S) (the tangential component is equal to 0 and the normal component
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is σ̂s ∂yyux = −σxx, for x = 0 and y 6= 0, which satisfies the inequality of Eq. (42); see

Sec. IV and Eq. (16)).

IX. CONCLUSIONS

When an elastic body is in contact with two immiscible fluids (e.g., an elastic gel in

contact with a liquid and the air), it is subjected to the fluid–fluid surface tension acting on

the body–fluid–fluid triple contact line. This force concentrated on the contact line produces

a singularity on the elastic body. In the simple case of a semi-infinite body, bounded by a

plane, and a force concentrated on a straight line of this plane and normal to the plane, the

classical solution of Flamant1 leads to an infinite displacement at this contact line. In the

present paper, a new solution with a finite displacement at the contact line is obtained, by

introducing a surface tension (i.e., isotropic surface stress) at the surface of the semi-infinite

body and applying the general equilibrium equations (on the surface and at the contact

line) of the previous work Ref. 4. Using Kolosov’s approach of plane strain elasticity, in

the complex plane, with a new function H (Sec. V), and the theory of analytic functions,

we are led to a differential equation (Eq. (25)), the solution of which gives the explicit

expression of the displacement u (Eq. (27)), and then the expressions of the derivatives of

the displacement and the strain and stress components (Eq. (29)). The displacement u is

proportional to β/(2µ) = σl/(4πµ) (σl the force or fluid–fluid surface tension concentrated

on the contact line, µ the Lamé elastic shear modulus) and (2µ/β)u only depends on the

coordinates (x/α, y/α) and ν (α = σ̂s(1− ν)/µ, σ̂s the surface tension at the surface of the

body, ν the Poisson’s coefficient). Thus, α and β/(2µ) are the characteristic elastocapillary

lengths for this solution. The displacement is finite and continuous at the contact line, with

the formation of a ridge (see Eq. (31) and Fig. 2a). At the contact line, the xx and yy strain

and stress components become infinite, but their xy components have different finite limits

when approaching the contact line under different directions (Eqs. (33), (35), (36), and (38)).

Moreover, all the stress components and the derivatives of the displacement vanish at the

infinity of the body (Eqs. (40)-(41)). The components ux and uy of the displacement, as

functions of the coordinates (x, y), are shown in Fig. 4.

Moreover, in the neighborhood of the contact line, the derivatives of the displacement

are either bounded or present a logarithmic divergence (Eq. (42); as in the example of
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solution of Ref. 7), which implies that the components ui of the displacement belong to

H1(V) and H1(S) (V being a volume of the body and S a portion of surface of the body, in

the neighborhood of the contact line). This is a crucial point for the physical validity of the

solution because it implies that the elastic energy is finite and both Green’s formulae in the

volume and on the surfaces (Eqs. (43) and (44), which play a central role in the theory of

Ref. 4) are valid. Note that, in the classical Flamant’s solution, the components ui do not

belong to H1(V) and the elastic energy is infinite.

Appendix A: Expression of Ei(z) when <z < 0

Since |ezt| = ext, the function t → ezt

t
is integrable in [1,+∞[, for x = <z < 0, and we

note f(z) = −
∫ +∞

1
ezt

t
dt.

If <z = x < x0 < 0, then | ezt
t
| = ext

t
< ex0t

t
which is integrable for t ∈ [1,+∞[, which

implies that f is analytic in <z < x0 (see Ref. 22, (13.8.6)(iii)) for all x0 < 0, hence f is

analytic in <z < 0.

Moreover, for z = x ∈ R∗−, f(x) = −
∫ +∞

1
ext

t
dt =

∫ x
−∞

es

s
ds = Ei(x). The two analytic

functions f and Ei are then equal in <z < 0, i.e.,

Ei(z) = −
∫ +∞

1

ezt

t
dt = −

∫
Γz

ev

v
dv for <z < 0,

where Γz is the path: t ∈ [1,+∞[→ v = zt ∈ C.

Appendix B: Behavior of Ei at the infinity, when <z < 0

Since | ezt
zt
| = ext

|z|t → 0 when t → +∞, for x = <z < 0, the integration of ( e
v

v
)′ = ev

v
− ev

v2

along the path Γz gives

0− ez

z
= −Ei(z)−

∫
Γz

ev

v2
dv, i.e.,

ez

z
− Ei(z) =

∫
Γz

ev

v2
dv =

1

z

∫ +∞

1

ezt

t2
dt =

ez

z
I(z),

where I(z) =

∫ +∞

1

ez(t−1)dt

t2
.
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By integration by parts (ez(t−1) = 1
z
d
dt
ez(t−1)), we obtain

I(z) =
1

z
((0− 1) + 2

∫ +∞

1

ez(t−1)

t3
dt), hence

|I(z)| ≤ 1

|z|
(1 + 2

∫ +∞

1

dt

t3
) =

2

|z|
,

i.e.,

|1− z e−zEi(z)| ≤ 2

|z|
for <z < 0, and then

Ei(z) ∼ ez

z
when |z| → +∞, <z < 0,

or, if <z > 0,

|1 + z ezEi(−z)| ≤ 2

|z|
for <z > 0, and

Ei(−z) ∼ −e
−z

z
when |z| → +∞, <z > 0.
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