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Abstract—Tracking targets based on measurements provided
by radar, sonar, or lidar sensors is essential to obtain situational
awareness in important applications, including autonomous navi-
gation and applied ocean sciences. A key challenge in multitarget
tracking is the unknown association between the available mea-
surements and the targets to be tracked. In particular, robust data
association for closely spaced targets requires advanced methods
that explicitly model unresolved measurements. Due to limited
sensor resolution, the sensor produces a single measurement

for two or more actual targets. If not explicitly modeled in
the multitarget tracking method, unresolved measurements lead
to track losses and thus, to significant tracking errors. In this
paper, we propose a scalable data association method for the
tracking of multiple potentially unresolved targets. A loopy belief
propagation method is presented that efficiently approximates
the marginal association probabilities given a set of potentially
unresolved measurements. This method scales quadratically in
the number of targets and linearly in the number of measure-
ments. Our numerical results demonstrate that the computed
approximate marginal association probabilities are close in L1

distance to the true marginal association probabilities, which can
only be calculated for very small tracking scenarios.

I. INTRODUCTION

Tracking multiple targets [1]–[8] in densely packed sce-

narios is of high interest in many areas of engineering,

such as autonomous navigation, applied ocean sciences, air

traffic control, and biomedical analysis. Due to limited sensor

resolution, closely spaced targets may become unresolved,

and only a single measurement is perceived for the entire

group of targets by the respective sensor. Such scenarios pose

difficulties and often lead to lost tracks when unresolved

targets are not explicitly considered.

A. Existing Methods

There exist several tracking approaches that consider mul-

titarget tracking with potentially unresolved measurements.

Several methodologies for tracking two crossing targets from

imaging sensors are presented in [1, Ch.9.4]. From each

frame, a segmentation method extracts a small image (“hot

spot”) corresponding to either one target or an unresolved

pair of targets that overlaps. The segmentation method also

detects potential overlap. When overlapping is detected, sev-

eral measurements are collected: a single merged measure-

ment for the centroid of the overlapping hot spot and two

displacement measurements between the two targets with an

ambiguous origin. The merged centroid is assumed to be a

linear combination of the individual target images, where the

mixing coefficient is determined based on their relative pixel

intensities. Before overlapping, the two targets are tracked

using separate filters. When overlapping is detected, tracking

switches to coupled filtering using a stacked state vector. Two

variants of coupled Joint Probabilistic Data Association Filter

(JPDAF) are proposed for filtering during the overlapping

period.

In [9], [10] and [1, Ch.6.4], a fixed-grid resolution model

is employed to determine when two targets are unresolved.

Subsequently, the joint probabilities for two targets and their

corresponding association hypotheses are derived, followed by

Gaussian approximations for the target state’s marginal prob-

ability density functions (pdfs). The proposed methodology

of [9], [10], named Joint Probabilistic Data Association with

Merged Measurements (JPDAM), was improved in [11] by

proposing a simpler approximation to the pdf of the merged

measurement.

As opposed to the fixed-grid model of [9]–[11], in [12],

a sensor model is proposed where the resolution capability

is determined by a conditional probability of the event that

two targets are unresolved. Tracking two possibly unresolved

targets is addressed via a generalization of Multiple Hypoth-

esis Tracking (MHT) that considers the added hypotheses

of unresolved targets with the proposed model. This same

resolution model is also employed by the authors of [13],

which further propose an Interacting Multiple Models (IMM)-

JPDAM technique to account for maneuvering targets as well

as for unresolved measurements.

Using analytic combinatorics, the authors of [14] propose

a joint-likelihood function that incorporates all the feasi-

ble hypotheses regarding the measurements and the targets.

Subsequently, the authors propose a Joint Probabilistic Data

Association (JPDA) filter for a two-target tracking scenario.

In [15], the sensor resolution capabilities are translated into

resolution events, where each event is a partitioning of the

targets into groups–each group being unresolved. To evaluate

the probability of each such event, resolution graphs are

introduced, where targets represent nodes, and bidirectional



edges represent unresolved pairs of targets. A connected sub-

graph represents a group of unresolved targets. Each edge

has a corresponding probability that the two targets are un-

resolved, which has the same expression as in [12]. Thus,

the model of [15] can be seen as an extension of the two-

target model [12] to the case of a fixed number of multiple

targets. The joint posterior pdf of targets is obtained in [15]

by marginalizing over all feasible resolution graphs and all

feasible associations for each graph. Gaussian mixture and

single-Gaussian approximate filters are also provided.

An labeled random finite set (LRFS)-based multitarget

tracking filter with merged measurements was proposed in [4]

by relying on a generalized labeled multi-Bernoulli (GLMB)

to model the multiple targets coupled with a generic merged-

measurement model. The GLMB model is a weighted mixture

of different LRFSs, called hypotheses, and the GLMB filter [7]

sequentially propagates these hypotheses via prediction and

update. The disadvantage of GLMB filters, including [4], is

given by the exponential increase over time of the number of

hypotheses. A merged measurement labeled multi-Bernoulli

(LMB) filter is proposed in [16] and alleviates the growth

mentioned above of hypotheses over time, however still re-

tains the need to construct and evaluate numerous association

hypotheses during the update procedure, followed by a direct

marginalization for each target across these hypotheses.

B. Contribution

In this paper, we address the case of tracking a fixed number

of targets where any two targets can become unresolved.

Within this “Unresolved Two-Target (UTT)” model, we deter-

mine the probability of all target pairs becoming an unresolved

pair using an expression borrowed from [12]. Here, knowledge

of the sensor resolution capabilities and the distance between

the state vectors of the two targets are considered. A resolution

graph describes a resolution event where the nodes are the

targets. There is an edge between nodes if targets contribute to

the same unresolved measurement. We constrain the maximum

degree of the graph to be at most one to ensure that there are at

most two targets that contribute to an unresolved measurement.

In contrast to the approaches mentioned above, our proposed

method relies on message passing and, more specifically, on

the Loopy Belief Propagation (LBP) [3], [6], [17], [18] to

efficiently approximate marginal pdfs of the target state. To

achieve this, a set of association variables are defined, allowing

for the factorization of the posterior multitarget pdf, and

an LBP algorithm is tailored to the resulting factor graph. The

proposed LBP method for the UTT model scales quadratically

with the number of targets and linearly with the number of

measurements.

Notation: Throughout this work, the following notations

are employed. Random variables are displayed in sans serif,

upright fonts; their realizations in serif, italic fonts. Vectors and

matrices are denoted by bold lowercase and uppercase letters,

respectively. Random sets and their realizations are denoted

by upright sans serif and calligraphic font, respectively. For

example, a random vector and its realization are denoted by x

and x while a random set and its realization are denoted by X

and X , respectively. The set cardinality is denoted by |X|. The

set of integers {a, a+ 1, · · · , b}, for any a < b, is denoted as

Ja, bK. Equality up to a normalization factor is denoted as ∝.

II. THE PROPOSED UTT MODEL

We consider a number of no randomly maneuvering tar-

gets. The trajectory of each target i ∈ J1, noK is char-

acterized by a stochastic process x
(i)
k ∈ Rd. At each

discrete time step, indexed by k, the multitarget state is

obtained by concatenating the individual state vectors as

xk =
[

(x
(1)
k )⊤, (x

(2)
k )⊤, · · · , (x

(no)
k )⊤

]⊤
. Measurements per-

formed at time k are denoted as zk and the joint vector

of all measurements collected up to time k as z1:k. It is

assumed that we are at time k, and the predicted posterior

pdf, f(xk|z1:k−1), is available. Furthermore, it is assumed

that this pdf factorizes as

f(xk|z1:k−1) =

no
∏

i=1

f
(

x
(i)
k |z1:k−1

)

. (1)

In what follows, the UTT measurement model is presented

where any two targets with indexes in J1, noK can potentially

generate a single unresolved measurement—in which case, we

will refer to the two targets as unresolved. The UTT model

generalizes the model of [12], the latter only treating the case

where no = 2.

We define an UTT resolution event R as a set R =
{

R1, · · · ,RN

}

with |Rn| ≤ 2, n∈ {1, . . . , N} that partitions

J1, noK, i.e., ∪N
i=1Ri = J1, noK. In particular, each element

in R is either a singleton or a tuple; in the latter, the tuple

contains the indices of two unresolved targets, while in the

former, it contains the index of a resolved target. Moreover,

all elements in R are disjoint, and their union yields J1, noK.

We introduce the set of all such resolution events as P2. Note

that here, the subscript 2 denotes that the resolution event

consists of sets with at most two target indices.

The probability that targets with indexes i, l ∈ J1, noK form

an unresolved pair and generate an unresolved measurement

is modeled as [12]

Pu(x
(i)
k ,x

(l)
k ) = exp

(

−
1

2
(∆il

k )
⊤(Au)

−1 ∆il
k

)

.

Here, Au is a positive definite matrix that describes the

resolution capabilities of the sensor. We also introduced ∆il
k ,

hr(x
(i)
k ) − hr(x

(l)
k ), where hr(·) is the measurement model

of the sensor for the resolved target case. If two targets are

close in the measurement domain, they yield a small ∆il
k and

thus a high probability, Pu(x
(i)
k ,x

(l)
k ), that they generate an

unresolved measurement. A discussion on typical values for

the resolution matrix Au is provided in [12].

Conditioned on the multitarget state xk, the probability of

an UTT resolution event R = R, with R ∈ P2, is obtained as

p(R|xk) = Vu(xk)
∏

{i,l}∈R

Pu

(

x
(i)
k ,x

(l)
k

)

1− Pu

(

x
(i)
k ,x

(l)
k

)

. (2)



Here,
∏

{i,l}∈R denotes the product over all sets Rn ∈ R with

|Rn| = 2 and Vu(xk) is a normalization constant, i.e.,

Vu(xk) ,

(

∑

R∈P2

∏

{i,l}∈R

Pu

(

x
(i)
k ,x

(l)
k

)

1− Pu

(

x
(i)
k ,x

(l)
k

)

)−1

. (3)

A resolution event R ∈ P2 can be seen as a random undirected

graph with a set of vertices J1, noK and a set of edges R. The

restriction R ∈ P2 is equivalent to imposing that the maximum

degree of the graph is strictly less than 2.

At time k, mk measurements are collected, i.e., z
(j)
k ∈ Z,

j ∈ {1, . . . ,mk}. Note that the number of measurements, mk,

is also random. Given a resolution event R, each element in

Rn ∈R may produce a target-originated measurement vector.

In addition to target-generated measurements, there are also

clutter-generated measurements. A detailed description of the

proposed UTT target detection and measurement model is

provided next.

• For each singleton {i} ∈ R, the corresponding resolved

target can generate up to one measurement. More specif-

ically, with probability P
(i)
d , the i-th target with state

vector x
(i)
k generates a measurement vector according to

z
(j)
k = hr(x

(i)
k ) + v

(j)
k (4)

where v
(j)
k ∼ N (0,R) is the corresponding measure-

ment noise. From (4), we can directly get the resolved

target likelihood function f
(

z
(j)
k |x

(i)
k

)

. With probability

1−P
(i)
d , the i-th target is undetected, and no measurement

is generated. This is typically referred to as missed detec-

tion. The detection procedure is carried out independently

for every resolved target, i.e., for every {i}∈R.

• For each {i, l} ∈ R, the corresponding pair of unre-

solved targets generates a single unresolved measurement

according to

z
(j)
k = hu

(

x
(i)
k , x

(l)
k

)

+ v
(j)
k (5)

where hu

(

x
(i)
k , x

(l)
k

)

is the merged measurement model

[e.g., hu(x,y) = 1
2 (hr(x) + hr(y))] and v

(j)
k ∼

N (0,Ru) is again measurement noise. Here, a single

target-originated measurement is always generated, i.e.,

any unresolved pair of targets is always detected. From

(5), we can directly get the unresolved targets likelihood

function f
(

z
(j)
k |x

(i)
k ,x

(l)
k

)

.

• Clutter-generated measurements are independent and

identically distributed (iid) with pdf fc(z
(j)). The number

of clutter measurements follows a Poisson distribution

with rate parameter λc [1].

The measurement noise v
(j)
k in (4) and (5) is assumed inde-

pendent across index j and independent of clutter-originated

measurements. Both clutter and target-originated measure-

ments are arranged in a concatenated measurement vector,

zk =
[

(z
(1)
k )⊤, · · · , (z

(mk)
k )⊤

]⊤
. The order of measurements

in this vector is random. We assume measurement origin

uncertainty, i.e., the origin—whether single target, pair of

targets, or clutter—of a single measurement z
(j)
k is unknown.

Remark 1. Note the difference between the UTT model

introduced in this paper and the one presented in [12]. A

pair of unresolved targets, in the former, always generates

an unresolved measurement while, in the latter, it may or

may not generate a measurement. For example, under the

model of [12], an ambiguity arises when all measurements are

clutter. Namely, the unresolved and undetected event becomes

indistinguishable from the resolved and undetected event.

Within our model, the case where all measurements are clutter-

originated is represented by a single resolution event, i.e., the

event R where for all Rn ∈ R we have |Rn| = 1. This is

because, here, a pair of unresolved targets implies that both

targets have been detected, but only a single measurement

is generated due to limited sensor resolution. On the other

hand, following the model in [12], multiple resolution events

can represent the aforementioned “all-clutter” case.

III. STATISTICAL MODEL AND PROBLEM FORMULATION

In what follows, we will present the statistical model for

data association with potentially unresolved targets.

A. Data Association Vectors and Constraints

Due to unresolved measurements, measurement-origin un-

certainty, and clutter measurements, there exist a large num-

ber of possible explanations for the observed measurement

vector zk =
[

(z
(1)
k )⊤, · · · , (z

(mk)
k )⊤

]⊤
. This fact is repre-

sented by the random target-oriented association vector ak =

[a
(1)
k , · · ·, a

(no)
k ]⊤ with entries

a
(i)
k =



















j ∈ J1,mkK target i generated/contributed to

the j-th measurement

0 target i has not contributed to

to any measurement.

Note that not every ak ∈ Ak , J0,mkK
no is valid. In

particular, an ak ∈Ak is invalid if it describes an event where

a measurement has contributions from more than two targets.

The validity of an event can thus be verified by evaluating the

following binary constraint, i.e.,

Ψk(ak) =











0, ∃i, j , l ∈ J1, noK

s.t. a
(i)
k = a

(j)
k = a

(l)
k 6= 0

1, otherwise.

(6)

If we knew the valid ak that generated the measurement vector

zk, we could explain the origin of every measurement and,

at the same time, unambiguously specify the target resolution

event R. However, ak is random and thus a nuisance parameter

in our Bayesian state estimation problem. For minimum mean

squared error estimation, nuisance parameters are marginalized

by computing a marginal posterior pdf from a joint posterior

pdf. Within this marginalization step, for each possible mul-

titarget state vector xk, a sum with a number of terms that

is equal to all possible association vectors ak needs to be

computed. Due to the large number of possible vectors, this

is typically infeasible.



As in [3], [6], [17], we aim to develop a feasible approxi-

mate target state estimation based on LBP. Here, the aforemen-

tioned infeasible marginalization is avoided by introducing the

complementary measurement-oriented association vector bk =

[b
(1)
k , b

(2)
k , · · · , b

(mk)
k ]⊤, where each entry b

(j)
k =

[

b
(j)
k,1, b

(j)
k,2

]⊤

specifies the origin of a measurement, i.e.,

b
(j)
k =







































[i, i] the j-th measurement was generated

by target i ∈ J1, noK

[i, l] the j-th measurement was generated

by targets i, l ∈ J1, noK, i > l

[0, 0] the j-th measurement was generated

by clutter.

Here, each entry in bk is a tuple [i, l] with elements that

are decreasingly ordered. A measurement-oriented association

vectors is an element of Bk , Bmk , where B =
{

[i, l] : i, l ∈
J1, noK and i > l

}

∪
{

[0, 0]
}

. However, not all vectors in Bk

are valid measurement-oriented association vectors. An event

is invalid if a target contributes to more than one measurement.

Validity can be checked by introducing a constraint for target-

oriented association vectors. We skip this step here for the

sake of brevity.

For each valid ak, there is exactly one valid bk and vice

versa. For example, in the all-clutter case, the measurement-

oriented association vectors defined by b
(j)
k = [0, 0], ∀j,

uniquely corresponds to ak = [0, · · · , 0]⊤. It can easily be

verified that for invalid ak and bk, however, there does not

exist a corresponding invalid bk and ak, respectively. For

example, an invalid event where three targets contribute to

the same measurement can be described by an ak ∈ Ak but

not by a bk ∈ Bk.

We can check if a ak and bk represent the same association

event by introducing the following product of elementwise

consistency constraints, i.e.,

Ψk(ak, bk) =

no
∏

i=1

mk
∏

j=1

ψij(a
(i)
k , b

(j)
k ) (7)

with

ψij(a
(i)
k , b

(j)
k ) =











0, a
(i)
k = j and ∄q s.t. b

(j)
k,q = i

or ∃q s.t. b
(j)
k,q = i and a

(i)
k 6= j

1, otherwise .

(8)

Only if all elements in ak are consistent with all elements

in bk, i.e., all elementwise consistency constraints in (7) are

equal to one, the two vectors represent the same association

event. Since only valid events can be represented by an ak and

a bk at the same time, the represented event must be valid.

By also introducing a measurement-oriented association

vector bk, we can thus replace the constrain that is a func-

tion of the high-dimensional vector ak in (6), by multiple

constraints that are a function of low-dimensional vectors and

scalars in (7). This step is critical for feasible data association

using LBP.

B. The Joint Posterior Pdf

The goal of this paper is to compute marginal associa-

tion probabilities, p(b
(j)
k |z1:k), for each measurement j ∈

J1,mkK. In principle, these marginal probability mass func-

tions (pmfs) can be obtained from the joint posterior pdf

f(xk,ak, bk|z1:k), which involves the target states and all

association variables at time k, by direct marginalization.

However, this is typically infeasible due to the large number

of valid association events. To obtain feasible estimates of the

required marginals, i.e., p̂j(b
(j)
k |z1:k), j ∈ J1,mkK, we apply

LBP on the factor graph representing f(xk,ak, bk|z1:k) [19].

In what follows, we assume that the measurement at time k,

zk, has been observed and is thus fixed. Note that this implies

that mk is also observed and fixed. By using Bayes’ rule, the

joint posterior factorizes as

f(xk,ak, bk|z1:k) = f(xk,ak, bk|z1:k−1, zk,mk)

∝ f(zk|xk,ak, bk,mk)p(ak, bk|xk,mk)

×f(xk|z1:k−1). (9)

Note that here we have made the common assumption [6] that,

conditioned on xk and mk, the association vectors ak and bk
are independent of all previous measurements z1:k−1.

The first term in (9) corresponds to the likelihood of the

measurement zk that, based on the assumptions discussed in

Section II, can be written as

f(zk|xk,ak, bk,mk) = f(zk|xk, bk,mk)

=

[ mk
∏

j=1

fc(z
(j)
k )

] mk
∏

j=1

g
(

xk, b
(j)
k ; z

(j)
k

)

.

(10)

Here, we have introduced

g
(

xk, b
(j)
k ; z

(j)
k

)

=

no
∏

l=1

g
(l)
1

(

x
(l)
k , b

(j)
k ; z

(j)
k

)

×
no
∏

i=l+1

g
(il)
2

(

x
(i)
k ,x

(l)
k , b

(j)
k ; z

(j)
k

)

with factors g1(·) and g2(·) defined as

g
(l)
1

(

x
(l)
k , b

(j)
k ; z

(j)
k

)

,







f(z
(j)
k

|x
(l)
k

)

fc(z
(j)
k

)
, if b

(j)
k = [l, l]

1, otherwise

and
g
(il)
2

(

x
(i)
k ,x

(l)
k , b

(j)
k ; z

(j)
k

)

,







f(z
(j)
k

|x
(i)
k

,x
(l)
k

)

fc(z
(j)
k

)
, if b

(j)
k = [i, l]

1, otherwise.

Let Mu
bk

= {j ∈ J1,mkK : b
(j)
k,1 6= b

(j)
k,2} denote the set of

measurement indices that result from unresolved targets. In

contrast, Mr
bk

= {j ∈ J1,mkK : b
(j)
k,1 = b

(j)
k,2 6= 0} is the

set of measurement indices that correspond to resolved and



detected targets. Furthermore, Mbk
=Mu

bk
∪Mr

bk
is the set

of all target-generated measurements. Based on assumptions

discussed in Section II and by using (2), the prior pmf of

association vectors ak ∈ Ak and bk ∈ B, can be obtained as

p(ak, bk|xk,mk)

=Vu(xk)Ψk(ak, bk)
e−λc(λc)

mk−|Mbk
|

mk!

×

[

no
∏

i=1

(

1− P
(i)
d

)

][

∏

j′∈Mr
bk

P
(j′1)
d

1− P
(j′1)
d

]

×
∏

j∈Mu
bk

Qu

(

x
(j1)
k ,x

(j2)
k

)

(

1− P
(j1)
d

)(

1− P
(j2)
d

) (11)

where we used the short notation j1 , b
(j)
k,1, j2 , b

(j)
k,2, and

Qu

(

x
(i)
k ,x

(l)
k

)

, Pu

(

x
(i)
k ,x

(l)
k

)

/
(

1−Pu

(

x
(i)
k ,x

(l)
k

))

. A detailed

derivation of this expression will be provided in future work.

By plugging expressions in (1), (10), and (11) into (9), and

dropping constant factors, we obtain

f(xk,ak, bk|z1:k)

∝ Vu(xk)

[

no
∏

i=1

f
(

x
(i)
k

∣

∣z1:k−1

)

]

×
mk
∏

j=1

no
∏

l=1

ψlj

(

a
(l)
k , b

(j)
k

)

q
(l)
1

(

x
(l)
k , b

(j)
k ; z

(j)
k

)

×
no
∏

i=l+1

q
(il)
2

(

x
(i)
k ,x

(l)
k , b

(j)
k ; z

(j)
k

)

. (12)

Note that here we have introduced the combined factors

q
(l)
1

(

x
(l)
k , b

(j)
k ; z

(j)
k

)

,







P
(l)
d f

(

z
(j)
k

∣

∣

x
(l)
k

)

(1−P
(l)
d )λcfc

(

z
(j)
k

) , if b
(j)
k = [l, l]

1, otherwise

and

q
(il)
2

(

x
(i)
k ,x

(l)
k , b

(j)
k ; z

(j)
k

)

,







f

(

z
(j)
k

∣

∣x
(i)
k
,x

(l)
k

)

Qu

(

x
(i)
k
,x

(l)
k

)

(1−P
(i)
d )(1−P

(l)
d )λcfc

(

z
(j)
k

) , if b
(j)
k = [i, l]

1, otherwise.

The factorization structure of f(xk,ak, bk|z1:k) in (12) is key

for the development of a scalable LBP method presented next.

IV. THE PROPOSED LBP ALGORITHM

Before we develop the LBP message passing for the cal-

culation of approximate marginal pdfs, we drop the factor

Vu(xk), defined in (3), because it prohibits a factorization of

(12) in the no target states. Dropping this factor is equivalent

to approximating it by a constant. After dropping Vu(xk), we

can represent (12) by the factor graph shown in Fig. 1. This

ψmk,no

ψ1,1

ψ1,no

ψmk,1

a1

ano

b1

bmk

q1

qmkxno
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Fig. 1. Factor graph for the UTT model showcasing the
dependencies between target state variables and association
variables at a single time step k. The following compact notation

was used: f i , f(x
(i)
k

|z1:k−1), ψij , ψij(a
(i)
k
, b

(j)
k

), and

qj ,
∏no

l=1 q
(l)
1

(

x
(l)
k
, b

(j)
k

; z
(j)
k

)
∏no

i=l+1 q
(il)
2

(

x
(i)
k
,x

(l)
k
, b

(j)
k

; z
(j)
k

)

, for

all i ∈ J1, noK and all j ∈ J1, mkK.

approximation is investigated numerically in Section V. To

simplify the notation, we will omit the time index k in what

follows, e.g., we will write f(x(i)|z) instead of f(x
(i)
k |z1:k)

and f(x(i)|z−) instead of f(x
(i)
k |zk−1).

To develop the proposed LBP method, we first integrate

with respect to the target states in (12). In this way, we obtain

the following posterior pdf

p̃(a, b|z) ∝
m
∏

j=1

ϕj

(

b(j)
)

no
∏

i=1

ψij

(

a(i), b(j)
)

(13)

where, for b(j) = [i, l] with i > l > 0, we introduce

ϕj

(

[i, l]
)

=

∫ ∫

f(z(j)|x(i),x(l))Qu

(

x(i),x(l)
)

(

1− P
(i)
d

)(

1− P
(l)
d

)

λcfc
(

z(j)
)

× f(x(i)|z−)f(x
(l)|z−)dx

(i)dx(l)

and similarly for b(j) = [i, i] with i ∈ J1, noK, we establish

ϕj

(

[i, i]
)

=
P

(i)
d

∫

f(z(j)|x(i))f(x(i)|z−))dx
(i)

(1− P
(i)
d )λc fc(z)

while ϕj([0, 0]) = 1 and for any other values of b(j) we set

ϕj(b
(j)) = 0.

The factorization in (13) lends itself to a message-passing

algorithm of the type in [3], [6], [17]. More specifically, we

will employ an LBP algorithm that iterates message exchanges

between the b(j) and a(i) variables for all j ∈ J1,mkK and

i ∈ J1, noK. Here, at each iteration, the message from b(j) to

a(i) is given by

µbj→ai(ai) =
∑

b(j)

ϕj(b
(j))ψij(a

(i), b(j))
∏

i′ 6=i

µai′→bj (b(j))

while the message from a(i) to b(j) is given by

µai→bj (b(j)) =
∑

a(i)

ψij(a
(i), b(j))

∏

j′ 6=j

µ
bj′→ai(a(i)) .

These messages’ values are restricted due to the binary con-

straints ψij in (8). For each i ∈ J1, noK, let B(i) ,
{

[i, l] : l ∈



J1, iK
}

∪
{

[l, i] : l ∈ Ji+ 1, noK
}

be the set of all index tuples

that contain the i-th target, either solely (via the resolved pair

[i, i]) or coupled with another target (via an unresolved pair

[l, i] for some l 6= i). The message µbj→ai takes only two

distinct values, i.e.,

µbj→ai(j) =
∑

b
(j)∈B(i)

ϕj(b
(j))

∏

i′ 6=i

µai′→bj (b(j))

for a(i) = j and

µbj→ai(t) =
∑

b
(j)∈B\B(i)

ϕj(b
(j))

∏

i′ 6=i

µai′→bj (b(j)) (14)

for a(i) = t 6= j. Similarly, the message µai→bj also only

takes only the two distinct values, i.e.,

µai→bj (b(j)) =
∏

j′ 6=j

µ
bj′→ai(j)

for b(j) ∈ B(i) and

µai→bj (b(j)) =

mk
∑

t=0, t6=j

∏

j′ 6=j

µ
bj′→ai(t) (15)

for b(j) ∈ B \ B(i).

Following [3], [6], [17], one can renormalize each message

without affecting the LBP calculations. In particular, by divid-

ing µbj→ai(a(i)) by (14) and µai→bj (b(j)) by (15), we obtain

µbj→ai(a(i)) ∝

{

µij
ba if a(i) = j

1 otherwise

and

µai→bj (b(j)) ∝

{

µij
ab if b(j) ∈ B(i)

1 otherwise

where we introduced

µij
ba =

ϕj([i, i]) +
∑

l>i ϕj([l, i])µ
lj
ab +

∑

l<i ϕj([i, l])µ
lj
ab

1+
∑no

i′=1
i′ 6=i

ϕj([i′, i′])µ
i′j
ab+

∑

[t,p],t,p 6=i
t>p>0

ϕj([t, p])µ
tj
abµ

pj
ab

(16)

µij
ab =

1

1 +
∑mk

j′=1

j′ 6=j

µij′

ba

. (17)

The proposed LBP algorithm for the UTT model with

generic number of targets no proceeds as follows:

1) initialize the messages µij
ab = 1 ∀i, j,

2) update the messages µij
ba via (16) and µij

ab via (17) ∀i, j,
3) repeat previous step as long as the maximum change in

messages between subsequent iterations is greater than

some fixed threshold (e.g., 10−6) or a maximum number

of iterations is reached,

4) return final messages µij
ab = 1.

After LBP has been performed, the estimated association

probabilities for all j ∈ J1,mkK and b(j) ∈ B are obtained

as

p̂j(b
(j)|z) ∝











1 if b(j) = [0, 0]

ϕj([i, i])µ
ij
ab if b(j) = [i, i]

ϕj([i, l])µ
ij
abµ

lj
ab if b(j) = [i, l] .

(18)
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Fig. 2. The first scenario depicts two closely-spaced targets and two well-
separated targets. Also, showcasing an instance of the resolution event (or
graph) and measurements. The two targets in the middle generate an unre-
solved measurement with high probability (> 0.6), whereas any other pair of
targets has a low probability (< 0.1) of generating unresolved measurements.

Note that the initialization step and each recursion of this

LBP algorithm require a number of operations that scales as

O(n2
omk).

V. NUMERICAL EVALUATION

In this section, we numerically evaluate various algo-

rithms that estimate the marginal association probabilities

pj(b
(j)
k |z1:k), ∀ j ∈ J1,mkK and b

(j)
k ∈ Bk, for the proposed

UTT model. More specifically, we showcase the performance

of the estimator {p̂j(·|z1:k)}j obtained via the proposed LBP

algorithm. This estimator is benchmarked against two exact

evaluations of the marginals {pj(·|z1:k)}j , obtained via an

exhaustive enumeration of all valid joint associations ak ∈
J0,mkK

no (or equivalently of bk ∈ Bk) and marginalizing over

their joint probabilities. The two reference methods differ in

the way the joint probabilities are evaluated. The first reference

method employs the same approximation Vu(xk) ≈ cst as

employed by the LBP method. The resulting marginals of

this first reference method are denoted via {p̃j(b
(j)
k |z1:k)}j

and represent the exact marginals of the joint association

probabilities under assumption Vu(xk) ≈ cst, i.e., the marginal

probabilities that our LBP method aims to compute. The

second reference method computes the exact marginals of

the joint probabilities p(ak|z1:k), for all ak, without the

assumption Vu(xk) ≈ cst, with the resulting marginals be-

ing denoted via {pj(b
(j)
k |z1:k)}j . These represent the exact

marginal association probabilities for the UTT model. Both

reference methods require an exhaustive enumeration of all

joint association vectors ak ∈ J0,mkK
no and thus incur a

computational complexity of O((mk + 1)no).
The Total Variation Distance (TVD) serves as a distance

metric between two probability distributions and corresponds

to half the L1 distance between the two probability distribu-

tions [20, Ch. 5]. Given pmfs p̂ and p defined on the same
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Fig. 3. The second scenario depicts four closely-spaced targets. Also,
showcasing an instance of the resolution event (or graph) and measurements.
All pairs of targets have a high probability (> 0.6) of generating unresolved
measurements .

discrete alphabet Ω, the TVD between p̂ and p is given by

dTV(p̂, p) =
1
2

∑

ω∈Ω |p̂(ω) − p(ω)|, with dTV(p̂, p) ∈ [0, 1].
The TVD distance has the useful interpretation: if, for ex-

ample, dTV(p̂, p) < 0.1, then the differences in probability

between p and p̂ are limited to 0.1.

In this work, an average TVD across all measurements

is constructed between the LBP estimated marginal associ-

ation probabilities of (18) and the two reference methods.

Specifically, for the first and second reference methods, we

construct d̄TV(p̂, p̃) =
1

mk

∑mk

j=1 dTV(p̂j , p̃j) and d̄TV(p̂, p) =
1

mk

∑mk

j=1 dTV(p̂j , pj), respectively.

We devise two scenarios with multiple targets that follow

the UTT model. The first scenario is presented in Fig. 2 and

showcases two closely-spaced targets that generate unresolved

targets with high probability and two well-separated targets.

This is a relatively mild scenario, where the unresolved phe-

nomenon is mostly restricted to the two targets in the middle.

In contrast, Fig. 3 showcases a more difficult scenario where

any two targets are highly likely to generate an unresolved

measurement. The following parameters are common to both

scenarios. The targets follow 2-D Gaussian distributions with

means specified in the figures and common covariance ma-

trices 10 I2, where I2 is the 2 × 2 identity matrix. Resolved

measurements consist of noisy versions of target positions with

an additive Gaussian noise of covariance matrix Rk = σ2 I2.

Unresolved measurements are noisy versions of the midpoint

of the segment formed by the two target positions, with an

additive Gaussian noise of covariance matrix Ru
k = 2σ2 I2.

Clutter measurements follow a Poisson point process with

a rate of 6 points that are uniformly distributed over the

surveillance region of [−50, 50]2. The probability of detection

is fixed at 0.9 while unresolved measurements occur according

to the UTT model and with a resolution matrix Au = 102 I2.

Corresponding to the two scenarios, TVD curves as a

function of measurement standard deviation (std) σ are pre-

TVD from approximate marginals d̄TV(p̂, p̃)

TVD from true marginals d̄TV(p̂, p)
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Fig. 4. Total variation distance between the LBP estimated marginals and
the exact evaluation of the approximate marginals (upper panel), and exact
evaluation of the true marginals (lower panel). The curves correspond to the
first scenario and showcase the median error and 10%−90% percentile bands.

sented in Fig. 4 and Fig. 5. The TVD median and percentile

intervals (or bands) are obtained by performing 100 indepen-

dent simulations of the proposed scenarios and methods. The

percentile intervals are constructed to gradually incorporate

20%, 40%, 60%, and 80% of the TVD curves.

As expected, the TVD values increase with increasing σ for

both scenarios. Additionally, the TVD cures in both Figs. 4

and 5 showcase slightly higher values for d̄TV(p̂, p) than for

d̄TV(p̂, p̃). Again, this is to be expected since the proposed

LBP algorithm aims to evaluate the marginals of the joint

association probability under the assumption Vu(xk) ≈ cst.

However, the increase in TVD error is mild throughout the

range of σ values, thus justifying the assumption. Numerically,

the median TVD cures in all four cases lies under the 0.1
value. This indicates accurate LBP estimates of the marginal

association probabilities for the UTT model, despite the ap-
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Fig. 5. Total variation distance between the LBP estimated marginals and
the exact evaluation of the approximate marginals (upper panel), and exact
evaluation of the true marginals (lower panel). The curves correspond to the
second scenario and showcase the median error and 10% − 90% percentile
bands.



Number of targets no = 4 no = 5 no = 6

d̄TV(p̂, p̃) 9.8e−3 1.2e−2 1.7e−2

d̄TV(p̂, p) 3.9e−2 7.1e−2 7.9e−2

Run time LBP [s] 7.8e−3 1.1e−2 1.3e−2

Run time approx. marginals [s] 4.2e−2 9.1e−1 16

Run time true marginals [s] 1.8e−1 3.8 69

TABLE I
MEAN TVD AND WALL-CLOCK RUN TIMES (IN SECONDS [S]) FOR THE

PROPOSED LBP AND REFERENCE METHODS AS A FUNCTION OF THE

NUMBER OF TARGETS no .

proximation Vu(xk) ≈ cst. Moreover, the small increase in

TVD errors between the two scenarios supports the ability of

the proposed LBP method to address cases where a single

target is apriori equally likely to generate unresolved mea-

surements with several of its neighboring targets.

In Table I, we present the mean TVD values of d̄TV(p̂, p̃)
and d̄TV(p̂, p), as well as the mean wall-clock run times of

the proposed LBP and the two reference methods. The results

in Table I are obtained by averaging over 100 independent

simulations on a laptop computer with an Intel i7−1255U CPU

and 32GB of RAM. The results are presented for different

number of closely-spaced targets. The targets are placed at

the vertices of a rectangular grid with uniform spacing of

10m. For example, the first column of the table with no = 4
corresponds to the scenario in Fig. 3. The explosion of the run

time of both reference methods with increasing no is caused

by the exponential computational complexity O((mk +1)no)
required to enumerate all joint associations. The second ref-

erence method has a higher run time than the first due to

the additional evaluation of Vu(·), which involves finding all

partitions of the set J1, noK with subsets of cardinality at most

two. In contrast, the LBP provides accurate estimates at a

computational cost that only scales as O(n2
omk).

VI. CONCLUSION

In this paper, we proposed a method for data association in

the presence of unresolved measurements. More specifically,

we develop the UTT model and a corresponding LBP algo-

rithm that efficiently approximates the marginal association

probabilities given all measurements. The resulting algorithm

has quadratic complexity with the number of targets and

linear with the number of measurements. It thus offers a

scalable solution to the tracking problem under the UTT

model. Possible directions for future research include an

extension to an unknown number of targets [6], distributed

implementations [21], and an enhancement of LBP operations

with learned information [22].
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