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Abstract

We study the propagation of elasto-plastic shockwaves induced by high power laser impacts
in 2D polycrystalline metallic alloys in order to investigate the influence of the material mi-
crostructure on the fields of plastic strain and subsequent residual stresses. Implementing a
visco-plastic constitutive relation at the grain scale accounting for two dislocation slip systems
into a finite volume numerical scheme, simulations on single crystal specimens with different
lattice orientations show that plastic strain is concentrated in narrow bands originating at the
edges of the laser impact and parallel to the slip planes. In the case of polycrystalline microstruc-
tures composed of randomly oriented grains, it is found that the microstructure morphology is
the origin of a heterogeneous distribution of the residual plastic strain and stress fields, which
thus departs from the residual stress fields usually modelled when the microstructure is not
accounted for. To account for the random character of polycrystal microstructures, we perform
a statistical analysis of the mechanical fields over a large number of microstructures to quantify
the dispersion of the results. It is found that even though the residual stresses induced by a laser
impact are in compression on average at the center of the laser impact, some realizations of the
microstructures can lead to localized concentrations of less compressive, or even tensile, residual
stresses at the surface, thus probably reducing the fatigue resistance of the shocked material.

Keywords: Laser shock peening; Elastic-plastic wave propagation; Numerical simulation; Residual
stresses; Polycrystal; Crystal plasticity

1 Introduction

This work finds motivation in the modeling of the Laser Shock Peening (LSP) process. In
this process, a high-energy laser (∼ 10 GW.cm−2) is used to impact a metallic specimen
and introduce compressive residual stresses. The laser pulse, whose duration is typically
10 ns, interacts with the surface of the material, generating a high pressure plasma (see
illustration on Figure 1). The sudden release of this plasma creates a pressure wave inside
the material with an amplitude high enough to induce inhomogeneous plastic strains and
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subsequent residual stresses. These residual stresses have then been related to an improved
fatigue behavior [13, 35], which makes LSP promising in aeronautical and energy industries
to improve the fatigue life of structures [11]. The standard configuration for LSP also
includes a confinement medium (usually water) to increase the pressure transmitted into
the material, and a protective coating to avoid strong thermal effects (which can lead to
tensile surface residual stresses) [14]. LSP also induces huge strain rate in the material,
of the order of 106 s−1.

For more than 20 years now, laser shot peening simulations have been carried out, in
research and industrial application contexts, using macroscopic and isotropic constitutive
relations for the target material [5, 6, 21, 34]. This approach assumes that the influence
of the heterogeneous microstructure of the treated materials (often metal alloys) on the
propagation of the stress wave is negligible, both on the backface velocity, and on the
induced residual stresses. This assumption can be used when the laser spots used (> 1
mm) are several orders of magnitude larger than the average size of the grains of which the
microstructures are composed, and therefore it completely neglects the heterogeneity of
the residual stresses coming from the deformation heterogeneities in the microstructure.
However, this “standard” configuration of LSP is not adapted to treat micro-components
(for biomedical applications for example). In addition, the miniaturization of LSP, called
micro-LSP, which makes use of femtosecond lasers and small laser spot sizes [3] requires
an enriched modeling because the use of macroscopic constitutive models (i.e. developed
and identified on homogeneous macroscopic samples) is not relevant at such scales. Laser
shock is also used to observe the dynamic behavior of materials using VISAR backface
velocity measurements. Such results can be used to identify material constitutive behaviors
[1, 2, 38].

The problem to be considered is thus the one of the propagation of a stress wave in a
polycrystalline microstructure. This situation has been mostly modeled in the literature
in the case of elastic propagation, with an emphasis on acoustic, scattering and dispersion
effects. For instance, Lan et al. [23] report a dispersion on the wave velocity induced by
random Zr microstructures, and other authors [15, 41] investigate the attenuation of the
wave, with notably Segurado and Lebensohn [39] making use of a FFT approach. Plastic-
ity during the shockwave propagation is also under consideration, either experimentally
(see for example Winey et al. [44] who interpret the differences of the wave attenuation
in various Aluminum alloys as differences in plasticity mechanisms) or numerically, as in
the work of Lloyd et al. [31] who consider a 1D modeling of single and polycrystals and
also highlight a dependence of the mechanical fields on the geometry of the microstruc-
tures. However, none of these approaches are consistently applied to LSP. Sunny et al.
[40] consider the simulation of a laser impact on a polycrystalline microstructure, but use
a macroscopic Johnson-Cook model for the grains’ plastic behavior, and Romanova et al.
[36] consider the propagation of a wave in a 3D polycrystalline microstructure but whose
plastic behavior obeys a von Mises criterion. In the context of micro-LSP (laser spot diam-
eter of a dozen µm), some authors consider the simulation of an impact on a single crystal
in crystal plasticity ([9, 10, 43, 49]), while others choose a purely experimental approach
to the problem [50]. Only Vukelić et al. [42] introduce simultaneously the formalism of
crystal plasticity and material heterogeneity by modeling a bicrystal subjected to a laser
shock. Additionally, the notion of dispersion of the mechanical field is discussed in the
work of Case and Horie [8], who study the propagation of a planar shock in a Copper
polycrystal using discrete elements. Thus, the work on simulations of elastic-plastic stress
wave propagation in a polycrystal in 2D or 3D is scarce [12], especially in the case of LSP.
The aim of this work is to investigate the effect of a polycrystalline microstructure on the
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elastic-plastic propagation of shockwave using crystal plasticity in order to investigate
micro-LSP. Therefore this paper is concerned with the fundamental aspects of shockwave
propagation in heterogeneous materials as well as applicative aspects since the problem
considered is related to laser shock peening processing.

The article will be organized as follows. Section 2 is dedicated to the description of the
modeling of the microstructures used, the elastic and plastic behaviors of the grains, and
finally the stress wave equation in two dimensions. Following these first developments,
Section 3 details the numerical treatment of the various aspects of the problems: the
stress wave propagation, the crystal plasticity and the stress redistribution at the static
equilibrium. Section 4 presents results on both a single crystal and on polycrystalline
microstructures. A statistical approach is used to take into account the random nature
of the microstructures. Finally, some aspects of the problems are discussed in Section 5,
such as the influence on backface velocity profiles and the influence of the grain size.

2 Elastic-plastic stress waves in polycrystalline media

2.1 Problem considered

The objective of this section is to present the problem considered and the associated
hypotheses. A 2D modeling is considered, as a compromise between a realistic modeling
of the laser impact and reasonable computation times for the simulations. The situation
to be modeled is represented in Figure 1.

laser impact

Figure 1. Illustration of the LSP process for 2D modeling.

Lx and Ly are the dimensions of the spatial domain in the x and y directions respectively,
and d is the diameter of the laser spot. We begin by recalling the equations describing
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the elastic behavior 1 of a material (in the absence of external forces):



div (σ) = ρ(x, y)
∂2u

∂t2
Dynamic equilibrium

σ = C(x, y) : εe = C(x, y) : (ε− εp) Hooke’s law

ε(u) =
1

2

(
∇u+∇Tu

)
Strain-displacement relation

u(x, y, t = 0) = 0 Initial conditions,

(1)

where σ is the stress tensor, ε the total strain tensor, εe the elastic strain tensor, εp the
plastic strain tensor, and u the displacement field. The density is denoted ρ and the local
stiffness tensor C(x, y). In order to eliminate the kinetic energy of the system to obtain
a stationary plastic strain field, we will implement non-reflective boundary conditions
to allow the stress wave to leave the domain. The implementation of these boundary
conditions will be detailed in Section 4.1.

The two-dimensional modeling of the problem implies the choice of a modeling assump-
tion: plane stresses (suitable for a very thin plate) or plane strains (suitable for a plate
with infinite or very large thickness). In practical applications, neither of these two mod-
els corresponds to the standard experimental setup, requiring a 3D model. Nonetheless,
a plane strain hypothesis is considered hereafter because it is closer to the experimental
conditions than the plane stress hypothesis, and it will simplify the developments. Thus,
the displacement field u can be expressed as follows:

u = ux(x, y, t)e1 + uy(x, y, t)e2. (2)

In the following, the components of the displacement field (ux and uy), the deformation
field (ε11, ε22 and ε12), and the stress fields (σ11, σ22, σ12 and σ33) depend on the spatial
and temporal coordinates, respectively x, y and t. The notations will however be dropped
for the sake of clarity. The same is true for the dependence on the spatial coordinates of
C and ρ. From Equation (1)3, it follows that the strain is of the form:

ε = ε11e1 ⊗ e1 + ε22e2 ⊗ e2 + ε12(e1 ⊗ e2 + e2 ⊗ e1). (3)

2.2 Geometrical modeling of a polycrystal

For the geometric representation of the polycrystalline microstructure, we consider a Pois-
son Voronoi Diagram (PVD) [37]. Thus, the probability that the number of grains in a
microstructure is equal to a given value follows a Poisson distribution of parameter η,
which corresponds to the average number of grains. Each grain is represented by a single
point (called a seed). The seeds are uniformly distributed in the spatial domain, and grow

1 Only the elastic behavior is presented for the moment, the plastic behavior being the subject
of a dedicated section.
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isotropically, leading to isotropic microstructures. Illustrations are given in Figures 8 and
17. It is possible for this Voronoi tesselation to identify the average grain size 2 [47, 48].

Each grain can be assigned a different mechanical behavior. We consider that all the
grains are identical in terms of mechanical properties (anisotropic C stiffness tensors in
the crystal axes and uniform ρ densities), but not in terms of lattice orientations. In 3D,
the crystalline orientation of a grain can be defined using Euler angles, denoted by ϕ1, φ
and ϕ2 according to the Bunge convention [7]. For this 2D study, we keep φ = ϕ2 = 0,
leading to the following rotation matrix R(x, y):

R(x, y) =


cosϕ1(x, y) − sinϕ1(x, y) 0

sinϕ1(x, y) cosϕ1(x, y) 0

0 0 1

 . (4)

2.3 Elastic behavior

We consider a cubic elastic symmetry, represented by the stiffness tensor C0 in the refer-
ence frame associated with the crystal lattice is solely described by the coefficients C0

1111,
C0

1122 and C0
1212, with C0

1212(x, y) 6= C0
1111(x, y) − C0

1122(x, y). As indicated in Section 2.2,
each grain in the Voronoi tessellation will have a different crystal orientation. The stiffness
tensor expressed in the sample reference frame, noted C(x, y), is given by (assuming the
Einstein notation for the implicit summation of repeated indexes):

Cijkl = RimRjnRkoRlpC0
mnop. (5)

As an example, considering an Aluminum-type behavior [46](C1111 = 106.75 GPa, C1122 =
60.41 GPa, C1212 = 28.34 GPa, see Table 1), variations of ϕ1 can induce maximal varia-
tions of approximately 5% increase on C1111, a 10% decrease on C1122 and a 20% decrease
on C1212. They also induce non zero C1112 and C2212 which are otherwise null in the crystal
frame of reference. The rest of the Cijkl components remain equal to 0. It should be noted
that an elasticity tensor with a cubic symmetry and variations of ϕ1 only do not lead to
out of plane strain or stress components.

2.4 Plastic behavior

Plasticity at the crystal scale stems from dislocation movements on slip systems. Crystal
plasticity models introduce internal variables corresponding to plastic multipliers γ(α)

specific to each slip system. The plastic strain rate is given by:

ε̇p =
∑
α

γ̇(α)µ(α), (6)

2 The grain size distribution obtained by a Voronoi diagram has a lower dispersion than a “real”
microstructure [29].
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where µ(α) is the symmetric Schmid tensor of the α slip system, defined as:

µ(α) =
1

2

(
t(α) ⊗ n(α) + n(α) ⊗ t(α)

)
, (7)

with t(α) and n(α) unit vectors parallel to the direction and normal of the slip system,
respectively. It is also possible to compute the elastic rotation of the crystal lattice, defined
as:

ω̇ = ω̇e + ω̇p, (8)

where ω̇p is the plastic rotation rate given by:

ω̇p =
∑
α

γ̇(α)µ
(α)
skew, (9)

where µ
(α)
skew are the skew-symmetric Schmid tensors:

µ
(α)
skew =

1

2

(
t(α) ⊗ n(α) − n(α) ⊗ t(α)

)
. (10)

Finally, ω̇ is the total rotation rate, which is the skew-symmetric part of the velocity
gradient:

ω̇ =
1

2

(
∇v −∇Tv

)
. (11)

As presented in Section 2.1, we wish to guarantee a plane strain state during the prop-
agation of the stress wave, and therefore we consider only two slip systems, arbitrarily
fixed and expressed in the crystal frame by:

n
(1) = (1, 0, 0)

t(1) = (0, 1, 0)


n(2) =

1√
2

(1, 1, 0)

t(2) =
1√
2

(−1, 1, 0).

(12)

The slip system 2 corresponds to the slip system 1 rotated by 45°. The slip plane normal
and slip directions were chosen parallel to the x−y plane to avoid any out-of-plane plastic
strain, so as to stay with a 2D problem. These two slip systems were chosen in order (i) to
speed up the numerical computation (the numerical cost increases with the number of slip
systems, see Section 3.2) and (ii) to deal with a plastic behaviour exhibiting an anisotropy
somehow similar to standard metallic alloys (more slip systems would have reduced the
plastic anisotropy, and only one slip systems would have increased it tremendously). We
can then verify that the symmetric Schmid tensors in the crystal reference frame do not
generate any out-of-plane plastic strain:
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µ
(1)
0 =

1

2


0 1 0

1 0 0

0 0 0

 and µ
(2)
0 =

1

2


−1 0 0

0 1 0

0 0 0

 . (13)

From the form of the symmetric Schmid tensors given in Equation (13), the plastic strain
tensor has the following general form:

εp =


εp εp,12 0

εp,12 −εp 0

0 0 0

 , (14)

and the skew-symmetric Schmid tensors are

µ
(1)
skew,0 = µ

(2)
skew,0 =

1

2


0 −1 0

1 0 0

0 0 0

 . (15)

Schmid tensors can also be expressed in the sample frame:

µij(x, y) = Rim(x, y)Rjn(x, y)µ0mn. (16)

The skew-symmetric Schmid tensors are invariant by any rotation of ϕ1. The influence
of the crystal orientation on the plastic rotation will therefore come from the values of
γ̇(α) only, unlike plastic strain, which is influenced by crystal orientation. The chosen
slip systems thus contribute to preserving the plane strain nature of the problem, both
through the plastic strain and plastic rotation tensors. For example, this is not possible if
the coordinates of the normal and direction of a slip system have a component along e3.

The computation of the shear rate γ̇(α) is done using the visco-plastic constitutive relation
developed by Hutchinson [20] in which the plastic multipliers of the slip planes are given
by:

γ̇(α) = γ̇0
τ (α)

g(α)

∣∣∣∣∣τ (α)g(α)

∣∣∣∣∣
1
m
−1

= γ̇
(α)
0 sign

(
τ (α)

g(α)

) ∣∣∣∣∣τ (α)g(α)

∣∣∣∣∣
1
m

, (17)

where γ̇0 is a parameter representing a reference strain-rate, and m is a positive exponent,
controlling the strain-rate sensitivity. The resolved shear stress on the α slip system τ (α)

is given by τ (α) = σ : µ(α). Finally, g(α) is the yield strength of the slip system α. In
this work, we will use a modified formulation of the Equation (17), introducing threshold
model (another example can be found in Méric et al. [33]):
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γ̇(α) = 0 if

∣∣∣τ (α)∣∣∣ ≤ g(α)

γ̇(α) = γ̇0
τ (α)

g(α)

∣∣∣∣∣τ (α)g(α)

∣∣∣∣∣
1
m
−1

if
∣∣∣τ (α)∣∣∣ > g(α).

(18)

This formulation allows the optimization of the numerical resolution of the visco-plastic
model, since plasticity is induced only if the resolved shear stress on a slip system is higher
than the associated critical shear stress. The equations are therefore not solved at any
point of the spatial domain, but only at those requiring a plastic correction.

2.5 Elastic-plastic wave in two dimensions

Hooke’s law (1)2 with C introduced Section 2.3 together with the plane strain assumption
thus gives:

σ = σ11e1 ⊗ e1 + σ22e2 ⊗ e2 + σ33e3 ⊗ e3 + σ12(e1 ⊗ e2 + e2 ⊗ e1). (19)

With the assumption of plane strains, the stress component σ33 can be obtained from the
components σ11, σ22 and σ12 via Hooke’s law. To obtain the propagation equation, we
follow the methodology of Leveque [30]. The dynamic equilibrium equation (1)1 leads to
the following system:


∂σ11
∂x

+
∂σ12
∂y

= ρ(x, y)
∂vx
∂t

∂σ12
∂x

+
∂σ22
∂y

= ρ(x, y)
∂vy
∂t

,

(20)

where vx and vy are the components of the material velocity field v, such that vx = ∂ux/∂t
and vy = ∂uy/∂t. Moreover, with the assumption of small perturbations, we have



∂ε11
∂t

=
∂

∂t

(
∂ux
∂x

)
=

∂

∂x

(
∂ux
∂t

)
=
∂vx
∂x

∂ε22
∂t

=
∂

∂t

(
∂uy
∂y

)
=

∂

∂y

(
∂uy
∂t

)
=
∂vy
∂y

∂ε12
∂t

=
1

2

∂

∂t

(
∂ux
∂y

+
∂uy
∂x

)
=

1

2

(
∂vx
∂y

+
∂vy
∂x

)
.

(21)

Hooke’s law (1)1 derived with respect to time gives:
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∂σ11
∂t

= C1111

(
∂vx
∂x
− ∂εp

∂t

)
+ C1122

(
∂vy
∂y

+
∂εp
∂t

)
+ C1112

(
∂vx
∂y

+
∂vy
∂x
− 2

∂εp,12
∂t

)
∂σ22
∂t

= C1122

(
∂vx
∂x
− ∂εp

∂t

)
+ C2222

(
∂vy
∂y

+
∂εp
∂t

)
+ C2212

(
∂vx
∂y

+
∂vy
∂x
− 2

∂εp,12
∂t

)
∂σ12
∂t

= C1112

(
∂vx
∂x
− ∂εp

∂t

)
+ C2212

(
∂vy
∂y

+
∂εp
∂t

)
+ C1212

(
∂vx
∂y

+
∂vy
∂x
− 2

∂εp,12
∂t

)
.

(22)

For the resolution of the stress wave equation, we will assume a purely elastic propagation,
i.e. ∂εp/∂t = ∂εp,12/∂t = 0. This step will act as an elastic predictor step, after which
a plastic correction will be made, as addressed in Section 3.2. More precisely, a plastic
strain increment ∆εp is computed using the crystal plasticity visco-plastic constitutive
behavior, which is then used to correct with Hooke’s law the stress initially obtain by
solving the stress wave propagation. An alternative would be to compute tangent moduli
corresponding to the correct level of plastic strain and use it to derive an alternative
version of the stress wave equation (see for instance [25]). However, because of the crystal
plasticity model used, finding these moduli at each iteration and at each node can be
very computationally demanding. It has been shown in a homogeneous macroscopic 1D
case that both approaches lead to very similar results (see Appendix A of Lapostolle [24])
The systems (20) and (22) can be grouped into the following matrix equation, using the
notations of Leveque [30]:

∂U

∂t
+A(x, y)

∂U

∂x
+B(x, y)

∂U

∂y
= 0, (23)

where U is the vector of unknowns such that U = (σ11, σ22, σ12, vx, vy)
T . The matrices

A and B are constructed such that:

A(x, y) =



0 0 0 −C1111 −C1112

0 0 0 −C1122 −C2212

0 0 0 −C1112 −C1212

−1

ρ
0 0 0 0

0 0 −1

ρ
0 0


, B(x, y) =



0 0 0 −C1112 −C1122

0 0 0 −C2212 −C2222

0 0 0 −C1212 −C2212

0 0 −1

ρ
0 0

0 −1

ρ
0 0 0


. (24)

Equation (23) corresponds to the advection equation in two dimensions, and models here
the propagation of a stress wave in plane strains, including three wave propagation phe-
nomena: a longitudinal tension/compression wave (in the direction of impact), a transverse
tension/compression wave (perpendicular to the direction of impact), and a shear wave
(the velocity of the latter differs according to longitudinal or transverse directions). With
the numerical values of Cijkl indicated in Section 2.3, the change of the wave velocities
in the principal directions caused by the change of crystal orientation is approximately of
2.5% increase, and of 10% decrease for the shear waves.
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3 Numerical methods

3.1 Numerical scheme for the stress wave propagation in two dimensions

Let Un
ij be the vector of discretized unknowns, evaluated at time increment n and spatial

cell ij, corresponding to the point with coordinates (xi, yj). The coordinates xi and yj
correspond to the spatial discretization defined as xi+1 = xi + ∆x and yj+1 = yj + ∆y.
We also introduce the time increment ∆t such that tn+1 = tn + ∆t. In order to solve
numerically Equation (23), we will use an explicit numerical integration scheme. This
type of algorithm produces stable results only if it verifies the so-called CFL (Courant-
Friedrichs-Lewy) condition defined as:

CFL = cmax
∆t

∆x
≤ 1, (25)

where

cmax = max
x,y∈[0,Lx]×[0,Ly ]

{clongi(x, y), ctrans(x, y), cshear(x, y)} , (26)

where clongi, ctrans and cshear are the longitudinal, transversal and shear wave velocities
respectively (here clongi = ctrans since C1111 = C2222). In fact, cmax is imposed by the
material’s behavior, and CFL and ∆x are input data to the simulations, with which it is
possible to determine the value of ∆t using Equation (25). According to Leveque [30], the
general form of the numerical solution of Equation (23) takes here the following form:

Un+1
i,j = Un

i,j −
∆t

∆x

(
F n
i+1/2,j − F n

i−1/2,j

)
− ∆t

∆y

(
Gn
i,j+1/2 −Gn

i,j−1/2

)
, (27)

where the F n
i+1/2,j, F

n
i−1/2,j, G

n
i,j+1/2 and Gn

i,j−1/2 are denoted as fluxes, and whose expres-
sion varies depending on the numerical method. In addition to the usual considerations
on the ability of the numerical method to introduce few numerical errors, it becomes nec-
essary in the 2D case to optimize the resolution in order to limit the computation time.
For these reasons, the Godunov method, suitable for hyperbolic systems [26, 30] is used
here. For the sake of conciseness, the details of this method are provided in Appendix A.
An improvement of the numerical method is also possible, by using the Godunov High
Resolution method (see for instance [17, 25]). This last method is however non linear,
as it involves a corrective term based on a flux limiter, and its implementation yields
significantly longer computation times in the case of elasto-visco-plastic behavior.

3.2 Treatment of crystal plasticity

When solving numerically a crystal plasticity problem, the system has as many internal
variables as slip systems. Indeed, the knowledge of the plastic multipliers makes it possible
to deduce the rest of the variables of the problem, from the deformation to the stress,
along with the rotation of the crystal lattice. The first order time derivatives are here
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discretized by a forward Euler scheme. Using the methodology of Huang [19] (see also
Harewood and McHugh [16]), the plastic multipliers increments ∆γ(α) can be expressed
as follows:

∆γ(α) = (1− θ) ∆tγ̇(α),n + θ∆tγ̇(α),n+1. (28)

They are thus determined by linear interpolation (controlled by a parameter θ such that
θ ∈ [0, 1]) of the temporal variations of γ̇(α) at the previous time γ̇(α),n and at the next
time γ̇(α),n+1. Using Equation (17), we thus obtain:

∆γ(α) = (1− θ) ∆tγ̇(α),n + θ∆tγ̇0
τ (α),n+1

g(α)

∣∣∣∣∣τ (α),n+1

g(α)

∣∣∣∣∣
1
m
−1

, (29)

with

τ (α),n+1 = σn+1 : µ(α) = (σn + ∆σ) : µ(α) = τ (α),n + ∆τ (α), (30)

where τ (α),n is the resolved shear stress of the α system at the time step n and ∆τ (α) is
the resolved shear stress increment, computed by:

∆τ (α) = ∆σ : µ(α) = C : (∆ε−∆εp) : µ(α) = ∆σel : µ(α) − C : ∆εp : µ(α). (31)

∆σel corresponds to the stress increment resulting from the elastic propagation calcula-
tion, before a possible plastic correction step takes place. Using Equation (6), Equation
(29) thus becomes:

∆γ(α) − (1− θ)∆tγ̇(α),n − θ∆tγ̇0
g(α)

τ (α),n + ∆σel : µ(α) − C :
∑
β

µ(β)∆γ(β) : µ(α)

×
∣∣∣∣∣∣τ (α),n + ∆σel : µ(α) − C :

∑
β

µ(β)∆γ(β) : µ(α)

∣∣∣∣∣∣
1
m
−1

= 0.

(32)

Finally, in the present case where we consider only two slip systems without hardening
(g(α) = g0), the system to solve is:
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∆γ(1) − (1− θ)∆tγ̇(1),n − θ∆tγ̇0
g0

(
τ (1),n + ∆σel : µ(1) − C :

(
µ(1)∆γ(1) + µ(2)∆γ(2)

)
: µ(1)

)
×∣∣∣τ (1),n + ∆σel : µ(1) − C :

(
µ(1)∆γ(1) + µ(2)∆γ(2)

)
: µ(1)

∣∣∣ 1
m
−1

= 0

∆γ(2) − (1− θ)∆tγ̇(2),n − θ∆tγ̇0
g0

(
τ (2),n + ∆σel : µ(2) − C :

(
µ(1)∆γ(1) + µ(2)∆γ(2)

)
: µ(2)

)
×∣∣∣τ (2),n + ∆σel : µ(2) − C :

(
µ(1)∆γ(1) + µ(2)∆γ(2)

)
: µ(2)

∣∣∣ 1
m
−1

= 0

(33)

This equation, which has as many unknowns as plastic multipliers, is solved using a
multi-dimensional Newton method. Once the ∆γ(α) are determined, it is then possible to
compute the plastic strain using Equation (6), the plastic rotation of the crystal lattice
using Equation (9), and the new stress state using Hooke’s law. In our case, it has been
observed that the numerical parameter θ has only a limited influence on the results for
0.5 ≤ θ ≤ 1. We will take θ = 1 in the following, making the resolution completely
implicit.

The final stress state σn+1 is calculated as follows:

σn+1 = σn+1
el − C : ∆εp, (34)

where σn+1
el is the stress state computed in a purely elastic way with Equation (27).

In summary, at each time step, an elastic predictor step is computed by solving Equation
(23) using Equation (27). The criterion of Equation (18) is then checked, and a correction
is applied if needed using Equations (33), (6) and (34).

3.3 Numerical scheme for the stress redistribution

The objective of this section is to detail the computation of the residual stress field. The
residual stresses correspond to a non-zero stress state present in the material even though
all external loading has disappeared. However, the residual stresses are non-zero if and
only if the plastic strains are non-uniform, i.e. if they present a gradient. The problem is
represented schematically on Figure 2.
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Figure 2. Representation of the problem for the determination of residual stresses.

The heterogeneous field of residual plastic strains induced by the laser shock responsible
for the residual stresses is shown in Figure 2. The determination of the residual stresses
consists in finding the displacement field u(x, y) such that:



div (σ) = 0

σ = C(x, y) : (ε(x, y)− εp(x, y))

ε =
1

2

(
∇u+∇Tu

)
.

σ.n = 0 on ∂Ω−x ∪ ∂Ω+
x ∪ ∂Ω−y ∪ ∂Ω+

y = ∂Ω

u = 0 at A and B.

(35)

In Equation (35), the plastic strain tensor εp(x, y) comes from the elasto-plastic propaga-
tion step (Sections 3.1 and 3.2), and is therefore an input, as well as the stiffness tensor
field C(x, y). Another possibility would be to run the propagation simulation for a longer
period of time (∼ 10 µs) in order to eventually obtain a static equilibrium. This however
is more computationally demanding than the proposed method. The only requirement
here is that the plastic strain field has become stationary, even though the stress wave
may still be propagating. The displacement field keeps the form of Equation (2), without
the time dependency.

As shown in Figure 2, the surfaces of the sample will be considered as free surfaces, and
clamps are imposed at points A and B. Thus:



On ∂Ω−x and ∂Ω+
x :

σ11(x, y) = 0

σ12(x, y) = 0

On ∂Ω−y and ∂Ω+
y :

σ22(x, y) = 0

σ12(x, y) = 0

At A and B : ux = uy = 0

(36)

The heterogeneity of the stiffness tensor field must also be taken into account in the
resolution, which leads:
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σij/q = Cijkl/q (εkl − εp,kl) + Cijkl
(
εkl/q − εp,kl/q

)
, (37)

where the notation ./q corresponds to the partial derivative with respect to the q coor-
dinate, here x or y. Here, the spatial distributions of Cijkl quantities will be assumed
constant per grain, with jumps at the interfaces. The considered finite difference imple-
mentation, in which the spatial increments are constant throughout the spatial domain,
does not allow a mesh refinement at the interfaces. These quantities are therefore not
strictly derivable at the grain boundaries and the derivatives are therefore to be consid-
ered only in the numerical sense.

The resolution of the system (35) involves the first and second spatial derivatives of the
displacement field, expressed using a finite difference scheme. The expression of the static
equilibrium (35) (see Appendix B for more details) can be cast in the following form:

MX = f ⇐⇒

M11 M12

M21 M22


Ux

Uy

 =

f1
f2

 , (38)

with Ux =
(
ux,11 ux,12 . . . ux,1Ny ux,21 . . . ux,ij . . . ux,Nx1 . . . ux,NxNy

)T
and Uy defined in a

similar way. The matrices MIJ for I, J ∈ {1, 2}× {1, 2} are constructed with the param-
eters ∆x, ∆y and the coefficients Cklmn. The vectors f1 and f2 are also constructed with
∆x, ∆y, Cklmn but also the values of the components of the plastic strain tensor evaluated
at a given node εp,ij. The construction of matrix M and vector f of Equation (38) is
presented in Appendix B. The boundary conditions in Equation (36) are incorporated
into the system of Equation (38) at the corresponding lines. The inversion of matrix M
then leads to the solution of the problem.

4 Numerical results

4.1 Numerical simulation of elastic-plastic laser shock wave in single crystals

We first consider the case of a single crystal, which will allow us to assess the influence of
the crystal orientation on the plastic residual strain field after a laser shock.

Simulation parameters We consider a rectangular domain of physical dimensions
Lx = Ly = 3 mm. The numbers of nodes in the x and y directions, noted Nx and Ny

respectively, are Nx = Ny = 600.

The laser loading is modeled by a typical spatial and temporal pressure profiles which are
taken from the work of Le Bras et al. [28] and illustrated with a normalized pressure in
Figure 3. This pressure is applied as a boundary condition on the Ω−x boundary (see Figure
2). The diameter d of the laser spot is fixed at d = 0.5 mm, in order to approximate the
experimental conditions of LSP. It should be noted that the spatial profile shown in Figure
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3(b) is idealized for this laser size diameter, the profile being much more heterogeneous
in experimental measurements. Moreover, the pressure amplitude will be P = 1 GPa.
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Figure 3. Modeling of the pressure loading from the laser impact. The pressure is normalized.
(a) Temporal profile. (b) Spatial profile.

The material parameters used are close to those of Aluminum AA1050 3 [46], see Table
1.

Table 1
Elasto-visco-plastic parameters for Aluminum AA1050 [46]

C1111 (GPa) C1122 (GPa) C1212 (GPa) γ̇0 (s−1) 1/m g0 (MPa)

106.75 60.41 28.34 0.001 16 12.9

The computation of the residual stresses is based on the residual plastic strain field. This
field will be generated in our case by a single laser impact. Since the calculation of residual
stresses generally corresponds to a thick sample, it is necessary to ensure that the plastic
strains are not modified by wave reflections caused by the edges of the numerical domain.
For this purpose, we use non-reflective (or outflow) boundary conditions in the calculation
of the elasto-plastic propagation, allowing the stress wave to leave the spatial domain of
the simulation as if it were propagating at infinity. These boundary conditions correspond
to a zero-order extrapolation of the unknowns at the domain boundaries (see Figure 2)
[30]:


On ∂Ω+

x : UNxj = UNx−1j

On ∂Ω−y : Ui0 = Ui1

On ∂Ω+
y : UiNy = UiNy−1.

(39)

These boundary conditions mean that on the concerned boundaries, the row (on ∂Ω+
x ) and

columns (on ∂Ω−y and ∂Ω−y ) of the grid will be attributed the values of the closest row and
columns respectively, which are computed using the numerical scheme. The unknowns of
row Nx take the value of row Nx − 1 (∀j), the unknowns of column 0 take the values of
column 1, and the unknowns of column Ny take the value of column Ny − 1 (∀i).

3 The behavior of Aluminum is used for the material elastic constants, but not for the geometry
of the microstructure, nor for the the slip systems used in the visco-plastic behavior.
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Plastic strain field We begin by presenting the results in terms of the accumulated
plastic strain γ, defined as

γ =
∑
α

∣∣∣γ(α)∣∣∣ , (40)

whose distributions are presented in Figure 4 for two sample orientations, ϕ1 = 0 and
ϕ1 = π/6, in order to illustrate how the orientation of a single crystal can influence the
results. To these results are added lines representing the slip directions of the slip systems,
to make the interpretation clearer. The orientation of these lines has not been fitted from
the maps in Figure 4, but has been drawn so as to respect the angles of the slip systems
with the e1 direction.
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Figure 4. Accumulated plastic strain γ (enlarged visual) for a single impact on a single crystal.
White dashed lines correspond to slip directions of slip system 1, and white dashed/dotted lines
correspond to slip directions of slip system 2. (a) Crystal orientation defined by ϕ1 = 0. (b)
Crystal orientation defined by ϕ1 = π/6.

Figure 4 shows that the orientation of the crystal with respect to the impact direction has
a strong influence on the plastic strain distribution, but a limited influence on its values.
Figures 4(a) and 4(b) both show areas of high plastic strain at the edges of the impact,
which is due to shear between the compressed area of the impact and the free area. It is
interesting to note that each figure shows localization bands of plastic strain originating
from the edges of the impact. The pattern formed by these lines is different between the
orientation ϕ1 = 0 (where it is symmetrical with respect to y = 0) and ϕ1 = π/6 (where
it is not symmetrical). These lines can be interpreted as the directions of the slip systems,
which are activated by high values of resolved shear stress. This is why they originate
from the edges of the impact, where a shear stress is found with respect to the center of
the impact (the latter being in a state close to pure compression, whereas shear is added
at the edges of the laser spot). It is important to note that a slip system in a reference
position and rotated by 90° generates the same amount of plastic strain in absolute value,
as

∣∣∣σ : µ(α)
∣∣∣ =

∣∣∣σ : R90 · µ(α) ·RT
90

∣∣∣ , (41)

where R90 is the rotation matrix for ϕ1 = 90°. This is why each slip system gives rise
to two localization bands, one parallel to t(α), and another perpendicular to it. It is also
interesting to study the results for the rotation of the crystal lattice induced by the laser
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shock. Indeed, this rotation is a marker of the plastic strain. Figure 5 presents the elastic
rotation ωe maps, in degrees, for the orientations ϕ1 = 0 and ϕ1 = π/6.
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Figure 5. Elastic rotations of the crystal lattice in degree (enlarged visual) for a single impact on
a single crystal. (a) Orientation of the crystal defined by ϕ1 = 0. (b) Crystal orientation defined
by ϕ1 = π/6.

LSP leads to lattice rotation of a few degrees, localized in similar bands as the accumulated
plastic strain. The rotations are however zero in the center of the impact, indicating that
the matter is compressed uniformly in this region.

Residual stress field We present in Figure 6 the residual stresses induced by the plastic
strain field.
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Figure 6. Residual stresses σ22 (MPa) for a single impact on a single crystal (enlarged visual).
Black dashed lines correspond to the slip directions of slip system 1, and black dashed/dotted
lines correspond to the slip directions of slip system 2. (a) Crystal orientation defined by ϕ1 = 0.
(b) Crystal orientation defined by ϕ1 = π/6.

We can notice that the residual stress distribution in the single crystal for both orientations
also follows the slip lines highlighted in Figure 4. Both maps in Figure 6 show stress
concentrations at the edges of the impact, where the shear strain is maximum. Before
being able to draw conclusions on the influence of a microstructure on the residual stresses,
the distribution of the latter is already impacted by the orientation of the grains. This
influence is observed in more detail in Figure 7, where the spatial profiles of the residual
stresses as a function of the depth at the center of the impact (y = 0) are presented. These
stress profiles for angles ϕ1 = 0 and ϕ1 = π/6 show the same trends, with a pronounced
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influence of orientation near the surface (x ≤ 0.5 mm). Although of the same order of
magnitude, the stresses for ϕ1 = 0 show a slightly higher tensile peak than the profile for
ϕ1 = π/6. The depth affected by the residual compressive stresses, which is a quantity
that can characterize the efficiency of the laser shock treatment, is however lower with
the ϕ1 = π/6 orientation.
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Figure 7. Spatial profiles of residual stresses in a single crystal as a function of depth, for a line
corresponding to the laser impact axis (y = 0), for crystal orientations ϕ1 = 0 and ϕ1 = π/6.

4.2 Numerical simulation of elastic-plastic laser shock wave in polycrystalline aggregates

We continue with the simulation of elastic-plastic shockwave propagation in the case of
a polycrystal. The objective here is to illustrate the influence of a fine microstructure on
the residual fields caused by the passage of the stress wave.

Simulations parameters To begin with, two simulations are performed on two differ-
ent microstructures, which vary only in the number, position and shape of the grains. All
other parameters are strictly identical to those of the Section 4.1. The average number
of grains will be taken equal to η = 6000. Such a value allows us to obtain an average
grain size of 40 µm. We thus have on average 12 grains inside the laser spot. In the
microstructures, the grains are distributed using an uniform distribution in the plane of
the simulation. Then, 50 orientations are taken equally spaced between ϕ1 = −π/2 and
ϕ1 = π/2. For such a 2D problem, this is enough to reach an effective behaviour of the
polycrystal that is very close to isotropic. Our results are valid for such randomly oriented
polycrystalline aggregates. We did not investigate the effect of crystallographic textures
and the possible coupling with grain size. To increase the meshing of the grains, the num-
ber of nodes is now chosen as Nx = Ny = 1000. These two microstructures are represented
on Figure 8.
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(a) (b)

Figure 8. Two random microstructures. The color scale indicate the Euler angle ϕ1 (rad) used
for the simulations. (a) Microstructure 1. (b) Microstructure 2.

Plastic strains field We first present in Figure 9 the accumulated plastic strain γ in
the case of the two microstructures of Figure 8.

(a) (b)

(c)

Figure 9. Accumulated plastic strain distribution γ. The white lines represent the grain bound-
aries. (a) Microstructure 1. (b) Microstructure 2. (c) Absolute error between the two accumulated
plastic strain distributions.

The results in Figure 9 show that the accumulated plastic strain distribution seems to
reflect the geometrical distribution of the grains. This result was expected, since the orien-
tation of the grains directly influences the symmetric Schmid tensors of the slip systems,
leading to these discontinuous plastic strain values from one grain to another. High values
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of global accumulated plastic strain are always present at the edges of the laser impact.
Furthermore, the plastic strain distributions also appear to show multiple localization
bands, propagating radially from the laser impact edges. Moreover, some concentration
of plastic strain seems to take place at the grain boundaries. It is difficult to interpret
this observation, as it depends on many factors: grain orientation, local stress state, be-
havior of neighboring grains, etc. The microstructures used as input to the simulations
are different, so the fields in Figure 9 are locally different, but the two simulations are
similar from a global point of view. This observation seems to suggest that for a grain size
fine enough compared to the laser spot size, the accumulated plastic strain field changes
little from one microstructure to another in general. Figure 9(c) shows the absolute error
between the two accumulated plastic strain distributions, emphasizing the discrepancies
caused by the microstructures. This error distribution displays grain-like shapes, though
they do not correspond entirely to either of the microstructures of Figure 8.

Residual stress field In continuation of the analysis, we now show in Figure 10 the
residual stresses induced in the microstructures.

(a) (b)

(c)

Figure 10. Residual stress distribution σ22 (MPa). The black lines represent the grain boundaries.
(a) Microstructure 1. (b) Microstructure 2. (c) Absolute error between the two residual stresses
distributions.

Similar conclusions to those in Figure 9 can be drawn for Figure 10. The residual stress
distribution directly reflects the grain distribution of the microstructure, and thus varies
from one microstructure to another. This is also emphasized by Figure 10(c), where the
absolute errors between the two residual stresses distributions is presented, displaying
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non zero values all over the affected zone. An alternative representation is to compute
the average stress in each grain. This view is closer to the results that would be obtained
by an X-ray diffraction analysis, where average fields per diffracting grain are measured.
These results are illustrated in Figure 11 with the stress distribution along lines on the
surface of the specimen, and in depth at the center of the impact.
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Figure 11. Distribution of residual stresses σ22 (MPa) averaged by grains. (a) At the surface
(x = 0). (b) At depth (y = 0).

Figure 11 shows that, for the microstructures considered, the surface and depth results
are relatively close, and seem to show the same average behavior, while differing in their
fluctuations. The residual stresses are tensile at the edge of the patch (Figure 11(a)), as
a consequence of stress balancing across the domain. This presence of tensile stresses is
independent of the d/Ly ratio, and can be observed also for macroscopic models (see for
example Morin et al. [32]). If the stresses presented are in compression at the center of the
surface patch, they are only in compression for a very small thickness (∼ 0.1 mm), before
briefly switching to tension at x ∼ 0.2 mm (Figure 11(b)). The residual stress profile at
depth nevertheless shows a distinctly compressive zone along the center of the impact
(0.25 mm ≤ x ≤ 0.75 mm).

The conclusion of this section is therefore that the consideration of a microstructure influ-
ences the residual mechanical fields, insofar as a given microstructure directly influences
the distribution of residual stresses obtained. However, the role of the ratio between the
average grain size and the laser spot size has yet to be established. This aspect will be
discussed in the next section.

4.3 A statistical study of the residual mechanical fields

4.3.1 Description of the statistical approach

As illustrated by Figures 9 and 10, the random nature of the microstructures generated
and used in the simulations greatly influence the results. In order to quantify the influence
of the microstructure on the different mechanical fields, we make use of a statistical
approach of the results to obtain statistical information on the mechanical fields. To
do this, simulations similar to those whose results are presented in Figures 9 and 10
have been performed for a large number of different microstructures. These simulations
are performed with the same parameters, with only different Voronoi tesselations from
one simulation to another. The results are no longer considered one by one, but used
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to determine average mechanical fields and their statistical properties. In this way, we
will be able to quantify an average behavior of the polycrystal through simulation, while
identifying “extreme” behaviors or responses.

We need for this approach a measure allowing to determine if the number of simulations
we realized is sufficient. For that, we are inspired by the approach of Kanit et al. [22],
which seek in their work to determine the size of the Representative Elementary Volume
to be chosen in order to correctly estimate effective properties. An absolute error is then
defined as:

erel =
2DZ

Z
√
N
, (42)

where DZ is the standard deviation of the realizations of the variable Z, Z is the average
of the realizations of Z, and N is the total number of realizations. Here, the analysis has
been made considering the statistical moments of the average of the accumulated plastic
strain γ in a zone at the center of the impact (−0.1 ≤ y ≤ 0.1 and x = 0, see Figure
14(a)), for a number of realizations. Depending on the number of simulations performed,
we obtain the curve presented in Figure 12.
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Figure 12. Evolution of the relative error on the accumulated plastic strain at the center of the
impact obtained with i simulations.

The relative error reaches a plateau (1.4%) after 19 realizations. In the following, we will
present statistical average based on 30 realizations, which is sufficient to obtain a complete
statistical description of the accumulated plastic strain field with a relative accuracy lower
than 1.5%.

4.3.2 Plastic strain field

We start by illustrating the approach by presenting maps of the average accumulated
plastic strain, and of the standard deviation on this strain in Figure 13, computed over
30 simulations. The mean field has a smooth distribution (i.e. no visible influence of
microstructures), and is symmetrical with respect to y = 0. The standard deviation
exhibits more variations, and is particularly pronounced at the edges of the laser spot.
Note that the standard deviation on γ is one order of magnitude below the mean field,
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indicating large field fluctuations.

(a) (b)

Figure 13. Statistical properties of the accumulated plastic strain field obtained over 30 simula-
tions. (a) Mean field. (b) Standard deviation field.

We also present results of the statistical approach related to the accumulated plastic strain
γ (Figure 14) and the rotation of the crystal lattice ω (Figure 15) along particular lines:
on the surface (x = 0) and in depth at the center of the impact (y = 0). The different
simulations carried out to obtain these results allow us to obtain not only the mean fields,
but also the median fields, and to determine intervals containing the values between the
percentile at 10% and 90%, in order to obtain more information on the distribution of the
results.
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Figure 14. Mean field of global accumulated plastic strain. (a) Values of the field at the specimen
surface (x = 0). (b) Values of the field at depth, at the center of the impact (y = 0).

The accumulated plastic strain at the surface (Figure 14(a)) shows a symmetrical profile
with respect to the center of the impact, with values mostly centered around the mean
and median, especially within the impact. Values are more dispersed in depth (Figure
14(b)). On the surface and in the center of the impact (x = 0, y = Ly/2), the largest
fluctuations are of the order of 300% between the lowest and largest values obtained with
the different microstructures. As seen previously, the rotation of the crystal lattice is also
a marker of plasticity, and is presented in Figure 15. In contrast to the overall average
accumulated plastic strain, the average crystal lattice rotation is antisymmetric at the
surface with respect to the impact center, with values highly centered around the mean
and median. Values at depth along a line at the center of the impact are not shown, but
are nearly zero. The rotations of the crystal lattice are thus induced preferentially at the
edges of the laser spot, where the stress state is mainly in shear.
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Figure 15. Average field of rotation of the crystal lattice on the surface (x = 0).

4.3.3 Residual stress field

We now present the results for the residual stresses given in Figure 16 along the surface
and in depth.
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Figure 16. Mean field of residual stresses. (a) Surface values (x = 0). (b) In-depth values at the
center of the impact (y = 0).

Figure 16(a) shows that the mean and median values at the center of the impact are
in compression, but the values attainable in some configuration by the stresses can also
be in tension (a standard deviation of ∼20 MPa at x = 0 and y = Ly/2, for a mean
value of ∼ −20 MPa). The depth profile in Figure 16(b) shows that the distribution
of residual stresses can be close to zero over the entire thickness affected by the average
residual stresses in compression. Theoretically, such residual stress values can decrease the
effectiveness of the laser shot peening treatment, if these values are not too localized within
the impact. If this situation occurs in a specimen or structure, these would be locations
where a crack or defect could preferentially initiate, despite the fact that residual stresses
are on average compressive in the rest of the affected area.
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4.4 Effect of the microstructure on the backface velocity

In addition to the residual fields, we study the effect of the microstructure on the backface
velocity. Indeed, the velocity of the rear face (opposite of the laser impact) of the specimen
can be measured by VISAR technique, for thin (few hundreds of microns) specimens
[1, 2, 38]. This backface velocity can be used to identify the material’s constitutive relation
at the huge strain-rate encountered during LSP. For all the results that have been shown
so far, the average grain size has been kept constant. However, it is a parameter that
can primarily influence the heterogeneity of the mechanical field. In the following, we will
consider three different average grain sizes: 40 µm, 80 µm and 160 µm.

Simulations parameters It is necessary here to slightly modify the parameters of the
simulations. Indeed, the study of the velocity at the back face requires a thin sample, so
that the stress wave is not too attenuated when it arrives at the back face, in order for the
results to contain information on the elasto-visco-plastic behavior. We therefore change
the dimensions of the model, and use Lx = 0.5 mm and Ly = 3 mm. Only the thickness
of the sample has been reduced. All other parameters remain the same as in the previous
simulations. The boundary condition of the face x = Lx is this time modeled as a free
surface, to ensure the full reflection of the stress wave.

Typical microstructures used for the backface velocity simulations are shown in Figure
17.

(a) (b)

(c)

Figure 17. Typical microstructures used for backface velocity calculations. (a) Average grain size
of 40 µm. (b) Average grain size of 80 µm. (c) Average grain size of 160 µm.

Simulations results Again, 30 simulations are performed for each of the microstructure
sizes presented in Figure 17. The backface velocity profiles are extracted at the point
(x = Lx, y = 0).

In Figure 18, we present the statistical distribution of the backface velocity profiles.
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Figure 18. Average backface velocity profiles. (a) For average grain size of 40 µm. (b) For average
grain size of 80 µm. (c) For average grain size of 160 µm. (d) Zoom to precursor for average
grain size of 160 µm.

As with the results in subsection 4.3, Figure 18 presents the mean, median, and a band
containing the values taken by the backface velocity for all simulations. It is immediately
noticeable that the backface velocity values seem very centered around an average be-
havior. A thickening of the band of values can nevertheless be noticed. The larger the
average grain size, the more the results are scattered between two statistically equiva-
lent microstructures. The first peak of the velocities is little affected by the size of the
microstructure except at the level of the elastic precursor (∼ 19 MPa, 80 ns), where the
dispersion of the values increases with the average grain size of the microstructure. The
minimum velocity introducing plastic strain can thus vary from one microstructure to
another, in particular for a microstructure with large grains (see Figure 18(c)). Moreover,
the inflection of the velocity profile at the back face (average or median) at the level of
the elastic precursors is smooth for the plots of Figure 18, and thus reflects a continuous
transition from elasticity to plasticity.

5 Discussion

The introduction of material heterogeneity in the description of the polycrystalline ma-
terial has thus a direct influence on the mechanical fields, both residual and related to
the propagation. This is consistent with other works from the literature, notably Sunny
et al. [40] who presented equivalent plastic strain fields induced by a laser impact in a
polycrystal microstructure which display the shape of the grains, as in Figure 9. However
the authors considered in their work a Johnson-Cook type behavior for the grains, while
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we adopt a crystal plasticity model. Separately, Vukelić et al. [42] presented simulations
of a laser impact on a bicrystal using a crystal plasticity law. Their results also show
discontinuities at the grain boundary in the plastic strain fields, as well as in the lattice
rotation fields. Nonetheless the computed residual stresses are continuous and the grain
boundary is almost invisible when looking at the stress field. It is worth noting that the
authors use the complete set of slip systems for aluminum contrary to this work, and a
much smaller spot diameter of 12 µm, which greatly influences the residual stress field.

Unlike the residual stress field which is difficult to experimentally analyze at this scale, it
is possible to experimentally measure the lattice rotation field, which is a marker of the
plasticity in the polycrystal. In this context, Chen et al. [9] measured the lattice rotation
after a laser shock on an aluminum single crystal using X-ray microdiffraction techniques
(see for example Figure 9(a) of their work). These lattice rotation profiles are similar in
trend to our Figure 15: the edges of the laser spot are particularly marked, with rotations
of the order of ±3° (±8° in our case), and zero rotation at the center of the impact.
The discrepancies can be explained notably by the difference of spot diameters and of
pressure spatial distribution profiles. These similarities between the simulated results and
experimental profiles could be exploited for model validation.

However, it is important to note that a quantitative comparison with experimental data
will require a more complete modeling. A 2D plane strain modeling was used not to
increase dramatically the computation cost (here ∼ 10h for the propagation and stress
redistribution). A direct improvement would be to consider a 3D model, so as not to make
any simplifying hypotheses, either about the geometry of the problem or the mechanical
description (a complete set a of slip systems could then be used). This would also allow
the use of microstructures more representative of polycrystalline material, in terms of
grain morphology and orientations distribution. However a great computational cost can
be expected for a 3D model, which could prove prohibitive for small grain sizes, which
require a fine mesh. For LSP, 3D model are currently used to study the overlapping
parameters [4, 27], with however the work of Chen et al. [10], using a 3D finite element
model to study the effect of micro-LSP on Aluminum single crystals.

A possibility to push the study further while avoiding too large model would be to consider
homogenized models, as done in Lapostolle et al. [25] in the case of a laminate elastic-
plastic material. We have shown through a large number of simulations that it is possible to
compute an average behavior of the microstructure. It would be particularly interesting to
show that it is possible to determine an equivalent macroscopic model (either homogenized
or identified from a macroscopic law) allowing to calculate directly the average behavior
of the microstructure and the statistical fluctuations of the mechanical fields, provided
that the average size of the grains of the microstructure is small enough. This approach
would have the advantage of being much more efficient in computation time, since the
mesh would not need to be as fine as for a full field model.

Figure 16(a) in particular showed that despite a mean behavior in compression at the
surface and in the center of the impact, it is possible to have a realization of a microstruc-
ture that leads to less compressive residual stresses, or even traction stresses. During a
cyclic loading, a crack would be likely to initiate at these loci. The fatigue behavior is thus
driven by the worst case scenario, which simulations as the ones proposed in this work can
help predict. The residual stresses also present strong gradients at the surface. Residual
stresses are impacted by the gradients of plastic strains, which are also strong in the im-
mediate vicinity of the impacted surface. Though such fields are not shown in this work,
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the mean accumulated plastic strain field of Figure 13(a) shows a rapid decrease from the
surface when the depth increases. The high standard variation in Figure 13(b) close to
the surface also indicates fluctuations of the plastic strain fields, and thus of the residual
stress field. One must however keep in mind that we consider the case of a single impact,
while overlap is often used in industrial configuration. Laser spot overlapping is believed
to homogenize the stress state at the specimen surface [18, 45]. Moreover, the stress values
at the center of the impact in Figure 16(a) are mostly centered around the mean values.
All this is dependent on the material used, and may not be the same for different material
parameters. The link between the microstructure characteristics and the dispersion of the
mechanical fields, especially for the residual stresses, would be an important addition to
this study. This would allow, for a given microstructure, to help quantify the difference
that can be expected between two measurements of residual stresses analysis performed
between two samples treated by laser shock peening in an equivalent manner. Moreover,
such information would allow to quantify the level of residual stresses that can really be
expected in a structure or a sample, from a macroscopic simulation giving access to an
average behavior, and thus to optimize the design steps, taking into account the most
conservative case.

A more complete study of the influence of the grain size is another perspective of this
work. Particularly, the link between the average size or shape of the grains and the disper-
sion of the mechanical fields could be assessed. Given the results, it could help interpret
experimental results. For instance, the discrepancies between two similar backface velocity
measurement, as in Ayad et al. [1], could be the result of the locally different microstruc-
tures. More specifically regarding the velocity profiles of Figure 18, the low dispersion
can be linked to the low contrast of the mechanical properties in the direction of the
propagation (the velocities between to grain can only increase here up to 2.5%). Applying
Equation (42) to the maximum velocity would yield diminishing errors when one increases
the number of simulations. For large numbers of simulations (more than 25), the errors
for the different average grains sizes are close (∼ 1.4%), but increase with the average
size of the grains. This seems to indicate that a microstructure with large grains has a
larger dispersion of the velocity or stress fields. Results following this trend can be found
in the work of Segurado and Lebensohn [39] (see Figure 9 of their work), who indicate
that a low anisotropy of the grains (i.e. a low Zener coefficient) results in a lowest drop
in wave group velocity than for a higher anisotropy. Additionally, the bigger the grain
size, the bigger the velocity drop. This dispersion that the microstructure induces on the
wave front is also reported in Case and Horie [8], who studied the dispersion along a
plane wave front propagating in polycrystalline copper. Moreover, knowing the dispersion
of the residual stresses induced by a given microstructure could help accounting for the
worst case scenario when trying to introduce compressive residual stresses. In the case of
the residual fields, the average grain size influences both the probability of finding similar
grain orientations in a given volume, and the density of grain interfaces, both factors
being expected to play a role in the dispersion of the fields. Their influence should thus
be studied in future works.

6 Conclusion

This article was focused on the influence of a polycrystalline microstructure on the prop-
agation of a stress wave and the induced plastic strain and residual stress fields. For this,
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a 2D plane strain formalism was considered. Two slip systems were used at the crystal
scale. The propagation of the elastic stress wave has been modeled by a hyperbolic PDE
system, solved with an explicit Godunov numerical scheme. To this resolution is added a
visco-plastic crystal plasticity model. First simulations on single crystals allow to observe
localization bands of the plastic strain, oriented according to the directions of the slip sys-
tems. In this case, the residual stresses are dependent on the chosen crystal orientation,
making them more or less compressive. The incorporation of a Voronoi tessellation type
microstructure greatly influences the distribution of plastic strains and residual stresses,
which bear the mark of the microstructure. In the case of residual stresses, high concen-
trations are observed at the grain boundaries, which do not depend on the mesh size or on
the heterogeneity of the mechanical properties. The average influence of the microstruc-
ture is then studied, by performing a statistical approach of the problem. Through a large
number of simulations, we found that the mechanical fields (residual or relative to the
propagation of the stress wave) tend to the same average regardless of the average grain
size given for the microstructures. This feature is consistent with the macroscopic models
classically used for laser shock (such as the Johnson-Cook model), which do not show
any dependence on grain size. However, we have shown that the microstructure induces
a dispersion of the mechanical fields. This dispersion is important, because it can give in-
formation on the worst case for fatigue resistance for example. In particular, the residual
stresses induced by the laser shock simulated in the microstructures can be more or less
in compression at the center of the impact. The work presented in this article opens the
following perspectives:

• This work could be extended to a 3D model, in order to include a complete and realistic
set of slip systems, as well as a description of the microstructure more representative
of a polycrystalline material.
• The role of the grain size on the residual mechanical field is still to be thoroughly

investigated, in particular its influence on the dispersion of the residual fields. A small
grain size means that there is a higher probability of having similar orientations in a
given volume, and thus a lower dispersion of the mechanical fields, but also a higher
density of grain boundaries, which may increase the dispersion. The contribution of
these phenomenon is to be assessed.
• The computational cost of the simulation could be reduced by considering a homoge-

nized material, that either corresponds to the behavior obtained by averaging several
simulation over different microstructures, or by applying a homogenization scheme to
the elasto-visco-plastic polycrystalline aggregate.
• Laser loading with overlapping could also be added to the simulations, to see the effect

not only of several shots with this polycrystal work frame, but also on the dispersion
of the mechanical fields.
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A Numerical method for the 2D stress wave propagation

In this appendix we detail the numerical resolution of the 2D stress wave equation in
Equation (23). The Godunov numerical scheme is used according to Leveque [30], which
gives expressions for the fluxes F and G of Equation (27):
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(A.1)
The matrices A+, A−, B+ and B− are defined by (only for the matrix A for the sake of
conciseness):

A+ = PD+P−1 and A− = PD−P−1, (A.2)

with
D+

ij = δij max (0, λj) and D−ij = δij min (0, λj) , (A.3)

where λj denotes the jth eigenvalue of the matrix A, δij is the Kronecker symbol, and P
is the transition matrix of A.

In this way, the term Un+1
i,j is calculated by linear combination of the values of Un. It is

thus possible to calculate the state at the next time increment of the whole system with

Xn+1 = QXn, (A.4)

with Xn =
(
Un

1,1U
n
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n
1,Ny

Un
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n
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)T
, where Nx and Ny are

the numbers of nodes in the spatial domain in the x and y directions respectively. Q is a
matrix of size (5NxNy)× (5NxNy) constructed using the matrices A+, A−, B+ and B−.
Equation (A.4) thus allows to compute the state of the system at increment n+ 1.
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B System for the residual stresses modeling

In this appendix we give details about the resolution of the stress redistribution leading
to the computation of the residual stresses. The system of equations to solve is the one
given in Equation (35). The static equilibrium, accounting for the heterogeneity of the
material, thus gives the following system:
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We recall the following relations:
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As indicated in Section 3.3, the system is put under the matrix form MX = f (see Equa-
tion (38)). The vector f corresponds to the right-hand side of Equation (B.2) evaluated
numerically. The expression of the matrix M can be further detailed, for indices i and j
such that the point (xi, yj) is in Ω:
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withUx,(j−1)Nx+1 = (ux,i−1j−1, ux,ij−1, ux,i+1j−1, ux,i−1j, ux,ij, ux,i+1j, ux,i−1j+1, ux,ij+1, ux,i+1j+1)
T ,

and Uy,(j−1)Nx+1 being defined in a similar manner. The coefficients hij are constructed
using the finite differences method.
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Once the matrix M and the vector f have been constructed, the system can be solved
and the residual stresses computed using the strain-displacement relationship and Hooke’s
law.
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[37] Schneider, Y., Weber, U., Wasserbäch, W., Zielke, R., Schmauder, S., Tillmann, W.,
2020. A numerical method for the generation of hierarchical Poisson Voronoi mi-
crostructures applied in micromechanical finite element simulations—part I: method.
Computational Mechanics 66, 651–667.

[38] Seddik, R., Rondepierre, A., Prabhakaran, S., Morin, L., Favier, V., Palin-Luc, T.,
Berthe, L., 2022. Identification of constitutive equations at very high strain rates
using shock wave produced by laser. European Journal of Mechanics - A/Solids 92,
104432.

[39] Segurado, J., Lebensohn, R.A., 2021. An FFT-based approach for Bloch wave anal-
ysis: application to polycrystals. Computational Mechanics 68, 981–1001.

[40] Sunny, S., Gleason, G., Bailey, K., Mathews, R., Malik, A., 2021. Importance of
microstructure modeling for additively manufactured metal post-process simulations.
International Journal of Engineering Science 166, 103515.

[41] Thompson, R.B., Margetan, F., Haldipur, P., Yu, L., Li, A., Panetta, P., Wasan, H.,
2008. Scattering of elastic waves in simple and complex polycrystals. Wave Motion
45, 655–674.
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