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Abstract

Harmonizable processes form a wide class of nonstationary processes, which admit a convenient

Fourier analysis and have spectral distributions characterized by correlated components. They are

proved to be useful in many fields of application, for example, recently they were successfully applied

in the analysis of replicated ElectroEncephaloGram signals for studying the brain connectivity. In

this paper, we introduce a parametric form for these harmonizable processes, namely Harmonizable

Vector AutoRegressive and Moving Average models (HVARMA). In the same spirit as of standard

VARMA models, they are derived as a unique solution of a difference equation based on a properly

defined concept of harmonizable noise. We exhibit their spectral characteristics and provide a way

to generate realizations from a given HVARMA model.

keywords: Harmonizable processes, Loève spectrum, time series, VARMA models.

1 Introduction

Stationary processes are commonly used because a wide set of tools is available for their time and

frequency domain analysis. However, there are many problems for which stationarity is an unacceptable

limitation, and for which it is of interest to maintain a convenient and easy-to-interpret spectral analysis

(e.g., econometrics, telecommunication, vibroacoustics, mechanics). Sometimes nonstationarity can be

modeled by assuming that stationarity holds locally. This can be done, for example, using piecewise

stationary or locally stationary processes. ARMA models with time-varying coefficients (Dahlhaus, 2012)

provide a very powerful and convenient parametric class flexible enough to describe many real-life signals.

Nevertheless, those models do not allow for capturing many complex dependencies that characterize some

signals such as dependence in the frequency domain.

Harmonizable processes are a natural extension of stationary processes with a spectral (frequency) dis-

tribution, whose components are correlated. Their covariance function is bivariate and admits a two-

dimensional Fourier decomposition (Loève spectrum). Hence, the study of this class of time series is

possible through Fourier analysis methods.

0This publication is based upon work supported by King Abdullah University of Science and Technology Research

Funding (KRF) under Award No. ORFS-2022-CRG11-5025.2
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Figure 1: Nonparametric estimate of the dual-frequency coherence computed on replicated EEG data.

The darker the color, the higher the coherence value.

Harmonizable processes have been studied in the literature over the past 70 years. We refer the reader in

particular to the works of Loève (1948-1963) (see Cramér, 1961; Loève, 1978; Rozanov, 1959). Numerous

applications of the concept of a harmonizable process have been developed in signal theory, in commu-

nications, in mechanics, etc, (see, e.g., Gardner et al., 2006; Napolitano, 2019; Serpedin et al., 2005;

Setoodeh & Haykin, 2017). That is to say, in fields where filtering problems are common, and frequency

domain methods are highly regarded by practitioners for describing or inferring the properties of noisy

signals.

Recent applications of harmonizable time series have opened new research directions for EEG data (Aston

et al., 2023; Gorrostieta et al., 2019). In these papers, the authors introduced nonparametric methods for

estimating the Loève spectrum, along with some generalizations, including the spatially time-localized

Loève spectrum (see Aston et al., 2023). In addition, they estimated dual-frequency coherence, a measure

that captures the linear relationship between two frequencies and a pair of time series. This quantity,

derived from Loève spectrum, provides insightful analysis of replicated EEG time series (Ombao & Pinto,

2022). Figure 1 shows this spectral dependence measure computed on EEG signals recorded from elec-

trodes monitoring the prefrontal cortex activity (for details on the data, see Morán & Soriano, 2018)).

We can observe many non-zero off-diagonal values that may be the key to understanding the complex

dependence structure of these signals. The high-frequency content in the Beta (13-30Hz) and Gamma

(above 32Hz) oscillation ranges appear to be potentially correlated with each other. This clearly suggests

that models allowing for frequency domain dependencies are required to capture the complexity of these

signals.

It should be noted, that the calculation of the Loève spectrum requires replicated observations. More-

over, there is currently no way to generate harmonizable time series with known spectral characteristics,

which is essential to assess the numerical performance of new methods based on harmonizable processes.

Developing parametric models and related statistical inference methods for harmonizable processes could

address both challenges. Using parametric models can significantly reduce the number of replicated time

series required for real data analysis compared to nonparametric methods. Furthermore, it could facilitate

data generation whenever the spectral characteristics of these models are available. Such advancements

would significantly expand the use of methods based on harmonizable processes. However, despite several

publications on linear harmonizable time series (Mehlman, 1991, 1992), no parametric models have been
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developed for these processes. This gap deprives researchers and practitioners of a robust set of tools for

estimation, forecasting, data generation, and more.

Taking the above into account, this paper makes four key contributions (denoted later in this section as

Contributions 1-4). First, we address a gap in the literature by introducing the first parametric VARMA-

type model for harmonizable processes, which we refer to as HVARMA. Second, we exhibit their spectral

characteristics. Third, we tackle the challenge of generating non-trivial realizations of harmonizable time

series with a specified Loève spectrum. Finally, we present preliminary results of how to perform param-

eter estimation of a model with harmonizable noise.

Contributions 1 and 2 are addressed in the first four sections of this paper, where we lay the mathemat-

ical foundation for defining the HVARMA models (see Definition 5.1. Our approach draws inspiration

from the work of Brockwell and Davis (1991). The HVARMA model is obtained as a solution of a

difference equation based on appropriately defined harmonizable noise, which serves as innovations (see

Section (6.5)). This harmonizable noise is the fundamental building block of our linear model. We as-

sume that it is uncorrelated, but its variance is not constant over time, and the vector components of

a multivariate harmonizable noise at any fixed time moment can be correlated. The formal definition

of harmonizable noise, provided in Theorem (3.1), differs from that used in Mehlman (1991, 1992) (see

Definition 6.1 in Mehlman (1991) and Definition 2.15 in Mehlman (1992)).

Dealing with such a definition requires distinguishing the subtle differences between weakly and strongly

harmonizable processes (see Proposition 2.1 and related remark). To ensure that we obtain an inter-

pretable spectrum for our HVARMA model, we pay great attention to the spectral characterization of

harmonizable noise in Section 3, and its filtered version (moving average) in Section 4, resulting in the

multivariate linear harmonizable model. Furthermore, we establish necessary and sufficient conditions for

strong harmonizability and the existence of a stochastic spectral density in Proposition 3.1 and Proposi-

tion 3.2.

Finally, in Theorem 5.1 we state the spectral characterization of HVARMA models. It gives the analytical

form of the Loève spectral density matrix of the HVARMA model. Interestingly, it combines the spectral

characteristics of the harmonizable noise and the spectral characteristics of the filter that are used to

obtain the HVARMA(p,q) model.

Section 6 refers to Contribution 3, in which we provide a methodology for generating realizations of

harmonizable time series based on known spectral characteristics. In this section, we highlight the

technical subtleties that must be addressed to generate harmonizable noise on a finite group. In particular,

we discuss how to get harmonizable noise using a certain VARMA(p′, q′) process. We will then use it

to construct a HVARMA(p,q) process. This gives us a subclass of HVARMA models, which we denote

as HVARMA(p, q) − (p′, q′). In Section 6.5, we describe in detail how to generate realizations from

HVARMA(p, q)− (p′, q′) and compare them with standard VARMA models.

Moreover, Figure 2 presents a realization of an usual V ARMA(3, 2) process (top left panel), which

was used to obtain three HVARMA(3, 2) − (p′, q′) series with different incremental processes (see the

other three panels). As can easily be seen, HVARMA realizations based on the same VARMA can vary

significantly from each other (as well as from the input VARMA process) and consequently can be used

to model very different phenomena. They also exhibit complex nonstationary behaviors.

Contribution 4 is addressed in Section 5.2, where we discuss how to estimate the parameters of the

HVARMA model on a simple example of an univariate HVARMA (1,0) model. Here we do not assume

any model for the harmonizable noise except its heteroskedasticity. We do not consider the estimation

problem of the variance of the harmonizable noise (see White, 1958). This is the subject of another
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Figure 2: Example realizations of an usual V ARMA(3, 2) of dimension 2 and its modified versions

HVARMA(3, 2)− (p′, q′) with different incremental processes.

project.

In summary, this paper is organized as follows. In Section 2 a brief description of the spectral repre-

sentation of multivariate harmonizable time series is presented. In Section 3, the notion of multivariate

harmonizable noise (or innovation) is introduced and its spectrum characterized. This is the basic build-

ing block of linear models. Additionally, necessary and sufficient conditions for strong harmonizability

and for the existence of a stochastic spectral density are given. Section 4 is devoted to defining mul-

tivariate linear harmonizable time series as the moving average of harmonizable noise. Section 5 deals

with multivariate harmonizable autoregressive moving average (VARMA) models. Section 5.2 introduces

the idea of estimating the parameters of an univariate HVARMA model. Section 6 details a proper

methodology for generating realizations of harmonizable time series from known spectral characteristics.

Finally, a short discussion is provided in Section 7. All proofs are deferred to Appendix.

2 Background

In this section, we introduce the basic notations and recall some definitions and properties of harmonizable

processes. For more details, we refer the reader to Loève (1978), Mehlman (1991), Rao (1982), and

Rozanov (1959).

2.1 Notation

Let d be a fixed non-zero integer. From now on, Cd denotes the set of d-dimensional complex column

vectors and Tdef
= R/2π represented by (−π, π] is the topological dual group of Z. In this paper, we assume

that the probability space (Ω,F ,P) is sufficiently large so that there exists a sequence of uncorrelated

random d-dimensional vectors with a variance matrix equal to the identity matrix of size d×d denoted as

Id×d, and which are not correlated with the d-dimensional time series (Zn)n∈Z studied in the following.

Otherwise, one can always replace any probability space (Ω,F ,P) by an enlarged probability space with

this property. For the construction of such an enlargement, we refer the reader to Loève (1978).

Hereafter, we consider only complex-valued random variables defined on the probability space (Ω,F ,P),

that have zero mean and are mean square integrable. For simplicity, in what follows, when we write ”time
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series” we mean second order time series with zero mean, i.e., a sequence of square integrable random

vectors with zero mean (or variables) on the probability space (Ω,F ,P). We denote by H = L2
C(P)

the complex Hilbert space of square integrable complex-valued random variables with scalar product

⟨x|y⟩H = E(xy). The inflated space Hd def
= ⊕d

1H = L2
Cd(P) is a Hilbert space with the scalar product

⟨x|y⟩Hd
def
= E(x⊤y). If x and y are two zero mean random vectors in L2

Cd(P), then the covariance between

x and y is the d × d-matrix Cov(x,y) = E(xy∗) =
(
cov(xi, yj)

)
1≤i,j≤d

, where x = (x1, . . . , xd)
⊤ and

y = (y1, . . . , yd)
⊤ ∈ Hd.

Here and in the following, the superscript ’⊤’ denotes the transpose operator, and the superscript ’∗’ is
the adjoint operator, i.e., the conjugate transpose operator.

Let X = (Xn)n∈Z be a d-variate time series and let H(Xn) be the Hilbert subspace of H generated

by Xn,1, . . . , Xn,d, i.e., H(Xn)
def
= {a⊤Xn : a ∈ Cd}, where Xn = (Xn,1, . . . , Xn,d)

⊤. Notice that

dimH(Xn) ≤ d. Moreover, let Hd(Xn) be the Hilbert subspace of Hd generated by Xn, i.e., Hd(Xn)
def
=

{AXn : A ∈ Cd×d}, Hd(Xn) = H(Xn)⊕ · · · ⊕ H(Xn) and dimHd(Xn) = d× dimH(Xn) ≤ d2.

In the following, we also consider H(X) a Hilbert subspace of H generated by the Hilbert subspaces

H(Xn), n ∈ Z, and Hd(X) the Hilbert subspace of Hd generated by the subspaces Hd(Xn), n ∈ Z.
If we replace X by a d-variate white noise ε = (εn)n∈Z, then the Hilbert subspaces H(εn), n ∈ Z, are
orthogonal with the same dimension equal to the rank of the covariance matrix Σ2

ε = Var(εn). If, in

addition, the d-variate white noise is pure (see Definition 3.1), then the family {ϵn,1, . . . , ϵn,d} is the

orthonormal basis of H(εn). Thus, dimH(εn) = d and dimHd(εn) = d2.

2.2 Multivariate harmonizable time series

Definition 2.1 A d-variate time series X = (Xn)n∈Z is called harmonizable when there exists a (σ-

additive) vector measure µX : B(T) → Hd, such that

Xn =

∫
T
einλ µX(dλ).

The measure µX is unique, it is called stochastic spectral measure of the time series X. The integral

with respect to the vector measure µX is in the sense of Dunford and Schwartz (see chapter IV, section

10, Dunford & Schwartz, 1957).

In the following, for a harmonizable time series X, we will consider the Hilbert subspace H(µX) of H
generated by µX,j(A), j = 1, . . . , d, A ∈ B(T). ThenH(µX) = H(X) andHd(µX) = Hd(X) (Rao, 1982).

A harmonizable time series can also be characterized by a dependence structure in the frequency do-

main. More specifically, we have the following result.

Proposition 2.1 (Rao, 1982; Rozanov, 1959) A d-variate time series X is harmonizable if and only

if there exists a positive semi-definite bimeasure MX : B(T) × B(T) → Cd×d ( the set function MX is

σ-additive with respect to each of its components) such that,

E(XmX∗
n) =

∫ ∫
T2

ei(mλ1−nλ2) MX(dλ1, dλ2).

The bimeasure MX is unique, and it is called the spectral bimeasure of the time series X. The above

integral with respect to the bimeasure MX is a Morse-Transue integral (Rao, 1982; Rozanov, 1959).

Furthermore,

MX(A,B) = Cov
(
µX(A),µX(B)

)
= E

(
µX(A)µ∗

X(B)
)

for any A and B ∈ B(T).
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Remark 2.1 • The bimeasure MX is not necessarily extendible as a Cd×d-valued measure on T2.

When the bimeasure MX is extendible as a Cd×d-valued measure on T2, the time series is called

strongly harmonizable (Loève harmonizable), otherwise it is called weakly harmonizable.

• Stationary (wide-sense or second order) time series are strongly harmonizable. A harmonizable time

series is stationary if and only if its stochastic spectral measure is orthogonally scattered, i.e., its

spectral bimeasure is concentrated on the main diagonal of T2: MX(A,B) = E
(
µX(A)µ∗

X(B)
)
=

0d×d, when A ∩ B = ∅, A,B ∈ B(T). Then the spectral measure mX on T of the stationary time

series X satisfies mX(A) = MX(A,T) = M∗
X(T, A) for any A ∈ B(T).

3 Multivariate harmonizable noise or innovation

For the sake of clarity, we first recall the definition of a white noise ε
def
= (εn)n∈Z. Then, we state a

necessary and sufficient condition for a time series Z
def
= (Zn)n∈Z to be a harmonizable noise, and we

characterize its stochastic spectral measure. Finally, we establish necessary and sufficient conditions for

Z to be strongly harmonizable, and to admit a stochastic spectral density.

Definition 3.1 (White noise) A d-variate time series ε
def
= (εn)n∈Z is a white noise when it has zero

mean and Cov(εm, εn) = E(εmε∗n) = Σ2
ε1{m=n} for some hermitian positive semi-definite d × d-matrix

Σ2
ε. A d-variate white noise is a stationary time series. In the following, a d-variate white noise is said

to be a d-variate pure white noise when Σ2
ε = Id×d (identity d× d-matrix).

We consider the following condition for a d-variate time series Z
def
= (Zn)n∈Z, whose covariance matrix is

time-varying.

(Ha) E(Zn) = 0d and Cov(Zm,Zn) = E
(
ZmZ∗

n

)
= Σ2

Zn
1{m=n},

where the components of the covariance matrices Σ2
Zn

, n ∈ Z, are uniformly bounded, that is,

supn,j E
(
|Zn,j |2

)
< ∞.

Below we establish a fundamental building block for our results, stating a necessary and sufficient condi-

tion for the time series to satisfy (Ha).

Lemma 3.1 (Fundamental Lemma) A d-variate time series Z
def
= (Zn)n∈Z fulfills condition (Ha)

if and only if there exists a d-variate white noise ε
def
= (εn)n∈Z and a family of d × d-matrices Sn =

(sn,j,k)j,k=1,...,d such that supn,j,k |sn,j,k| < ∞ and Zn = Snεn, n ∈ Z.

Note that (Zn) is not necessarily white noise, since the variance matrix of Zn may depend on n.

Remark 3.1 (i) In Lemma 3.1 the white noise (εn)n∈Z is not unique and it can be selected as a

d-variate pure white noise.

(ii) Var(Zn) = SnΣ
2
εS

∗
n. In the case of a pure white noise, we have Var

(
Zn

)
= SnS

∗
n and E

(
Z⊤

nZn

)
=

tr
(
SnS

∗
n

)
.

Below we state the harmonizability of the time series (Zn)n∈Z satisfying the condition (Ha). The proof

of the following theorem relies on the construction of a bounded linear operator Ξ : Hd(ε) → Hd(Z)

such that Zn = Ξεn, where the time series (εn)n∈Z is stationary. For more details, we refer the reader

to Section 8, proof of Theorem 3.1.
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Theorem 3.1 (Harmonizable noise or innovation) A d-variate time series (Zn)n∈Z fulfilling con-

dition (Ha) is harmonizable. Its stochastic spectral measure µZ defined on B(T) satisfies

µZ(A) =
1

2π

∑
n∈Z

(∫
A

e−inλdλ

)
Zn, (1)

where the convergence is in Hd(Z). Conversely, any d-variate harmonizable time series (Zn)n∈Z whose

stochastic spectral measure satisfies relation (1), satisfies the condition (Ha). In what follows, such a

time series will be referred to as d-variate harmonizable noise.

Remark 3.2 (i) Note that the spectral bimeasure MZ of (Zn)n∈Z satisfies

MZ(A,B) =
1

4π2

∑
n∈Z

(∫
A

∫
B

e−in(λ1−λ2)dλ1dλ2

)
Σ2

Zn
,

where the convergence of the series is in R.

(ii) If ε
def
= (εn)n∈Z is a d-variate white noise, then it is harmonizable noise and it is stationary. The

stochastic spectral measure µε is orthogonally scattered in the sense that E [µε(A)µ∗
ε(B)] = 0d×d

when A ∩B = ∅. It admits a spectral measure mε defined on B(T) which satisfies

mε(A ∩B) = Mε(A,B) = E [µε(A)µ∗
ε(B)] , A,B ∈ B(T).

(iii) When ε
def
= (εn)n∈Z is a d-variate pure white noise, its spectral measure mε has a density function

with respect to Lebesgue measure on T, which coincides with the Cd×d-valued constant function
1
2π Id×d. Every function f ∈ L2

C(T) is µε-integrable and∥∥∥∥∫
T
f(λ)µε(dλ)

∥∥∥∥2
Hd

= tr

(
E

[(∫
T
f(λ)µε(dλ)

)(∫
T
f(λ)µε(dλ)

)∗])
=

d

2π

∫
T
|f(λ)|2dλ.

(iv) Consider a d-variate harmonizable noise Z and a d-variate pure white noise ε associated to Z in

Lemma 3.1. Applying the previous remark (iii) and Dunford and Schwartz (Theorem 3.2.19 1957),

every function f ∈ L2(T) is integrable with respect to µZ = Ξµε, where Ξ is the bounded linear

operator defined in the proof of Theorem 3.1. Furthermore,∥∥∥∥∫
T
f(λ)µZ(dλ)

∥∥∥∥2
Hd

≤ sup
n,j,k

|sn,j,k|2
∥∥∥∥∫

T
f(λ)µε(dλ)

∥∥∥∥2
Hd

=
ς2d

2π

∫
T
|f(λ)|2 dλ. (2)

where ς2 = supn,j,k |sn,j,k|2. Consequently, the stochastic spectral measure µZ is absolutely contin-

uous with respect to Lebesgue measure on T. Nevertheless, this does not imply that there exists a

function ∆Z : T → Hd that is integrable in some sense (Pettis or Bochner, Dunford and Schwartz

(see 1957)) and such that

µZ(A) =

∫
A

∆Z(λ) dλ.

Neither that the spectral bimeasure MZ is extendible to a Cd×d-valued measure on T2 (see Propo-

sition 3.1).

Before presenting other theoretical results, we give some elementary examples of harmonizable noises.

Example 3.1 Let ε
def
= (εn)n∈Z be a d-variate white noise. Consider the following time series:
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(i) Z(1)
n

def
= εn for any n ∈ Z.

(ii) Z(2)
n

def
= εn for n1 ≤ n ≤ n2, and Z(2)

n
def
= 0 otherwise, n1 < n2 being fixed in Z (Rao, 1982).

(iii) Z(3)
n

def
= εn for n ≥ 0, and Z(3)

n
def
= 0 otherwise (Rao, 1982).

(iv) Let d = 2 and S(4)
n

def
=

(
1 0

0 1 + (−1)n

)
, S(5)

n
def
=

(
1 0

0 1 ∧ |n|−1

)
. Set Z(i)

n
def
= S(i)

n εn, for i = 4, 5.

(v) Let X
def
= (Xn)n∈Z be a L2

Cd(P)-bounded time series. Consider the innovation series Z(6) =

(Z(6)
n )n∈Z defined by Z

(6)
n,j

def
= Xn,j − Pn−1Xn,j , where Pn−1Xn,j is the one-step prediction of Xn,j ,

i.e., the orthogonal projection of Xn,j onto the sub-Hilbert space Hn−1(X) of H(X) ⊂ L2
C(P)

generated by {Xp,k : p ≤ n− 1, k = 1, . . . , d}.

Then the series Z(i) = (Z(i)
n )n∈Z, i = 1, . . . , 6 are d-variate harmonizable noises.

Next, we state a condition for the d-variate time series (Zn)n∈Z to be strongly harmonizable.

Proposition 3.1 (Strong harmonizability) A d-variate harmonizable noise (Zn)n∈Z is strongly har-

monizable if and only if

Σ2
Zn

=

∫
T
einλnZ(dλ), (3)

where nZ is some Cd×d-valued measure on T. In this case, the measure nZ is unique, for every A ∈ B(T)

nZ(A) =

∫∫
T2

IA(λ1 + λ2)MZ(dλ1, dλ2), (4)

and for every E ∈ B(T2) we have

MZ(E) =
1

2π

∫∫
T2

IE(λ− α, α)nZ(dλ)dα. (5)

IE is the indicator function of the set E, that is, IE(λ) = 1 if λ ∈ E and IE(λ) = 0 otherwise.

Remark 3.3 (i) The measure nZ in Proposition 3.1 satisfies

n∗
Z(A) = nZ(−A) = nZ(A), A ∈ B(T).

Indeed

M∗
Z(dλ1, dλ2) = MZ(dλ2, dλ1) =⇒

n∗
Z(A) =

∫∫
T2

IA(λ1 + λ2)M
∗
Z(dλ1, dλ2) =

∫∫
T2

IA(λ1 + λ2)MZ(dλ2, dλ1) = nZ(A)

and

0 ≤ vΣ2
Zn

v∗ =
(
vΣ2

Zn
v∗)∗ =⇒∫

T
einλ

(
v nZ(dλ)v

∗) = ∫
T
e−inλ

(
v nZ(dλ)v

∗)∗ =

∫
T
e−inλ

(
v n∗

Z(dλ)v
∗) = ∫

T
einλ

(
v n∗

Z(−dλ)v∗), n ∈ Z.

(ii) A white noise (εn)n∈Z is strongly harmonizable, and the measure nε coincides with Σ2
εδ0, where δ0

is the Dirac measure at 0.
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(iii) Following the notations of Examples 3.1, the d-variate time series Z(3) is weakly harmonizable and

not strongly harmonizable (Rao (1982, Sec.2 p.301) and Helson and Lowdenslager (1958, p.183)),

while Z(1) is a white noise. Applying Proposition 3.1, we establish that the d-variate time series

Z(2), Z(4) and Z(5) are strongly harmonizable noises.

– For Z(2), let fZ(2)(λ)
def
=
∑n2

k=n1
eiλn, then Var(Z(2)

n ) = 1
2π

∫
T e

−iλnfZ(2)(λ) dλ and hence

nZ(2)(dλ) = 1
2πfZ(2)(λ) dλ.

– For Z(4), notice that

(1 + (−1)n)2 = (1 + cos(πn))2 = 2 + 2 cos(πn) = 2 + eiπn + e−iπn.

Then we obtain that

nZ(4) = Σ2
ε

(
δ0

2δ0 + δπ + δ−π

)
.

– For Z(5) we have

(1 ∧ |n|−1)2 = 1 ∧ |n|−2

Consider the function fZ(5)(λ)
def
= 1 + 2

∑∞
n=1

1
n2 cos(λn) and the real valued measure defined

on T by nZ(5)(A)
def
= 1

2π

∫
A
fZ(5)(λ) dλ. Then we obtain that

nZ(5) = Σ2
ε

(
δ0

nZ(5)

)
.

(iv) For any integrable function G : T → Cd×d, G ∈ L1
Cd×d(T), the (’convolution’) function

D(λ)
def
=

∫
T
G(α)G∗(α+ λ) dα.

The d × d-matrix
∫
T e

inλD(λ) dλ is positive semi-definite for any n. It is therefore the covariance

matrix of a zero mean d-variate random vector Zn: Σ2
Zn

=
∫
T e

inλD(λ) dλ. Moreover, we can

enlarge the probability space (Ω,F ,P) in such a way that we can select the zero mean d-valued

random vectors Zn, n ∈ Z, so that they are uncorrelated: Cov
(
Zm,Zn

)
= Σ2

nI{m=n}. In this case,

the d-variate time series Z =
(
Zn

)
ninZ

is a strongly harmonizable noise, so that nZ(dλ) = D(λ) dλ.

In the following proposition based on a general result of Szőkefalvi-Nagy and Foiaş (1970, pp.183–184) (see

also Niemi, 1978), we obtain a characterization for the stochastic measure of a d-variate harmonizable

noise admitting a stochastic Radon-Nikodym density function with respect to the Lebesgue measure, i.e.,

for which there exists a strongly measurable Lebesgue-integrable function ∆Z : T → Hd(Z) such that

µZ(A) =

∫
A

∆Z(λ) dλ.

Proposition 3.2 (Stochastic spectral density) The stochastic spectral measure µZ of a d-variate

harmonizable noise Z admits a density function with respect to the Lebesgue measure on T, if and only

if the total energy of the d-variate time series Z is finite:∑
n

trΣ2
Zn

=
∑
n

trVar
(
Zn

)
=
∑
n

E
(
Z⊤

nZn

)
=
∑
n

∑
j

σ2
Zn,j

< ∞. (6)

9



In this case, the stochastic spectral density function ∆Z on T satisfies

∆Z(λ) =
1

2π

∑
n∈Z

e−inλZn, (7)

where the convergence of the series (7) is in Hd.

Moreover, the d-variate harmonizable noise Z is strongly harmonizable. The spectral bimeasure MZ is

extendible to a Cd×d-valued measure on T2 with density function

FZ(λ1, λ2) = E
(
∆Z(λ1)∆

∗
Z(λ2)

)
=

1

4π2

∑
n∈Z

e−in(λ1−λ2)Σ2
Zn

.

Thus, nZ(dλ) = DZ(λ) dλ, where

DZ(λ) =
1

4π2

∑
n∈Z

e−inλΣ2
Zn

. (8)

Remark 3.4 • Under the condition 6, the stochastic spectral density function ∆Z is stationary with

respect to the frequencies: FZ(λ1, λ2) = E
(
∆Z(λ1)∆

∗
Z(λ2)

)
= DZ(λ1 − λ2).

• A (non-zero) white noise ε = (εn)n∈Z has no stochastic spectral density with respect to the Lebesgue

measure on T. Indeed, the condition (6) is not satisfied for (ϵn), because Σ2
εn

is constant and

different from the zero d × d-matrix 0d×d. Recall, however, that the non-zero white noise ε has a

spectral density with respect to the Lebesgue measure on T which is constant and equal to 1
2π Id×d.

4 Multivariate harmonizable linear model

In this section, we show that multivariate time series defined as moving average of a harmonizable noise

is harmonizable. This is a key result that allows us to introduce harmonizable ARMA time series in the

next section.

Let Z = (Zn)n∈Z be a d-variate harmonizable noise and A
def
= (An)n∈Z be a family of complex d × d-

matrices such that
∑

n tr(AnA
∗
n) < ∞. Then the d-variate time series X = (Xn)n∈Z is well-defined

by

Xn =
∑
m∈Z

An−mZm =
∑
m∈Z

AmZn−m, (9)

where the convergence is in H(Z) ⊂ L2
Cd(P) (see Theorem 4.1 below, for stationary case see Brockwell

and Davis (1991)). Notice that the convergence in the sum (9) is almost sure when
∑

n |An| < ∞. The

d-variate time series X is the transformation of the d-variate harmonizable noise Z by a time invariant

linear filter and

Cov
(
Xn,Xm

)
=
∑
j∈Z

An−jΣ
2
Zj

A∗
m−j .

Thanks to Plancherel theorem (Rudin, 1967, see Theorem 1.6.1) the Fourier transform Â : T → Cd×d

of the sequence A = (An)n∈Z is well-defined, and is square integrable on T, i.e., the Cd×d-valued func-

tion λ 7→ Â(λ)Â
∗
(λ) is integrable with respect to the Lebesgue measure on T. Furthermore, since the

topological group T is compact, the Fourier transform Â is integrable and

An =
1

2π

∫
T
Â(λ)e−inλ dλ.

10



When the sequence A is absolutely summable (
∑

n |An| < ∞), the Fourier transform Â is equal to

Â(λ) =
∑
n∈Z

Ane
inλ.

In the following theorem, we state that the time series (Xn)n∈Z given by (9) is harmonizable.

Theorem 4.1 Let Z
def
= (Zn)n∈Z be a d-variate harmonizable noise, and let A

def
= (An)n∈Z be a family

of complex d × d-matrices such that
∑

n tr(AnA
∗
n) < ∞. Then the d-variate time series X

def
= (Xn)n∈Z

defined by the moving average series (9) is well-defined in Hd(Z) and it is harmonizable. Moreover, the

Fourier transform Â of A is µZ-integrable and the stochastic spectral measure µX of X satisfies

µX(A) =
1

2π

∑
n∈Z

(∫
A

e−inλÂ(−λ)dλ

)
Zn =

∫
A

Â(−λ)µZ(dλ), (10)

where A ∈ B(T). Therefore, the spectral bimeasure of X can be expressed by

MX(A,B) =
1

4π2

∑
n∈Z

(∫
A

e−inλ1Â(−λ1) dλ1

)
Σ2

Zn

(∫
B

einλ2Â
∗
(−λ2) dλ2

)
=

∫
A

∫
B

Â(−λ1)MZ(dλ1, dλ2)Â
∗
(−λ2), (11)

where A,B ∈ B(T). The last integral is in the sense of an integral with respect to a bimeasure (see (Rao,

1982), see also (Rozanov, 1959)).

Remark 4.1 (i) If (Zn)n∈Z is strongly harmonizable, then (Xn)n∈Z is strongly harmonizable. The

spectral bimeasure MX is extendible to a Cd×d-valued measure on T2 and the integral in equal-

ity (11) is the Lebesgue integral with respect to the Cd×d-valued measure MZ .

Indeed, since
∑

n tr(AnA
∗
n) < ∞, Proposition 3.1 implies that

Cov
(
Xn,Xm

)
=
∑
j∈Z

∫
T
eiju

(
An−j nZ(du)A

∗
m−j

)
Applying the Parseval’s equality to each of the components of Cov

(
Xn,Xm

)
we obtain that

Cov
(
Xn,Xm

)
=

1

2π

∫
T

(∫
T
ei
(
n(α+λ)−mλ

)
Â(α− λ)nZ(dα)Â

∗
(−λ)

)
dλ,

and the spectral bimeasure MX is extensible to a vector valued measure on T2, and

MX(A×B) =
1

2π

∫
B

(∫
A

Â(λ1 − λ2)nZ(dλ1 − λ2)Â
∗
(−λ2)

)
dλ2.

(ii) If (Zn)n∈Z has a stochastic spectral density ∆Z (Proposition 3.2), then (Xn)n∈Z has a stochastic

spectral density which coincides with ∆X(λ) = Â(−λ)∆Z(λ):

µX(A) =

∫
A

Â(−λ)∆Z(λ)dλ.

Thus, the spectral bimeasure MX is extendible to a measure on T2 with a density function

FX(λ1, λ2) = Â(−λ1)DZ(λ1 − λ2)Â
∗
(−λ2)

and

Cov
(
Xn,Xm

)
=

∫
T

(∑
n∈Z

eijλAn−jDZ(λ)A
∗
m−j

)
dλ

=

∫
T2

e−i(nλ1−mλ2)Â(−λ1)DZ(λ1 − λ2)Â
∗
(−λ2) dλ1dλ2.

11



(iii) If (Zn)n∈Z has a discrete stochastic spectral measure, then (Xn)n∈Z has a discrete stochastic

spectral measure: µX(λ) = Â(−λ)µZ(λ) and MX(λ1, λ2) = Â(−λ1)MZ(λ1, λ2)Â
∗
(−λ2).

5 Harmonizable VARMA model

Our definition of harmonizable noise allows the construction of HVARMA models following the ideas

of Brockwell and Davis (1991, sect. 3.1), resulting in Definition 5.1. Theorem 5.1 below describes the

Loève spectral matrices of HVARMA(p, q) processes. This is the starting point for many possible studies

on their estimation, prediction, etc., as well as a key results that will allow us to propose a method for

generating realizations of the HVARMA time series later in the paper.

Definition 5.1 (HVARMA(p, q) processes) The process (Xn)n∈Z is said to be a HV ARMA(p, q)

process if for every n ∈ Z,

Xn + ϕ1Xn−1 + · · ·+ ϕpXn−p = Zn + θ1Zn−1 + · · ·+ θqZn−q, (12)

where (Zn)n∈Z is a d-variate harmonizable noise as in Lemma 3.1, and ϕ1, . . . ,ϕp,θ1, . . . ,θq ∈ Cd×d are

the AR and MA coefficient matrices, respectively. The model equation (12) can be written in the compact

form:

Φ(B)Xn = Θ(B)Zn,

where B is the backward operator, Φ(z) = Id×d + ϕ1z + · · ·+ ϕpz
p and Θ(z) = Id×d + θ1z + · · ·+ θqz

q

are the polynomial matrices associated to the difference equation (12).

Theorem 5.1 (Loève spectral matrices of HVARMA(p, q) processes) Let (Xn)n∈Z be a HV ARMA(p, q)

process (see Definition 5.1). Assume that the polynomial functions detΦ(·) and detΘ(·) have no com-

mon zeroes, and that the harmonizable noise (Zn)n∈Z has a stochastic spectral density ∆Z (defined in

Proposition 3.2). Then (Xn)n∈Z has a stochastic spectral density ∆X(λ) = Φ(e−iλ)−1Θ(e−iλ)∆Z(λ),

and the Loève spectral density matrix is given by

m(λ1, λ2) =
1

4π2
Φ(e−iλ1)−1Θ(e−iλ1)DZ(λ1 − λ2)Θ

∗(e−iλ2)Φ∗(e−iλ2)−1, (λ1, λ2) ∈ T2.

5.1 Spectrum

Consider a d-variate white noise ε associated to the d-variate noise Z as in Lemma 3.1: Zn = Snεn =

Ξ(εn), with supn,j,k |sn,j,k| < ∞. Let Y be a solution of the difference equation

Y n + ϕ1Y n−1 + · · ·+ ϕpY n−p = εn + θ1εn−1 + · · ·+ θqεn−q. (13)

The operator Ξ, introduced in the proof of Theorem 3.1, which is a bounded operator on Hd(ε), can be

applied to relation (13).

Thus,

Ξ(Y n) + ϕ1Ξ(Y n−1) + · · ·+ ϕpΞ(Y n−p) = Zn + θ1Zn−1 + · · ·+ θqZn−q.

Consequently, the d-variate time series (Xn)n∈Z = (Ξ(Y n))n∈Z is well-defined, and is the solution of the

VARMA equation:

Xn + ϕ1Xn−1 + · · ·+ ϕpXn−p = Zn + θ1Zn−1 + · · ·+ θqZn−q, (14)
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where Z = (Zn)n∈Z is a d-variate harmonizable noise and ϕ1, . . . ,ϕp,θ1, . . . ,θq ∈ Cd×d. We define the

polynomial matrices Φ(z) = Id×d + ϕ1z + · · ·+ ϕpz
p and Θ(z) = Id×d + θ1z + · · ·+ θqz

q associated to

the difference equation (14).

From now on, we assume that detΦ(eiλ) ̸= 0 for any λ. Then the difference equation (14) admits a

unique d-variate harmonizable solution.

Xn =

∫
T
einλΦ(e−iλ)−1Θ(e−iλ)µZ(dλ) =

∑
j∈Z

AjZn−j , (15)

where the matrix Aj is the coefficient of zj in the Laurent expansion

Φ(z)−1Θ(z) =
∑
j∈Z

Ajz
j .

Since detΦ(eiλ) ̸= 0 for any λ, the Laurent series is absolutely convergent in some ring (annulus)

r−1 < z < r for some r > 1, and thus
∑

n∈Z |An| < ∞ (see, for e.g., Mel’nyk, 2023) and Â(λ) =

Φ(e−iλ)−1Θ(e−iλ). The relation (10) implies that the stochastic spectral measure µX verifies

µX(A) =

∫
A

Φ(e−iλ)−1Θ(e−iλ)µZ(dλ) =
1

2π

∑
n∈Z

(∫
A

e−inλΦ(e−iλ)−1Θ(e−iλ)dλ

)
Zn.

Furthermore,

Cov
(
Xn,Xm

)
=
∑
j∈Z

An−jΣ
2
Zj

A∗
m−j

=

∫∫
T2

ei(nλ1−mλ2)
(
Φ(e−iλ1)−1Θ(e−iλ1)

)
MZ(dλ1, dλ2)

(
Θ∗(e−iλ2)Φ∗(e−iλ2)−1

)
and the spectral bimeasure can be expressed as

MX(A,B) =

∫∫
A×B

(
Φ(e−iλ1)−1Θ(e−iλ1)

)
MZ(dλ1, dλ2)

(
Θ∗(e−iλ2)Φ∗(e−iλ2)−1

)
=

1

4π2

∑
n∈Z

(∫
A

e−inλΦ(e−iλ)−1Θ(e−iλ)dλ

)
Σ2

Zn

(∫
B

einλΘ∗(e−iλ)Φ∗(e−iλ)−1dλ

)
. (16)

In the remark below, we give some important properties of HVARMA models.

Remark 5.1 (i) If (Zn)n∈Z is a strongly harmonizable noise, then (Xn)n∈Z is strongly harmonizable.

(ii) If the harmonizable noise (Zn)n∈Z has a stochastic spectral density ∆Z , then (Xn)n∈Z has a

stochastic spectral density ∆X(λ) = Φ(e−iλ)−1Θ(e−iλ)∆Z(λ), and

Cov
(
Xn,Xm

)
=

1

4π2

∫∫
T2

ei(nλ1−mλ2)Φ(e−iλ1)−1Θ(e−iλ1)DZ(λ1 − λ2)Θ
∗(e−iλ2)Φ∗(e−iλ2)−1dλ1dλ2.

(iii) Causality (Brockwell & Davis, 1991, Theorem 3.1.1) :

detΦ(z) ̸= 0 for |z| ≤ 1 =⇒ Xn =

n∑
j=−∞

An−jZj =

∞∑
j=0

AjZn−j .

(iv) Invertibility (Brockwell & Davis, 1991, Theorem 3.1.2) :

detΘ(z) ̸= 0 for |z| ≤ 1 =⇒ Zn =

n∑
j=−∞

Πn−jXj =

∞∑
j=0

ΠjXn−j .

Here Θ(z)−1Φ(z) =
∑

j∈Z Πjz
j .
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(v) In (iii) and (iv), we have equivalence whenever the polynomial functions detΦ(·) and detΘ(·) have
no common zeroes.

Finally, we can define the dual-frequency coherence of a HVARMA(p,q) process.

Definition 5.2 (Dual-frequency coherence) Let (Xn)n∈Z be a d-variate HV ARMA(p, q) process

(see Definition 5.1) satisfying conditions of Theorem 5.1. Denote its Loève spectral density matrix as

mX(λ1, λ2), (λ1, λ2) ∈ T2. Then its dual-frequency coherence matrix is defined as:

ρX(λ1, λ2) =

(
|mi,j(λ1, λ2)|2

mi,i(λ1, λ1)mj,j(λ2, λ2)

)
i,j=1,...,d

.

5.2 Estimation - Preliminary results

In this section, we consider the HVARMA(1,0) model. Using this simple model we show how the model

parameter can be estimated. The main results are given in Propositions 5.1 and 5.2. For the self-reliant

lecture of the paper, we give sketch of the proofs in Appendix.

Let

Xn − ϕXn−1 = Zn.

The time series {Xn} is a nonhomogeneous Markov chain. From now on, we assume that the random

variables X0 and Zn, n ≥ 1, are square-integrable, E(Zn) = E(X0) = 0, and

Zn ⊥⊥ Zk, Zn ⊥⊥ X0 for n ̸= k,

where ⊥⊥ denotes the independence of the random variables.

The time series {Sn
def
= ϕ−nXn − X0} is a martingale with respect to the filtration {Fn} generated by

{Zn} and X0. Denote σ2
n
def
= var(Zn) = E(Z2

n). Then

var(Xn) = E(X2
n) = ϕ2n

n∑
k=1

ϕ−2kσ2
k + ϕ2nE(X2

0 ).

Notice that when |ϕ| > 1 and supn σ
2
n < ∞, the time series {Sn} converges in q.m. and a.e. to some

random variable S∞ as n → ∞ and E(S∞)
def
= 0 and E(S2

∞) =
∑

n ϕ
−2nσ2

n < ∞. Thus,

lim
n→∞

ϕ−nXn = S∞ +X0 in q.m. and a.e.

Now we define the least squares estimator of ϕ ∈ R as follows

ϕ̂n
def
= argmin

ϕ

n∑
k=1

(
Xk − ϕXk−1

)2
.

Before studying its consistency, we introduce some additional notation. We define

µn
def
=

1

n

n∑
k=1

σ2
k and ηk,n

def
=

1

n

n−k∑
j=1

σ2
jσ

2
j+k.

Notice that µn ≤ supk σ
2
k and and ηk,n ≤ supj σ

4
j . Below, applying the strong law of large numbers

for martingales (see Theorem 2.18 in Hall & Heyde, 1980), we state the consistency of the least square

estimator ϕ̂n.
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Proposition 5.1 (Consistency) Let Zn ⊥⊥ Fn−1 for n ≥ 1, supn σ
2
n < ∞, supn E(Z

4
n) < ∞ and

E(X4
0 ) < ∞. In addition assume that (i) when |ϕ| ≤ 1, lim infn µn > 0, (ii) when |ϕ| > 1, P(S∞ +X0 =

0) = 0. Then

lim
n→∞

ϕ̂n = ϕ a.e.

Next, the central limit theorem for square-integrable martingales (see Theorem 2.8.41 in Dacunha-

Castelle & Duflo, 1993) allows establishing the asymptotic normality of θ̂n when |ϕ| < 1 (see Corollary

3.1 in Hall & Heyde, 1980).

Proposition 5.2 (|ϕ| < 1 - Asymptotic normality) Let |ϕ| < 1, Zn ⊥⊥ Fn−1 for n ≥ 1, supn σ
2
n <

∞, supn E(Z
4
n) < ∞, E(X4

0 ) < ∞. In addition, assume that the limits µ
def
= limn µn and ηk

def
= limn ηk,n

for any k ≥ 1, exist and are positive. Then
√
n
(
ϕ̂n − ϕ

)
converges in distribution to the normal law

N (0,Γϕ), where Γϕ = (1− ϕ2)2µ−2
∑

k ϕ
2(k−1)ηk.

6 Generation of harmonizable time series with a given Loève

spectrum

In this section, we give tools to generate finite time sample realizations of a HVARMA process with the

known Loève spectrum, while ensuring they provide a correct approximation of the associated time series

defined on Z.
We first show, in Section 6.1, how to construct a periodic harmonizable time series on Z from its discrete

Loève spectrum. However, this method does not allow constructing harmonizable noise, which is the

basic building block of our HVARMA model. In Section 6.2 we describe how to overcome this difficulty

by defining harmonizable noise and time series directly on the finite group ZN . Next, results of Sec-

tion 6.3 ensure that the restriction of harmonizable noise and time series on Z to ZN provides a proper

approximation. Consequently, we consider in Section 6.4 the extension by zeros of harmonizable noise

and time series defined on the finite group ZN to (the full space) Z. We prove that in general this does

not produce a harmonizable time series, but a harmonizable noise on Z, and a linear harmonizable time

series. On that basis, we can construct a HVARMA time series on Z as described in Section 6.5. Finally,

we provide some numerical examples of realizations from HVARMA process in Section 6.6.

Hereafter, N is a fixed integer, N ≥ 1. We denote as ZN
def
= Z/(2N + 1) the finite group of integer

numbers modulo 2N + 1 that we represent as {−N, . . . , N}. Its dual group TN can be represented by

{ωj : j ∈ ZN}, where ωj
def
= 2πj

2N+1 .

6.1 Construction of a periodic harmonizable time series

We consider a d-variate time series (Xn)n∈Z defined as

Xn
def
=

N∑
j=−N

einωjµj ,

where the random vectors (called increments) µj are extracted from a d-variate zero mean stationary

time series (µn)n∈Z with covariance function

Kµ(r)
def
= Cov(µj+r,µj).
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(Xn)n∈Z is periodic with period 2N + 1, zero mean, strongly harmonizable with a stochastic spectral

measure µX , which has a discrete support at frequencies ωj , j = −N, . . . , N , µX({ωj}) = µj .

Furthermore, its spectral bimeasure MX is a discrete measure on T2

MX({(ωj1 , ωj2)}) = Cov
(
µX(ωj1), µX(ωj2)

)
= Cov(µj1 ,µj2) = Kµ(j1 − j2).

Additionally,

Cov(Xn+k,Xn) =

N∑
j1=−N

j1+N∑
r=j1−N

eikωj1 einωrKµ(r).

Assume that Kµ is periodic with period 2N + 1.

Then we have

Cov(Xn+k,Xn) =

N∑
j1=−N

N∑
r=−N

eikωj1 einωrKµ(r).

Therefore, Cov(Xn+k,Xn) = 0d×d for k ̸= 0 mod 2N + 1. While, for k = 0 mod 2N + 1, we have

Cov(Xn+k,Xn) = Var(Xn) = (2N + 1)

N∑
r=−N

einωrKµ(r).

Hence, X cannot be a non-identically null harmonizable noise. In other words, due to its periodicity, the

process X cannot be a harmonizable noise.

6.2 Time series indexed by a finite group

Similarly to Sections 2.2 and 3, we can consider harmonizable time series and harmonizable noise defined

on ZN by replacing Z by ZN and T by TN in Definitions 2.1 and 3.1 and condition (Ha). In this case

Proposition 2.1, Lemma 3.1 as well as Theorem 3.1 are valid. Additionally, since the group ZN and its

dual group TN are finite, any zero mean second order time series χ = (χn)n∈ZN
is strongly harmonizable

with a discrete stochastic spectral measure:

µχ(ωj) =
1

2N + 1

∑
n∈ZN

e−inωjχn =
1

2N + 1

∑
n∈ZN

e−injω1χn, (17)

and a discrete spectral bimeasure

Mχ(ωj1 , ωj2) =
1

(2N + 1)2

∑
n1∈ZN

∑
n2∈ZN

e−i(n1j1−n2j2)ω1E(χn1
χ∗

n2
).

Hence,

χn =
∑
j∈ZN

einjω1µχ(ωj),

and

Cov
(
χn1

,χn2

)
=
∑

j1∈ZN

∑
j2∈ZN

e−i(n1j1−n2j2)ω1Mχ(ωj1 , ωj2).

Notice that any (second order) time series χ can be extended periodically to a strongly harmonizable

time series X̆ on Z with the discrete stochastic spectral measure µX̆(ωj) = µχ(ωj) for j = −N, . . . , N ,

and µX̆(ω) = 0d otherwise.
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6.2.1 Harmonizable noise on ZN

Let µ = (µj)j∈ZN
be a zero mean stationary d-variate time series on ZN with covariance matrix function

Kµ(r)
def
= Cov(µj+r,µj) = E(µj+rµ

∗
j ). An example can be found in Section 6.2.3. Then, the time series

ζ = (ζn)n∈ZN
defined by

ζn
def
=
∑
j∈ZN

einωjµj , (18)

is the (strongly) harmonizable noise on ZN (see Theorem 3.1) with the stochastic spectral measure µζ

defined on TN by µζ(ωj) = µj , and

Σ2
ζn

def
= Var

(
ζn

)
=
∑
j∈ZN

einωjnζ(ωj) = (2N + 1)
∑
j∈ZN

einωjKµ(j) =

∫
TN

einω nζ(dω),

where nζ(ωj) = (2N +1)Kµ(j) (see relation (3)). Notice that the time series ζ is a real-valued vector if

and only if µj = µ−j , j ∈ ZN .

Conversely, if ζ = (ζn)n∈ZN
is any harmonizable noise on ZN , then the time series µ = (µj)j∈ZN

defined

by

µj
def
= µζ(ωj) =

1

2N + 1

∑
n∈ZN

e−inωjζn

is (second order) stationary on ZN with the covariance function

Kµζ
(j) =

1

2N + 1
nζ(ωj) =

1

2N + 1

∑
n∈ZN

e−inωjVar
(
ζn

)
=

1

2N + 1

∑
n∈ZN

e−inωjΣ2
ζn
. (19)

6.2.2 Moving average on ZN

If ζ = (ζn)n∈ZN
is a harmonizable noise on ZN and (Γn)n∈ZN

is a family of complex d×d-matrices, then

the time series χ = (χn)n∈ZN
defined by

χn
def
=
∑

m∈ZN

Γn−mζm (20)

is (strongly) harmonizable on ZN with stochastic spectral measure and spectral bimeasure

µχ(ωj) = Γ̂−jµζ(ωj) and Mχ(ωj1 , ωj2) = Γ̂−j1Kµζ
(j1 − j2)Γ̂

∗
−j2 ,

where

Γ̂j =
∑
k∈ZN

Γke
ikωj .

Notice that in formula (20), Γn is periodically extended to Z by setting Γn+kN = Γn.

6.2.3 Moving average with band-limited spectrum

We consider a white noise (εn)n∈ZN
on ZN and a family (ϑn)n∈ZN

of complex d× d-matrices. Then the

moving average

µj =
∑
k∈ZN

ϑj−kεk

defines a stationary time series µ = (µj)j∈ZN
with covariance function

Kµ(r) = E(µj+rµ
∗
j ) =

∑
k∈ZN

ϑk+rΣ
2
εϑ

∗
k.
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The harmonizable noise ζ defined by relation (18) satisfies the equality ζn = θ̂nε̂n, where

θ̂n
def
=
∑
k∈ZN

einωkθk and ε̂n
def
=
∑
k∈ZN

einωkεk.

Notice that ε̂ is a white noise with variance Σ2
ε̂ = (2N + 1)Σ2

ε.

Whenever ϑk = 0d for k = ±q, . . . ,±N mod (2N + 1), for some 0 < q ≤ N/2 then Kµ(r) = 0d×d for

r = ±2q, . . . ,±N mod (2N + 1) and the harmonizable noise ζ has a band-limited (Loève) spectrum:

nζ(ωj) = 0d×d for j = ±2q . . . ,±N mod (2N + 1). In addition, the harmonizable moving average

time series χ defined by relation (20) has a band-limited (Loève) spectrum: Mχ(ωj1 , ωj2) = 0d×d for

j1 − j2 = ±2q, . . . ,±N mod (2N + 1).

6.2.4 Autoregressive time series on ZN

First, notice that the definition of an autoregressive time series with uncorrelated innovations on ZN

need a constraining condition to justify its existence. Indeed, consider the autoregressive time series

µn = Φµn−1 + εn, n ∈ ZN , where {εn}n∈ZN
is a d-variate white noise and Φ is a complex d × d-

matrix. To justify the existence of such a time series {µn}n∈ZN
, we need to assume the constraint :

µ−N
= Φµ

N
+ ε−N

. That is, the d× d-matrix Id×d −Φ2N+1 is invertible and

µ−N
=
(
Id×d −Φ2N+1

)−1(
ε−N +Φ2Nε−N+1 + · · ·+Φ2N−kε−N+k+1 + · · ·+ΦεN

)
.

In this case,

µ
j
=
(
Id×d −Φ2N+1

)−1(
ε
j
+Φ2Nε

j+1
+ · · ·+Φ2N−kε

j+k+1
+ · · ·+Φε

j+2N

)
for j = −N, . . . , N and where ε

k+N
= ε

k−N−1
for k = 1, . . . , 2N . Then, we can derive the expression for

Kµ(r) in terms of Φ and r. For instance

Kµ(0) =
(
Id×d −Φ2N+1

)−1(I+ (ΦΦ∗)2N + · · ·+ (ΦΦ∗)2N−k + · · ·+ΦΦ∗)(Id×d −Φ∗ 2N+1
)−1

.

6.3 Restriction to ZN of a harmonizable process on Z

In this section, we study the link between the spectrum of the time series under analysis and the spectrum

of the observation interpreted as a time series on a finite group.

Let X = (Xn)n∈Z be a harmonizable time series on Z. Then the time series χ = (χn)n∈ZN
defined by

χn = Xn for n = −N, . . . , N , is a strongly harmonizable on ZN with

µχ(ωj) =
1

2N + 1

∑
n∈ZN

e−inωjχn =
1

2N + 1

N∑
n=−N

e−inωjXn =

∫
T

WN (λ− ωj)

2N + 1
µX(dλ)

and

Mχ(ωj1 , ωj2) =

∫∫
T×T

WN (λ1 − ωj1)WN (−λ2 + ωj2)

(2N + 1)2
MX(dλ1, dλ2),

where

WN (λ) =

N∑
n=−N

einλ = 1 + 2

N∑
n=1

cos(nλ).

Notice that WN (0) = 2N + 1 and for λ ̸= 0 mod 2π we have |WN (λ)|2 = sin2((2N+1)λ/2)
sin2(λ/2)

.
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Hence, µχ(ωj) ≈ µX(ωj) (in the sense of the L2-norm) and Mχ(ωj1 , ωj2) ≈ MX(ωj1 , ωj2) for large N

(Rozanov (see Theorem 2.2 1959) and Rao (1982)). Moreover, if λ1 < λ′
1 and µX({λ1}) = µX({λ′

1}) = 0,

we have

lim
N→∞

1

2π

N∑
k=−N

e−iλ′
1k − e−iλ1k

−ik
Xk = µX([λ1, λ

′
1]) inL2-norm.

If λ1 < λ′
1, λ2 < λ′

2 and µX({λ1}) = µX({λ′
1}) = µX({λ2}) = µX({λ′

2}) = 0, then we have

lim
N1,N2→∞

1

4π2

N1∑
k1=−N1

N2∑
k2=−N2

e−iλ′
1k1 − e−iλ1k1

−ik1
× eiλ

′
2k2 − eiλ2k2

ik2
E[Xk1X

∗
k2
] = MX

(
[λ1, λ

′
1]× [λ2, λ

′
2]
)
.

Remark 6.1 If Z is a harmonizable noise on Z, then the time series ζ defined on ZN by ζn = Zn for

n = −N, . . . , N , is a harmonizable noise on ZN with

µζ(ωj) =
1

2N + 1

N∑
n=−N

e−inωjZn, Mζ(ωj1 , ωj2) =
1

(2N + 1)2

N∑
n=−N

e−in(ωj1
−ωj2

)Σ2
Zn

and

nζ(ωj) =
1

(2N + 1)2

N∑
n=−N

e−inωjΣ2
Zn

.

6.4 Extension to Z of a harmonizable process defined on ZN

Since we cannot obtain a non-null harmonizable noise on Z from periodic extension, we discuss hereafter

how to obtain a finite time sample, from the extension by zeros. We show that we can obtain harmonizable

noise on Z and characterize its moving average form.

Let χ be a harmonizable time series on ZN , and let X̃ be the time series on Z defined by X̃n = χn for

n = −N, . . . , N , and X̃n = 0d otherwise. Then, in general, we cannot say whether the time series X̃ is

harmonizable or not. Nevertheless, for a harmonizable noise ζ = (ζn)n∈ZN
, the time series Z̃ = (Z̃n)n∈Z

defined by Z̃n = ζn for n = −N, . . . , N , and Z̃n = 0d otherwise, is a harmonizable noise on Z. Indeed,

condition (Ha) is fulfilled by Z̃.

Furthermore, from Proposition 3.2, the stochastic spectral measure µZ̃ admits a density function with

respect to the Lebesgue measure on T:

∆Z̃(λ) =
1

2π

N∑
n=−N

e−inλζn =
1

2π

∑
j∈ZN

WN (ωj − λ)µζ(ωj),

and the measure nZ̃ admits a density function

DZ̃(λ) =
1

4π2

N∑
n=−N

e−inλVar
(
ζn

)
=

2N + 1

4π2

∑
j∈ZN

WN (ωj − λ)Kµζ
(j).

6.4.1 Linear harmonizable time series on Z with innovation Z̃

Let (An)n∈Z be a family of matrices such that
∑

n tr(AnA
∗
n) < ∞. Define the time series X on Z by

Xn
def
=

N∑
m=−N

An−mZ̃m.
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Then the time series X is strongly harmonizable with the stochastic spectral density

∆X(λ) = Â(−λ)∆Z̃(λ) =
1

2π
Â(−λ)

N∑
n=−N

e−inλζn

=
1

2π
Â(−λ)

∑
j∈ZN

WN (ωj − λ)µζ(ωj).

Its spectral bimeasure admits a density function (see Remark (3.4))

FX(λ1, λ2) = Â(−λ1)F Z̃(λ1, λ2)Â
∗
(−λ2) = Â(−λ1)DZ̃(λ1 − λ2)Â

∗
(−λ2)

=
2N + 1

4π2

∑
j∈ZN

WN (ωj − λ1 + λ2)Â(−λ1)Kµζ
(j)Â

∗
(−λ2). (21)

Now consider the ”restriction” χ on ZN of the time series X defined by χn = Xn for n = −N, . . . , N .

From Section 6.3, we know that χ is a harmonizable time series in ZN with the stochastic spectral

measure

µχ(ωj) =

∫
T

WN (λ− ωj)

2N + 1
µX(dλ) =

1

2π(2N + 1)

∑
k∈ZN

(∫
T
WN (λ− ωj)WN (ωk − λ)Â(−λ) dλ

)
µζ(ωk)

and spectral bimeasure

Mχ(ωj1 , ωj2) =

∫∫
T×T

WN (λ1 − ωj1)WN (−λ2 + ωj2)

(2N + 1)2
MX(dλ1, dλ2)

=

∫∫
T×T

WN (λ1 − ωj1)WN (λ2 − ωj2)

(2N + 1)2
Â(−λ1)DZ̃(λ1 − λ2)Â

∗
(−λ2) dλ1dλ2

=
1

4π2(2N + 1)

∑
j∈ZN

∫∫
T×T

WN (λ1 − ωj1)WN (λ2 − ωj2)WN (ωj − λ1 + λ2)×

× Â(−λ1)Kµζ
(j)Â

∗
(−λ2) dλ1dλ2. (22)

Recall that WN (0) = 2N + 1 and for λ ̸= 0 mod 2π we have WN (λ)2 = sin2((2N+1)λ/2)
sin2(λ/2)

.

6.4.2 Band-limited harmonizable time series

We consider a white noise (εn)n∈ZN
on ZN and a family (ϑn)n∈ZN

of complex d× d-matrices. Then the

moving average

µj =
∑
k∈ZN

ϑj−kεk

defines a stationary time series µ = (µj)j∈ZN
with covariance function

Kµ(r) = E(µj+rµ
∗
j ) =

∑
k∈ZN

ϑk+rΣ
2
εϑ

∗
k.

Whenever ϑk = 0d for k = ±q, . . . ,±N for some 0 < q ≤ N/2, then Kµ(r) = 0d×d for r = ±2q, . . . ,±N ,

and the harmonizable noise ζ defined by relation (18) has a band-limited (Loève) spectrum: nζ(ωj) =

0d×d for j = ±2q, . . . ,±N .

Hence, when Â is smooth enough, relations (21) and (22) imply that

FX(λ1, λ2)/(2N + 1)2 and Mχ(ωj1 , ωj2)/(2N + 1)2

are close to 0 for sufficiently large N , and (λ1, λ2), (ωj1 , ωj2) are ’far’ from the main diagonal.
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6.5 Harmonizable VARMA time series on ZN

We are now ready to define HVARMA models. First, let us consider the following difference equation:

Xn + ϕ1Xn−1 + · · ·+ ϕpXn−p = Z̃n + θ1Z̃n−1 + · · ·+ θqZ̃n−q, (23)

where {Z̃n} is extension by zeros of a harmonizable noise on ZN . Then the results of the previous section

apply with Â(λ) = Φ(eiλ)−1Θ(eiλ).

Then, the generation of HVARMA time series is as follows:

• Generate a realization from the (incremental) process µ =
(
µj

)
j∈ZN

according to a zero mean

VARMA process of order (p′, q′) defined on ZN , denoted as ˜VARMA(p′, q′), with matrix polynomials

Φ̃ (·) , Θ̃ (·). Then, the time series ζ = (ζn)n∈ZN
defined by

ζn
def
=
∑
j∈ZN

einωjµj , ωj =
2πj

2N + 1
,

is a (strongly) harmonizable noise on ZN .

• Generate a time series realization on ZN as Xn =
∑

j∈ZN
eiωjnÂ(ωj)µj , where Â(λ) defines a

VARMA process of order (p, q), denoted as VARMA(p, q).

We denote the resulting process as HV ARMA(p, q) − (p′, q′), where (p, q) is the order of the VARMA

process (see the equation 23) and (p′, q′) is the order of VARMA incremental process. Below we give the

formal definition of the HV ARMA(p, q)− (p′, q′) process.

Definition 6.1 (HVARMA(p, q)− (p′, q′) process) The process (Xn)n∈Z is said to be a HV ARMA(p, q)−
(p′, q′) process if for every n ∈ Z,

Xn + ϕ1Xn−1 + · · ·+ ϕpXn−p = Z̃n + θ1Z̃n−1 + · · ·+ θqZ̃n−q, (24)

where {Z̃n} is extension by zeros of a harmonizable noise on ZN (see Section 6.4), Z̃n = ξn for n =

−1, . . . , N and Z̃n = 0 otherwise. Moreover, ξn =
∑N

j=−N eiωjnµj, where µ =
(
µj

)
j∈ZN

follows a

VARMA(p′, q′) process on ZN . Its spectral bimeasure is given by the equation (22).

Remark 6.2 Theorem 5.1 allows us to understand how harmonizable noise contributes to the spectral

properties of HVARMA(p, q) processes by inducing stationary dependencies in the frequency domain. To

generate time series from a discretized spectral representation according to the steps described in Section 6,

we chose to use a VARMA(p′, q′) model, resulting in the class of HVARMA (p, q)− (p′, q′) (see Definition

6.1).

6.6 Some examples

In this section, we will present some examples of two-dimensional VARMA(p, q) − (p′, q′) time series

that we generated. They were constructed by combining two different VARMA(p, q) (VARMA(1, 1) and

VARMA(3, 2)) processes with three different parametrizations for the incremental process VARMA(p′, q′)

(described below as variants 1-3). These were

• V ARMA(1, 1)

Φ =

(
0.9 0.4

0.4 0

)
; Θ =

(
0 0.4

0.4 0.8

)
;
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• V ARMA(3, 2)

Φ1 =

(
−0.9 0.8

0.8 0

)
; Φ2 =

(
0.2 0.4

0.4 0.1

)
; Φ3 =

(
0.5 0.2

0.2 0

)
; Θ1 =

(
0.4 0

0 0.9

)
; Θ2 =

(
−0.2 0

0 0.4

)
;

together with

1. Variant 1

Φ̃ =

(
0 0

0 0

)
; Θ̃ =

(
0.8 0

0 0.8

)
;

2. Variant 2

Φ̃ =

(
0.8 0

0 0.8

)
; Θ̃ =

(
0 0

0 0

)
;

3. Variant 3

Φ̃1 =

(
0.1 0.2

0.2 0.1

)
; Φ̃2 =

(
0.9 0

0 0.2

)
; Θ̃1 =

(
0.9 0

0 0.2

)
; Θ̃2 =

(
0.5 0

0 0.2

)
;

Θ̃a =

(
0.4 0

0 0.2

)
; Θ̃b =

(
0.4 0.9

0.9 0.2

)
,

where a ∈ {10, 11, 16, 80, 81} and b ∈ {14, 15, 82}.

Single realizations of each of these processes are shown in Figures 3-10 (see top left panels). In addition,

the corresponding Loève (auto-)spectra are given in each figure in the top right and bottom right panels.

Finally, the bottom left panel presents the dual-frequency coherence (see Definition 5.2). The values of

the spectrum and coherence are displayed on a logarithmic scale, with colors ranging from blue through

yellow to red to indicate larger values.

Figures 3 and7 show results for correlated stationary V ARMA. The obtained Loève spectra and dual-

frequency coherence are supported on the main diagonal. The process in Figures 4,5 and 8,9 were

obtained with specifications of rather simple incremental processes, introducing some dependencies in

the frequencies over a relatively restricted domain (see for example the Loeève spectrum of the process

HV ARMA(1, 1)− (1, 0)). Definitely, more sophisticated dependencies were obtained with the variant 3

(see Figures 6 and 10).

7 Summary

This paper describes a novel parametric model for a wide class of nonstationary time series that present

correlation between their frequency components. The proposed Harmonizable VARMA(p, q) process is

obtained as a solution of a difference equation based on a harmonizable noise. We describe its spectral

characteristics and propose a least squares estimator in the HAR(1) model. We prove its consistency and

asymptotic normality. Next, we describe how to generate realizations of such processes. That requires to

specify a stationary dependence structure in the frequencies. It gives rise to a class of processes whose
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Figure 3: Realization of V ARMA(1, 1) (top left panel) together with the corresponding Loève (auto-

)spectra (top right and bottom right panels) and dual-frequency coherence (bottom left panel). The

values of the spectrum and coherence are displayed on a logarithmic scale, with colors ranging from blue

through yellow to red to indicate larger values.
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Figure 4: Realization of HV ARMA(1, 1)− (0, 1) (top left panel) together with the corresponding Loève

(auto-)spectra (top right and bottom right panels) and dual-frequency coherence (bottom left panel).

The values of the spectrum and coherence are displayed on a logarithmic scale, with colors ranging from

blue through yellow to red to indicate larger values.
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Figure 5: Realization of HV ARMA(1, 1)− (1, 0) (top left panel) together with the corresponding Loève

(auto-)spectra (top right and bottom right panels) and dual-frequency coherence (bottom left panel).

The values of the spectrum and coherence are displayed on a logarithmic scale, with colors ranging from

blue through yellow to red to indicate larger values.
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Figure 6: Realization of HV ARMA(1, 1)− (2, 82) (top left panel) together with the corresponding Loève

(auto-)spectra (top right and bottom right panels) and dual-frequency coherence (bottom left panel).

The values of the spectrum and coherence are displayed on a logarithmic scale, with colors ranging from

blue through yellow to red to indicate larger values.
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Figure 7: Realization of V ARMA(3, 2) (top left panel) together with the corresponding Loève (auto-

)spectra (top right and bottom right panels) and dual-frequency coherence (bottom left panel). The

values of the spectrum and coherence are displayed on a logarithmic scale, with colors ranging from blue

through yellow to red to indicate larger values.

Figure 8: HV ARMA(3, 2)− (0, 1)
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Figure 9: Realization of HV ARMA(3, 2)− (1, 0) (top left panel) together with the corresponding Loève

(auto-)spectra (top right and bottom right panels) and dual-frequency coherence (bottom left panel).

The values of the spectrum and coherence are displayed on a logarithmic scale, with colors ranging from

blue through yellow to red to indicate larger values.
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Figure 10: Realization of HV ARMA(3, 2)−(2, 82) (top left panel) together with the corresponding Loève

(auto-)spectra (top right and bottom right panels) and dual-frequency coherence (bottom left panel). The

values of the spectrum and coherence are displayed on a logarithmic scale, with colors ranging from blue

through yellow to red to indicate larger values.
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Cramèr’s representation is that of a VARMA process of order (p, q) with correlated increments following

a VARMA of order (p′, q′). We exhibit the spectral characteristics of these HV ARMA(p, q) − (p′, q′)

processes, and we show how to generate realizations from given models. Our results pave the way

towards novel developments on estimation, prediction, model selection, etc., for harmonizable processes.

Consequently, non-specialists will be able to model such complex processes in a relatively simple way (as

it is currently possible, for example, for ARMA processes).
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8 Annexe: Proofs

Proof of Lemma 3.1

Clearly, if there exists a d-variate white noise ε
def
= (εn)n∈Z such that Zn = Snεn, where supn,j,k |sn,j,k| <

∞, then the d-variate time series Z = (Zn)n∈Z satisfies the condition (Ha).

Conversely, suppose that Z = (Zn)n∈Z is a d-variate time series satisfying the condition (Ha). Let

dn = dimH(Zn) ≤ d. When dn ̸= 0, there exists an orthonormal basis {ϵn,1, . . . , ϵn,dn
} of H(Zn)

(Schmidt method of orthonormalization). Since the Hilbert subspaces H(Zn), n ∈ Z are orthogonal, and

we assume that the probability space (Ω,F ,P) is sufficiently large, we can complete the orthonormal

family {ϵn,j : n ∈ Z, j = 1, . . . , dn} to an orthonormal family {ϵn,j : n ∈ Z, j = 1, . . . , d} of H. Then the

time series (εn)n∈Z, where εn = (ϵn,1, . . . , ϵn,d)
⊤ for n ∈ Z, is a d-variate pure white noise, and the space

H(Zn) is a subspace of the Hilbert space H(εn). Hence, the proof of the lemma can be easily achieved

using the assumption supn,j E{|Zn,j |2} < ∞.

Proof of Theorem 3.1

To prove the theorem, we use the notation of Lemma 3.1 and construct a bounded linear operator

Ξ : Hd(ε) → Hd(Z) such that Zn = Ξεn. Since the time series (εn)n∈Z is stationary, we get that

the time series (Zn)n∈Z is harmonizable with µZ(A) = Ξµε(A) for A ∈ B(T) (Rao, 1982) (D.S, 1957

Theorem 3.2.19).

First, we prove that any d-variate harmonizable time series (Zn)n∈Z whose stochastic spectral measure

satisfies relation (1), satisfies the condition (Ha). Let n ∈ Z be fixed. Then {ϵn,j : j = 1, . . . , d} is an

orthonormal basis of the Hilbert space H(εn). Since Zn,j ∈ H(εn), we have that Zn,j = Sn,jεn, where

(Sn,j)
⊤ = (sn,j,1, . . . , sn,j,d)

⊤ ∈ Cd, for any j = 1, . . . , d. It follows that Zn = Snεn, where Sn is a

d× d-matrix whose rows are the row vectors Sn,j , j = 1, . . . , d.

Then, since the ϵn,j , n ∈ Z, j = 1, . . . , d, are linearly independent, we can define a linear operator Ξj

from the linear space {Aεn : n ∈ Z,A ∈ Cd×d} ⊂ Hd(ε) into H(Z) by Ξjεn = Zn,j .

Moreover, the ϵn,j , n ∈ Z, j = 1, . . . , d, are orthonormal in the Hilbert space H(ε), that is, uncorrelated

random variables with zero mean and variance equal to 1. Thus, we have

var(Zn,j) = E
(
|Zn,j |2

)
= ∥Zn,j∥2H = Sn,jS

∗
n,j .

The assumption (Ha) implies that supn,j,k |sn,j,k| < ∞. Consequently, the linear operator Ξj is bounded,

and can be extended as a bounded linear operator from Hd(ε) to H(Z), also denoted Ξj . Finally, we

can easily define a bounded linear operator Ξ from Hd(ε) to Hd(Z) such that Zn = Ξεn, for any n ∈ Z.
The bounded operators Ξj : Hd(ε) → H(Z), j = 1, . . . , d are the component operators of Ξ. Thus,

the d-variate noise Z is the image by a bounded linear operator Ξ of the d-variate stationary noise

ε, and from Dunford and Schwartz (1957, Theorem 3.2.19) (see also Corollary 4.3 in Rao, 1982), we

get that Z is harmonizable and its stochastic spectral measure µZ satisfies µZ(A) = Ξ(µε(A)), A ∈ B(T).

Now we show that (1) holds. We know that H(µZ) = H(Z) is a Hilbert subspace of H(ε), and the family

{ϵn,k : n ∈ Z, k = 1, . . . , d} is an orthonormal basis of H(ε) ⊂ L2
C(P). Therefore, for j = 1, . . . , d, the

stochastic spectral measure µZj of the component time series Zj = (Zn,j)n∈Z can be decomposed as

µZj
(A) =

∑
n∈Z

d∑
k=1

µZj ,n,k(A) ϵn,k, A ∈ B(T),
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where the complex-valued measure µZj ,n,k is defined on B(T) by µZj ,n,k(A)
def
= ⟨µZj

(A)|ϵn,k⟩H = E[µZj
(A)ϵn,k].

Furthermore,

⟨Zm,j |ϵn,k⟩H =
〈∫

T
eimλ µZj (dλ)

∣∣∣ϵn,k〉
H

=

∫
T
eimλ µZj ,n,k(dλ)

for any m,n ∈ Z and any j, k = 1, . . . , d. Besides, we know that ⟨Zm,j |ϵn,k⟩H = 0 for m ̸= n and

⟨Zm,j |ϵn,k⟩H = sn,j,k. Thanks to the characterization of a complex-valued measure by its Fourier coeffi-

cients, we readily deduce that the measures µZj ,n,k, n ∈ Z, j, k = 1, . . . , d are absolutely continuous with

respect to the Lebesgue measure on T and

µZj ,n,k(A) =
sn,j,k
2π

(∫
A

e−inλdλ

)
. (25)

Then

µZj
(A) =

1

2π

∑
n∈Z

d∑
k=1

(∫
A

e−inλdλ

)
sn,j,kϵn,k

=
1

2π

∑
n∈Z

(∫
A

e−inλdλ

)
Sn,jεn =

1

2π

∑
n∈Z

(∫
A

e−inλdλ

)
Zn,j

and consequently we get the relation (1).

Proof of Proposition 3.1

First, assume that (Zn)n∈Z is strongly harmonizable. Then its spectral bimeasure MZ is extendible as

a Cd×d-valued measure on T2.

Cov
(
Zn,Zn+k

)
=

∫∫
T2

ei(nλ1−(n+k)λ2MZ(dλ1, dλ2) =

∫∫
T2

ei(n(λ1−λ2)−kλ2)MZ(dλ1, dλ2).

We consider the transformation of T2 defined by T : (λ1, λ2) 7→ (λ1 − λ2, λ2), T −1 : (λ, α) 7→ (λ+ α, α).

Let MT
Z = MZ ◦ T −1 be the pushforward measure of MZ by the transformation T and defined on T2

by MT
Z(E) = MZ(T −1(E)). Then

Cov(Zn,Zn+k) =

∫∫
T2

ei(nλ−kα)MT
Z(dλ, dα).

We know that Cov
(
Zn,Zn+k

)
= 0d×d for k ̸= 0 and Var(Zn) = Σ2

Zn
. Hence, considering the Cd×d-

valued measure nZ defined on T by nZ(A)
def
= MT

Z(A× T), we can easily see that

Cov
(
Zn,Zn+k

)
=

1

2π

∫∫
T2

ei(nλ−kα) nZ(dλ)dα =


∫
T
einλ nZ(dλ) for k = 0

0 otherwise

and by the characterization of a measure on T2 by its Fourier transform, we deduce that MT
Z(dλ, dα) =

1
2π nZ(dλ)dα, and the relation (3) is satisfied.

Now assume that (Zn)n∈Z is such that there exists a measure nZ that satisfies relation (3). Then we

can easily check that

Cov
(
Zn,Zn+k

)
=

1

2π

∫∫
T2

ei(nλ−kα) nZ(dλ)dα.

We denote M(dλ, dα)
def
= 1

2π nZ(dλ)dα. Then the measure which is image of the Cd×d-valued measure

M on T2 by the transformation T −1 is an extension of the spectral bimeasure MZ of the harmonizable

time series Z. Thus, the spectral bimeasure MZ is extendible to a measure and the time series Z is

strongly harmonizable. Furthermore, we obtain relations (5) and (4).
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Proof of Proposition 3.2

Consider a d-variate pure white noise ε associated to the harmonizable time series Z in the sense of

Lemma 3.1.

First, assume that the d-variate stochastic measure µZ admits a stochastic Radon-Nikodym density

function with respect to the Lebesgue measure on T,∆Z : T → Hd(Z). We denote∆Z = (∆Z1 , . . . ,∆Zd
),

∆Zj
: T → H(Z), j = 1, . . . , d. Then

Zn =

∫
T
einλµZ(λ) =

∫
T
einλ∆Z(λ) dλ

and

Zn,j =

∫
T
einλµZj

(λ) =

∫
T
einλ∆Zj

(λ) dλ.

Moreover,

⟨Zn,j |ϵm,k⟩H =

∫
T
einλ⟨∆Zj (λ)|ϵm,k⟩H dλ.

Since ε is a d-variate pure white noise, using notation of Lemma 3.1, we have that ⟨Zn,j |ϵm,k⟩H =

sn,j,kI{n=m}. We get that ⟨∆Zj (λ)|ϵm,k⟩H =
sn,j,k

2π e−imλ for all n, j,m and for almost every λ. From the

facts that ∆Zj
(λ) ∈ H(Z) ⊂ H(ε), and {ϵm,k : m ∈ Z, k = 1, . . . , d} is an orthonormal basis of H(ε), we

obtain that

∆Zj
(λ) =

1

2π

∑
m∈Z

d∑
k=1

sn,j,ke
−imλ ϵm,k and

∑
n∈Z

d∑
k=1

|sn,j,k|2 < ∞.

Hence, the relations (7) and (6) are satisfied.

Conversely, assume that the relation (6) is satisfied. Then the function ∆Z = (∆Z1 , . . . ,∆Zd
) is well-

defined on T by relation (7). Note that the convergence is in H(Z) ⊂ L2
C(P). Let j = 1, . . . , d be fixed.

In the following, we use the notation of the proof of Theorem 3.1. From the relation (25), the function

λ 7→ E[∆Zj
(λ)ϵn,k] =

sn,j,k

2π e−inλ is the Radon-Nikodym density function of the complex measure µZj ,n,k

with respect to the Lebesgue measure on T. Since H(Z) and H(ε) are separable Hilbert spaces, the

Lebesgue measure on T is bounded and

∥∆Zj (λ)∥2H = E
(
∆Zj (λ)∆Zj (λ)

)
=

1

4π2

∑
n∈Z

d∑
k=1

|sn,j,k|2 < ∞,

and we can prove that the function DZk
: T → H(Z) is Bochner integrable (strongly integrable) (Dunford

& Schwartz, 1957, Chap III, Th. III.2.21) , and

µZj
(A) =

∫
A

∆Zj
(λ) dλ, A ∈ B(T).

This ends the proof.

Proof of Theorem 4.1

Let (ε)n∈Z be a d-variate pure white noise associated to the harmonizable noise (Zn)n∈Z in Lemma 3.1.

It is known that the time series (Y n)n∈Z of the form

Y n =
∑
m∈Z

An−mεm (26)
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is well-defined (the convergence is in Hd(ε)), and it is stationary.

Let n ∈ Z be fixed. Since the family {ϵn,k : n ∈ Z, k = 1, . . . , d} is an orthonormal basis of H(ε), we have∥∥∥∥∥
N2∑

m=N1

An−mεm

∥∥∥∥∥
2

Hd(ε)

=

N2∑
m=N1

tr(An−mA∗
n−m)

for any −∞ < N1 < N2 < ∞. Then the series (26) is a Cauchy series in the Hilbert space Hd(ε). Thus,

it is convergent in Hd(ε) and its sum Y n is well-defined. The stationarity of the d-variate time series

(Y n)n∈Z is evident.

Now consider the bounded linear operator Ξ : Hd(ε) → Hd(Z) such that Ξεn = Zn defined in the proof

of Theorem 3.1. The operator Ξ applied to the moving average series (26) entails the convergence in

Hd(Z) of the moving average series (9)∑
m

An−mΞ(εm) =
∑
m

An−mZm.

Thus, the d-variate time series (Xn)n∈Z = (ΞY n)n∈Z is well-defined. Moreover, as the image of the

stationary time series (Y n)n∈Z by the bounded linear operator Ξ, it is harmonizable. Furthermore, the

stochastic spectral measure µX of X coincides with ΞµY . Since the topological group T is compact and

Â ∈ L2
Cd×d(T), we have Â ∈ L1

Cd×d(T) and the inversion formula gives

An =
1

2π

∫
T
e−inλÂ(λ)dλ.

Hence,

Xn =
∑
m∈Z

An−mZm =
1

2π

∑
m∈Z

(∫
T
ei(n−m)λÂ(−λ)dλ

)
Zm.

Thus, the stochastic spectral measure µZ satisfies

µX(A) =
1

2π

∑
m∈Z

(∫
A

e−imλÂ(−λ)dλ

)
Zm,

and the convergence is in Hd.

Then, using the inequality (2), we can easily get that the d-variate function Â is µZ-integrable and the

equality (10) is satisfied.

8.1 Proof of Proposition 5.1

We notice that ϕ̂n = ϕ+D−1
n Nn where

Dn
def
=

n∑
k=1

X2
k−1 and Nn

def
=

n∑
k=1

ZkXk−1.

1) Asymptotic behaviour of Dn. The sequence {Dn} is a nondecreasing and nonnegative. Here we show

that D∞
def
= limn→∞ ↑ Dn = ∞ a.e.

First, we assure that |ϕ| < 1. Since Zn ⊥⊥ Fn−1, n ≥ 1, we can write

var(Dn) =

n∑
k=1

ϕ4(k−2)var
(
(Sk−1 +X0)

2
)
+ 2

n∑
k1=2

k1−1∑
k2=1

ϕ2(k1+k2−2)var
(
(Sk2−1 +X0)

2
)

34



and

var
(
S2
k−1

)
=

k−1∑
j=1

ϕ−4jvar(Z2
j ) + 4

k−1∑
j1=2

j1−1∑
j2=1

ϕ−2(j1+j2)σ2
j1σ

2
j2 .

Then, we deduce that n−1(Dn −E(Dn)) converges to 0 in quadratic mean. Furthermore, applying Borel

Cantelli lemma, we verify that the convergence a.e. is also available. Since

E(Dn) =

n∑
k=2

k−1∑
j=1

ϕ2(k−j−1)σ2
j +

n∑
k=1

ϕ2(k−1) × E(X2
0 )

we obtain

lim inf
n→∞

n−1E(Dn) = (1− ϕ2)−1 lim inf
n→∞

µn > 0.

Hence D∞ = ∞ a.e. in this case.

Next, assume that |ϕ| = 1. The central limit theorem for independent random variables (see, e.g., Loève,

1978, sec. 21.1) entails that s−1
n Xn converges in distribution to the standard normal law N (0, 1). Here

s2n
def
=
∑n

k=1 σ
2
k. We deduce that

lim inf
n→∞

P
(
Dn > s2nϵ

)
≥ lim

n→∞
P
(
X2

n > s2nϵ
)
= 1− F2(ϵ)

for any ϵ > 0, where F2(ϵ) is the value of the distribution function of the χ2(1) distribution. Since s2n
converges to ∞, we deduce that Dn converges in probability to ∞ as n → ∞. Hence D∞ = ∞ a.e.

Finally, assume that |ϕ| > 1. In this case, we know that

lim
n→∞

ϕ−2nX2
n = (S∞ +X0)

2 a.e.

If P(S∞ +X0 = 0) = 0 we readily deduce that limn X
2
n = ∞ and D∞ = ∞ a.e.

2) Asymptotic behaviour of Nn. For each ϕ ∈ R, we have just seen that D∞
def
= limn ↑ Dn = ∞ a.e. Then

P(∪n{Dn > 0}) = 1. Since Zn ⊥⊥ Fn−1, n ≥ 1, the time series {Nn} is a martingale with respect to the

filtration {Fn} and the strong law of large numbers for martingales (see Theorem 2.18 in Hall & Heyde,

1980) entails that limn D
−1
n Nn = 0 a.e. on the set

{D∞ = ∞}
⋂

{Dn > 0}
⋂{ ∞∑

k=n

D−2
k E

(
ZkXk−1)

2
∣∣Fk−1

)
< ∞

}
for any n ≥ 1. However

∞∑
k=n

D−2
k E

(
X2

k−1Z
2
k

∣∣Fk−1

)
=

∞∑
k=n

D−2
k X2

k−1σ
2
k ≤

∞∑
k=n

D−2
k

(
Dk −Dk−1) sup

k
σ2
k.

Since 0 < Dn ≤ Dk ≤ Dk+1, for any n ≤ k, we easily verify that

0 ≤
∞∑

k=n

D−2
k

(
Dk −Dk−1) ≤ 2D−1

n < ∞.

Then we readily achieve the proof of Proposition 5.1.

8.2 Proof of Proposition 5.2

First, following the proof of Proposition 5.1 when |ϕ| < 1, under the hypotheses of Proposition 5.2, we

obtain that

lim
n→∞

n−1Dn = (1− ϕ2)−1µ > 0 a.e.
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Next, the conditional quadratic variation ⟨N⟩ of the square-integrable martingale {Nn} is equal to

⟨N⟩n
def
=

n−1∑
k=1

E
(
(Nk −Nk−1)

2
∣∣Fk−1

)
=

n−1∑
k=1

X2
k−1σ

2
k.

To apply the central limit theorem for martingales (see, e.g., Dacunha-Castelle & Duflo, 1993, Theorem

2.8.41), it suffices to show that the two following conditions are fulfilled:

(C1) : n−1⟨N⟩n converges in probability to some positive value γϕ,

(C2) : Lindeberg condition is satisfied, that is, for each ϵ > 0:

lim
n→∞

n−1
n∑

k=1

E
(
(X2

k−1Z
2
kI{√n|Xk−1Zk|>ϵ}

∣∣Fk−1

)
= 0 in probability.

Thanks to the independence condition, Zk ⊥⊥ Fk−1, k ≥ 1, we can write

E(⟨N⟩n) =
n−1∑
k=1

ϕ2(k−1)
n−k∑
j=1

σ2
jσ

2
j+k + E(X2

0 )

n∑
k=1

ϕ2(k−1)σ2
k

and var(⟨N⟩n) ≤ var(Dn) × supk σ
4
k. Then we deduce that the condition (C1) is satisfied with γϕ =∑

k ϕ
2(k−1)ηk < ∞.

Now we study the condition (C2). Since 0 ≤ I{√n|Xk−1Zk|>ϵ} ≤ ϵ−1
√
n|Xk−1Zk| and Zk ⊥⊥ Fk−1, we

have

0 ≤ E
(
X2

k−1Z
2
kI{a1/2

n |Xk−1Zk|>ϵ}

∣∣Fk−1

)
≤ ϵ−1

√
nE
(
|Xk−1Zk|3

∣∣Fk−1

)
= ϵ−1

√
n|Xk−1|3E

(
|Zk|3

)
.

We know that E
(
|Xk−1|3

)
≤ E

(
X4

k−1

)3/4
. From the independence condition, we have

E
(
X4

k−1

)3/4 ≤ 8ϕ3(k−1)
(
E
(
|Sk−1|4

)3/4
+ E

(
|X0|4

)3/4
+3E

(
|Sk−1|4

)1/2
E
(
|X0|4

)1/4
+ 3E

(
|Sk−1|4

)1/4
E
(
|X0|4

)1/2)
for any k > 1. Besides,

E
(
|Sk−1|4

)
=

k−1∑
j=1

ϕ−4jE(Z4
j ) + 6

k−1∑
j1=2

j1−1∑
j2=1

ϕ−2(j1+j2)σ2
j1σ

2
j2

≤ sup
j

E(Z4
j )

k−1∑
j=1

ϕ−4j + 6 sup
j

σ4
j

k−1∑
j1=2

j1−1∑
j2=1

ϕ−2(j1+j2).

Then we obtain that E
(
|Xk−1|3

)
= O(1). We deduce that the condition (C2) (Lindeberg condition) is

satisfied. We can apply the central limit theorem for martingales: the time series {n−1/2Nn} converges

in distribution to N (0, γϕ). Then we readily achieve the proof of Proposition 5.2.
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Szőkefalvi-Nagy, B., & Foiaş, C. (1970). Harmonic analysis of operators on hilbert space. North-Holland

Publishing Company, Amsterdam, Akadémia Kiadó, Budapest.
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