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Abstract

Harmonizable processes form a wide class of nonstationary processes, which admit a convenient
Fourier analysis and have spectral distributions characterized by correlated components. They are
proved to be useful in many fields of application, for example, recently they were successfully applied
in the analysis of replicated ElectroEncephaloGram signals for studying the brain connectivity. In
this paper, we introduce a parametric form for these harmonizable processes, namely Harmonizable
Vector AutoRegressive and Moving Average models (HVARMA). In the same spirit as of standard
VARMA models, they are derived as a unique solution of a difference equation based on a properly
defined concept of harmonizable noise. We exhibit their spectral characteristics and provide a way

to generate realizations from a given HVARMA model.

keywords: Harmonizable processes, Loeve spectrum, time series, VARMA models.

1 Introduction

Stationary processes are commonly used because a wide set of tools is available for their time and
frequency domain analysis. However, there are many problems for which stationarity is an unacceptable
limitation, and for which it is of interest to maintain a convenient and easy-to-interpret spectral analysis
(e.g., econometrics, telecommunication, vibroacoustics, mechanics). Sometimes nonstationarity can be
modeled by assuming that stationarity holds locally. This can be done, for example, using piecewise
stationary or locally stationary processes. ARMA models with time-varying coefficients (Dahlhaus, 2012)
provide a very powerful and convenient parametric class flexible enough to describe many real-life signals.
Nevertheless, those models do not allow for capturing many complex dependencies that characterize some
signals such as dependence in the frequency domain.

Harmonizable processes are a natural extension of stationary processes with a spectral (frequency) dis-
tribution, whose components are correlated. Their covariance function is bivariate and admits a two-
dimensional Fourier decomposition (Loéve spectrum). Hence, the study of this class of time series is

possible through Fourier analysis methods.

OThis publication is based upon work supported by King Abdullah University of Science and Technology Research
Funding (KRF) under Award No. ORFS-2022-CRG11-5025.2
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Figure 1: Nonparametric estimate of the dual-frequency coherence computed on replicated EEG data.
The darker the color, the higher the coherence value.

Harmonizable processes have been studied in the literature over the past 70 years. We refer the reader in
particular to the works of Loeve (1948-1963) (see Cramér, 1961; Loeve, 1978; Rozanov, 1959). Numerous
applications of the concept of a harmonizable process have been developed in signal theory, in commu-
nications, in mechanics, etc, (see, e.g., Gardner et al., 2006; Napolitano, 2019; Serpedin et al., 2005;
Setoodeh & Haykin, 2017). That is to say, in fields where filtering problems are common, and frequency
domain methods are highly regarded by practitioners for describing or inferring the properties of noisy
signals.

Recent applications of harmonizable time series have opened new research directions for EEG data (Aston
et al., 2023; Gorrostieta et al., 2019). In these papers, the authors introduced nonparametric methods for
estimating the Loeve spectrum, along with some generalizations, including the spatially time-localized
Loeve spectrum (see Aston et al., 2023). In addition, they estimated dual-frequency coherence, a measure
that captures the linear relationship between two frequencies and a pair of time series. This quantity,
derived from Loeve spectrum, provides insightful analysis of replicated EEG time series (Ombao & Pinto,
2022). Figure 1 shows this spectral dependence measure computed on EEG signals recorded from elec-
trodes monitoring the prefrontal cortex activity (for details on the data, see Moran & Soriano, 2018)).
We can observe many non-zero off-diagonal values that may be the key to understanding the complex
dependence structure of these signals. The high-frequency content in the Beta (13-30Hz) and Gamma
(above 32Hz) oscillation ranges appear to be potentially correlated with each other. This clearly suggests
that models allowing for frequency domain dependencies are required to capture the complexity of these
signals.

It should be noted, that the calculation of the Loeve spectrum requires replicated observations. More-
over, there is currently no way to generate harmonizable time series with known spectral characteristics,
which is essential to assess the numerical performance of new methods based on harmonizable processes.
Developing parametric models and related statistical inference methods for harmonizable processes could
address both challenges. Using parametric models can significantly reduce the number of replicated time
series required for real data analysis compared to nonparametric methods. Furthermore, it could facilitate
data generation whenever the spectral characteristics of these models are available. Such advancements
would significantly expand the use of methods based on harmonizable processes. However, despite several

publications on linear harmonizable time series (Mehlman, 1991, 1992), no parametric models have been



developed for these processes. This gap deprives researchers and practitioners of a robust set of tools for
estimation, forecasting, data generation, and more.

Taking the above into account, this paper makes four key contributions (denoted later in this section as
Contributions 1-4). First, we address a gap in the literature by introducing the first parametric VARMA-
type model for harmonizable processes, which we refer to as HVARMA. Second, we exhibit their spectral
characteristics. Third, we tackle the challenge of generating non-trivial realizations of harmonizable time
series with a specified Loeve spectrum. Finally, we present preliminary results of how to perform param-

eter estimation of a model with harmonizable noise.

Contributions 1 and 2 are addressed in the first four sections of this paper, where we lay the mathemat-
ical foundation for defining the HVARMA models (see Definition 5.1. Our approach draws inspiration
from the work of Brockwell and Davis (1991). The HVARMA model is obtained as a solution of a
difference equation based on appropriately defined harmonizable noise, which serves as innovations (see
Section (6.5)). This harmonizable noise is the fundamental building block of our linear model. We as-
sume that it is uncorrelated, but its variance is not constant over time, and the vector components of
a multivariate harmonizable noise at any fixed time moment can be correlated. The formal definition
of harmonizable noise, provided in Theorem (3.1), differs from that used in Mehlman (1991, 1992) (see
Definition 6.1 in Mehlman (1991) and Definition 2.15 in Mehlman (1992)).

Dealing with such a definition requires distinguishing the subtle differences between weakly and strongly
harmonizable processes (see Proposition 2.1 and related remark). To ensure that we obtain an inter-
pretable spectrum for our HVARMA model, we pay great attention to the spectral characterization of
harmonizable noise in Section 3, and its filtered version (moving average) in Section 4, resulting in the
multivariate linear harmonizable model. Furthermore, we establish necessary and sufficient conditions for
strong harmonizability and the existence of a stochastic spectral density in Proposition 3.1 and Proposi-
tion 3.2.

Finally, in Theorem 5.1 we state the spectral characterization of HVARMA models. It gives the analytical
form of the Loeve spectral density matrix of the HVARMA model. Interestingly, it combines the spectral
characteristics of the harmonizable noise and the spectral characteristics of the filter that are used to
obtain the HVARMA (p,q) model.

Section 6 refers to Contribution 3, in which we provide a methodology for generating realizations of
harmonizable time series based on known spectral characteristics. In this section, we highlight the
technical subtleties that must be addressed to generate harmonizable noise on a finite group. In particular,
we discuss how to get harmonizable noise using a certain VARMA(p', ¢') process. We will then use it
to construct a HVARMA (p,q) process. This gives us a subclass of HVARMA models, which we denote
as HVARMA (p,q) — (p',¢’). In Section 6.5, we describe in detail how to generate realizations from
HVARMA(p, q) — (p,¢’) and compare them with standard VARMA models.

Moreover, Figure 2 presents a realization of an usual VARM A(3,2) process (top left panel), which
was used to obtain three HVARMA(3,2) — (p',¢’) series with different incremental processes (see the
other three panels). As can easily be seen, HVARMA realizations based on the same VARMA can vary
significantly from each other (as well as from the input VARMA process) and consequently can be used
to model very different phenomena. They also exhibit complex nonstationary behaviors.

Contribution 4 is addressed in Section 5.2, where we discuss how to estimate the parameters of the
HVARMA model on a simple example of an univariate HVARMA (1,0) model. Here we do not assume
any model for the harmonizable noise except its heteroskedasticity. We do not consider the estimation
problem of the variance of the harmonizable noise (see White, 1958). This is the subject of another
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Figure 2: Example realizations of an usual VARM A(3,2) of dimension 2 and its modified versions
HVARMA(3,2) — (p, ¢') with different incremental processes.

project.

In summary, this paper is organized as follows. In Section 2 a brief description of the spectral repre-
sentation of multivariate harmonizable time series is presented. In Section 3, the notion of multivariate
harmonizable noise (or innovation) is introduced and its spectrum characterized. This is the basic build-
ing block of linear models. Additionally, necessary and sufficient conditions for strong harmonizability
and for the existence of a stochastic spectral density are given. Section 4 is devoted to defining mul-
tivariate linear harmonizable time series as the moving average of harmonizable noise. Section 5 deals
with multivariate harmonizable autoregressive moving average (VARMA) models. Section 5.2 introduces
the idea of estimating the parameters of an univariate HVARMA model. Section 6 details a proper
methodology for generating realizations of harmonizable time series from known spectral characteristics.

Finally, a short discussion is provided in Section 7. All proofs are deferred to Appendix.

2 Background

In this section, we introduce the basic notations and recall some definitions and properties of harmonizable
processes. For more details, we refer the reader to Loeve (1978), Mehlman (1991), Rao (1982), and
Rozanov (1959).

2.1 Notation

Let d be a fixed non-zero integer. From now on, C? denotes the set of d-dimensional complex column
vectors and T R/2m represented by (—m, ] is the topological dual group of Z. In this paper, we assume
that the probability space (2, F,P) is sufficiently large so that there exists a sequence of uncorrelated
random d-dimensional vectors with a variance matrix equal to the identity matrix of size d x d denoted as
Iixa, and which are not correlated with the d-dimensional time series (Z,,)nez studied in the following.
Otherwise, one can always replace any probability space (€2, F,P) by an enlarged probability space with
this property. For the construction of such an enlargement, we refer the reader to Loéve (1978).

Hereafter, we consider only complex-valued random variables defined on the probability space (2, F,P),

that have zero mean and are mean square integrable. For simplicity, in what follows, when we write ”time



series” we mean second order time series with zero mean, i.e., a sequence of square integrable random
vectors with zero mean (or variables) on the probability space (2, F,P). We denote by H = LZ(P)
the complex Hilbert space of square integrable complex-valued random variables with scalar product
(z|y)2 = E(zy). The inflated space H? o ®{H = L2.(P) is a Hilbert space with the scalar product
(@|y)qa défE(:nTy). If x and y are two zero mean random vectors in L2, (P), then the covariance between
x and y is the d x d-matrix Cov(z,y) = E(xy*) = (Cov(xi’yj)>1§i,j§d’ where £ = (z1,...,24)" and
y=(y,...,ya)" € H".

Here and in the following, the superscript T’ denotes the transpose operator, and the superscript ’x’ is
the adjoint operator, i.e., the conjugate transpose operator.

Let X = (X,)nez be a d-variate time series and let H(X,,) be the Hilbert subspace of H generated
by Xn1,..., Xnd, 1e, H(X,) def {a" X, : a € C?}, where X,, = (Xn1,...,Xna4) . Notice that
dim H(X,,) < d. Moreover, let H¢(X,,) be the Hilbert subspace of H? generated by X, i.e., ’}-ld(Xn)déf
{AX,: A C™} HYX,)=H(X,) & - &H(X,) and dimHY(X,) =d x dimH(X,,) < d°.

In the following, we also consider H(X) a Hilbert subspace of H generated by the Hilbert subspaces
H(X,), n € Z, and H?(X) the Hilbert subspace of H¢ generated by the subspaces H%(X,,), n € Z.
If we replace X by a d-variate white noise € = (&y,)nez, then the Hilbert subspaces H(ey), n € Z, are
orthogonal with the same dimension equal to the rank of the covariance matrix Ez = Var(e,). If, in
addition, the d-variate white noise is pure (see Definition 3.1), then the family {e,1,...,€n4} is the
orthonormal basis of H(e,,). Thus, dim H(e,) = d and dim H%(e,,) = d>.

2.2 Multivariate harmonizable time series

Definition 2.1 A d-variate time series X = (X, )nez is called harmonizable when there exists a (o-

additive) vector measure px : B(T) — H?, such that

X, = [ ™ ux(an.
T

The measure px is unique, it is called stochastic spectral measure of the time series X. The integral
with respect to the vector measure px is in the sense of Dunford and Schwartz (see chapter IV, section
10, Dunford & Schwartz, 1957).

In the following, for a harmonizable time series X, we will consider the Hilbert subspace H(ux) of H
generated by px j(A),j=1,...,d, A€ B(T). Then H(px) = H(X) and H¥(pux) = H(X) (Rao, 1982).

A harmonizable time series can also be characterized by a dependence structure in the frequency do-
main. More specifically, we have the following result.

Proposition 2.1 (Rao, 1982; Rozanov, 1959) A d-variate time series X is harmonizable if and only
if there exists a positive semi-definite bimeasure M x : B(T) x B(T) — C%*? ( the set function M x is
o-additive with respect to each of its components) such that,

E(XmX;;)z// e mAL=mA) N (A, d)s).
’]1‘2

The bimeasure M x is unique, and it is called the spectral bimeasure of the time series X. The above
integral with respect to the bimeasure M x is a Morse-Transue integral (Rao, 1982; Rozanov, 1959).
Furthermore,

Mx (A, B) = Cov(px(A), px(B)) = E(ux (A)px (B))
for any A and B € B(T).



Remark 2.1 e The bimeasure M x is not necessarily extendible as a C?*?-valued measure on T2.
When the bimeasure M x is extendible as a C?*%-valued measure on T?, the time series is called

strongly harmonizable (Loéve harmonizable), otherwise it is called weakly harmonizable.

e Stationary (wide-sense or second order) time series are strongly harmonizable. A harmonizable time
series is stationary if and only if its stochastic spectral measure is orthogonally scattered, i.e., its
spectral bimeasure is concentrated on the main diagonal of T?: M x (4, B) = E(px (A)pk (B)) =
04xq, when AN B =0, A, B € B(T). Then the spectral measure mx on T of the stationary time
series X satisfies mx (4) = M x(A,T) = M (T, A) for any A € B(T).

3 Multivariate harmonizable noise or innovation

For the sake of clarity, we first recall the definition of a white noise € def (en)nez. Then, we state a
necessary and sufficient condition for a time series Z def (Z)nez to be a harmonizable noise, and we
characterize its stochastic spectral measure. Finally, we establish necessary and sufficient conditions for
Z to be strongly harmonizable, and to admit a stochastic spectral density.

Definition 3.1 (White noise) A d-variate time series e (en)nez is a white noise when it has zero
mean and Cov(ep,,e,) = E(epnel) = Egl{m:n} for some hermitian positive semi-definite d X d-matriz
23. A d-variate white noise is a stationary time series. In the following, a d-variate white noise is said

to be a d-variate pure white noise when X2 = lyxq (identity d x d-matriz).

. . o . . . def . ..
We consider the following condition for a d-variate time series Z = (Z,,)nez, whose covariance matrix is

time-varying.

(Ha) E(Z,) =04 and Cov(Z,Z,) =E(ZnZ}) =% 1(n=n)
where the components of the covariance matrices 222n7 n € Z, are uniformly bounded, that is,
Supn,j E(|Z7l7]|2) < 0.

Below we establish a fundamental building block for our results, stating a necessary and sufficient condi-

tion for the time series to satisfy (Ha).

Lemma 3.1 (Fundamental Lemma) A d-variate time series Z def (Zy)nez fulfills condition (Ha)
if and only if there exists a d-variate white noise € def (en)nez and a family of d X d-matrices S, =

(8n,j,k)j.k=1,...d such that sup,, ; . |sn,jk| < oo and Z, = S,e,, n € Z.

Note that (Z,) is not necessarily white noise, since the variance matrix of Z, may depend on n.

Remark 3.1 (i) In Lemma 3.1 the white noise (&, )nez is not unique and it can be selected as a

d-variate pure white noise.

(ii) Var(Z,) = 8,328*. In the case of a pure white noise, we have Var(Z,) = S,S;, and E(ZIZ) =
tr(S,S}).

Below we state the harmonizability of the time series (Z,,)ncz satisfying the condition (Ha). The proof
of the following theorem relies on the construction of a bounded linear operator = : H%(e) — HY(Z)
such that Z, = Ze,, where the time series (&, )nez is stationary. For more details, we refer the reader
to Section 8, proof of Theorem 3.1.



Theorem 3.1 (Harmonizable noise or innovation) A d-variate time series (Z,)nez fulfilling con-

dition (Ha) is harmonizable. Its stochastic spectral measure 5 defined on B(T) satisfies

py(A) = % > (/Aei”’\d/\) Zn, (1)

ne”Z

where the convergence is in H(Z). Conversely, any d-variate harmonizable time series (Z,,)nez whose
stochastic spectral measure satisfies relation (1), satisfies the condition (Ha). In what follows, such a

time series will be referred to as d-variate harmonizable noise.

Remark 3.2 (i) Note that the spectral bimeasure M z of (Z,,),ecz satisfies

1 .
Mz (A, B) = e Z </ / em(/\lAz)d/\ld)\Z) EZva
nez AJB

where the convergence of the series is in R.

(ii) If et (€n)nez is a d-variate white noise, then it is harmonizable noise and it is stationary. The
stochastic spectral measure p. is orthogonally scattered in the sense that E [p (A)pi(B)] = O0axd
when AN B = (). It admits a spectral measure m defined on B(T) which satisfies

me(ANB) = Mo(A,B) = E[u (A)pi(B)],  ABeB(T).

(iii) When el (en)nez is a d-variate pure white noise, its spectral measure m, has a density function
with respect to Lebesgue measure on T, which coincides with the C%*?-valued constant function

%dew Every function f € L4(T) is p.-integrable and

‘ ; =tr (E [(/T fN) Ns(d/\)> (/1r f(\) p,s(d/\))*]) = %/TU(/\)FCZ/\

(iv) Consider a d-variate harmonizable noise Z and a d-variate pure white noise € associated to Z in

/ O (@)
T

Lemma 3.1. Applying the previous remark (iii) and Dunford and Schwartz (Theorem 3.2.19 1957),
every function f € L?(T) is integrable with respect to pu, = Zu,, where = is the bounded linear

operator defined in the proof of Theorem 3.1. Furthermore,

where ¢% = Sup,, ; k |8n.j.x|?. Consequently, the stochastic spectral measure p is absolutely contin-

2 2
< suplonssl | [0 man| =5 [roran @

2
HE gk

/ ) 1z (dN)
T

uous with respect to Lebesgue measure on T. Nevertheless, this does not imply that there exists a
function Az : T — H? that is integrable in some sense (Pettis or Bochner, Dunford and Schwartz
(see 1957)) and such that

pa(d) = [ Bzax

Cdxd

Neither that the spectral bimeasure M z is extendible to a -valued measure on T? (see Propo-

sition 3.1).
Before presenting other theoretical results, we give some elementary examples of harmonizable noises.

Example 3.1 Let e (en)nez be a d-variate white noise. Consider the following time series:



(1) Z;l)défsn for any n € Z.

(ii) ZS) défsn for n1 <n < mno, and Zg) defy) otherwise, ny < ng being fixed in Z (Rao, 1982).

(iii) Zz® e, for n >0, and A L0 otherwise (Rao, 1982).
ef [ 1 0 ef (1 0 ) def (i .
(iv) Let d =2 and S;4>d:f , ng’)d:f L |- Set Zg)d:fS,(f)sn,forz:4,5.
0 1+(-1)» 0 1A|n|”
(v) Let X f (Xn)nez be a LZ,(P)-bounded time series. Consider the innovation series z© =

(Z9)),cz defined by fo; déan’j — P,_1X, ;, where P,,_1 X, ; is the one-step prediction of X, j,

i.e., the orthogonal projection of X, ; onto the sub-Hilbert space H,_1(X) of H(X) C LZ(P)
generated by {X,r:p<n—1,k=1,...,d}.

Then the series Z® = (Zg))ne% t=1,...,6 are d-variate harmonizable noises.

Next, we state a condition for the d-variate time series (Z,,)nez to be strongly harmonizable.

Proposition 3.1 (Strong harmonizability) A d-variate harmonizable noise (Z,)nez s strongly har-

monizable if and only if
=3, = [ Pnaliy) ®)
T

where nz is some C*%-valued measure on T. In this case, the measure nz is unique, for every A € B(T)

’I’Lz(A)://Q]IA(Al+)\2)Mz(d)\1,d)\2)7 (4)
T
and for every E € B(T?) we have

1

Mz(E) = —// Ip(A —a,a)nz(d)\)da. (5)

2w T2
Ig is the indicator function of the set E, that is, Ig(A\) =1 if A € E and Ig(\) = 0 otherwise.
Remark 3.3 (i) The measure nz in Proposition 3.1 satisfies

ny(A) =nz(—A) =nz(A4), A e B(T).
Indeed

M*Z(d>\1, d)\g) = Mz(d)\g, d)\l) —
’I’L*Z(A) = // HA()\I + )\2) M*Z(d)\l,d)\z) = // ]IA()\I +)\2)Mz(d)\27d)\1) = ’I'Lz(A)
T2 T2

and

0< ’UEQZn’U* = ('022va*)* E—

/Tei"/\ (v nz(d)\)v*) = /Te_m’\ (v nz(d)\)v*)* = /Te_i”)‘ (v n*Z(d)\)v*) = /Tei”’\ (v n*Z(—d)\)v*), n € 7.

(ii) A white noise (€, )nez is strongly harmonizable, and the measure n. coincides with 28, where &y

is the Dirac measure at 0.



(iii) Following the notations of Examples 3.1, the d-variate time series Z ®) i weakly harmonizable and
not strongly harmonizable (Rao (1982, Sec.2 p.301) and Helson and Lowdenslager (1958, p.183)),
while Z") is a white noise. Applying Proposition 3.1, we establish that the d-variate time series

Z (2), Z™ and Z® are strongly harmonizable noises.

— For 2P, let fren(N) € 332, ¢, then Var(Z?) = L [ e " f,0(A)dX and hence
M 72 (d)\) = %fz(z)( )d)\.

— For Z(4), notice that

(14 (=1)™)? = (14 cos(mn))? = 2 + 2cos(mn) = 2 + ™ 4 =",

Nz = Zi 50 .
200 + 0r + 0—x

AT =1A 7

Then we obtain that

— For Z® we have

Consider the function f,e) (A) 142 > oo’ -5 cos(An) and the real valued measure defined

on T by nye (A)% 5= |4 fz® (A) dA. Then we obtain that

]

2 0

Nz = EE .
N z(5)

(iv) For any integrable function G : T — C%4, G € L{..x.(T), the ("convolution’) function

2! /T G(@)G"(a + A da

The d x d-matrix [;e™*D())dA\ is positive semi-definite for any n. It is therefore the covariance
matrix of a zero mean d-variate random vector Z,: E2Z = |r e™*D()\)d\. Moreover, we can
enlarge the probability space (2, F,P) in such a way that we can select the zero mean d-valued
random vectors Z,,, n € Z, so that they are uncorrelated: Cov(Zm, Zn) = EELH{m:n}. In this case,

the d-variate time series Z = (Z,,) is a strongly harmonizable noise, so that nz(d\) = D(\) dX.

n;nZ

In the following proposition based on a general result of Székefalvi-Nagy and Foiag (1970, pp.183-184) (see
also Niemi, 1978), we obtain a characterization for the stochastic measure of a d-variate harmonizable
noise admitting a stochastic Radon-Nikodym density function with respect to the Lebesgue measure, i.e.,
for which there exists a strongly measurable Lebesgue-integrable function Az : T — H%(Z) such that

A) = /A Agz(A)dA

Proposition 3.2 (Stochastic spectral density) The stochastic spectral measure @y of a d-variate
harmonizable noise Z admits a density function with respect to the Lebesgue measure on T, if and only

if the total energy of the d-variate time series Z is finite:

ZtrZQZ Ztr\/ar n) ZE Z—r ZZUZM < o0. (6)



In this case, the stochastic spectral density function Az on T satisfies

1 —in
Az(\) = gze AZ, (7)
nez

where the convergence of the series (7) is in HY.

Moreover, the d-variate harmonizable noise Z is strongly harmonizable. The spectral bimeasure M z is

(Cd><d

extendible to a -valued measure on T? with density function

1 .
Fz(A\, ) =E(Az(M)AZ () = P Z e~ A
nez

Thus, nz(d\) = Dz(X\)d\, where

1 —in
Dz(\) =5 D emimwy (8)
neEZ
Remark 3.4 e Under the condition 6, the stochastic spectral density function Az is stationary with

respect to the frequencies: Fz(A1, \2) = E(AZ()\l)A*Z()\g)) =Dz(A1 — A2).

e A (non-zero) white noise € = (&, )necz has no stochastic spectral density with respect to the Lebesgue
measure on T. Indeed, the condition (6) is not satisfied for (e,), because Egn is constant and
different from the zero d x d-matrix Ogxq. Recall, however, that the non-zero white noise € has a

spectral density with respect to the Lebesgue measure on T which is constant and equal to %ded.

4 Multivariate harmonizable linear model

In this section, we show that multivariate time series defined as moving average of a harmonizable noise
is harmonizable. This is a key result that allows us to introduce harmonizable ARMA time series in the
next section.
Let Z = (Z,)nez be a d-variate harmonizable noise and A def (Ap)nez be a family of complex d x d-
matrices such that ) tr(A,A;) < oo. Then the d-variate time series X = (X, ),ez is well-defined
by

X, = Z Ann Zy = Z Ao, (9)

meZ meZ

where the convergence is in #(Z) C L2, (P) (see Theorem 4.1 below, for stationary case see Brockwell
and Davis (1991)). Notice that the convergence in the sum (9) is almost sure when ) [A,| < co. The
d-variate time series X is the transformation of the d-variate harmonizable noise Z by a time invariant
linear filter and

Cov(Xn, Xm) =Y A, ;X3 A5 .

JEZ

Thanks to Plancherel theorem (Rudin, 1967, see Theorem 1.6.1) the Fourier transform A:T — Cixd

(Cdxd

of the sequence A = (A, )nez is well-defined, and is square integrable on T, i.e., the -valued func-

tion A — :4()\):4*()\) is integrable with respect to the Lebesgue measure on T. Furthermore, since the

topological group T is compact, the Fourier transform A is integrable and

1 ~ .
A, = — / A(N)e M a.
271' T
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When the sequence A is absolutely summable (3, |A,| < o), the Fourier transform A is equal to
= Z A, e
nez
In the following theorem, we state that the time series (X, )ncz given by (9) is harmonizable.
Theorem 4.1 Let Z < (Z)nez be a d-variate harmonizable noise, and let A = df (Ap)nez be a family
of complex d x d-matrices such that ), tr(A,A,) < co. Then the d-variate time series x (X n)nez

defined by the moving average series (9) is well-defined in HY(Z) and it is harmonizable. Moreover, the

Fourier transform A of A is py-integrable and the stochastic spectral measure px of X satisfies

ux() = 52 3 ([ AN 2, = [ AN g, (10)

neZ

where A € B(T). Therefore, the spectral bimeasure of X can be expressed by

4—12 Z (/ e_i"/\l;l(—)\l)d)\l) =% (/ ei"’\zﬁ*(—)\g)d&)
u B

— //A DM z(dA1, dA2) A (—Xs), (11)

where A, B € B(T). The last integral is in the sense of an integral with respect to a bimeasure (see (Rao,
1982), see also (Rozanov, 1959)).

M x (A, B)

Remark 4.1 (i) If (Z,,)nez is strongly harmonizable, then (X,,),ez is strongly harmonizable. The

(Cdxd

spectral bimeasure M x is extendible to a -valued measure on T? and the integral in equal-

ity (11) is the Lebesgue integral with respect to the C¢*?-valued measure M .
Indeed, since >, tr(A,A;) < oo, Proposition 3.1 implies that

COV Xn7X Z/ zyu n j’l’LZ(du)Am j)

JEZ

Applying the Parseval’s equality to each of the components of Cov (X ny X m) we obtain that

Cov (X, X ) = ;ﬁ/(/Tei("(o‘H‘)_mA)ZA(Q—)\)nz(da);l*(—/\)) ),

and the spectral bimeasure M x is extensible to a vector valued measure on T?, and
Mx(Ax B) = / / AN\ — o) nz(dh — M)A (fAQ)) Ao

(ii) If (Z,)nez has a stochastic spectral density Az (Proposition 3.2), then (X ),z has a stochastic
spectral density which coincides with Ax (A) = A(=A\)Az(\):

= / A(=N)Az(A)dA
A

Thus, the spectral bimeasure M xis extendible to a measure on T? with a density function
Fx (A1, X2) = A(=A\1)Dz(A — A2) A (=)o)

and

Cov(X,, X ) = /(Zei-j’\AnjDZ()\)A:‘nj> d\
T

ne”Z

- /e*“”M*mAz)ﬁ(fAl)Dz(AlfAQ)Zl*(fAQ)dAldAQ.
’H‘Q

11



(iii) If (Z,)nez has a discrete stochastic spectral measure, then (X,)necz has a discrete stochastic

~ ~ %

spectral measure: px(\) = ;l(—)\)uz()\) and M x (A1, A2) = A(= A1) Mz (A1, A2) A (= )\2).

5 Harmonizable VARMA model

Our definition of harmonizable noise allows the construction of HVARMA models following the ideas
of Brockwell and Davis (1991, sect. 3.1), resulting in Definition 5.1. Theorem 5.1 below describes the
Loeve spectral matrices of HVARMA (p, ) processes. This is the starting point for many possible studies
on their estimation, prediction, etc., as well as a key results that will allow us to propose a method for
generating realizations of the HVARMA time series later in the paper.

Definition 5.1 (HVARMA (p, q) processes) The process (X p)nez is said to be a HVARMA(p, q)

process if for everyn € Z,
Xn + ¢1Xn—1 +---+ ¢an—p = Zn + 01Zn—1 +---+ qun—q7 (12)

where (Z)nez s a d-variate harmonizable noise as in Lemma 3.1, and ¢y, ..., ¢,,01,...,0, € Co*d gre
the AR and MA coefficient matrices, respectively. The model equation (12) can be written in the compact

form:
B(B)X, = O(B)Z,.

where B is the backward operator, ®(2) = lyxa + @12 + - + ¢,2P and O(z) = lgug + 012 + -+ + 0,27

are the polynomial matrices associated to the difference equation (12).

Theorem 5.1 (Loéve spectral matrices of HVARMA (p, q) processes) Let (X, )nez be a HVARM A(p, q)
process (see Definition 5.1). Assume that the polynomial functions det ®(-) and det ©(-) have no com-

mon zeroes, and that the harmonizable noise (Z,)necz has a stochastic spectral density Az (defined in
Proposition 3.2). Then (X, )nez has a stochastic spectral density Ax(\) = ®(e=)"1@(e=*)Az(N),

and the Loéve spectral density matrixz is given by

1 ) ) I . ingy—
m(A1, Ao) = m<1>(e—”1)—1@(e—m)DZ(Al—Az)@) (™)@ (e72) 71 (A, \g) € T2

5.1 Spectrum

Consider a d-variate white noise € associated to the d-variate noise Z as in Lemma 3.1: Z,, = S,&, =

E(en), with sup,, ;  [sn,j.x| < 0o. Let Y be a solution of the difference equation
Yo+ Ypa+-+¢, Y p=€n+016n1+ - +60,60 4 (13)

The operator =, introduced in the proof of Theorem 3.1, which is a bounded operator on H¢(g), can be
applied to relation (13).
Thus,

EY,)+0EY 1)+ +0,EYn p)=Zy+61Zy 1+ +0,Z, .

Consequently, the d-variate time series (X, )nez = (E(Y n))nez is well-defined, and is the solution of the
VARMA equation:

Xn +¢1Xn71 + - +¢an7p = Zn +01Zn71 + - +0anfq7 (14)

12



where Z = (Z,,)nez is a d-variate harmonizable noise and ¢, ..., ¢,,01,...,0, € C¥*4, We define the
polynomial matrices ®(z) = Lyxg + P12+ -+ ¢,2P and O(z) = Lixa+ 6012+ --- + 0,27 associated to
the difference equation (14).

From now on, we assume that det ®(e?*) # 0 for any A. Then the difference equation (14) admits a

unique d-variate harmonizable solution.
Xo= [ @) 0l ) ug(h) = A0, (15)
T JEZ
where the matrix A; is the coefficient of 27 in the Laurent expansion
= Z Ag Zj .
jez
Since det ®(e™*) # 0 for any ), the Laurent series is absolutely convergent in some ring (annulus)

r~! < z < r for some r > 1, and thus > ., [A,| < oo (see, for e.g., Mel'nyk, 2023) and AN =
®(e=*)~1@(e~™*). The relation (10) implies that the stochastic spectral measure px verifies

px(A) = A@(e‘iA)_l(B(e_i’\)uZ(dA) ;ﬁz(/Ae_i"/\i’(e_i’\)_l(-)(e_i’\)d/\) Z.,.

neZ

Furthermore,

Cov(Xn, X 1) ZAn 57, AL,
JEZ

_ // ei(n)\lfm)\g) (@(efi)\l)fl®(6fi)\1)) Mz(d)\hd)\g) (6*(671'/\2)@*(671')\2)71)
’]T2

and the spectral bimeasure can be expressed as

—z)\l —iA k ( —iAo x —iAg\—1
<(A, B) //AXB 1O M) Mz(dhr, dAy) (€7 (c~2)8" (=) 1)

— =X ([ emae e n) =, ([ e e a). a9

nez

In the remark below, we give some important properties of HVARMA models.
Remark 5.1 (i) If (Z,)nez is a strongly harmonizable noise, then (X ,), ¢z is strongly harmonizable.

(ii) If the harmonizable noise (Z,),cz has a stochastic spectral density Az, then (X, )nez has a
stochastic spectral density Ax(\) = ®(e~*)71@ (") Az(\), and

Cov(Xn, Xm)
1

= 472// ei(n)q*m)\z)q)(efi)q)flg(efi)\l)DZ(/\l _ )\2)@*(67“\2)‘1)*(eii)‘2)71d)\1d)\2,
™ T2

(iii) Causality (Brockwell & Davis, 1991, Theorem 3.1.1) :

det®(2) #0 forle| <1 = Xn= Y A, ;Z;=Y A;Z, ;.
j=—oc 3=0
(iv) Invertibility (Brockwell & Davis, 1991, Theorem 3.1.2) :
det@(z) #0 for|z| <1 =— Z, = Z M, ;X; 7211 X, j.

j=—00 j=0

Here ©(2) 7' ®(2) = 32, I1;27.
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(v) In (iii) and (iv), we have equivalence whenever the polynomial functions det ®(-) and det ©(-) have

N0 COMMON Zeroes.
Finally, we can define the dual-frequency coherence of a HVARMA (p,q) process.

Definition 5.2 (Dual-frequency coherence) Let (X, )nez be a d-variate HVARM A(p,q) process
(see Definition 5.1) satisfying conditions of Theorem 5.1. Denote its Loéve spectral density matriz as
mx (A1, X)), (A1, A2) € T2, Then its dual-frequency coherence matriz is defined as:

[mi j (A1, A2)[?
A de) = ’ '
x (A1, Az) (mi,i()\l,Al)mj,j()\Za)‘Q) j=1,...d

5.2 Estimation - Preliminary results

In this section, we consider the HVARMA(1,0) model. Using this simple model we show how the model
parameter can be estimated. The main results are given in Propositions 5.1 and 5.2. For the self-reliant
lecture of the paper, we give sketch of the proofs in Appendix.
Let

— X 1= 2.

The time series {X,} is a nonhomogeneous Markov chain. From now on, we assume that the random
variables Xy and Z,, n > 1, are square-integrable, E(Z,) = E(X,) =0, and

Zy W Zy,  Zy Al X,  forn#k,

where 1L denotes the independence of the random variables.
The time series {S. def "X, — Xo} is a martingale with respect to the filtration {F,} generated by
{Z,} and X,. Denote o2 dﬁfvar(Zn) =E(Z2). Then

var(X,) = B(X2) = ¢*" Y ¢ o} + 6" B(X7).
=1

Notice that when |¢| > 1 and sup,, 02 < oo, the time series {S,,} converges in q.m. and a.e. to some
random variable So as n — oo and E(Se )dﬁfO and E(S%) =Y, ¢ ?"02 < co. Thus,

lim ¢ "X, =S + Xo in q.m. and a.e.

n—oo

Now we define the least squares estimator of ¢ € R as follows
def - 2
O =argminy (X = 6Xp1)".
k=1
Before studying its consistency, we introduce some additional notation. We define

def 1 def 1
Hn = Zak and Nk,n = ZUJOJ-HC

0’?. Below, applying the strong law of large numbers

Notice that p, < supy O']% and and 71, < sup;
for martingales (see Theorem 2.18 in Hall & Heyde, 1980), we state the consistency of the least square

estimator ¢,,.
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Proposition 5.1 (Consistency) Let Z, 1L F,_; for n > 1, sup, 02 < oo, sup, E(Z%) < oo and

E(X§) < 0o. In addition assume that (i) when |¢| < 1, liminf,, p, > 0, (ii) when |¢| > 1, P(Ss + Xo =
0) =0. Then

lim (Zn =¢ a.e.
n—oQ

Next, the central limit theorem for square-integrable martingales (see Theorem 2.8.41 in Dacunha-
Castelle & Duflo, 1993) allows establishing the asymptotic normality of 9, when |¢| < 1 (see Corollary
3.1 in Hall & Heyde, 1980).

Proposition 5.2 (|¢| < 1 - Asymptotic normality) Let |¢| < 1, Z, 1L F,,_1 for n > 1, sup,, 02 <
o0, sup, BE(Z2) < oo, E(X§) < 0co. In addition, assume that the limits ,udéf lim,, p, and g Mim,, Me,n
for any k > 1, exist and are positive. Then \/ﬁ(an — (;5) converges in distribution to the normal law
N(0,Ty), where Ty = (1 — ¢?)2u23, ¢?F=Yn.

6 Generation of harmonizable time series with a given Loéve

spectrum

In this section, we give tools to generate finite time sample realizations of a HVARMA process with the
known Loeve spectrum, while ensuring they provide a correct approximation of the associated time series
defined on Z.

We first show, in Section 6.1, how to construct a periodic harmonizable time series on Z from its discrete
Loeve spectrum. However, this method does not allow constructing harmonizable noise, which is the
basic building block of our HVARMA model. In Section 6.2 we describe how to overcome this difficulty
by defining harmonizable noise and time series directly on the finite group Zy. Next, results of Sec-
tion 6.3 ensure that the restriction of harmonizable noise and time series on Z to Zy provides a proper
approximation. Consequently, we consider in Section 6.4 the extension by zeros of harmonizable noise
and time series defined on the finite group Zy to (the full space) Z. We prove that in general this does
not produce a harmonizable time series, but a harmonizable noise on Z, and a linear harmonizable time
series. On that basis, we can construct a HVARMA time series on Z as described in Section 6.5. Finally,
we provide some numerical examples of realizations from HVARMA process in Section 6.6.

Hereafter, N is a fixed integer, N > 1. We denote as Zy < Z/(2N + 1) the finite group of integer

numbers modulo 2N + 1 that we represent as {—N,..., N}. Its dual group Ty can be represented by
o
Nt

{wj 1 j € Zn}, where wjdéf

6.1 Construction of a periodic harmonizable time series

We consider a d-variate time series (X, )necz defined as

N

def W,
X, = E e’ K,
j=—N

where the random vectors (called increments) p; are extracted from a d-variate zero mean stationary

time series (p,,)nez with covariance function

def
K, (r)= COV(Hj+r7 Nj)-
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(X )nez is periodic with period 2N + 1, zero mean, strongly harmonizable with a stochastic spectral
measure px, which has a discrete support at frequencies w;, j = —N,..., N, px({w;}) =p

Furthermore, its spectral bimeasure M x is a discrete measure on T2

M x ({(wj,,ws)}) = Cov(px (w)), ix (w),)) = Covlpy,, pj,) = Kpu(jr — j2).
Additionally,

Jji+N

Cov(X ik, X Z Z et e K, (r).
Ji=—Nr=ji—
Assume that K, is periodic with period 2N + 1.
Then we have
COV( ks X Z Z ethwiy ginwr & ( )
ji=—Nr=—N
Therefore, Cov(X 4k, Xpn) = 04xq for k #0 mod 2N + 1. While, for k =0 mod 2N + 1, we have
N .
Cov(X ik, Xp) = Var(X,) = (2N +1) Y €™ Ku(r).
r=—N

Hence, X cannot be a non-identically null harmonizable noise. In other words, due to its periodicity, the

process X cannot be a harmonizable noise.

6.2 Time series indexed by a finite group

Similarly to Sections 2.2 and 3, we can consider harmonizable time series and harmonizable noise defined
on Zy by replacing Z by Zy and T by Ty in Definitions 2.1 and 3.1 and condition (Ha). In this case
Proposition 2.1, Lemma 3.1 as well as Theorem 3.1 are valid. Additionally, since the group Zy and its
dual group Ty are finite, any zero mean second order time series x = (X, )nczy 1S strongly harmonizable
with a discrete stochastic spectral measure:

1 —inw; 1 —ing
) — Wj — Jwi 17
P (@) 2N+1nZEZ € Xn 2N+1nZeZ € Xns (17)
N N

and a discrete spectral bimeasure

MX(wjlﬂwjz): 2N—|-1 Z Z e—l(nljl nz]z)w1E(Xn1Xn2)

n1€ZN N2€LN

Hence,
_ Z injwi ,
- e p’x(wj>7
JEZN
and

COV(an,an) = Z Z eii(nljlinzjz)W1MX(wj1’wj’z)'

J1€LN j2€ZN
Notice that any (second order) time series x can be extended periodically to a strongly harmonizable
time series X on Z with the discrete stochastic spectral measure x(w;) = py(wy) for j=—N,...,N,
and p g (w) = 04 otherwise.
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6.2.1 Harmonizable noise on Zy

Let pu = (uj) jezy be a zero mean stationary d-variate time series on Zy with covariance matrix function

K,(r) o Cov(pj i, pj) = E(ptj1,p}). An example can be found in Section 6.2.3. Then, the time series
C ::(Cn)nEZN defined by
def W
Cn é Z € ]u/ja (18)

JELN
is the (strongly) harmonizable noise on Zy (see Theorem 3.1) with the stochastic spectral measure

defined on Ty by pe(w;) = p;, and

def inw; inw. . inw
Ezn = Var(Cn) = Z e J’I’L((wj) = (2N 4+ 1) Z e j K“(j) = / e nc(dw),
JELN JELN Tn

where n¢(wj) = (2N 4+ 1)K ,(j) (see relation (3)). Notice that the time series ¢ is a real-valued vector if
and only if o, = p_;, j € Zy.
Conversely, if ¢ = (¢,,)nezy is any harmonizable noise on Zy, then the time series p = (u;) ez, defined

by

def 1 —inw,;
szﬂc(wj):m Z e "G,
neLn

is (second order) stationary on Zy with the covariance function
1 1

K ) = ——— f) = — _lnwjv — —’L’I’LWJ'EQ ) 19
weld) = gy pme) 2N+1n§ ¢ ar(Cn) = o7 EZZ e 3 (19)
N 7 N

6.2.2 Moving average on Zy

If ¢ = (¢,,)nezy is @ harmonizable noise on Zy and (', )nez, is a family of complex d x d-matrices, then

the time series x = (X,,)nezy defined by
def
Xn = Z Fn—mcm (20)
meZn

is (strongly) harmonizable on Zy with stochastic spectral measure and spectral bimeasure

~ ~ A~ %

Po(wj) =T jpe(w;)  and My (w),,wj,) =T Ky (1 —j2)T 5,

where

T ikw,;
Fj:: E Tpet™i,
kEZN

Notice that in formula (20), T, is periodically extended to Z by setting T4 xn = Ty,

6.2.3 Moving average with band-limited spectrum

We consider a white noise (€,,)necz, on Zy and a family (9,,)nez, of complex d x d-matrices. Then the

B = Z Vj_rex

k€Zn

moving average

defines a stationary time series u = (uj) jezy With covariance function

Ku(r)= E(lj’jJrrl‘l’;) = Z ’9k+r2§'92~
kEZn
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The harmonizable noise ¢ defined by relation (18) satisfies the equality ¢,, = 0,,6,,, where

-~ def 1 ~ def i
0, = g e"r@, and &, = g ek,
kEZn kEZN

Notice that & is a white noise with variance X2 = (2N + 1)X2.

Whenever ¥4 = 04 for k = +¢,...,£N mod (2N + 1), for some 0 < ¢ < N/2 then K, (r) = 04xq for
r = +2q,...,=N mod (2N + 1) and the harmonizable noise ¢ has a band-limited (Lo&ve) spectrum:
n¢(wj) = Ogxq for j = £2¢...,£N mod (2N + 1). In addition, the harmonizable moving average
time series x defined by relation (20) has a band-limited (Loeve) spectrum: My (wj,,w;,) = Ogxq for
j1—j2==%2q,...,£N mod (2N + 1).

6.2.4 Autoregressive time series on Zy

First, notice that the definition of an autoregressive time series with uncorrelated innovations on Zy
need a constraining condition to justify its existence. Indeed, consider the autoregressive time series
B, = ®p, | +e,, n € Zy, where {€,}nez, is a d-variate white noise and ® is a complex d x d-
matrix. To justify the existence of such a time series {,, }nezy, We need to assume the constraint :

@2N+1

B = ‘I>/,LN +e€&_,- That is, the d x d-matrix Igxq — is invertible and

_ 2N+1y\—1 2N 2N —k
H_N_(ded—é ) (et @ E np T+ ® € Nyppr T T PeY).
In this case,

_ 2N+1\—1 2N 2N—k
= laxa — @) (e, + @e 4o+ @ e b e )

for j = —N,..., N and where EpiN = Eh_N_1 for k=1,...,2N. Then, we can derive the expression for
K, (r) in terms of ® and r. For instance

Ku(0) = (Tixg — 2N ) I+ (88N 4+ + (882N F oo 4 887 (Igeq — D2V 7

6.3 Restriction to Zy of a harmonizable process on Z

In this section, we study the link between the spectrum of the time series under analysis and the spectrum
of the observation interpreted as a time series on a finite group.

Let X = (X,,)nez be a harmonizable time series on Z. Then the time series x = (X, )nez, defined by
Xn =Xy forn=—N,..., N, is a strongly harmonizable on Zx with

N

1 s 1 s W (A —wj)
= = inw; - - inwj x PPN YT
O o 1D DI s o D DI n= vt Hx (@)
neLnN n=—N
and
WNO\l — wj )WN(*)\Q + w; )
M o) = L 922 M x (d)q, dA
X(whﬂwh) /Tx’ﬂ‘ (2N—|—1)2 X( 1, Q)v
where
N o N
Wy (A) = Z e =142 Zcos(n)\).
n=—N n=1

Notice that Wy (0) = 2N + 1 and for A # 0 mod 27 we have |[Wy(\)|? = W
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Hence, p, (w;) = px (w;) (in the sense of the L?-norm) and My (wj,,wj,) & M x (wj,,w;,) for large N
(Rozanov (see Theorem 2.2 1959) and Rao (1982)). Moreover, if Ay < A} and px ({A\1}) = ux({\1}) =0,

we have N
o o~ iNE _ p—idik .
A}gnoo o Z ——zk:Xk = px([M1,N]])  inL?-norm.

IEA <AL A2 < Ag and px ({M}) = px({M}) = px ({Ae}) = px({A2}) = 0, then we have

! N2 —i\,k —iAk i\ iNak

1 e iATkL _ o—iAik eirok2 _ giaky
lim — E g - X - E[ X X:]=Mx (M, N;] x[Aa, A]).
N1, Na—s00 471_2 _ijl ij2 [ 1 kg] ([ ) 1} [ 9 2])
klszl k?zszz

Remark 6.1 If Z is a harmonizable noise on Z, then the time series ¢ defined on Zn by ¢, = Z,, for

n=—N,...,N, is a harmonizable noise on Zx with
R 1 al
) — —inw; ) ) — —in(w;; —wj,) 312
Nc(w]) TNt _Z_Ne Z,, Mc(wjl7w]2) = (2N+1)2 ;Ne 1 2 EZW
and
1 N
—inw,; §12
nel) = e 2
n=—N

6.4 Extension to Z of a harmonizable process defined on Zy

Since we cannot obtain a non-null harmonizable noise on Z from periodic extension, we discuss hereafter
how to obtain a finite time sample, from the extension by zeros. We show that we can obtain harmonizable
noise on Z and characterize its moving average form.

Let x be a harmonizable time series on Zy, and let X be the time series on Z defined by X,, = X, for
n=—N,...,N, and X, = 0, otherwise. Then, in general, we cannot say whether the time series X is
harmonizable or not. Nevertheless, for a harmonizable noise ¢ = (¢, )nezy, the time series Z = (Z,,)nez
defined by Z, = ¢, forn=—-N,...,N, and Z, =0y otherwise, is a harmonizable noise on Z. Indeed,
condition (Ha) is fulfilled by Z.

Furthermore, from Proposition 3.2, the stochastic spectral measure p; admits a density function with

respect to the Lebesgue measure on T:
;XN

:%n

Az(N) e "M, = % D Walws = Npe(w)),

=—N JELN

and the measure n; admits a density function

Moo ON +1
Dy =15 Y e War((,) = ﬁ S Wivlw; — MK (5)-

n=—N JELN

6.4.1 Linear harmonizable time series on Z with innovation Z

Let (Ay)nez be a family of matrices such that ) tr(A,A,) < co. Define the time series X on Z by

X“ész:A,Z.
m=—N
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Then the time series X is strongly harmonizable with the stochastic spectral density

N
Ax() = ACNAZN) = p-A(Y) Y e,
n=—N
= AN Y Wl — Mpley).
JELN

Its spectral bimeasure admits a density function (see Remark (3.4))

Fx(M,N\) = :4(*/\1)17'2()\1,)\2)2*(—/\2) — A(f/\l)DZ()q B /\2)2*(7&)
- ZJZ;; . jEEZ:N W (wj — A+ A2) A(=A1) K (1) A (= Xa). (21)

N.
From Section 6.3, we know that x is a harmonizable time series in Zy with the stochastic spectral

*

Now consider the "restriction” x on Zy of the time series X defined by x,, = X, forn = —N, ..

measure

[ WN(A—wj) B 1 / ~
i) = | o (N = g keZZ: | WA= )W = DA(=X) X ) (o)
and spectral bimeasure

WN()‘l — Wy, )WN(_/\2 + wjz)

Mx(wjl?wjz) = / MX(d)\lad)Q)

TxT (2N+1)2
Wi (A — wj )Wr (A2 —wj,) .
- ; 22 A(=A1)D 5 (M — A2) A (—A2) dArdA
/m 2N 1+ 1)? (A1) Dz (A1 = X2) A (=A2) dAidAs
B ; A A A+ A
= e o ) N @) WO — i) Wi~ A+ Xa) X

JEZN
Ak

< A(=A1) K () A (= 2) dAda. (22)

Recall that Wy (0) = 2N + 1 and for A # 0 mod 27 we have Wy (\)? = w

6.4.2 Band-limited harmonizable time series

We consider a white noise (£,)nez,y on Zy and a family (9,),ecz, of complex d x d-matrices. Then the

K= Z V;_rer

k€EZN

moving average

defines a stationary time series pt = () ez, With covariance function

Ku(r) = By o) = Y s 5207
kE€Zn
Whenever 9, = 04 for k = £¢,...,+N for some 0 < ¢ < N/2, then K, (r) = 0gxq for r = £2¢,...,£N
and the harmonizable noise ¢ defined by relation (18) has a band-limited (Loeéve) spectrum: n¢(w;) =
O04xq for j = +2q,...,£N.
Hence, when A is smooth enough, relations (21) and (22) imply that

* )

Fx()\l, )\2)/(2N + 1)2 and Mx(wjl,wh)/(QN + 1)2

are close to 0 for sufficiently large N, and (A1, \2), (wj,,w;,) are 'far’ from the main diagonal.
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6.5 Harmonizable VARMA time series on Zy

We are now ready to define HVARMA models. First, let us consider the following difference equation:

Xn + ¢1Xn—1 +-+ ¢an—p = Zn + Olzn—l + -+ Oqzn—m (23)

where {Zn} is extension by zeros of a harmonizable noise on Zy. Then the results of the previous section
apply with A()) = ®(¢"*) 1O ().
Then, the generation of HVARMA time series is as follows:

e Generate a realization from the (incremental) process p = (uj) according to a zero mean

JE€ELN
VARMA process of order (p', ¢') defined on Zy, denoted as VARMA(p', ¢'), with matrix polynomials
®(-), ©(-). Then, the time series ¢ = ({,,)nez, defined by

déf nwj ., - 27T.]

is a (strongly) harmonizable noise on Zy .

e Generate a time series realization on Zy as X, = > 7. ei“f”ﬁ(wj)uj, where :4()\) defines a
VARMA process of order (p, ¢), denoted as VARMA(p, q).

We denote the resulting process as HVARM A(p,q) — (p',q’), where (p,q) is the order of the VARMA
process (see the equation 23) and (p/, ¢’) is the order of VARMA incremental process. Below we give the
formal definition of the HVARM A(p,q) — (p',q’) process.

Definition 6.1 (HVARMA((p,q) — (p/,q’) process) The process (X, )nez is said to be a HVARM A(p, q)—
(p',q") process if for every n € Z,

Xn+ 0 Xn1++¢,Xnp=2Z0+0:1Zy 1+ +80,Z,_g, (24)

where {Zn} is extension by zeros of a harmonizable noise on Zy (see Section 6.4), Z, = & forn =
—1,...,N and Z, = 0 otherwise. Moreover, &, = E;'\;N e“imp;, where p = (”j)jeZN follows a

VARMA(p',q") process on Zy. Its spectral bimeasure is given by the equation (22).

Remark 6.2 Theorem 5.1 allows us to understand how harmonizable noise contributes to the spectral
properties of HVARMA(p, q) processes by inducing stationary dependencies in the frequency domain. To
generate time series from a discretized spectral representation according to the steps described in Section 6,
we chose to use a VARMA(p', q') model, resulting in the class of HVARMA (p,q) — (p',q’) (see Definition
6.1).

6.6 Some examples

In this section, we will present some examples of two-dimensional VARMA (p, q) — (p',¢’) time series
that we generated. They were constructed by combining two different VARMA (p, q) (VARMA(1,1) and
VARMA (3, 2)) processes with three different parametrizations for the incremental process VARMA(p', ¢')
(described below as variants 1-3). These were

o — 0.9 04 0- 0 04 ;
04 0 04 0.8
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o VARMA(3,2)

—-0.9 0.8 0.2 04 0.5 0.2 04 O —0.2
o = ;B = ;B3 = ;01 = 102 =
0.8 0 0.4 0.1 02 0 0 0.9 0

together with

1. Variant 1
& 0 0 ;(:) _ 08 0 ’
0 0 0 0.8
2. Variant 2
% — 08 0 ;é _ 0 0 ’
0 0.8 0 0
3. Variant 3

~ 1 0.2 ~ . ~ . ~ .
b, = 0 0 By — 09 0 . 09 0 &, — 05 0 ;
0.2 0.1 0 02 0 0.2 0 02
- 4 ~ 4 0.
6, — 0 0 &, — 0 0.9 7
0 0.2 09 0.2
where a € {10,11,16,80,81} and b € {14, 15,82}.

Single realizations of each of these processes are shown in Figures 3-10 (see top left panels). In addition,
the corresponding Loéve (auto-)spectra are given in each figure in the top right and bottom right panels.
Finally, the bottom left panel presents the dual-frequency coherence (see Definition 5.2). The values of
the spectrum and coherence are displayed on a logarithmic scale, with colors ranging from blue through
yellow to red to indicate larger values.

Figures 3 and7 show results for correlated stationary VARM A. The obtained Loeéve spectra and dual-
frequency coherence are supported on the main diagonal. The process in Figures 4,5 and 8,9 were
obtained with specifications of rather simple incremental processes, introducing some dependencies in
the frequencies over a relatively restricted domain (see for example the Loeeve spectrum of the process
HVARMA(1,1) — (1,0)). Definitely, more sophisticated dependencies were obtained with the variant 3
(see Figures 6 and 10).

7 Summary

This paper describes a novel parametric model for a wide class of nonstationary time series that present
correlation between their frequency components. The proposed Harmonizable VARMA (p, ¢) process is
obtained as a solution of a difference equation based on a harmonizable noise. We describe its spectral
characteristics and propose a least squares estimator in the HAR(1) model. We prove its consistency and
asymptotic normality. Next, we describe how to generate realizations of such processes. That requires to
specify a stationary dependence structure in the frequencies. It gives rise to a class of processes whose
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VARMA(1,1) and
its spectral characteristics
Bivariate Harmonizable time series Autospectral Loeve matrix (first component)

T4

0- -~
5~
-10- o
3
5-
5=
-10- ) 1 ) 1 ) O T T
0.00 0.25 0.50 0.75 1.00 0 T
Rescaled time w1
Dual-frequency coherence Autospectral Loeve matrix (second component)

w2

o
E]

o4
4 4

Figure 3: Realization of VARMA(1,1) (top left panel) together with the corresponding Loeve (auto-
)spectra (top right and bottom right panels) and dual-frequency coherence (bottom left panel). The
values of the spectrum and coherence are displayed on a logarithmic scale, with colors ranging from blue

through yellow to red to indicate larger values.
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HVARMA(1,1)-(0,1) and
its spectral characteristics

Bivariate Harmonizable time series

0.50
Rescaled time

Dual-frequency coherence

Autospectral Loeve matrix (first component)

T4

W2

T T
0 e
w1

Autospectral Loeve matrix (second component)

w2

Figure 4: Realization of HVARMA(1,1) — (0,1) (top left panel) together with the corresponding Logve
(auto-)spectra (top right and bottom right panels) and dual-frequency coherence (bottom left panel).
The values of the spectrum and coherence are displayed on a logarithmic scale, with colors ranging from

blue through yellow to red to indicate larger values.
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HVARMA(1,1)-(1,0) and
its spectral characteristics
Bivariate Harmonizable time series Autospectral Loeve matrix (first component)

T4

0- N
5=
-10 - I
3
10-
5-
5=
-10 L ) 1 ) 1 ) O T T
0.00 0.25 0.50 0.75 1.00 0 T
Rescaled time w1
Dual-frequency coherence Autospectral Loeve matrix (second component)

w2

o
E]

o4
4 4

Figure 5: Realization of HVARMA(1,1) — (1,0) (top left panel) together with the corresponding Logve
(auto-)spectra (top right and bottom right panels) and dual-frequency coherence (bottom left panel).
The values of the spectrum and coherence are displayed on a logarithmic scale, with colors ranging from

blue through yellow to red to indicate larger values.
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HVARMA(1,1)-(2,82) and
its spectral characteristics

Bivariate Harmonizable time series Autospectral Loeve matrix (first component)
10- ]
5-
O h —
5-
-10 -
J N
8- 3
5-
0- WWMMWMW .
5=
-10- 04 - =
15- . ) . . ! '
0.00 0.25 0.50 0.75 1.00 0 T
Rescaled time w1
Dual-frequency coherence Autospectral Loeve matrix (second component)

T

w2
wa2

Figure 6: Realization of HVARMA(1,1) — (2,82) (top left panel) together with the corresponding Logve
(auto-)spectra (top right and bottom right panels) and dual-frequency coherence (bottom left panel).
The values of the spectrum and coherence are displayed on a logarithmic scale, with colors ranging from

blue through yellow to red to indicate larger values.
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VARMA(3,2) and
its spectral characteristics

Bivariate Harmonizable time series Autospectral Loeve matrix (first component)
6- Py
3-
0- -
-3-
-6- N
6- 3
3 -
0- N}
-3-
6- : : | ; 0 h .

0.00 0.25 0.50 0.75 1.00 0 T
Rescaled time w1
Dual-frequency coherence Autospectral Loeve matrix (second component)

W2

o
=
o
=

Figure 7: Realization of VARMA(3,2) (top left panel) together with the corresponding Loeve (auto-
)spectra (top right and bottom right panels) and dual-frequency coherence (bottom left panel). The
values of the spectrum and coherence are displayed on a logarithmic scale, with colors ranging from blue
through yellow to red to indicate larger values.

HVARMA(3,2)-(0,1) realizations and
its spectral characteristics
Bivariate Harmonizable time series Autospectral Loeve matrix (first component)

8-
4.
0-

4~

o~
8- 3
4-
0- N
4 -
O -
! | ) \ ) : :
0.00 0.25 0.50 0.75 1.00 0 n
Rescaled time w1
Dual-frequency coherence Autospectral Loeve matrix (second component)
T T4
o~ o~
3 3
0+ 0
T T T T
0 T 0 n
W1 W1

Figure 8: HVARMA(3,2) — (0,1)
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HVARMA(3,2)-(1,0) and
its spectral characteristics
Bivariate Harmonizable time series Autospectral Loeve matrix (first component)

T4

0- -~
-5-
N
3
5-
0 N}
-5=-
O -
! . ) : ) T T
0.00 0.25 0.50 0.75 1.00 0 T
Rescaled time w1
Dual-frequency coherence Autospectral Loeve matrix (second component)

w2

Figure 9: Realization of HVARMA(3,2) — (1,0) (top left panel) together with the corresponding Logve
(auto-)spectra (top right and bottom right panels) and dual-frequency coherence (bottom left panel).
The values of the spectrum and coherence are displayed on a logarithmic scale, with colors ranging from

blue through yellow to red to indicate larger values.
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HVARMA(3,2)-(2,82) and
its spectral characteristics

Bivariate Harmonizable time series Autospectral Loeve matrix (first component)
T
4 L4 n
0- N
4 -
8- é\n
4 -
0- N}
-4 -
E—
8-, i : i : o1, :
0.00 0.25 0.50 0.75 1.00 0 T
Rescaled time w1
Dual-frequency coherence Autospectral Loeve matrix (second component)
T o T ' ﬂ
o o
3 3
0 0 ]
0 s 0 n
W1 W1

Figure 10: Realization of HVARM A(3,2)—(2,82) (top left panel) together with the corresponding Logve
(auto-)spectra (top right and bottom right panels) and dual-frequency coherence (bottom left panel). The
values of the spectrum and coherence are displayed on a logarithmic scale, with colors ranging from blue
through yellow to red to indicate larger values.
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Cramer’s representation is that of a VARMA process of order (p, ¢) with correlated increments following
a VARMA of order (p/,q’). We exhibit the spectral characteristics of these HVARM A(p,q) — (p',q')
processes, and we show how to generate realizations from given models. Our results pave the way
towards novel developments on estimation, prediction, model selection, etc., for harmonizable processes.
Consequently, non-specialists will be able to model such complex processes in a relatively simple way (as

it is currently possible, for example, for ARMA processes).
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8 Annexe: Proofs

Proof of Lemma 3.1

Clearly, if there exists a d-variate white noise . (€n)nez such that Z,, = Sye,, where sup,, ; ;. [sn ;x| <
00, then the d-variate time series Z = (Z,,), ¢z satisfies the condition (Ha).

Conversely, suppose that Z = (Z,),ez is a d-variate time series satisfying the condition (Ha). Let
d, = dim#H(Z,) < d. When d, # 0, there exists an orthonormal basis {€, 1,...,€n.q,} of H(Z,)
(Schmidt method of orthonormalization). Since the Hilbert subspaces H(Z,,), n € Z are orthogonal, and
we assume that the probability space (92, F,P) is sufficiently large, we can complete the orthonormal
family {e, ; :n € Z,j =1,...,d,} to an orthonormal family {¢, ; :n € Z,j =1,...,d} of H. Then the
time series (€,,)nez, where €, = (€n,1,...,€n,a) for n € Z, is a d-variate pure white noise, and the space
H(Z,) is a subspace of the Hilbert space H(e,). Hence, the proof of the lemma can be easily achieved

using the assumption sup,, ; E{|Z, ;|*} < cc.

Proof of Theorem 3.1

To prove the theorem, we use the notation of Lemma 3.1 and construct a bounded linear operator
= : Hie) - HUZ) such that Z,, = Ze,. Since the time series (€,)necz is stationary, we get that
the time series (Z,,)nez is harmonizable with p,(A) = Ep (A) for A € B(T) (Rao, 1982) (D.S, 1957
Theorem 3.2.19).

First, we prove that any d-variate harmonizable time series (Z,,),ecz whose stochastic spectral measure
satisfies relation (1), satisfies the condition (Ha). Let n € Z be fixed. Then {e,; : j = 1,...,d} is an
orthonormal basis of the Hilbert space H(e,). Since Z, ; € H(en), we have that Z, ; = S, jen, where
(Sni)" = (Snjis---r8nja) € C4 for any j = 1,...,d. It follows that Z, = S,e,, where S, is a
d x d-matrix whose rows are the row vectors S, ;, 7 =1,...,d.

Then, since the ¢, ;, n € Z,j = 1,...,d, are linearly independent, we can define a linear operator Z;
from the linear space {Ae,, :n € Z, A € C¥*4} C H(e) into H(Z) by Eje,, = Z,, ;.

Moreover, the €, ;, n € Z,j = 1,...,d, are orthonormal in the Hilbert space H(e), that is, uncorrelated

random variables with zero mean and variance equal to 1. Thus, we have
var(Zn, ;) = B(1Zn ;1) = 1 Zn5ll3 = Sn.iS ;-

The assumption (Ha) implies that sup,, ; ;. [sn j.k| < co. Consequently, the linear operator Z; is bounded,
and can be extended as a bounded linear operator from H¢(e) to H(Z), also denoted Z;. Finally, we
can easily define a bounded linear operator Z from H%(g) to H¢(Z) such that Z, = Ze,,, for any n € Z.
The bounded operators Z; : H(e) — H(Z), j = 1,...,d are the component operators of Z. Thus,
the d-variate noise Z is the image by a bounded linear operator = of the d-variate stationary noise
€, and from Dunford and Schwartz (1957, Theorem 3.2.19) (see also Corollary 4.3 in Rao, 1982), we
get that Z is harmonizable and its stochastic spectral measure p 5 satisfies p 5 (A) = E(p(4)), A € B(T).

Now we show that (1) holds. We know that H(u,) = H(Z) is a Hilbert subspace of #(e), and the family

{€n) :n € Z,k =1,...,d} is an orthonormal basis of H(e) C LZ(P). Therefore, for j = 1,...,d, the
stochastic spectral measure pz, of the component time series Z; = (Zn,j)nez can be decomposed as

d
pz, (A) =D 1z, mn(A) enk, A€ B(T),

n€eZ k=1
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where the complex-valued measure iz, , x is defined on B(T) by iz, n,1(A) def (z,(A)lenr)n = Eluz; (A)énx]-
Furthermore,

<Zm7j

Enk)H = </6im’\ pz; (dA) 5n,k>H = / " iz, m ok (dN)
T T

for any m,n € Z and any j,k = 1,...,d. Besides, we know that (Z,, jl€n k) = 0 for m # n and

(Zm,jl€n,k)1 = Sn,jk. Thanks to the characterization of a complex-valued measure by its Fourier coeffi-
cients, we readily deduce that the measures pz, nx, n € Z, j,k =1,...,d are absolutely continuous with

respect to the Lebesgue measure on T and

Sn,j —in
iz, al) = 52 ([ ). (25)
™ A
Then

d
1 ,
iz, () = 5= 3 ([ an) s

neZ k=1

1 —in\ 1 —in
I in . - in 7.
X (o) swe =g X (o)

neZ

and consequently we get the relation (1).

Proof of Proposition 3.1

First, assume that (Z,,)nez is strongly harmonizable. Then its spectral bimeasure M z is extendible as
a C**9_valued measure on T2.

COV(Zn,Zn+k) _ // ei(n)q*(n%»k)AQMZ(d/\l?d/\z) _ // ei(n()\lf)\z)fk)\Q)MZ(d/\hd)\Q)_
T2 T2

We consider the transformation of T? defined by 7 : (A1, A2) = (A1 — A2, A2), T 1: (A, @) = (A + a, ).
Let M ; = Mz o T~ ! be the pushforward measure of M z by the transformation 7 and defined on T?
by ML(E) = M z(T~'(E)). Then

CoV(Zp, Znii) = / / AR MT (AN, dev).
’E2

We know that Cov(Zn, Z,H_k) = 04xgq for k # 0 and Var(Z,) = EZZH. Hence, considering the C#*-
def M (A x T), we can easily see that

valued measure nz defined on T by nz(A) =
Cov(Zn, Znsr) = 7// GAk) 1y (N dew = /Te nz(d\) or
2 T2 .
0 otherwise

and by the characterization of a measure on T? by its Fourier transform, we deduce that M 7Z’(d)\, da) =
L nz(d)\)da, and the relation (3) is satisfied.

27

Now assume that (Z,)nez is such that there exists a measure nz that satisfies relation (3). Then we
can easily check that

1 .
Cov(Zn, Znik) = — / / 'k 2 (d\)da.
2 T2
We denote M (dA, do) et 5= nz(d\)da. Then the measure which is image of the C4*“9-valued measure

M on T? by the transformation 7 ! is an extension of the spectral bimeasure M z of the harmonizable
time series Z. Thus, the spectral bimeasure M z is extendible to a measure and the time series Z is
strongly harmonizable. Furthermore, we obtain relations (5) and (4).

32



Proof of Proposition 3.2

Consider a d-variate pure white noise € associated to the harmonizable time series Z in the sense of

Lemma 3.1.

First, assume that the d-variate stochastic measure p, admits a stochastic Radon-Nikodym density
function with respect to the Lebesgue measure on T, Az : T — H4(Z). Wedenote Az = (Az,,...,Az,),
Az, :T—H(Z),j=1,...,d. Then

Z, :/em)‘uz()\) :/ei”’\AZ()\) d\
T T

and

ij :/einA‘u/Zj(A) :/einkAZj()O d.
T T
Moreover,

<Zn,j|€m,k>’H :/einA<AZj(/\)‘€7n7k>’H d.
T

Since € is a d-variate pure white noise, using notation of Lemma 3.1, we have that (Z, jlem x)n =
Snj kel {nemy- We get that (Az (A)|em k) = Z2Ee™" for all n, j,m and for almost every A. From the
facts that Az, (\) € H(Z) C H(e), and {ep :m € Z,k = 1,...,d} is an orthonormal basis of H(e), we
obtain that 4 4
1 »
Az, (N) = > Z and’ke imA €m.k and Z Z |sn,j,k|2 < 00.

meZ k=1 neZ k=1

Hence, the relations (7) and (6) are satisfied.

Conversely, assume that the relation (6) is satisfied. Then the function Az = (Az,,...,Az,) is well-
defined on T by relation (7). Note that the convergence is in H(Z) C L&(P). Let j = 1,...,d be fixed.
In the following, we use the notation of the proof of Theorem 3.1. From the relation (25), the function
A= E[Az, (N)eng] = Z522e™"* is the Radon-Nikodym density function of the complex measure f1z; 5.k
with respect to the Lebesgue measure on T. Since H(Z) and H(e) are separable Hilbert spaces, the

Lebesgue measure on T is bounded and

2
< 00,

d
182, (W3, = (A2, WNBZ D) = 3 30D Isniw

nezZ k=1

and we can prove that the function Dz, : T — H(Z) is Bochner integrable (strongly integrable) (Dunford
& Schwartz, 1957, Chap 111, Th. II1.2.21) , and

pz;(A) = / Az, (N)dA, A e B(T).
A
This ends the proof.

Proof of Theorem 4.1

Let (€)nez be a d-variate pure white noise associated to the harmonizable noise (Z,,)nez in Lemma 3.1.

It is known that the time series (Y,,)nez of the form

Yo=Y Anmem (26)

meEZ
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is well-defined (the convergence is in H%(g)), and it is stationary.
Let n € Z be fixed. Since the family {e, , :n € Z,k =1,...,d} is an orthonormal basis of H(e), we have

2 Ny

= Z tr(An—mA:L—m)
H(g) m=N1

N3
g A, _Em

m:N1

for any —oo < Nj < Ny < 0o. Then the series (26) is a Cauchy series in the Hilbert space H%(e). Thus,
it is convergent in H¢(e) and its sum Y, is well-defined. The stationarity of the d-variate time series
(Y 1)nez is evident.

Now consider the bounded linear operator = : H%(e) — H%(Z) such that Ze,, = Z,, defined in the proof
of Theorem 3.1. The operator = applied to the moving average series (26) entails the convergence in
H(Z) of the moving average series (9)

> AnmE(em) =Y An-mZm.

Thus, the d-variate time series (X, )nez = (EY ,)nez is well-defined. Moreover, as the image of the
stationary time series (Y ,,)nez by the bounded linear operator Z, it is harmonizable. Furthermore, the
stochastic spectral measure px of X coincides with Zpy-. Since the topological group T is compact and

Ac L(chxd('ll‘), we have A € L}Cdxd(T) and the inversion formula gives

A, = /e*imﬁ(x)d/\.
T

T o

Hence,

1 . ~
— i(n—m)A
Xo=Y AvnZn=5-3 (/Te A(—/\)d/\) Z0.

meZ meZ

Thus, the stochastic spectral measure p, satisfies
1 B
px(A)=-—>" (/ eim*A(—A)dA> Z .,
2m meEZ A

and the convergence is in H?.
Then, using the inequality (2), we can easily get that the d-variate function Ais 1 z-integrable and the
equality (10) is satisfied.

8.1 Proof of Proposition 5.1
We notice that ¢, = ¢ + D! N,, where
D, X2, and  N,EY ZiXpoa.
k=1 k=1

1) Asymptotic behaviour of D,,. The sequence {D,} is a nondecreasing and nonnegative. Here we show
def ;.
that Do = lim,, oo T D,, = o0 a.e.

First, we assure that |¢| < 1. Since Z,, 1L F,,_1, n > 1, we can write

n n ki—1
var(D,,) = Z ¢>4(k*2)var((5k71 + Xo)?) +2 Z Z ¢2(k1+k2*2)var((5k271 + Xo)?)
k=1 k1=2ka=1
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and
k 1 _]1 1

var Sk 1 Z(b 4jvar 22 —1—42 Z(b 2(j1+72) 31 ]2

J1=272=1
Then, we deduce that n=1(D,, — E(Dn)) converges to 0 in quadratic mean. Furthermore, applying Borel

Cantelli lemma, we verify that the convergence a.e. is also available. Since

n k—1

:ZZ¢2(]€ ji—1) 2+Z¢2(k 1)><E(X2)
k=2 j=1 k=1

we obtain
liminf n *E(D,,) = (1 — ¢$*)~* liminf p,, > 0.
n— 00

n—00
Hence D,, = 0o a.e. in this case.
Next, assume that |¢| = 1. The central limit theorem for independent random variables (see, e.g., Loeve,
1978, sec. 21.1) entails that s, !X, converges in distribution to the standard normal law N(0,1). Here
$2 % >or_, oi. We deduce that
lim icng(Dn > s2¢€) > lim P(X? > ste) =1— Fy(e)

for any € > 0, where Fy(¢) is the value of the distribution function of the x2(1) distribution. Since s2

converges to oo, we deduce that D,, converges in probability to oo as n — oo. Hence Do, = oo a.e.
Finally, assume that |¢| > 1. In this case, we know that

lim ¢ 2" X2 = (Soo + X0)?  ace.

n—oo

If P(Soo + Xo = 0) = 0 we readily deduce that lim,, X2 = 0o and D, = oo a.e.

2) Asymptotic behaviour of N,. For each ¢ € R, we have just seen that D déflimn 1T D, = c a.e. Then
P(U,{D,, > 0}) = 1. Since Z,, 1L F,,_1, n > 1, the time series {N,,} is a martingale with respect to the
filtration {F,} and the strong law of large numbers for martingales (see Theorem 2.18 in Hall & Heyde,
1980) entails that lim,, D, 1N,, = 0 a.e. on the set

{Dwc = 00} (D0 > 0}ﬂ{ i DB (Zk X 1)? | Frn) < oo}
k=n

for any n > 1. However

> DPE(XE 2} | Fea) ZD 2x? ol < ZD (Dy — Dy 1)supak
k=n

Since 0 < D,, < Dy, < Dy, for any n < k, we easily verify that
0<ZD (D — Dy—1) < 2D, < <.
Then we readily achieve the proof of Proposition 5.1.

8.2 Proof of Proposition 5.2

First, following the proof of Proposition 5.1 when |¢| < 1, under the hypotheses of Proposition 5.2, we
obtain that
lim n™!'D, =(1-¢*)"'u>0 ae.

n—0o0
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Next, the conditional quadratic variation (N) of the square-integrable martingale {N,} is equal to

éz Nk—Nk_l)z‘]:k_l) :ZX}%—IUI%'
k=1

To apply the central limit theorem for martingales (see, e.g., Dacunha-Castelle & Duflo, 1993, Theorem
2.8.41), it suffices to show that the two following conditions are fulfilled:
(C1) : n=Y(N),, converges in probability to some positive value 7y,
(C2) : Lindeberg condition is satisfied, that is, for each ¢ > 0:
n

lim n™" Y "E((X{_1 271 /mix,_y24)>¢} | Fe-1) =0  in probability.

n— oo
k=1

Thanks to the independence condition, Z; 1L Fr_1, k > 1, we can write

Z ) Z 03074 + E(X3) ¢Vl

k=1

and var((N),) < var(D,) x sup, os. Then we deduce that the condition (C1) is satisfied with v4 =
Zk ¢2(k71)nk < 00.
Now we study the condition (C2). Since 0 < Lmixaizi>a < e 1/n|Xy_1Zi| and Z 1L Fp_q, we
have
0< E(X,fflzg]l{a;/zlxk_lzkbe} | Fim1) < € "WnE(|Xpo1 Zi? | Froi)
= 'Vn| Xk 1 PE(|1 Zi ).

We know that E(|Xk,1|3) < E(X,‘Cl_l)?’“. From the independence condition, we have

B s st (B(Sel) + B
+3E(S-alY) B X0l") ! + 3B (151 B1XKl") )

for any k£ > 1. Besides,

k— 1]1 1

E(|Sk-1") = ZwﬂE (ZH+63 Y ¢ 2itilg
J1=2j2=1

k— 1j1 1

bupE Z4 Zgi) 4 —|—65up0’4 Z Z ¢ 2(j1+i2)

Jj=1 J1=2j2=1

IA

Then we obtain that E(|X;—1]*) = O(1). We deduce that the condition (C2) (Lindeberg condition) is
satisfied. We can apply the central limit theorem for martingales: the time series {n_l/ 2N, } converges
in distribution to N (0,74). Then we readily achieve the proof of Proposition 5.2.
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