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Barrier function-Based Variable Gain Super-Twisting Controller
Hussein Obeid, Salah Laghrouche, Leonid Fridman, Yacine Chitour, Mohamed Harmouche

Abstract—In this paper, a variable gain super-twisting algorithm
based on a barrier function is proposed for a class of first order
disturbed systems with uncertain control coefficient and whose
disturbances derivatives are bounded but the upper bounds of those
derivatives are unknown. The specific feature of this algorithm
is that it can ensure the convergence of the output variable and
maintain it in a predefined neighborhood of zero independent from
the upper bound of the disturbances derivatives. Moreover, thanks
to the structure of the barrier function, it forces the gain to decrease
together with the output variable and the control signal follows the
absolute value of the disturbances.

I. INTRODUCTION

For systems with matching disturbances, the sliding mode
controllers have shown their high efficiency [1]. Indeed, they
provide a closed-loop insensitivity with respect to bounded
matched disturbances and guarantee the finite-time conver-
gence to the sliding surface. However, the discontinuity of
sliding mode controllers may cause a undesirable big level
of chattering in the systems with fast actuators [2], [3]. This
major obstacle has been attenuated by some strategies. For
systems with fast actuators, relative degree one and Lipschitz
disturbances, the super-twisting controller [4] is one of the
most popular strategies. It allows to achieve a second order
sliding mode in finite-time by using a continuous control signal.
However, the implementation of the super-twisting controller
requires the knowledge of an upper bound of the disturbances
derivatives, which is unknown or overestimated in practice.
Moreover, even the disturbances derivatives are time varying,
it will be desirable to follow their variation.

This problem motivates researchers to develop adaptive slid-
ing mode controllers for the case where the boundaries of the
disturbances exist but they are unknown. The general goal of
these techniques is to ensure a dynamical adaptation of the
control gains in order to be as small as possible while still
sufficient to counteract the disturbances and ensure a sliding
mode.

The adaptive sliding mode control approaches which exist in
the literature can be broadly split into three classes ( [5], [6]):
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(i) Approaches based on the usage of equivalent control value
[5], [7]–[10].

(ii) Approaches based on monotonically increasing the gains
[11]–[13].

(iii) Approaches based on increasing and decreasing the gains
[14]–[16].

Approaches in (i) propose to use the filtered value of the
equivalent control as an estimation of the disturbance. The
latter consist in increasing the gain to enforce the sliding mode
to be reached. Once the sliding mode is achieved, the high
frequency control signal is low-pass filtered and used as an
information about disturbance in controller gain. The sliding
mode controller gain consists in the sum of filtered signal
and some constant to compensate possible error between real
disturbance and its value estimated by filter. However, the
algorithm in [7] requires the knowledge of the minimum and
maximum allowed values of the adaptive gain, hence, it requires
the information of the upper bound of disturbances derivatives.
On the other hand, even the other algorithms [5], [8]–[10] do
not require theoretically the information of the disturbances
derivatives, however, in practice, the usage of low-pass filter
requires implicitly the information about this upper bound in
order to adequately choose the filter time constant.

Strategies in (ii) consist in increasing the gain until the
sliding mode is reached, then the gain is fixed at this value,
ensuring an ideal sliding mode for some interval. When the
disturbance grows, the sliding mode can be lost, so the gain
increases and reach it again. This second strategy has two main
disadvantages: (a) the gain does not decrease, i.e. it will not
follow disturbance when it is decreasing; (b) one cannot be sure
that the sliding mode will never lost because it is not ensured
that the disturbance will not grow anymore.

To overcome the first of these disadvantages, approaches
in (iii) have been developed. According to these approaches,
the gain increases until the sliding mode is achieved and then
decreases until the moment it is lost, i.e. the sliding mode is
not reached any more. These approaches ensure the finite-time
convergence of the sliding variable to some neighborhood of
zero without big overestimation of the gain. The main drawback
of these approaches is that the size of the above mentioned
neighborhood and the time of convergence depend on the
unknown upper bound of disturbance which are unknown a-
priori.

Recently, novel approaches based on the usage of a monitor-
ing function [17] and a barrier function [18] have been proposed
to adapt the control gains. However, the first strategy has been
only applied for the first order sliding mode controller. Whilst
the second one has been applied for both first order sliding
mode controller and the Levant’s Differentiator [19].

Inspired by ( [18], [19]), this paper proposes a variable gain
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super-twisting controller based on a new barrier function. This
algorithm can drive the output variable and maintain it in a
predefined neighborhood of zero, in the presence of Lipschitz
disturbances with unknown boundaries. Compared to the earlier
work [19], the class of systems considered in this paper contains
an additional uncertainty namely the time-dependent uncertain
control coefficient. Moreover, the convergence proof of this
algorithm is quite different.

The advantages of this suggested algorithm are based on the
main features of the barrier functions:
• The output variable converges in a finite time to a prede-

fined neighborhood of zero, independently of the bound
of the disturbances derivatives, and cannot leave it.

• The proposed algorithm does not require neither the upper
bound of the disturbances derivatives nor the use of the
low-pass filter.

• On the other hand, the barrier function strategy forces the
super-twisting gains to decrease together with the output
variable and the control signal follows the absolute value
of the disturbances.

• The usage of the barrier function strategy guarantees that
once the derivatives of disturbances are growing the super-
twisting gains are also growing ensuring that the output
value belongs to the desired neighborhood.

• When the super-twisting gains are big enough to ensure
convergence to the origin, the barrier function strategy
forces the super-twisting gains to decrease together with
the output variable, i.e. barrier function methodology
makes the control signal follows absolute value of the
disturbances.

This paper is organized as follows. In Section 2, the problem
formulation is given. Section 3 presents the proposed variable
gain super-twisting controller. Finally, some conclusions are
drawn in section 4.

The notation bxeγ , for x, γ in R with γ ≥ 0, is used to
represent |x|γ sign(x), where sign(x) is the set-valued function
equal to the sign of x 6= 0 and [−1, 1] for x = 0 respectively.

II. PROBLEM FORMULATION

Consider the first order system described by

ṡ(t) = γ(t)u(t) + δ0(t), (1)

where s(t) ∈ R is the output variable, u(t) ∈ R is the super-
twisting controller, and γ and δ0 are Lipschitz disturbances

such that, if δ :=
δ0
γ

, then one has for t ≥ 0,

g ≤ γ(t) ≤ G, |δ̇(t)| ≤M, (2)

where the constant positive bounds g,G and the upper bound
M are unknown.

In the presence of Lipschitz disturbances, the standard super-
twisting controller [4] given by{

u(t) = −k1bs(t)e1/2 + u2(t),

u̇2(t) = −k2bs(t)e0,
(3)

drives both s(t) and ṡ(t) to zero in a finite time, i.e. it provides
a second order sliding mode if the control gains k1 and k2

t-

Fig. 1. Phase plane of the proposed super-twisting algorithm

are designed as k1 = 1.5
√
M and k2 = 1.1M . However,

the implementation of this standard super-twisting controller
requires the information of the unknwon upper bound M .
Therefore, to overcome this problem, the following variable
gain super-twisting controller is considered [11]{

u(t) = −L(t, s0)bs(t)e1/2 + u2(t),

u̇2(t) = −L2(t, s0)bs(t)e0,
(4)

where s0 := s(0) and L(t, s0) is the variable gain to be
designed in the next section. Suppose that φ(t) = u2(t)+δ(t),
then the dynamic of the first order system can be expressed as{

ṡ(t) = γ(t)
(
− L(t, s0)bs(t)e1/2 + φ(t)

)
,

φ̇(t) = −L2(t, s0)bs(t)e0 + δ̇(t).
(5)

The idea behind the proposed algorithm is to first increase the
variable gain L(t, s0) based on the strategy presented in [11]
until the output variable reaches the neighborhood of zero |s| ≤
ε/2 at some time t̄. Then, for t > t̄, the variable gain L(t, s0)
switches to the barrier function and the output variable belongs
to the predefined neighborhood of zero |s(t)| < ε.

The trajectory of the proposed super-twisting algorithm in the
phase plane (s(t), φ(t)) is illustrated in Fig. 1. It can be shown
that, at time t̄, the trajectory enters inside the blue vertical strip
with a constant bandwidth ]− ε, ε[. The size of this bandwidth
remains constant even if the disturbances are time varying.
However, when the disturbances change, the size of the vicinity
to which converges s(t) changes but the main feature is that it
still has an upper bound ε that it cannot surpass.

A. Preliminaries

1) Barrier function :
Definition 1: [20], [21] Suppose that some ε > 0 is given

and fixed. For every positive real number b, a barrier function
can be defined as an even continuous function Lb : x ∈
(−ε, ε)→ Lb(x) ∈ [b,∞[ strictly increasing on [0, ε[.

• lim
|x|→ε

Lb(x) = +∞.

• Lb(x) has a unique minimum at zero, i.e. Lb(0) = b > 0.
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Fig. 2. Plot of the output variable s(t) with: a) proposed algorithm,
b) algorithm presented in [15]

In this paper, the following barrier function is considered

Lb(x) =

√
εb

(ε− |x|)1/2
, x ∈ (−ε, ε), (6)

where b is a positive constant.

III. MAIN RESULTS

To implement the proposed new algorithm, the variable gain
L(t, s0) is defined as follows: first consider the function

l(t) = L1t+ L0, t ≥ 0, (7)

with L0, L1 are arbitrary positive constants. Assume first that
|s0| = |s(0)| ≤ ε/2. Then, L(t, s0) = Lb(s(t)), with b = L0,
as long as the trajectory of (5) is defined. If |s0| = |s(0)| >
ε/2, then L(t, s0) = l(t) as long as the trajectory s(·) of (5)
is defined and |s(t)| > ε/2. If there exists t̄(s0) defined as the
first time for which |s(t)| ≤ ε/2, then L(t, s0) = Lb(s(t)),
b =
√

2l(t̄(s0)) ≥
√

2L0, for t ≥ t̄(s0) and as long as the of
trajectory s(·) of (5) is defined.
Hence, the variable gain L(t, s0) is defined, as long as the of
trajectory s(·) of (5) is defined, by

L(t, s0) =

{
l(t), if 0 ≤ t < t̄(s0),

Lb(s(t)), if t ≥ t̄(s0),
(8)

with the convention that t̄(s0) = 0 if |s(0)| ≤ ε/2 and t̄(s0) =
∞ if s(·) is defined for all times and |s(·)| > ε/2. Since b =√

2l(t̄(s0)), then t 7→ L(t, s0) defines a continuous function
and hence the control u(·) is also continuous as long as it is
defined.

Theorem 1: Let M be the (unknown) upper bound on |δ̇|,
g,G be the bounds on γ(·) and ε, L0, L1 > 0 defining the
barrier function Lb in (6). Consider System (5) with variable
gain L defined in (8). Then, for every s0 ∈ R (and initial value
of δ̇), the trajectory of (5) starting at s0 is defined for all non
negative times t and there exists a first time t̄(s0) for which
|s(t)| ≤ ε/2. Then, for all t ≥ t̄(s0), one has |s(t)| < ε.
Moreover, there exists ν(M,G, g) > 0 such that, for every
trajectory of (5), one has that lim sup

t→∞
|φ(t)| ≤ ν(M,G, g).

The proof of Theorem 1 is given in Appendix A.

A. Simulation results

The performance of the aforementioned algortihm is com-
pared with the results obtained through the adaptive super-
twisting controller presented in [15].
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Fig. 3. Plot of the state variable φ(t) with: a) proposed algorithm, b)
algorithm presented in [15]

In [15], the adaptive super-twisting controller is implemented
as u(t) = −αbs(t)e1/2 + u2(t),

u̇2(t) = −β
2
bs(t)e0,

(9)

where β = 2µα, and the adaptive gain α is obtained through

α̇ =

w1

√
γ1
2
sign(|s(t)| − ε), if α > αm

ν, if α ≤ αm
(10)

where µ, w1, γ1, ε, αm, and ν are positive constants to be
selected.

In the simulations, s(0) = 5 and the parameter values of the
proposed algorithm are set as ε = 0.1, L1 = 1, L0 = 0.1.
On the other hand, the parameter values of the adaptive super-
twisting algorithm (9)-(10) are tuned according to [15]. Hence,
µ = 1, w1 = 200, γ1 = 2, ν = αm = 0.01 while the
parameter value of ε is chosen as the proposed algorithm, i.e.
ε = 0.1. The disturbances are given by

γ(t) = 4 + 2sin(3t). (11)

δ0(t) =


6 sin(5t), if t ≤ 2π s,

15 sin(3t), if 2π s < t ≤ 5π s,

30 sin(5t), if t > 5π s.

(12)

The plots of the output variable s(t) with the proposed al-
gorithm and the algorithm presented in [15] are compared
in Figs. 2(a)-2(b). In Fig. 2(a) it can be observed that for
the proposed algorithm, the output variable does not exceed
the predefined neighborhood of zero ε = 0.1. On the other
hand, it can be noticed in Fig. 2(b) that the size of the neigh-
borhood of zero to which converges s(t) with the algorithm
presented in [15] is changing together with the amplitude
of disturbances derivatives, and, consequently, it cannot be
predefined. Moreover, the size of the neighborhood ensured
by the algorithm presented in [15] can be very large when the
amplitude of disturbances derivatives is large (for t > 5π s,
|s(t)| ≤ 5 = 50 ε).

Fig. 3 illustrates the convergence of the state variable φ(t)
with the proposed algorithm and the algorithm presented in
[15]. It can be clearly seen that φ(t) with the proposed
algorithm converges to some vicinity of zero depending on M .
Moreover, it can be noticed that the size of vicinity to which
converges φ(t) with the proposed algorithm is less than the one
with the algorithm presented in [15] (φ(t) is less than 4 with
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Fig. 4. Plot of the variable gain with: a) proposed algorithm, b)
algorithm presented in [15]
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Fig. 5. Evolution of the control signal with the disturbances with: a)
proposed algorithm, b) algorithm presented in [15]

the proposed algorithm, however, with the algorithm presented
in [15], φ(t) is more than 17).

The behaviours of the variable gains with the proposed
algorithm and the algorithm presented in [15] are depicted in
Figs. 4(a)-4(b). It can be noticed that both variable gains can
increase and decrease based on the output variable value.

Fig. 5 compares the evolution of the control signal with the
disturbances. It can be seen that the control signal with the
proposed algorithm closely follows the disturbances which is
not the case with the algoritm presented in [15].

IV. CONCLUSION

This paper presents a variable gain super-twisting controller
for a class of first order disturbed system where the upper
bound of the disturbances derivatives exist, but it is unknown.
This algorithm ensures the convergence of the output variable
and prevents its violation outside a predefined neighborhood
of zero. The usage of the barrier function strategy ensures
that, when the derivatives of disturbances are growing, the
super-twisting gains are growing ensuring that the output value
belongs to the desired neighborhood and then start to decrease.
On the other hand, the barrier function strategy forces the super-
twisting gains to decrease together with the output variable.
Moreover, the value of the control signal is very close to the
absolute value of the disturbances.
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APPENDIX A
PROOF OF THEOREM 1.

The proof will be done in two steps.
First step: It is first shown that there exists a finite time t̄(s0)

for which the output variable s(t), which is part the solution
of (5) under the variable gain (8), becomes |s(t)| ≤ ε/2.
With no loss of generality, we can assume at once that
|s(0)| > ε/2. From (8), the variable gain dynamic is given by
l(t) = L1t+L0 as long as |s(t)| > ε/2 and the corresponding
trajectory of (5) is defined as long as |s(t)| > ε/2 since, in this
case, the growth of the right-hand side of (5) is sublinear with
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respect to the state variable (s, φ). Let I(s0) be the interval
where such a dynamics is defined and I(s0) is of the form
[0, T0). Then, one must prove that T0 is finite, which would at
once imply that T0 is the desired time t̄(s0).
Reasoning by contradiction, we assume that |s| > ε/2 on I(s0)
and we can assume with no loss of generality that s is positive
on I(s0). From the second equation of (5), one gets that

−l2(t)−M ≤ φ̇(t) ≤ −l2(t) +M, on I(s0),

which yields easily that I(s0) = [0,∞). In particular, we de-
duce that φ(t) becomes negative in finite time and remains so.
The first equation of (5) yields that ṡ(t) ≤ −gl(t)bs(t)e

1
2 and

hence convergence of s to zero in finite time. This contradicts
the assumption that |s| > ε/2 on I(s0) and the argument for
the first step of the proof of Theorem 1 is complete.

Second step: We now prove that for all t ≥ t̄(s0), one
has |s(t)| < ε and there exists ν > 0 only depending on
M,G, g such that lim sup

t→∞
|φ(t)| ≤ ν. We use I(s0) to denote

the interval of times t ≥ t̄(s0) for which the corresponding
trajectory of (5) is defined. In the argument below, we only
work for times t ∈ I(s0). In particular, |s(t)| < ε for
t ∈ I(s0). It will also be clear for the argument below that
I(s0) is infinite.
We consider the following change of variables y = (y1, y2)
given by

y1 = L2
bs(t), y2 = φ(t). (13)

In theses variables, the system can be written as followsẏ1 = 2
L̇b
Lb
y1 + L2

b ṡ,

ẏ2 = φ̇,
(14)

and |y1(t̄(s0))| ≤ b2ε. Since

L̇b =
1
2
b
√
ε(ε− |s|)−1/2ṡbse0

(ε− |s|) , (15)

then the term
L̇b
Lb

can be written as

L̇b
Lb

=
1

2

ṡbse0

(ε− |s|) = C0L
2
b ṡbse0, (16)

with C0 =
1

2b2ε
. Substituting (16) and (5) into (14), we obtain

ẏ1
(1 + 2C0|y1|)

= L2
bγ(t)(−by1e1/2 + y2),

ẏ2 = −L2
bby1e0 + δ̇(t).

(17)

We use a new time scale τ defined by τ(t̄(s0)) = 0 and
dτ = L2

bdt. We use ′ to denote the derivative with respect
to τ . System (17) can be rewritten as

y′1
(1 + 2C0|y1|)

= γ(t)(−by1e1/2 + y2),

y′2 = −by1e0 +
δ̇(t)

L2
b

.
(18)

Note that

|δ̇(t)|
L2
b

≤ M

L2
b

=
M

b2(1 + 2C0|y1|)
≤ M

b2
.

Then, the second equation of (18) shows that y′2 is bounded
and hence y2 has at most a linear growth on I(s0). Then,
from the first equation of (18), one gets that the time derivative
of the positive function ln(1 + 2C0|y1|) is upper bounded by
a function with linear growth on I(s0), yielding easily that
I(s0) = [0,∞).
Now consider the following Lyapunov function

V1(t) =
ln(1 + 2C0|y1|)

2C0

(
1− 1

4
by1e0σ(y2)

)
+
F (y)y22

2
,

(19)

where σ(y2) is a saturation function defined as

σ(y2) = by2e0 min(|y2|, 1), (20)

and F (y) = g if by1e0y2 ≤ 0 and G if by1e0y2 > 0. The
following inequality holds for every (y1, y2) ∈ R2,

3 ln(1 + 2C0|y1|)
8C0

+
gy22
2
≤ V1 ≤

5 ln(1 + 2C0|y1|)
8C0

+
Gy22

2
,

hence V1 is positive-definite and moreover of class C1 if
y1 6= 0 and |y2| ≥ 2. The statement of the theorem will be a
consequence of the following fact: for every trajectory of (18),
one has

lim sup
τ→∞

V1 ≤ V ∗, (21)

where V ∗ is a positive constant only depending on M,G, g.
The time derivative of the Lyapunov function (19) is given by

V ′1 =
y′1by1e0

(1 + 2C0|y1|)
+ Fy2y

′
2 −

y′1σ(y2)

4(1 + 2C0|y1|)

− (σ(y2))′by1e0 ln(1 + 2C0|y1|)
8C0

.

(22)

After easy computations, one gets that

V ′1 ≤ −
g

2
|y1|

1
2 − |y2|

(g
4
− M

b2(1 + 2C0|y1|)

)
+ σ′(y2)

M

8b2C0

ln(1 + 2C0|y1|)
1 + 2C0|y1|

+
(
γ(t)− F (y(t))

)
by1e0y2.

(23)

Note that a non trivial trajectory of (18) crosses the line
y1 = 0 in isolated points. Moreover, at a time τ where
y(τ) = (0, y2(τ)) with y2(τ) > 0, V1 admits an isolated
discontinuity jumping from gy22(τ) to Gy22(τ) and conversely
if y2(τ) < 0. Finally, note that, outside of the line y1 = 0
and for |y2| ≥ 2, τ 7→ V1(τ) is a C1 function of the time τ
verifying

V ′1 ≤ −
1

2
|y1|

1
2 − |y2|

(1

4
− M

b2(1 + 2C0|y1|)

)
+ σ′(y2)

M

8b2C0

ln(1 + 2C0|y1|)
1 + 2C0|y1|

.

(24)

We will assume without loss of generality that CM := M/b2

is much larger than 1 and hence

yM :=
4

C0
(CM −

1

8
) > 0.

Define

V ∗ = 8(1 +G2 +
1

g2
)C2

M +
5 ln(1 + 2C0yM )

C0
(1 +

1

g
).
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Let us first prove by contradiction that, for every trajectory
of (18), there exists an increasing sequence of times (τn)n≥0

tending to infinity such that

V1(τn) <
V ∗

2
, n ≥ 0. (25)

Hence, if (25) does not hold true for some trajectory (s(·), φ(·))
of (18), there exists τ0 ≥ 0 such that one has, for τ ≥ τ0
V1(τ) ≥ V ∗/2. In the strip |y1| ≤ yM , one has |y2| ≥

√
V ∗/2

and |y′2+by1e0| ≤ 1/8. Moreover, an obvious argument shows
that if any trajectory of (18) is in the strip at some time τ∗ ≥ τ0
then it must go through it in time τcross verifying

τcross ≤
2 ln(1 + 4CM )

g|y2(τ∗)|
≤ ln(1 + 4CM )

CM
. (26)

We claim that the trajectory (s(·), φ(·)) of (18) must enter into
the strip. Indeed, otherwise

V ′1 ≤ −
1

2
|y1|

1
2 − 1

8
|y2|,

for τ large enough, i.e. (V
1/2
1 )′ ≤ −C1 for some positive

constant. One would then have convergence in finite time to
zero, which is impossible. Hence the trajectory (s(·), φ(·)) of
(18) must reach a point (yM , y2(τ∗)) with y2(τ) ≥

√
V ∗/2

(the last point due to the symmetry with respect to the origin of
trajectories of (18)). Then, a simple examination of the phase
portrait of (18) in the region y1 > yM shows that the trajectory
(s(·), φ(·)) must enter the region 0 < 2y2 < y

1
2
1 and y1 > yM

and exit it in finite time along the axis y2 = 0. Hence, there
exists an interval of time [τ1, τ2] such that

√
y1(τ1) = 2y2(τ1), y2(τ2) = 0.

Then y2(τ1) ≥
√
V ∗/2, τ2 − τ1 ≥

7

4
y2(τ1) and

−by1e
1
2

2
≤ y′1

(1 + 2C0|y1|)
≤ −by1e

1
2 .

One deduces that
C0

2
≤
( 1

y
1/2
1

)′
and thus

7

8
CM ≤ τ2 − τ1 ≤

2

C0y
1/2
1 (τ2)

≤ 4 exp(−4C0C
2
M ). (27)

This is clearly impossible and hence (25) is proved.
We now prove that (21) holds true and the argument goes by
contradiction. Indeed, if it were not true, then there exists a
trajectory (s(·), φ(·)) of (18) and an increasing sequence of
times (τ̃n)n≥0 tending to infinity such that

V1(τ̃n) >
3V ∗

4
, n ≥ 0. (28)

Then, there exists a pair of times (still denoted) τ1 < τ2 such
that V1(τ1) = V ∗/2, V1(τ2) = 3V ∗/4 and

V ∗

2
≤ V1(τ) ≤ 3V ∗

4
, τ ∈ [τ1, τ2]. (29)

We will contradict the existence of such a pair of times τ1 <
τ2, which will conclude the proof of Theorem 1. Recall that
V1 can increase only by going through the strip |y1| ≤ yM .
Since the time τcross needed to cross that strip is given by

(26), one deduces from (A) and (29) that the increase of V1 by
crossing the strip |y1| ≤ yM is upper bounded by ln(1+4CM ).
Therefore the trajectory (s(·), φ(·)) of (18) must go through
the strip |y1| ≤ yM at least twice. Combining the above fact
with the phase portrait of (18) in the region y1 > yM , one
deduces that there exists a pair of times τ ′1 < τ ′2 in [τ1, τ2]

such that y
1
2
1 (τ ′1) = 2y2(τ ′1) and y2(τ ′2) = 0. We then arrive

at an equation similar to (27) and reach a contradiction.


