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Barrier function-Based Variable Gain Super-Twisting Controller

In this paper, a variable gain super-twisting algorithm based on a barrier function is proposed for a class of first order disturbed systems with uncertain control coefficient and whose disturbances derivatives are bounded but the upper bounds of those derivatives are unknown. The specific feature of this algorithm is that it can ensure the convergence of the output variable and maintain it in a predefined neighborhood of zero independent from the upper bound of the disturbances derivatives. Moreover, thanks to the structure of the barrier function, it forces the gain to decrease together with the output variable and the control signal follows the absolute value of the disturbances.

I. INTRODUCTION

For systems with matching disturbances, the sliding mode controllers have shown their high efficiency [START_REF] Utkin | Sliding modes in optimization and control problems[END_REF]. Indeed, they provide a closed-loop insensitivity with respect to bounded matched disturbances and guarantee the finite-time convergence to the sliding surface. However, the discontinuity of sliding mode controllers may cause a undesirable big level of chattering in the systems with fast actuators [START_REF] Pérez-Ventura | When is it reasonable to implement the discontinuous sliding-mode controllers instead of the continuous ones? frequency domain criteria[END_REF], [START_REF] Boiko | Discontinuous control systems: frequency-domain analysis and design[END_REF]. This major obstacle has been attenuated by some strategies. For systems with fast actuators, relative degree one and Lipschitz disturbances, the super-twisting controller [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF] is one of the most popular strategies. It allows to achieve a second order sliding mode in finite-time by using a continuous control signal. However, the implementation of the super-twisting controller requires the knowledge of an upper bound of the disturbances derivatives, which is unknown or overestimated in practice. Moreover, even the disturbances derivatives are time varying, it will be desirable to follow their variation.

This problem motivates researchers to develop adaptive sliding mode controllers for the case where the boundaries of the disturbances exist but they are unknown. The general goal of these techniques is to ensure a dynamical adaptation of the control gains in order to be as small as possible while still sufficient to counteract the disturbances and ensure a sliding mode.

The adaptive sliding mode control approaches which exist in the literature can be broadly split into three classes ( [START_REF] Oliveira | Adaptive Sliding Mode Control Based on the Extended Equivalent Control Concept for Disturbances with Unknown Bounds[END_REF], [START_REF] Shtessel | Adaptive sliding mode control and observation[END_REF]):
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(i) Approaches based on the usage of equivalent control value [START_REF] Oliveira | Adaptive Sliding Mode Control Based on the Extended Equivalent Control Concept for Disturbances with Unknown Bounds[END_REF], [START_REF] Utkin | Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method[END_REF]- [START_REF] Oliveira | Adaptive sliding mode control for disturbances with unknown bounds[END_REF]. (ii) Approaches based on monotonically increasing the gains [START_REF] Negrete | Second-order sliding mode output feedback controller with adaptation[END_REF]- [START_REF] Shtessel | Super-twisting adaptive sliding mode control: A Lyapunov design[END_REF]. (iii) Approaches based on increasing and decreasing the gains [START_REF] Plestan | New methodologies for adaptive sliding mode control[END_REF]- [START_REF] Shtessel | Twisting sliding mode control with adaptation: Lyapunov design, methodology and application[END_REF].

Approaches in (i) propose to use the filtered value of the equivalent control as an estimation of the disturbance. The latter consist in increasing the gain to enforce the sliding mode to be reached. Once the sliding mode is achieved, the high frequency control signal is low-pass filtered and used as an information about disturbance in controller gain. The sliding mode controller gain consists in the sum of filtered signal and some constant to compensate possible error between real disturbance and its value estimated by filter. However, the algorithm in [START_REF] Utkin | Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method[END_REF] requires the knowledge of the minimum and maximum allowed values of the adaptive gain, hence, it requires the information of the upper bound of disturbances derivatives. On the other hand, even the other algorithms [START_REF] Oliveira | Adaptive Sliding Mode Control Based on the Extended Equivalent Control Concept for Disturbances with Unknown Bounds[END_REF], [START_REF] Edwards | Adaptive dual layer super-twisting control and observation[END_REF]- [START_REF] Oliveira | Adaptive sliding mode control for disturbances with unknown bounds[END_REF] do not require theoretically the information of the disturbances derivatives, however, in practice, the usage of low-pass filter requires implicitly the information about this upper bound in order to adequately choose the filter time constant.

Strategies in (ii) consist in increasing the gain until the sliding mode is reached, then the gain is fixed at this value, ensuring an ideal sliding mode for some interval. When the disturbance grows, the sliding mode can be lost, so the gain increases and reach it again. This second strategy has two main disadvantages: (a) the gain does not decrease, i.e. it will not follow disturbance when it is decreasing; (b) one cannot be sure that the sliding mode will never lost because it is not ensured that the disturbance will not grow anymore.

To overcome the first of these disadvantages, approaches in (iii) have been developed. According to these approaches, the gain increases until the sliding mode is achieved and then decreases until the moment it is lost, i.e. the sliding mode is not reached any more. These approaches ensure the finite-time convergence of the sliding variable to some neighborhood of zero without big overestimation of the gain. The main drawback of these approaches is that the size of the above mentioned neighborhood and the time of convergence depend on the unknown upper bound of disturbance which are unknown apriori.

Recently, novel approaches based on the usage of a monitoring function [START_REF] Hsu | Adaptive Sliding Mode Control Using Monitoring Functions[END_REF] and a barrier function [START_REF] Obeid | Barrier function-based adaptive sliding mode control[END_REF] have been proposed to adapt the control gains. However, the first strategy has been only applied for the first order sliding mode controller. Whilst the second one has been applied for both first order sliding mode controller and the Levant's Differentiator [START_REF] Obeid | Adaptation of Levant's differentiator based on barrier function[END_REF].

Inspired by ( [START_REF] Obeid | Barrier function-based adaptive sliding mode control[END_REF], [START_REF] Obeid | Adaptation of Levant's differentiator based on barrier function[END_REF]), this paper proposes a variable gain super-twisting controller based on a new barrier function. This algorithm can drive the output variable and maintain it in a predefined neighborhood of zero, in the presence of Lipschitz disturbances with unknown boundaries. Compared to the earlier work [START_REF] Obeid | Adaptation of Levant's differentiator based on barrier function[END_REF], the class of systems considered in this paper contains an additional uncertainty namely the time-dependent uncertain control coefficient. Moreover, the convergence proof of this algorithm is quite different. The advantages of this suggested algorithm are based on the main features of the barrier functions:

• The output variable converges in a finite time to a predefined neighborhood of zero, independently of the bound of the disturbances derivatives, and cannot leave it. • The proposed algorithm does not require neither the upper bound of the disturbances derivatives nor the use of the low-pass filter.

• On the other hand, the barrier function strategy forces the super-twisting gains to decrease together with the output variable and the control signal follows the absolute value of the disturbances. • The usage of the barrier function strategy guarantees that once the derivatives of disturbances are growing the supertwisting gains are also growing ensuring that the output value belongs to the desired neighborhood. • When the super-twisting gains are big enough to ensure convergence to the origin, the barrier function strategy forces the super-twisting gains to decrease together with the output variable, i.e. barrier function methodology makes the control signal follows absolute value of the disturbances. This paper is organized as follows. In Section 2, the problem formulation is given. Section 3 presents the proposed variable gain super-twisting controller. Finally, some conclusions are drawn in section 4.

The notation x γ , for x, γ in R with γ ≥ 0, is used to represent |x| γ sign(x), where sign(x) is the set-valued function equal to the sign of x = 0 and [-1, 1] for x = 0 respectively.

II. PROBLEM FORMULATION

Consider the first order system described by

ṡ(t) = γ(t)u(t) + δ0(t), (1) 
where s(t) ∈ R is the output variable, u(t) ∈ R is the supertwisting controller, and γ and δ0 are Lipschitz disturbances such that, if δ := δ0 γ , then one has for t ≥ 0,

g ≤ γ(t) ≤ G, | δ(t)| ≤ M, (2) 
where the constant positive bounds g, G and the upper bound M are unknown.

In the presence of Lipschitz disturbances, the standard supertwisting controller [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF] given by

u(t) = -k1 s(t) 1/2 + u2(t), u2(t) = -k2 s(t) 0 , (3) 
drives both s(t) and ṡ(t) to zero in a finite time, i.e. it provides a second order sliding mode if the control gains k1 and k2 t - √ M and k2 = 1.1M . However, the implementation of this standard super-twisting controller requires the information of the unknwon upper bound M . Therefore, to overcome this problem, the following variable gain super-twisting controller is considered [START_REF] Negrete | Second-order sliding mode output feedback controller with adaptation[END_REF] 

u(t) = -L(t, s0) s(t) 1/2 + u2(t), u2(t) = -L 2 (t, s0) s(t) 0 , (4) 
where s0 := s(0) and L(t, s0) is the variable gain to be designed in the next section. Suppose that φ(t) = u2(t) + δ(t), then the dynamic of the first order system can be expressed as

ṡ(t) = γ(t) -L(t, s0) s(t) 1/2 + φ(t) , φ(t) = -L 2 (t, s0) s(t) 0 + δ(t). (5) 
The idea behind the proposed algorithm is to first increase the variable gain L(t, s0) based on the strategy presented in [START_REF] Negrete | Second-order sliding mode output feedback controller with adaptation[END_REF] until the output variable reaches the neighborhood of zero |s| ≤ ε/2 at some time t. Then, for t > t, the variable gain L(t, s0) switches to the barrier function and the output variable belongs to the predefined neighborhood of zero |s(t)| < ε.

The trajectory of the proposed super-twisting algorithm in the phase plane (s(t), φ(t)) is illustrated in Fig. 1. It can be shown that, at time t, the trajectory enters inside the blue vertical strip with a constant bandwidth ] -ε, ε[. The size of this bandwidth remains constant even if the disturbances are time varying. However, when the disturbances change, the size of the vicinity to which converges s(t) changes but the main feature is that it still has an upper bound ε that it cannot surpass.

A. Preliminaries 1) Barrier function : Definition 1: [START_REF] Tee | Barrier Lyapunov Functions for the control of output-constrained nonlinear systems[END_REF], [START_REF] Tee | Control of nonlinear systems with partial state constraints using a barrier Lyapunov function[END_REF] Suppose that some ε > 0 is given and fixed. For every positive real number b, a barrier function can be defined as an even continuous function [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: methodology and application[END_REF] In this paper, the following barrier function is considered

L b : x ∈ (-ε, ε) → L b (x) ∈ [b, ∞[ strictly increasing on [0, ε[. • lim |x|→ε L b (x) = +∞. • L b (x)
L b (x) = √ εb (ε -|x|) 1/2 , x ∈ (-ε, ε), ( 6 
)
where b is a positive constant.

III. MAIN RESULTS

To implement the proposed new algorithm, the variable gain L(t, s0) is defined as follows: first consider the function

l(t) = L1t + L0, t ≥ 0, (7) 
with L0, L1 are arbitrary positive constants. Assume first that

|s0| = |s(0)| ≤ ε/2. Then, L(t, s0) = L b (s(t))
, with b = L0, as long as the trajectory of ( 5) is defined.

If |s0| = |s(0)| > ε/2, then L(t, s0) = l(t)
as long as the trajectory s(•) of ( 5) is defined and |s(t)| > ε/2. If there exists t(s0) defined as the first time for which

|s(t)| ≤ ε/2, then L(t, s0) = L b (s(t)), b = √ 2l( t(s0)) ≥ √ 2L0
, for t ≥ t(s0) and as long as the of trajectory s(•) of ( 5) is defined. Hence, the variable gain L(t, s0) is defined, as long as the of trajectory s(•) of ( 5) is defined, by

L(t, s0) = l(t), if 0 ≤ t < t(s0), L b (s(t)), if t ≥ t(s0), (8) 
with the convention that t(s0) = 0 if |s(0)| ≤ ε/2 and t(s0) = ∞ if s(•) is defined for all times and |s(•)| > ε/2. Since b = √ 2l( t(s0)), then t → L(t, s0) defines a continuous function and hence the control u(•) is also continuous as long as it is defined.

Theorem 1: Let M be the (unknown) upper bound on | δ|, g, G be the bounds on γ(•) and ε, L0, L1 > 0 defining the barrier function L b in [START_REF] Shtessel | Adaptive sliding mode control and observation[END_REF]. Consider System (5) with variable gain L defined in [START_REF] Edwards | Adaptive dual layer super-twisting control and observation[END_REF]. Then, for every s0 ∈ R (and initial value of δ), the trajectory of (5) starting at s0 is defined for all non negative times t and there exists a first time t(s0) for which |s(t)| ≤ ε/2. Then, for all t ≥ t(s0), one has |s(t)| < ε. Moreover, there exists ν(M, G, g) > 0 such that, for every trajectory of ( 5), one has that lim sup t→∞ |φ(t)| ≤ ν(M, G, g).

The proof of Theorem 1 is given in Appendix A.

A. Simulation results

The performance of the aforementioned algortihm is compared with the results obtained through the adaptive supertwisting controller presented in [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: methodology and application[END_REF]. [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: methodology and application[END_REF] In [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: methodology and application[END_REF], the adaptive super-twisting controller is implemented as

   u(t) = -α s(t) 1/2 + u2(t), u2(t) = - β 2 s(t) 0 , (9) 
where β = 2µα, and the adaptive gain α is obtained through

α =    w1 γ1 2 sign(|s(t)| -ε), if α > αm ν, if α ≤ αm (10) 
where µ, w1, γ1, ε, αm, and ν are positive constants to be selected.

In the simulations, s(0) = 5 and the parameter values of the proposed algorithm are set as ε = 0.1, L1 = 1, L0 = 0.1. On the other hand, the parameter values of the adaptive supertwisting algorithm ( 9)-( 10) are tuned according to [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: methodology and application[END_REF]. Hence, µ = 1, w1 = 200, γ1 = 2, ν = αm = 0.01 while the parameter value of ε is chosen as the proposed algorithm, i.e. ε = 0.1. The disturbances are given by γ(t) = 4 + 2sin(3t).

(11)

δ0(t) =      6 sin(5t), if t ≤ 2π s, 15 sin(3t), if 2π s < t ≤ 5π s, 30 sin(5t), if t > 5π s. ( 12 
)
The plots of the output variable s(t) with the proposed algorithm and the algorithm presented in [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: methodology and application[END_REF] are compared in Figs. 2(a)-2(b). In Fig. 2(a) it can be observed that for the proposed algorithm, the output variable does not exceed the predefined neighborhood of zero ε = 0.1. On the other hand, it can be noticed in Fig. 2(b) that the size of the neighborhood of zero to which converges s(t) with the algorithm presented in [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: methodology and application[END_REF] is changing together with the amplitude of disturbances derivatives, and, consequently, it cannot be predefined. Moreover, the size of the neighborhood ensured by the algorithm presented in [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: methodology and application[END_REF] can be very large when the amplitude of disturbances derivatives is large (for t > 5π s, |s(t)| ≤ 5 = 50 ε). Fig. 3 illustrates the convergence of the state variable φ(t) with the proposed algorithm and the algorithm presented in [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: methodology and application[END_REF]. It can be clearly seen that φ(t) with the proposed algorithm converges to some vicinity of zero depending on M . Moreover, it can be noticed that the size of vicinity to which converges φ(t) with the proposed algorithm is less than the one with the algorithm presented in [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: methodology and application[END_REF] (φ(t) is less than 4 with [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: methodology and application[END_REF] the proposed algorithm, however, with the algorithm presented in [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: methodology and application[END_REF], φ(t) is more than 17).

The behaviours of the variable gains with the proposed algorithm and the algorithm presented in [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: methodology and application[END_REF] are depicted in Figs. 4(a)-4(b). It can be noticed that both variable gains can increase and decrease based on the output variable value.

Fig. 5 compares the evolution of the control signal with the disturbances. It can be seen that the control signal with the proposed algorithm closely follows the disturbances which is not the case with the algoritm presented in [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: methodology and application[END_REF].

IV. CONCLUSION

This paper presents a variable gain super-twisting controller for a class of first order disturbed system where the upper bound of the disturbances derivatives exist, but it is unknown. This algorithm ensures the convergence of the output variable and prevents its violation outside a predefined neighborhood of zero. The usage of the barrier function strategy ensures that, when the derivatives of disturbances are growing, the super-twisting gains are growing ensuring that the output value belongs to the desired neighborhood and then start to decrease. On the other hand, the barrier function strategy forces the supertwisting gains to decrease together with the output variable. Moreover, the value of the control signal is very close to the absolute value of the disturbances. respect to the state variable (s, φ). Let I(s0) be the interval where such a dynamics is defined and I(s0) is of the form [0, T0). Then, one must prove that T0 is finite, which would at once imply that T0 is the desired time t(s0).

Reasoning by contradiction, we assume that |s| > ε/2 on I(s0) and we can assume with no loss of generality that s is positive on I(s0). From the second equation of ( 5), one gets that -l 2 (t) -M ≤ φ(t) ≤ -l 2 (t) + M, on I(s0), which yields easily that I(s0) = [0, ∞). In particular, we deduce that φ(t) becomes negative in finite time and remains so.

The first equation of ( 5) yields that ṡ(t) ≤ -gl(t) s(t)

1 2 and hence convergence of s to zero in finite time. This contradicts the assumption that |s| > ε/2 on I(s0) and the argument for the first step of the proof of Theorem 1 is complete.

Second step: We now prove that for all t ≥ t(s0), one has |s(t)| < ε and there exists ν > 0 only depending on M, G, g such that lim sup t→∞ |φ(t)| ≤ ν. We use I(s0) to denote the interval of times t ≥ t(s0) for which the corresponding trajectory of ( 5) is defined. In the argument below, we only work for times t ∈ I(s0). In particular, |s(t)| < ε for t ∈ I(s0). It will also be clear for the argument below that I(s0) is infinite. We consider the following change of variables y = (y1, y2) given by y1 = L 2 b s(t), y2 = φ(t).

In theses variables, the system can be written as follows

   ẏ1 = 2 Lb L b y1 + L 2 b ṡ, ẏ2 = φ, (14) 
and

|y1( t(s0))| ≤ b 2 ε. Since Lb = 1 2 b √ ε(ε -|s|) -1/2 ṡ s 0 (ε -|s|) , (15) 
then the term Lb L b can be written as

Lb L b = 1 2 ṡ s 0 (ε -|s|) = C0L 2 b ṡ s 0 , (16) 
with C0 = 1 2b 2 ε . Substituting ( 16) and ( 5) into ( 14), we obtain

   ẏ1 (1 + 2C0|y1|) = L 2 b γ(t)(-y1 1/2 + y2), ẏ2 = -L 2 b y1 0 + δ(t). (17) 
We use a new time scale τ defined by τ ( t(s0)) = 0 and dτ = L 2 b dt. We use to denote the derivative with respect to τ . System (17) can be rewritten as

       y 1 (1 + 2C0|y1|) = γ(t)(-y1 1/2 + y2), y 2 = -y1 0 + δ(t) L 2 b . (18) 
Note that

| δ(t)| L 2 b
Let us first prove by contradiction that, for every trajectory of ( 18), there exists an increasing sequence of times (τn) n≥0 tending to infinity such that

V1(τn) < V * 2 , n ≥ 0. (25) 
Hence, if (25) does not hold true for some trajectory (s(•), φ(•)) of ( 18), there exists τ0 ≥ 0 such that one has, for τ ≥ τ0 V1(τ ) ≥ V * /2. In the strip |y1| ≤ yM , one has |y2| ≥ √ V * /2 and |y 2 + y1 0 | ≤ 1/8. Moreover, an obvious argument shows that if any trajectory of ( 18) is in the strip at some time τ * ≥ τ0 then it must go through it in time τcross verifying

τcross ≤ 2 ln(1 + 4CM ) g|y2(τ * )| ≤ ln(1 + 4CM ) CM . (26) 
We claim that the trajectory (s(•), φ(•)) of ( 18) must enter into the strip. Indeed, otherwise

V 1 ≤ - 1 2 |y1| 1 2 - 1 8 |y2|, for τ large enough, i.e. (V 1/2 1
) ≤ -C1 for some positive constant. One would then have convergence in finite time to zero, which is impossible. Hence the trajectory (s(•), φ(•)) of ( 18) must reach a point (yM , y2(τ * )) with y2(τ ) ≥ √

V * /2 (the last point due to the symmetry with respect to the origin of trajectories of ( 18)). Then, a simple examination of the phase portrait of [START_REF] Obeid | Barrier function-based adaptive sliding mode control[END_REF] in the region y1 > yM shows that the trajectory (s(•), φ(•)) must enter the region 0 < 2y2 < y This is clearly impossible and hence (25) is proved. We now prove that (21) holds true and the argument goes by contradiction. Indeed, if it were not true, then there exists a trajectory (s(•), φ(•)) of ( 18) and an increasing sequence of times (τn) n≥0 tending to infinity such that

V1(τn) > 3V * 4 , n ≥ 0. (28) 
Then, there exists a pair of times (still denoted) τ1 < τ2 such that V1(τ1) = V * /2, V1(τ2) = 3V * /4 and

V * 2 ≤ V1(τ ) ≤ 3V * 4 , τ ∈ [τ1, τ2]. (29) 
We will contradict the existence of such a pair of times τ1 < τ2, which will conclude the proof of Theorem 1. Recall that V1 can increase only by going through the strip |y1| ≤ yM . Since the time τcross needed to cross that strip is given by (26), one deduces from (A) and (29) that the increase of V1 by crossing the strip |y1| ≤ yM is upper bounded by ln(1+4CM ).

Therefore the trajectory (s(•), φ(•)) of ( 18) must go through the strip |y1| ≤ yM at least twice. Combining the above fact with the phase portrait of (18) in the region y1 > yM , one deduces that there exists a pair of times τ 1 < τ 2 in [τ1, τ2] such that y 1 2

1 (τ 1 ) = 2y2(τ 1 ) and y2(τ 2 ) = 0. We then arrive at an equation similar to (27) and reach a contradiction.
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 12 and y1 > yM and exit it in finite time along the axis y2 = 0. Hence, there exists an interval of time [τ1, τ2] such that √ y1(τ1) = 2y2(τ1), y2(τ2) = 0.

APPENDIX A PROOF OF THEOREM 1.

The proof will be done in two steps. First step: It is first shown that there exists a finite time t(s0) for which the output variable s(t), which is part the solution of (5) under the variable gain [START_REF] Edwards | Adaptive dual layer super-twisting control and observation[END_REF], becomes |s(t)| ≤ ε/2. With no loss of generality, we can assume at once that |s(0)| > ε/2. From (8), the variable gain dynamic is given by l(t) = L1t + L0 as long as |s(t)| > ε/2 and the corresponding trajectory of ( 5) is defined as long as |s(t)| > ε/2 since, in this case, the growth of the right-hand side of ( 5) is sublinear with

Then, the second equation of [START_REF] Obeid | Barrier function-based adaptive sliding mode control[END_REF] shows that y 2 is bounded and hence y2 has at most a linear growth on I(s0). Then, from the first equation of ( 18), one gets that the time derivative of the positive function ln(1 + 2C0|y1|) is upper bounded by a function with linear growth on I(s0), yielding easily that I(s0) = [0, ∞). Now consider the following Lyapunov function

where σ(y2) is a saturation function defined as

and

The following inequality holds for every (y1, y2) ∈ R 2 ,

hence V1 is positive-definite and moreover of class C 1 if y1 = 0 and |y2| ≥ 2. The statement of the theorem will be a consequence of the following fact: for every trajectory of ( 18), one has lim sup

where V * is a positive constant only depending on M, G, g. The time derivative of the Lyapunov function ( 19) is given by

After easy computations, one gets that

Note that a non trivial trajectory of (18) crosses the line y1 = 0 in isolated points. Moreover, at a time τ where y(τ ) = (0, y2(τ )) with y2(τ ) > 0, V1 admits an isolated discontinuity jumping from gy 2 2 (τ ) to Gy 2 2 (τ ) and conversely if y2(τ ) < 0. Finally, note that, outside of the line y1 = 0 and for

We will assume without loss of generality that CM := M/b 2 is much larger than 1 and hence

) > 0.

Define