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Finite-Frequency Noise and Dynamical Charge Susceptibility
in Single and Double Quantum Dot Systems
Samuel Richard, Mireille Lavagna, and Adeline Crépieux*

This study reports on finite-frequency noise and dynamical charge
susceptibility in out-of-equilibrium quantum dot systems. Both single and
double quantum dots connected to one or two reservoirs of electrons are
considered, and these quantities are calculated by using the non-equilibrium
Green function technique. The results are discussed in the light of
experimental results, particularly in the low-frequency limit for which an
interpretation in terms of an equivalent RC-circuit is made. Anti-symmetrized
noise is also studied, defined as the difference between absorption and
emission noises, and its relationship with the dynamical charge susceptibility
in single quantum dots is established. In double quantum dots, the
similarities between the dynamical charge susceptibility, the absorption noise,
and the dot occupancy, are highlighted by comparing their respective
variations with the bias voltage applied between the two reservoirs, and the
detuning energy defined as the difference between the lowest level energies in
the two dots.

1. Introduction

In order to optimize the performance of quantum electronic cir-
cuits, such as qubits, it is of prime importance to understand
how electromagnetic radiations, emitted by either an artificial
or a natural source, affect the state and the phase coherence of
the circuits.[1–3] To achieve this goal, it is necessary to explore
the relationship between the circuit sensitivity, i.e., its charge
susceptibility, and the surrounding fluctuations, i.e., the elec-
trical current noise. In a previous work,[4] the relationship be-
tween the ac-conductance and the finite-frequency noise in a
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quantum dot was established. However,
ac-conductance does not inform us di-
rectly on the variation of dot occupancy,
as charge susceptibility precisely does,
since this latter quantity is related to the
derivative of the dot occupancy with re-
spect to the dot level energy. It is therefore
necessary to focus on charge susceptibil-
ity rather than on ac-conductance.
There are a number of theoretical stud-

ies devoted either to dot occupancy,[5–7]

to charge susceptibility,[8–10] or to electri-
cal current noise[11–19] in quantum dots,
but none to the three quantities simulta-
neously. This work remedies this lack by
studying these quantities together, first
in a single quantum dot (SQD), and
then in a double quantum dot (DQD),
considering various geometrical arrange-
ments for the dots. The aim is to examine

whether dot occupancy, dynamical charge susceptibility and
finite-frequency noise in these systems present some common
characteristics in their variation profile as a function of bias volt-
age or frequency, and if it is the case, to identify in what spe-
cific way.
On the experimental side, studies on charge susceptibility

have been multiplying in recent years, in particular in DQD
systems.[20–22] As far as noise measurements are concerned, re-
sults are now available for both SDQ systems[23–25] and QDQ
systems.[26–29] They show that the emission noise, i.e. the noise
at positive frequency, is reduced to zero as soon as bias voltage
applied to the circuit is lower than the frequency, and provide
us with information on charge transfer, especially in the low-
frequency limit, where the quantum dot system can be described
as an equivalent RC-circuit.
The article is organized as follows. In Section 2, we present the

Hamiltonian used to model the system, and we give the formal
expressions for finite-frequency noise, dynamical charge suscep-
tibility and dot occupancy. In Section 3, we study SQD systems
specifically, looking at the exact relation between the anti-
symmetized noise and the charge susceptibility and exploring
the low-frequency limit, while in Section 4 we discuss the numer-
ical results obtained for DQD systems. We conclude in Section 5.

2. Model

2.1. Hamiltonian

To model SQD and DQD systems, we use the following Hamil-
tonian
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Figure 1. Schematic representation of the studied geometries: a) left-connected SQD, b) double-connected SQD, c) serial-coupled DQD, d) parallel-
coupled DQD, and e) side-coupled DQD. The black lines denote the dot-reservoir coupling Γ𝛼,ij, while the red lines represent the dot–dot coupling 12.
The blue and yellow sphere represent dots 1 and 2, and the grey blocks the reservoirs.

̂ =
∑
𝛼=L,R
k∈𝛼

𝜀
𝛼kĉ

†
𝛼kĉ𝛼k +

∑
i=1,2
n∈i

𝜀ind̂
†
ind̂in +

∑
n∈1
m∈2

12d̂
†
2md̂1n

+
∑
𝛼=L,R
k∈𝛼

∑
i=1,2
n∈i

Vi𝛼 ĉ
†
𝛼kd̂in + h.c. (1)

where ĉ †
𝛼k (̂c𝛼k) is the creation (annihilation) electron operator in

reservoir 𝛼, with momentum k and energy 𝜀𝛼k, and d̂
†
in (d̂in) is the

creation (annihilation) electron operator in dot i, with i = 1, 2 and
energy level n, with n ∈ [0, N − 1] where N is the number of en-
ergy levels in the dot i. The notation h.c. denotes the hermitian
conjugate terms associated with the third and fourth contribu-
tions in Equation (1). One assumes that the hopping integral Vi𝛼
between the states |in⟩ in the dot i and |𝛼k⟩ in the reservoir 𝛼 does
not depend on momentum k or index n. By using the Hamilto-
nian of Equation (1), one can model several geometries for the
quantum dot system, such as left-connected or double-connected
SQD, and serial-coupled, parallel-coupled, or side-coupled DQD,
as depicted in Figure 1, the study of the latter geometry being in
expansion.[30–32] To do this, we simply play with the values taken
by the dot-reservoir coupling Γ𝛼,ij and the dot–dot coupling12, as
summarized in Table 1. These quantum dot systems are driven
in an out-of-equilibrium situation under the application of a bias
voltage defined as V = 𝜇L − 𝜇R, where 𝜇L and 𝜇R are the chem-
ical potentials of the left and right reservoirs. Gate voltages Vgi
are also applied in such systems, determining the position of the
energy levels 𝜀in in each of the dots.

2.2. Dynamical Charge Susceptibility and Dot Occupancy

For quantum dots submitted to dc voltage, the dynamical charge
susceptibility 𝜒(𝜔) is given by the Fourier transform of the
quantity 𝜒(t, t ′) defined as the average value of the commuta-

tor between operators Δ̂i(t), where Δ̂i(t) = ̂i(t) − ⟨̂i⟩. In-
deed, one has 𝜒(t, t ′) = iΘ(t − t ′)⟨[Δ̂1(t),Δ̂1(t

′)]⟩ for SQD,
and 𝜒(t, t ′) = iΘ(t − t ′)

∑
i,j=1,2 𝛽i𝛽j⟨[Δ̂i(t),Δ̂j(t

′)]⟩ for DQD,

Table 1. Values taken by the dot-reservoir coupling Γ𝛼,ij and dot–dot cou-
pling 12 for the various studied geometries.

Left-connected
SDQ

Double-
connected

SQD

Serial-coupled
DQD

Parallel-coupled
DQD

Side-coupled
DQD

ΓL,11 = ΓL ΓL,11 = ΓL ΓL,11 = Γ ΓL,11 = Γ ΓL,11 = Γ

ΓL,22 = 0 ΓL,22 = 0 ΓL,22 = 0 ΓL,22 = Γ ΓL,22 = Γ

ΓR,11 = 0 ΓR,11 = ΓR ΓR,11 = 0 ΓR,11 = Γ ΓR,11 = 0

ΓR,22 = 0 ΓR,22 = 0 ΓR,22 = Γ ΓR,22 = Γ ΓR,22 = 0

12 = 0 12 = 0 12 =  12 =  12 = 

where Θ is the Heaviside function, ̂i =
∑

n∈i d̂
†
ind̂in is the opera-

tor associated with the number of electrons in the dot i, and 𝛽1,2 is
the lever-arm coefficient measuring the asymmetry of the capaci-
tive couplings of each of the two dots to the gate voltage.[33] In the
following, we assume symmetrical capacitive coupling, meaning
that 𝛽1,2 = 1. The dynamical charge susceptibility for the systems
we consider can be calculated by using the technique of non-
equilibrium Green functions.[34] We obtain the following expres-
sion

𝜒(𝜔) = i∫
∞

−∞

d𝜀
2𝜋

Tr
{
G<(𝜀)

[
Ga(𝜀 − ℏ𝜔) +Gr(𝜀 + ℏ𝜔)

]}
(2)

where G<,Gr ,Ga are the lesser, retarded, and advanced Green

functions, respectively. The retarded/advanced Green functions
2 × 2 matrices are given by

Gr∕a(𝜀) = 1
Dr∕a(𝜀)

(
g̃r∕a1 (𝜀) g̃r∕a1 (𝜀)Σ̃r∕a

12 (𝜀)g̃
r∕a
2 (𝜀)

g̃r∕a2 (𝜀)Σ̃r∕a
21 (𝜀)g̃

r∕a
1 (𝜀) g̃r∕a2 (𝜀)

)

(3)

with Dr∕a(𝜀) = 1 − g̃r∕a1 (𝜀)Σ̃r∕a
12 (𝜀)g̃

r∕a
2 (𝜀)Σ̃r∕a

21 (𝜀) and g̃r∕ai (𝜀) =
gr∕ai (𝜀)∕(1 − Σ̃r∕a

ii (𝜀)gr∕ai (𝜀)). In these expressions, it appears the
retarded Green function of the disconnected dot i, defined as
gr∕ai (𝜀) =

∑
n∈i g

r∕a
in (𝜀) where gr∕ain (𝜀) = 1∕(𝜀 − 𝜀in ± i0+) with 𝜀in =

𝜀i + n𝜀0, and the total self-energy: Σ̃r∕a(𝜀) =
∑

𝛼=L,R Σ
r∕a
𝛼 (𝜀) + Σr∕a

int ,

where the matrix Σr∕a
int is given by

Σr
int =

(
0 ∗

12

∗
21 0

)
and Σa

int =

(
0 12

21 0

)
(4)

The self-energymatrices associated with the reservoir 𝛼 are given
by Σr∕a

𝛼 (𝜀) = ∓(i∕2)Γ𝛼 , Σ<
𝛼
(𝜀) = if e

𝛼
(𝜀)Γ𝛼 and Σ>

𝛼
(𝜀) = −if h

𝛼
(𝜀)Γ𝛼 ,

where f e
𝛼
(𝜀) = 1∕(1 + exp(𝜀 − 𝜇𝛼)∕kBT𝛼) is the Fermi-Dirac dis-

tribution functions with T𝛼 the temperature and 𝜇𝛼 the chemi-
cal potential of the reservoir 𝛼, and f h

𝛼
(𝜀) = 1 − f e

𝛼
(𝜀). We define

the elements of the dot-reservoir coupling matrix Γ𝛼 as Γ𝛼,ij =

2𝜋𝜌𝛼V
∗
i𝛼Vj𝛼 , where the density of states 𝜌𝛼 in the reservoir 𝛼 is as-

sumed to be energy independent in the wide-band limit. By using
the relation G<(𝜀) =

∑
𝛼=L,RG

r(𝜀)Σ<
𝛼
(𝜀)Ga(𝜀), and by introducing

the charge susceptibility associated with the left reservoir, 𝜒L(𝜔),
through the relation 𝜒(𝜔) = 𝜒L(𝜔) + 𝜒R(𝜔), one gets

𝜒L(𝜔) = −∫
∞

−∞

d𝜀
2𝜋

f eL (𝜀)

× Tr
{
Gr(𝜀)ΓLG

a(𝜀)
[
Ga(𝜀 − ℏ𝜔) +Gr(𝜀 + ℏ𝜔)

]}
(5)
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The electron occupancy in the dot i is given by the average value

of the operator ̂i. It is equal to

⟨̂i⟩ = −i∫
∞

−∞

d𝜀
2𝜋

G<
ii (𝜀) (6)

The sum over the dot index i, of the derivatives of the dot occu-
pancy with respect to the dot level energies, gives the charge sus-
ceptibility at zero frequency, i.e., the static charge susceptibility
𝜒(𝜔 = 0). Indeed, one has the equality

𝜕Gr∕a
ii′ (𝜀)

𝜕𝜀j
= Gr∕a

ij (𝜀)Gr∕a
ji′ (𝜀) (7)

which leads to the relation 𝜕⟨̂i⟩∕𝜕𝜀j = −i ∫ ∞
−∞[G

<
ij (𝜀)G

a
ji(𝜀) +

Gr
ij(𝜀)G

<
ji (𝜀)]d𝜀. Next, by setting 𝜔 = 0 in Equation (2), one shows

that 𝜒(𝜔 = 0) is related to the sum of the derivatives of dot occu-
pancies with respect to dot level energies through the relation

𝜒(𝜔 = 0) = −
∑
i,j

𝜕⟨̂i⟩
𝜕𝜀j

(8)

Generally speaking, the expression of the static charge sus-
ceptibility given by Equation (8) can also be derived from
the definition of the dynamical charge susceptibility 𝜒(𝜔) =
limΔVg (𝜔)→0

∑
i=1,2 d⟨Δ̂i⟩∕dΔeVg (𝜔).

[33]

2.3. Finite-Frequency Noise and Anti-Symmetized Noise

The finite-frequency noise S𝛼𝛼 ′ (𝜔) is defined as the
Fourier transform of the current–current correlator:
S𝛼𝛼 ′ (t, t′) = ⟨ΔÎ𝛼(t)ΔÎ𝛼 ′⟩, where ΔÎ𝛼(t) = Î𝛼(t) − ⟨̂I𝛼(t)⟩, with
Î𝛼 = (ei∕ℏ)

∑
k∈𝛼,i=1,2,n∈i(Vi𝛼 ĉ

†
𝛼kd̂in − V∗

i𝛼 d̂
†
inĉ𝛼k) the current operator

associated with reservoir 𝛼. The finite-frequency noise associated
with the left reservoir, i.e., when 𝛼 = 𝛼 ′ = L, can be calculated by
using the non-equilibrium Green function technique.[35–37] We
obtain

SLL(𝜔) =
e2

h ∫
∞

−∞
d𝜀Tr

{
f eR (𝜀)f

h
R (𝜀 − ℏ𝜔)RL(𝜀)RL(𝜀 − ℏ𝜔)

+ f eL (𝜀)f
h
L (𝜀 − ℏ𝜔)

[
 eff
LL (𝜀) eff

LL (𝜀 − ℏ𝜔)

+
(
tLL(𝜀) − tLL(𝜀 − ℏ𝜔)

)(
t+LL(𝜀) − t+LL(𝜀 − ℏ𝜔)

)]

+ f eL (𝜀)f
h
R (𝜀 − ℏ𝜔)

[
1 −  eff

LL (𝜀)
]
RL(𝜀 − ℏ𝜔)

+ f eR (𝜀)f
h
L (𝜀 − ℏ𝜔)RL(𝜀)

[
1 −  eff

LL (𝜀 − ℏ𝜔)
]}

(9)

where t𝛼𝛼(𝜀) = iGr(𝜀)Γ𝛼 is the transmission amplitude, 𝛼𝛽 (𝜀) =
Gr(𝜀)Γ𝛼 G

a(𝜀)Γ𝛽 is the transmission coefficient, and  eff
𝛼𝛼
(𝜀) =

t𝛼𝛼(𝜀) + t+
𝛼𝛼
(𝜀) − 𝛼𝛼(𝜀). At positive frequencies, SLL(𝜔) corre-

sponds to the emission noise whereas at negative frequen-
cies, it corresponds to the absorption noise.[11,23,24] The anti-
symmetrized noise, introduced in order to compare dynamical
charge susceptibility and finite-frequency -noise, is defined as the
difference between absorption noise and emission noise, accord-
ing to

L(𝜔) = SLL(−𝜔) − SLL(𝜔) (10)

3. Results and Discussion for SQD Systems

3.1. Evolution of Charge Susceptibility and Noise with Bias
Voltage

We start our discussion by considering a double-connected SQD
(see Figure 1b), focusing on charge susceptibility and noise asso-
ciated with the left reservoir, namely 𝜒L(𝜔) and SLL(𝜔) given by
Equations (5) and (9), respectively. In Figure 2 these two quanti-
ties are plotted as a function of the bias voltage V for both single-
level (N = 1) and multi-level (N = 3) dot. With regard to noise,
one observes three main features when one compares the emis-
sion noise SLL(𝜔 > 0), depicted by solid lines, and the absorption
noise SLL(𝜔 < 0), depicted by dashed lines: i) over the entire bias
voltage range, the values taken by the absorption noise are greater
than, or equal to those taken by the emission noise SLL(𝜔 > 0);
ii) the emission and absorption noises strongly differ at low volt-
age with the reduced to zero emission noise at eV < |ℏ𝜔|, while
the absorption noise is non-zero in that regime; and iii) at higher
voltage, i.e., for eV > |ℏ𝜔|, the emission and absorption noises
converge to an identical value, which may depend on frequency.
As far as the charge susceptibility is concerned, a remarkable re-
sult is obtained when there is more than one energy level in the
dot. Indeed, in that case, the quantity |𝜒L(𝜔)| at low voltage may
take high value at finite frequency (see the green curve in the
N = 3 panel) in a regime where the emission noise is reduced to
zero, meaning that one could quite easily vary the dot occupancy
in the SQD in that operating regimewithout significant noise pol-
lution. Moreover, the charge susceptibility at low voltage is more
stable at finite frequency than at zero frequency (compare the red
and green curves in theN = 3 panel), allowing finer control of the
dot occupancy.
The noise and charge susceptibility in a left-connected SQD

(see Figure 1a) are plotted in Figure 3. The main difference with
the results obtained for the double-connected SQD relies on the
fact that the emission noise is reduced to zero in a left-connected
SQD, since ΓR = 0, while it is non-zero in a double-connected
SQD. We can thus conclude that there is no emission noise for
such a system, at least at low temperature, i.e., when kBT is small
compared to the dot-reservoir coupling ΓL. Note that this will be
no longer true at temperature larger or of the order of the dot-
reservoir coupling. We also note that the absorption noise is re-
duced to zero for eV > |ℏ𝜔|, which did not occur in the case of a
double-connected SQD. This can therefore be seen as a particular
feature of left-connected SQD. For the sake of completeness, we
should point out that in the presence of Coulomb interactions,
emission noise would become non-zero at eV < ℏ𝜔 due to the
presence of inelastic tunneling processes.[38,39]
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Figure 2. Noise and dynamical charge susceptibility in a double-connected SQD as a function of bias voltage V, for various values of frequency 𝜔 at
ΓL,R = 0.1, 𝜀1 = 0, 𝜀0 = 0.5, and T = 0.01 for both one energy level (N = 1) and three energy levels (N = 3) in the dot. The solid, dashed and dotted-
dashed lines in the SLL(𝜔) plots correspond to the emission (𝜔 > 0), absorption (𝜔 < 0) and zero-frequency noise, respectively. One has |𝜒L(−𝜔)| =|𝜒L(𝜔)|.
3.2. Relationship Between Anti-Symmetrized Noise and
Dynamical Charge Susceptibility

When N = 1, there exists an exact relationship between the anti-
symmetrized noise and the dynamical charge susceptibility in the
left reservoir for SQD systems. Indeed, in that case, Equation (10)
can be rewritten as

𝜒L(𝜔) = − i
ΓLΓR ∫

∞

−∞

d𝜀
2𝜋

[
f eL (𝜀 − ℏ𝜔)LR(𝜀 − ℏ𝜔)tLL(𝜀)

−f eL (𝜀)LR(𝜀)t∗LL(𝜀 − ℏ𝜔)
]

(11)

since the Green functions and transmission coefficients and am-
plitudes are no longer matrices. Moreover, by inserting Equa-
tion (9) in Equation (10), one gets after simplification

L(𝜔) =
e2

h ∫
∞

−∞
d𝜀 (f eL (𝜀 − ℏ𝜔) − f eL (𝜀))

[||tLL(𝜀) − t∗LL(𝜀 − ℏ𝜔)||2
+LR(𝜀) + LR(𝜀 − ℏ𝜔)

]
(12)

By using the relations between the transmission coefficient LR(𝜀)
and the transmission amplitude tLL(𝜀), one establishes a rela-
tionship between the anti-symmetrized noise and the dynamical

charge susceptibility. For a double-connected SQD this relation
reads

L(𝜔) = 2e2𝜔Im{(ℏ𝜔 + iΓR)𝜒L(𝜔)} (13)

whereas for a left-connected SQD, it reads

L(𝜔) = 2ℏe2𝜔2Im{𝜒L(𝜔)} (14)

These results reveal the close connexion between finite-
frequency noise and dynamical charge susceptibility in quantum
dots. By explicitly calculating the dynamical charge susceptibility
at zero temperature, starting from Equation (5), one gets for a
double-connected SQD

𝜒L(𝜔) = −
ΓL

h𝜔(ℏ𝜔 + i(ΓL + ΓR))

× ln
(
1 −

h𝜔(ℏ𝜔 + i(ΓL + ΓR))A(𝜇L)
ΓL + ΓR

)
(15)

and for a left-connected SQD

𝜒L(𝜔) = −
ΓL

h𝜔(ℏ𝜔 + iΓL)
ln
(
1 −

h𝜔(ℏ𝜔 + iΓL)A(𝜇L)
ΓL

)
(16)

Figure 3. Noise and dynamical charge susceptibility in a left-connected SQD as a function of 𝜇L, the chemical potential of the left reservoir, for various
values of frequency 𝜔 at ΓL = 0.1 and ΓR = 0. The other parameters are unchanged.
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Figure 4. Anti-symmetized noise in both double-connected and left-connected SQD systems at V = 0 and T = 0.01. One takes ΓL,R = 0.2 for the double-
connected SQD, and ΓL = 0.2 and ΓR = 0 for the left-connected SQD. For a comparison, we also plot the right-hand-side terms of Equations (13)
and (14).

where A(𝜇L) is the value taken by the spectral function at an en-
ergy equal to the chemical potential 𝜇L of the left reservoir. At low
frequency compared to the dot-reservoirs couplings, it gives, up
to the first order in 𝜔, for a double-connected SQD

𝜒L(𝜔) =
A(𝜇L)ΓL

ΓL + ΓR
+ i

A2(𝜇L)ΓL

2(ΓL + ΓR)
h𝜔 (17)

and for a left-connected SQD

𝜒L(𝜔) = A(𝜇L) + i
A2(𝜇L)
2

h𝜔 (18)

From these expressions, one can extract two results. First, one
can deduce the effective capacitance CL and resistance RL of the
equivalent RC-circuit associated with the left part of the SQD
system. Second, one can explicitly express the anti-symmetrized
noise at zero temperature and low frequency, as presented below.

3.2.1. Equivalent RC-circuit

The effective capacitance CL and resistance RL of the equiv-
alent RC-circuit are given by CL = e2𝜒L(𝜔 = 0) and RL =
(e∕CL)

2 lim𝜔→0 Im{𝜒L(𝜔)∕𝜔}.[40,41] In a double-connected SQD, it
leads to

CL =
e2A(𝜇L)ΓL

ΓL + ΓR
→

ΓL,R=Γ
CL =

e2A(𝜇L)
2

and

RL =
h(ΓL + ΓR)
2e2ΓL

→
ΓL,R=Γ

RL =
h
e2

(19)

and in a left-connected SQD to

CL = e2A(𝜇L) and RL =
h
2e2

(20)

In summary, one gets RL = RQ for a double-connected SQD, and
RL = RQ∕2 for a left-connected SQD, where RQ = h∕e2 is the
quantum of resistance for spinless system. The fact that one ob-
tains half of the quantum of resistance for a left-connected SQD
was predicted theoretically[42] and unambiguously demonstrated
experimentally.[43]

3.2.2. Anti-Symmetrized Noise in the Low-Frequency Limit

The anti-symmetrized noise at zero temperature and low fre-
quency can be derived by incorporating Equations (17) and (18)
into Equations (13) and (14). To the lowest order in𝜔, one obtains
for a double-connected SQD

L(𝜔) = −
2e2𝜔A(𝜇L)ΓLΓR

ΓL + ΓR
(21)

and for a left-connected SQD

L(𝜔) = 2𝜋e2ℏ2𝜔3A2(𝜇L) (22)

Therefore, the dependency of the anti-symmetrized noise with
frequency strongly differs between the left-connected and double-
connected SQD systems. Indeed, at low frequency, L(𝜔) varies
linearly in 𝜔 in a double-connected SQD while its variation fol-
lows a power law of 𝜔 in a left-connected SQD, as can be seen in
Figure 4 where the results obtained from the exact expressions
of L(𝜔) given by Equations (9) and (10) are plotted as a func-
tion of 𝜔. One can also see that Equations (13) and (14) hold for
N = 1 only (see green curves in Figure 4). Indeed, when N ≠ 1,
the expressions given by Equations (13) and (14) linking L(𝜔)
to 𝜒L(𝜔) no longer hold (see blue and red curves in Figure 4).

4. Results and Discussion for DQD Systems

In this section, we study noise and dynamical charge suscepti-
bility in a DQD. We first consider a serial-coupled DQD, then a
parallel-coupled DQD and finally a side-coupled DQD. Contrary
to what we have shown for SQD systems through Equations (13)
and (14), there is no simple relationship between emission noise,
absorption noise and dynamical charge susceptibility for DQD.
However one can identify similar behaviors between some of
these quantities.

4.1. Serial-Coupled DQD

Figures 5 and 6 display the color-scale plots of the emission noise,
absorption noise, dynamical charge susceptibility, and total dot
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Figure 5. Color-scale plot for SLL(𝜔), |𝜒L(𝜔)| and ⟨̂ ⟩ in a serial-coupled DQD, as a function of bias voltage V and detuning energy 𝜀d at |𝜔| = 0.2,
ΓL,R = 0.1,  = 0.1, 𝜀1 = 0, and T = 0.01, for one energy level in each dot (N = 1).

occupancy, ⟨̂ ⟩ = ⟨̂1⟩ + ⟨̂2⟩ in a serial-coupled DQD, as de-
picted in Figure 1c. We first consider a single-level DQD with
a single energy level per dot (N = 1) and we plot these latter
quantities as a function of bias voltage V and detuning energy
𝜀d = 𝜀2 − 𝜀1, two variables that can be experimentally varied. The
first of the features observed in Figure 5 is the existence of a ver-
tical central band around V = 0, whose width is equal to 2ℏ𝜔∕e,
withinwhich the emission noise SLL(𝜔 > 0) is zero. This behavior
is explained by the fact that, at low temperature, the system can-
not emit energy at a voltage that is lower than the measurement
frequency 𝜔, here taken equal to 0.2 in arbitrary units. Within
this interval, i.e., when |eV| < ℏ𝜔, the module of the charge sus-
ceptibility, |𝜒L(𝜔)|, is non-zero. Thus, as it is the case for a SQD,
there is an operating regime where the charge susceptibility is
high while the emission noise is zero. The second characteristic
that can be observed is that absorption noise and charge suscep-
tibility behave quite similarly, with the presence of two ridges in
the plane (V, 𝜀d), one vertical and one horizontal, forming a cross,
within which SLL(𝜔 < 0) and |𝜒L(𝜔)| are non-zero. However, the
charge susceptibility exhibits an additional narrow ridge along
the line of equation 𝜀d = −eV∕2, which is directly related to the
change in the dot occupancy ⟨̂ ⟩ value, as can be seen in the
right panel of Figure 5. The profile of |𝜒L(𝜔)| is thus a witness of
both the behavior of the absorption noise and the dot occupancy.
We now turn our interest to the multi-level case where one

has three energy levels per dot (N = 3). Figure 6 shows the pres-
ence of multiple ridges in the color-scale plot of the emission
noise as a function ofV and 𝜀d. However, the central band around
V = 0 within which the emission noise SLL(𝜔 > 0) is zero is still
present and its width is unchanged from the single-level case
N = 1. There are also additional ridges in the absorption noise
SLL(𝜔 < 0), which show a similar pattern to those of the emis-

sion noise SLL(𝜔 > 0) when eV < −|ℏ𝜔|, while their patterns
strongly differ when eV > −|ℏ𝜔|. The charge susceptibility ex-
hibits a complex variation profile since it is a mixing of the vari-
ations of the absorption noise and dot occupancy. For N = 3, the

dot occupancy ⟨̂ ⟩ exhibits seven plateaus (even if only six are
visible in Figure 6), while forN = 1, it exhibits three plateaus (see
Figure 5). This results from the Pauli exclusion principle, which

requires ⟨̂ ⟩ to take integer values in the interval [0, 2N], leading
to ⟨̂ ⟩ ∈ [0, 2] for N = 1, and to ⟨̂ ⟩ ∈ [0, 6] for N = 3.

4.2. Parallel-Coupled DQD

Figures 7 and 8 display SLL(𝜔), 𝜒L(𝜔) and ⟨̂ ⟩ in a parallel-
coupled DQD (see Figure 1d), as a function of bias voltage and
detuning energy, with N = 1 and N = 3, respectively. The verti-
cal band inside which the emission noise is zero is still there.
Moreover, as it is the case for serial-coupled DQD, the variation
profile of the charge susceptibility exhibits features, which are al-
ready present in the absorption noise variation profile and/or in
the dot occupancy variation profile, and the plateaus in the dot
occupancy are clearly visible in both the N = 1 and N = 3 cases.
The main difference compared to what is obtained in the serial-
coupled DQD, is the presence of a vertical symmetry axis, located
at V = 0, in both the charge susceptibility and the dot occupancy
variations. It results from the fact that in parallel-coupled DQD
the bias profile across the DQD systems is unchanged under a
sign inversion ofV , while it is not the case in serial-coupledDQD.
Beside, one observes the presence of horizontal lines located at
the position 𝜀d = 0 for N = 1, and at positions 𝜀d = −2𝜀0, −𝜀0, 0,
𝜀0 for N = 3. These positions correspond to the alignment of the
energy levels of each of the two dots. There values can be obtained

Figure 6. Same as in Figure 5 for N = 3. One takes 𝜀0 = 0.5, 𝜀0 being the energy separation between the levels.
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Figure 7. Color-scale plot for SLL(𝜔), |𝜒L(𝜔)|, and ⟨̂ ⟩ in a parallel-coupled DQD, as a function of bias voltage V and detuning energy 𝜀d at |𝜔| = 0.2,
ΓL,R = 0.1,  = 0.1, 𝜀1 = 0, and T = 0.01, for one energy level in each dot (N = 1).

Figure 8. Same as in Figure 7 for N = 3. One takes 𝜀0 = 0.5.

by equalling 𝜀2 + n𝜀0 with 𝜀1 +m𝜀0, where n and m ∈ [0, N − 1].
These horizontal lines are absent in the serial-coupled DQD case.

4.3. Side-Coupled DQD

Finally, Figures 9 and 10 display the color-scale plots of the noise,
the charge susceptibility and the dot occupancy as a function of

V and 𝜀d in a side-coupled DQD, as depicted on Figure 1e. The
features present in the parallel-coupled DQD case for the charge
susceptibility and dot occupancy, i.e. the existence of a vertical
symmetry axis located at position V = 0 and the presence of
horizontal lines at some specific positions of 𝜀d, are still there.
However, one observes strong modifications in the variation
profiles of absorption noise, and of charge susceptibility, with an

Figure 9. Color-scale plot for SLL(𝜔), |𝜒L(𝜔)|, and ⟨̂ ⟩ in a side-coupled DQD, as a function of bias voltage V and detuning energy 𝜀d at |𝜔| = 0.2,
ΓL,R = 0.1,  = 0.1, 𝜀1 = 0, and T = 0.01, for one energy level in each dot (N = 1).

Figure 10. Same as in Figure 9 for N = 3. One takes 𝜀0 = 0.5.
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enhancement of their value within a vertical band of width ℏ𝜔
centered around the line eV = 0. Even if for N = 1 the variation
profiles of SLL(𝜔), 𝜒L(𝜔), and ⟨̂ ⟩ look very different when com-
pared to the parallel-coupled and side-coupled DQDs, this is no
longer the case when N = 3. Indeed these latter quantities show
very similar variation profiles in this case (compare Figures 8
and 10). The reason for these similarities is related to the fact that
when the dots contain several level of energies, the role played
by the dot-reservoir coupling ΓL,R in the charge transmission
through the DQD becomes less important compared to the
role played by the dot–dot coupling  , since the number of
intra-processes are multiplied in the presence of multiple levels.

5. Conclusion

In this article, we have pointed out the similarities in the proper-
ties of finite-frequency noise and dynamical charge susceptibil-
ity in non-equilibrium quantum dot systems. We have formally
established an explicit relationship between these two physical
quantities in the case of single-level SQD. Such a simple relation-
ship does not apply in multi-level SQD or DQD. However, stud-
ies on the variation of emission and absorption noises, dynamical
charge susceptibility and dot occupancy with bias voltage and de-
tuning energy, show similarities among them, that we have been
able to characterize in various geometries. Experimental verifica-
tion is now awaited, especially since finite-frequency noise and
real/imaginary parts of the dynamical charge susceptibility are
both measurable quantities.[22,26–29] This work paves the way for
further studies in order to examine whether these types of rela-
tionship are preserved in the presence of Coulomb interactions
and spin degrees of freedom, which are known to play an impor-
tant role in quantum dots systems. This remains to be done.
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