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Introduction

Une transmission linéaire monoporteuse est dite Fasterthan-Nyquist (FTN) si le rythme symbole est supérieur à la bande bilatérale occupée par l'impulsion de mise en forme [START_REF] Mazo | Faster-than-Nyquist signaling[END_REF]. Un tel choix de mise en forme implique l'absence de traitement linéaire susceptible de supprimer l'interférence entre symboles. Les récepteurs FTN présentent alors généralement une complexité calculatoire élevée [3].

En termes d'efficacité spectrale ou de capacité, plusieurs études montrent toutefois que la stratégie FTN s'avère pertinente pour faire face à certains canaux contraints en puissance (ex. : satellite, fibre optique) [1,2]. De plus, l'absence de caractéristiques cycliques au second ordre et la possibilité de faire varier le rythme symbole indépendamment de la bande occupée font des techniques FTN un atout pour une transmission à faible probabilité d'interception [START_REF] Li | A variable symbol duration based FTN signaling scheme for PLS[END_REF][START_REF] Morales | Timing estimation based on higher-order cyclostationarity for faster-than-Nyquist signals[END_REF].

La synchronisation des récepteurs FTN demeure actuellement peu abordée dans la littérature [3]. Ainsi, la plupart des détecteurs symboles proposés en FTN font l'hypothèse d'une compensation parfaite du délai, des décalages en phase et en fréquence entre l'émetteur et le récepteur. En considérant une approche aidée par les pilotes, une stratégie triviale consiste à conserver des préambules à la cadence de Nyquist. Dans ce cas, une séquence alternante ±1 suffisamment longue minimise la borne Cramér-Rao (CRB) du délai et de la phase [START_REF] Shaw | Optimum pilot sequences for dataaided synchronization[END_REF]. En choisissant de transmettre à la fois les pilotes et les données en FTN, la séquence alternante ±1 devient non-informative et il est alors nécessaire d'adapter les pilotes à la densité et à l'im-pulsion de mise en forme utilisées [START_REF] Mounsif | Optimal pilot sequences for timing estimation in faster-than-Nyquist systems[END_REF][START_REF] Mounsif | POULLIAT : Optimal pilot sequences for phase and timing synchronization in FTN systems[END_REF].

Dans ce papier, nous étendons les travaux présentés dans [START_REF] Mounsif | POULLIAT : Optimal pilot sequences for phase and timing synchronization in FTN systems[END_REF] sur la construction de séquences pilotes optimales en FTN, au sens de la CRB du délai et de la phase. En particulier, la présente contribution se distingue en évaluant la robustesse des estimateurs du maximum de vraisemblance correspondants lorsque les séquences pilotes proposées sont contaminées par les données. Un tel phénomène s'observe lorsque les pilotes et les données sont transmis de manière contiguë en présence d'impulsions de mise en forme non-orthogonales. Nous apprécions également l'impact d'une étape préliminaire de synchronisation grossière en fréquence (non-aidée par les données) sur l'estimation du délai et de la phase au moyen des séquences pilotes proposées.

Système FTN monoporteuse 2.1 Modèle d'observation

Nous considérons un signal de modulation linéaire monoporteuse en présence d'erreurs de synchronisation en délai, en phase et en fréquence (respectivement notées ξ, φ et F ) :

s(t) e j(2πF t+φ) k∈I K c k g(t -kT s -ξ), t ∈ R (1)
avec {c k } k∈I K la séquence de symboles (pilotes ou données), g(t) une impulsion de mise en forme réelle de support fréquentiel [-B/2; B/2] respectant g La densité temps/fréquence est définie par ρ 1/(BT s ) et la transmission est dite FTN si et seulement si ρ > 1 [START_REF] Mazo | Faster-than-Nyquist signaling[END_REF].

En présence de bruit additif blanc gaussien, le signal (1) est échantillonné après un filtre passe bas idéal1 de réponse impulsionnelle v(t) 1/T sinc(t/T ). Le rythme d'échantillonnage 1/T est choisi supérieur à B + F max avec F max le plus grand décalage en fréquence possible (|F | ≤ F max ) :

r(nT ) e j(2πνn+φ) k∈I K c k g(nT -kT s -ξ) + w(nT ), n ∈ Z (2)
avec ν F T le décalage en fréquence normalisé et w(nT ) les échantillons de bruit filtrés. À partir de (2), nous construisons une observation de durée finie : r [r(n 0 T ), r((n 0 + 1)T ), . . . r((n 0 + N -1)T )] T avec n 0 et N des entiers choisis de façon à capturer le signal d'intérêt :

r = e jφ D ν G ξ c + w (3) où -G ξ est la matrice de mise en forme telle que [G ξ ] n,k g(nT -kT s -ξ), k ∈ I K , n ∈ {n 0 , n 0 + 1, . . . , n 0 + N -1} ; -D ν diag e j2πνn0 , e j2πν(n0+1) , . . . , e j2πν(n0+N -1)
est la matrice de décalage en fréquence ;

-c c T p , c T z , c T d
T est une séquence de symboles dont les K p premiers éléments c p [p 0 , p 1 , . . . , p Kp-1 ] T sont des pilotes (connus du récepteur), les K z éléments suivants c z 0 Kz,1 constituent un intervalle de garde et les

K d = K -K p -K z derniers éléments c d [d 0 , d 1 , . . . , d K d -1 ] T portent de l'information ; -w = [w(n 0 T ), w((n 0 + 1)T ), . . . , w((n 0 + N -1)T )] T
est le vecteur de bruit tel que w ∼ CN (0, σ 2 w I N ) en notant SNR 1/σ 2 w .

CRB du délai et de la phase

Nous établissons la matrice d'information de Fisher (FIM) associée au délai et à la phase en supposant (i) une synchronisation en fréquence parfaite (ν = 0), (ii) l'absence de symboles de données (K d = K z = 0) :

J = J ξ,ξ J ξ,φ J φ,ξ J φ,φ (4) 
où chaque élément est obtenu à partir de [4, Eq. (15.52)] : [START_REF] Kay | Fundamentals of statistical signal processing, Volume I : Estimation theory[END_REF] nous obtenons la CRB du délai ou de la phase :

J ξ,ξ = 2 σ 2 w c H p P ξ c p , (5) 
J φ,φ = 2 σ 2 w c H p P φ c p , (6) 
J ξ,φ = J φ,ξ = 2 σ 2 w jc H p ĠH ξ G ξ c p (7) avec P ξ ĠH ξ Ġξ , Ġξ dG ξ /dξ et P φ G H ξ G ξ . D'après
CRB(ψ i |c p ) J ψj ,ψj J φ,φ J ξ,ξ -J 2 ξ,φ (8) 
avec ψ i ,ψ j ∈ {ξ, φ} tel que ψ i = ψ j . D'après [13, Lemme 3], remarquons que le découplage des paramètres ξ et φ peut s'obtenir en choisissant c p à valeur réelle (J ξ,φ = J φ,ξ = 0) afin de minimiser [START_REF] Mazo | Faster-than-Nyquist signaling[END_REF].

Séquences pilotes optimales

Nous nous intéressons à la construction analytique de séquences pilotes c p asymptotiquement optimales au sens des CRB du délai et de la phase.

Pour cela, nous remarquons que les matrices de Toeplitz P ξ et P φ sont asymptotiquement diagonalisables par transformée de Fourier discrète (DFT) lorsque K p est suffisamment grand devant le support de l'autocorrelation de dg(nT )/dξ et g(nT ) [START_REF] Mounsif | Optimal pilot sequences for timing estimation in faster-than-Nyquist systems[END_REF].

En rappelant que l'impulsion de mise en forme g(t) est réelle, nous pouvons combiner les colonnes {f k } k∈I Kp d'une matrice de DFT unitaire F Kp pour aboutir à une structure propre approchée réelle [START_REF] Mounsif | POULLIAT : Optimal pilot sequences for phase and timing synchronization in FTN systems[END_REF] :

P ψ Kp 1 ≈ FT Kp Λψ F Kp , ψ ∈ {ξ, φ}, (9) 
avec FT Kp une matrice orthogonale dont les colonnes s'écrivent

f k =    f k si f k est réelle, √ 2 {f k } si f k est complexe et k ≤ Kp 2 , √ 2 {f k } si f k est complexe et k > Kp 2 ,
et Λψ une matrice diagonale dont les éléments non-nuls sont

λψ,k = K p F Kp p ψ,c k , k ∈ I Kp , (10) 
où p ψ,c désigne la première colonne de P ψ « circularisée ». En considérant les formes quadratiques dans ( 5)-( 6) et la structure propre approchée [START_REF] Meyr | On sampling rate, analog prefiltering, and sufficient statistics for digital receivers[END_REF], la séquence pilote optimale s'obtient directement via le quotient de Rayleigh [10, Th. 6.5] :

cψ,opt arg max cp c T p FT Kp Λψ F Kp c p s. c. c p 2 2 = K p = √ K f kmax (11) 
avec k max l'indice de la plus grande valeur propre parmi { λψ,k } k∈I Kp . Notons que la séquence obtenue via (11) dépend généralement de g(t) et de ρ, notamment en FTN. La figure 1 illustre ce résultat en affichant les CRB de ξ et de φ associées à chaque vecteur f k . Notons qu'un accroissement de la densité ρ est préjudiciable à l'estimation de ξ mais favorable à l'estimation de φ. Si une seule séquence pilote doit être utilisée pour l'estimation jointe de ξ et φ, il apparaît judicieux de sélectionner cξ,opt qui permet d'atteindre également une CRB minimale pour φ dans le scénario étudié. Enfin, rappelons que le noyau de P ψ voit sa dimension croître en même temps que ρ [START_REF] Mounsif | Optimal pilot sequences for timing estimation in faster-than-Nyquist systems[END_REF] ; nous observons notamment que les séquences cψ,opt obtenues pour un système de Nyquist sont non-informatives en FTN. Soulignons deux spécificités des systèmes de Nyquist orthogonaux : (i) d'après [START_REF] Li | A variable symbol duration based FTN signaling scheme for PLS[END_REF], la CRB de φ est indépendante de ρ et de k puisque P φ ∝ I Kp , (ii) pour K p pair, le vecteur optimal pour l'estimation de ξ dans (11) est f Kp/2 ; ceci démontre l'optimalité de la séquence alternante ±1 tel qu'observé dans [START_REF] Shaw | Optimum pilot sequences for dataaided synchronization[END_REF]. 

Résultats de simulation

Nous estimons (ξ, φ) au sens du maximum de vraisemblance afin de vérifier que les CRB précédemment établies demeurent atteignables avec un nombre raisonnable de symboles pilotes K p et en présence de contamination par les données (K d > 0). Pour un décalage fréquentiel ν, nous rappelons [START_REF] Kay | Fundamentals of statistical signal processing, Volume I : Estimation theory[END_REF]Ch. 7] :

ξML arg max ξ |(D ν G ξ [c p ; 0 K-Kp,1 ]) H r|, ( 12 
) φML arg{(D ν G ξML [c p ; 0 K-Kp,1 ]) H r}. ( 13 
)
La performance de ces estimateurs est mesurée en termes d'erreur quadratique moyenne : MSE( ψML ) E |ψ -ψML | 2 ; celle-ci étant évaluée par simulations de Monte Carlo (5 000 réalisations). La mise en oeuvre de (12) s'effectue de façon approchée via une intercorrélation suivie d'une étape de golden section search [START_REF] Kiefer | Sequential minimax search for a maximum[END_REF].

Dans la suite, nous utilisons un filtre de type root-raised cosine (RRC) de facteur d'excès de bande α = 0,2. L'observation est construite avec un facteur de suréchantillonnage T s /T = 10 ; elle débute et se termine aux échantillons n 0 = -64T s /T et T s (K +64)/T -1. Nous fixons la taille de la séquence pilote à K p = 20 et celle de l'intervalle de garde à K z = 2. Les symboles de données sont indépendants et uniformément distribués dans une constellation QPSK normalisée.

Robustesse de l'estimation du délai et de la phase en présence de données

Nous considérons dans un premier temps un récepteur parfaitement synchronisé en fréquence (ν = 0). La figure 2 illustre la CRB de ξ ainsi que la MSE de ξML en fonction du SNR. Nous considérons tout d'abord un scénario de référence sans données (K d = 0), pour lequel l'estimateur atteint plus rapidement la borne pour ρ = 25/12 (FTN) que pour ρ = 25/30 (Nyquist). Cela s'explique par la dilatation de g(t) en même temps que la densité augmente (à débit symbole fixé) ; un tel scénario se révélant favorable à l'estimation grossière du délai par intercorrélation. En présence de données (K d > 0), un court intervalle de garde (ici K z = 2) permet de garantir la robustesse de l'estimateur pour un SNR faible à modéré ; K z = 6 (non-représenté ici) préserve l'efficacité asymptotique de ξML jusqu'à un SNR de 20 dB, y compris pour le scénario FTN. Des résultats similaires à ceux de la figure 2 s'observent pour φML .

La figure 3 illustre la CRB ainsi que la MSE de ξML et φML en fonction de la densité. Tout d'abord, les estimateurs sont efficaces lorsque K d = 0, y compris à densité élevée et pour un nombre limité de pilotes (K p = 20). Rappelons que la densité la plus faible (ρ = 25/30) correspond au système de Nyquist ; il est donc attendu que les données n'introduisent aucune contamination notable dès lors que ξML ≈ ξ. En FTN, φML est globalement peu affecté par la présence de données. En revanche, la performance de ξML se dégrade continûment lorsque la densité augmente. Ce constat est toutefois à relativiser car la MSE observée reste inférieure à 10 -3 avec un SNR de 4 dB. 

Compensation grossière du décalage en fréquence

Nous abordons le cas d'un récepteur non-synchronisé en fréquence (ν = 0) et en présence de symboles de données (K d > 0). La figure 4 représente la CRB et la MSE de ξML en fonction du décalage en fréquence ν, avec ou sans compensation de celui-ci au moyen d'un estimateur non-aidé par les données à faible complexité calculatoire, tel que décrit dans [START_REF] Wang | Non-data-aided feedforward carrier frequency offset estimators for QAM constellations : A nonlinear least-squares approach[END_REF].

Une synchronisation grossière en fréquence s'avère indispensable lorsque ν > 1,3 × 10 -3 . L'estimateur de ν utilisé permet de faire face à des scénarios FTN en restaurant les performances présentées dans la figure 2 2 en requérant toutefois l'observation d'un grand nombre de symboles (K d = 10 000).

Conclusion et perspectives

Nous avons proposé des séquences pilotes optimales au sens de la CRB pour synchroniser en délai et en phase des récepteurs monoporteuses FTN. Les solutions analytiques retenues se montrent fortement dépendantes de la densité de transmission en FTN. Les estimateurs du maximum de vraisemblance usuels demeurent globalement robustes en présence de contamination par les données : entre deux et six symboles de garde suffisent à préserver leur efficacité asymptotique pour un SNR faible à modéré. De plus, une synchronisation fréquentielle grossière (non-aidée par les données) se montre suffisante pour exploiter avec pertinence les séquences pilotes proposées. De futurs travaux pourraient s'attacher à inclure le décalage fréquentiel dans la procédure d'optimisation des séquences pilotes ; ainsi que son estimation aidée par les pilotes.
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2. Le même commentaire s'applique également à φML , non-représenté ici. 
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 121 FIGURE 1 -CRB de ξ (traits pleins) et CRB de φ (tirets) en fonction de l'indice k du vecteur propre issu de (9) sélectionné comme séquence pilote, avec K p = 20, SNR = 4 dB, ρ = 25/30 (Nyquist) et ρ = 25/12 (FTN). Les paramètres de simulations décrits au début de la Section 4 sont utilisés.
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 2 FIGURE 2 -CRB (ξ|c ξ,opt ) (traits pleins) et MSE( ξML ) (marqueurs) en fonction du SNR, avec K d ∈ {0,20,64}, ρ = 25/30 (Nyquist) et ρ = 25/12 (FTN).

  FIGURE 3 -CRB (ψ|c ξ,opt ) (traits pleins) et MSE( ψML ) (marqueurs) en fonction de ρ, avec K d ∈ {0,20} et SNR = 4 dB.
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 4 FIGURE 4 -CRB (ξ|c ξ,opt ) (traits pleins) et MSE( ξML ) (marqueurs) en fonction de ν, avec et sans compensation grossière de la fréquence, SNR = 10 dB et K d = 10 000.

2 = 1, T s la période symbole.

Remarquons que des filtres T -orthogonaux plus généraux (ex. : avec excès de bande) sont également acceptables pour obtenir des échantillons de bruit non-corrélés tout en préservant une statistique suffisante pour la synchronisation et pour la détection des symboles[START_REF] Meyr | On sampling rate, analog prefiltering, and sufficient statistics for digital receivers[END_REF].