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ABSTRACT
Managing blood donations is a challenging problem due to the perishability of blood, 

limited donor pool, deferral time restrictions, and demand uncertainty. The problem 

addressed here combines two important aspects of blood supply chain management: 

the inventory control of blood products and the donation schedule. We propose a 

stochastic scenario-based reformulation of the blood donation management prob- 

lem that adopts multicomponent apheresis and utilizes donor pool segmentation 

into here-and-now and wait-and-see donors. We propose a flexible donation scheme 

that is resilient against demand uncertainty. This scheme enables more flexible do- 

nation schedules because wait-and-see donors may adjust their donation schedules 

according to the realized values of demand over time. We propose a column genera- 

tion-based approach to solve the associated multi-stage stochastic donation tailoring 

problem. The numerical results show the effectiveness of the proposed optimization 

model, which provides solutions with less than a 7% optimality gap on average with 

respect to a lower bound. It also improves the operational cost of the standard 

donation scheme that does not use wait-and-see donors by more than 18% on av- 

erage. Utilizing multicomponent apheresis and flexible wait-and-see donations are 

suggested for donation organizations because they yield significant cost reductions 

and resilient donation schedules.
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1. Introduction

Blood is not only essential for accident/disaster victims, but it is also vital for pa- 

tients getting cancer treatment, undergoing surgeries, or getting treatment for blood 

disorders. A majority of medical procedures rely heavily on an effective blood supply 

chain management (BSM) since in the U.S. alone, every two seconds someone needs 

blood or its products (American Red Cross Blood Services 2020), one of seven hospi- 

talized people needs blood, and each year, almost five million Americans depend on 

blood products or blood-related services (American Association of Blood Banks 2021). 

However, since blood cannot be manufactured, donation organizations need to satisfy 

the demand for blood by utilizing volunteer donors. That said, in the U.S., while 38%
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of the population is eligible, only around 10% actually donate blood (American Red 

Cross 2021), and this figure is comparatively lower in middle and low-income coun- 

tries (World Health Organization 2020). This is why utilizing repeat blood donors is 

crucial for health organizations to save from continuous recruitment costs and access 

a stable and safer source of blood (Masser et al. 2009). According to Mart́ın-Santana 

and Beerli-Palacio (2013), donor retention must be intensified to keep the donation 

system effective. For further details on the factors affecting the retention of donors, 

we refer the reader to Van Dongen (2015). On the other hand, Masser et al. (2012), 

and Notari IV et al. (2009) show that only 45-60% of first-time whole blood donors 

are likely to return for a second donation within two years; while, donors who have 

two or more prior donations return with higher rates of 72-96% (Bagot et al. 2016; 

Whyte 1999), and are more likely to be considered as repeat blood donors. Notice 

that a sustainable blood donation system may only be achieved by utilizing repeat 

blood donors better since they constitute a significant part of the overall supply and 

are more willing to cooperate with donation centers by sticking to predefined donation 

schedules or complying with urgent donation requests.
BSM consists of the following stages: blood collection, processing, storage, and dis- 

tribution of the blood to demand points (Osorio, Brailsford, and Smith 2015). The 

studies in the field of BSM mostly focus on donor utilization and shortage elimina- 

tion (Waxman 2002; Bonomo, Garozzo, and Bennardello 2004; Aubuchon et al. 2007; 

Ridley 2009). There are some factors that make BSM a challenging task. First, blood 

is only donated by a limited number of donors. Second, a donor needs a regeneration 

period, called deferral time, after each donation to be eligible for the next donation.
Third, blood is a perishable commodity with a limited shelf-life. For example, more 

than 200,000 units of blood and its components were disposed of after the terrorist 

attack on September 11, 2001, when Americans donated more than 500,000 units of 

blood (Korcok 2002). We refer the reader to Nagurney (2017) to have an overview of 

the probable outcomes of blood shortage or surplus.
Managing the blood supply chain becomes more challenging when the uncertainty 

of the demand is incorporated into the associated problem. Even though the demand 

for any product is an inherently uncertain parameter because of estimation errors, 

the uncertainty in blood demand faces drastic fluctuations because of external factors 

and unforeseen incidents such as accidents, natural disasters (Tabatabaie et al. 2010), 

and the outbreak of pandemics (Sayedahmed et al. 2020). When the actual demand 

is higher than the planned or forecasted amount, drastic outcomes will proceed as a 

shortage in blood products may escalate fatalities since it may cause surgeries to be
delayed. Moreover, these unforeseen incidents have a negative effect on the fluctuation 

of the supply as well. According to American Association of Blood Banks (2020b), due 

to the COVID-19 pandemic, more than 50,000 blood drives were canceled, and blood 

storage was so low that it could last for about three days in New York City. When the 

realized demand is lower than the supply, the surplus amount will be disposed of or 

used for research purposes, resulting in a waste of a valuable commodity. Moreover, due 

to the deferral time, the utilized donors would not be able to donate blood in upcoming 

periods if blood is needed. Therefore, a method that could handle the uncertainty in 

the blood demand is of high importance for better management of blood supply.
Traditionally, whole blood donation was performed in all blood donation organi- 

zations. Whole blood donation may result in some adverse effects on donors, such 

as fatigue, vasovagal symptoms, and nausea (Newman 1997; Newman et al. 2003). 

Moreover, whole blood donation may result in shortages and inefficient utilization of 

donors. However, recent developments allow better utilization of blood products and

2



donors (Haemonetics Corporation 2008; Ridley 2009) by proposing supply flexibility. 

The new method that has been utilized recently is called multicomponent apheresis
(MCA). It is worth noting that apheresis donations are not immune from donor is- 

sues, and this method is costly (Osorio, Brailsford, and Smith 2018). The importance 

of supply flexibility has been explored in the literature (Tachizawa and Thomsen 2007; 

Liao, Hong, and Rao 2010; Irfan, Wang, and Akhtar 2019). The donor can donate more 

than one transfusable unit and/or one or more blood components using MCA without 

risking safety (Infanti 2018; Burgstaler and Winters 2016). Compared to whole blood 

donation, MCA has several other advantages as follows. Increased donor utilization:
In a single donation, several components or transfusable units may be included with 

deferral periods based on the type of donation, and this will result in better BSM. Re- 

duced infection risks: With MCA, a single donor can donate more transfusable units 

of blood. As a result, patients receive blood from a smaller number of donors, reducing
only the risk of infection. Better matching demand and supply: Through tailored do- 

nations, MCA helps match the uncertain demand with the supply by only collecting 

the required components (Ciavarella 1993; Connelly and Pink 2002). As a way to cat- 

egorize the benefits of MCA, blood donation tailoring is defined with the objective of 

minimizing the overall costs of donation, holding, and disposing of blood products by 

utilizing the donor pool to supply the blood essential for those in need (Özener, Ekici, 

and Çoban 2019). According to Australian Red Cross (2021) when the donors are flex- 

ible on time and donation type, there will be tremendous benefits. In this study, we 

aim to reach the highest efficiency in the donation schedule. To achieve this goal, we 

combine MCA with modern optimization techniques. To customize the supply, we take 

advantage of MCA, and to be resilient against the uncertainty in demand, we adopt 

a scenario tree-based stochastic optimization model that divides the donor pool into 

two donor types, i.e., here-and-now and wait-and-see. A here-and-now donor follows 

a standard donation scheme regardless of the scenario realized and it is known from 

the start of the planning horizon what donation schedule he/she will follow; a wait- 

and-see donor is more flexible and adjusts their donation schedule based on the actual 

needs within the planned time frame. Regardless of the donation schemes followed by 

donors, i.e., wait-and-see or here-and-now, we assume that all donors are repeat blood 

donors who are willing to cooperate with the donation center according to the do- 

nation schemes. We propose donation tailoring under uncertainty for blood donation 

organizations based on MCA utilization, donor segmentation, holding and scrapping 

costs, shelf life, and deferral times of blood products. To this end, the stochastic do- 

nation tailoring problem (SDTP) that is proposed in this paper aims to minimize the 

total (expected) operational donation costs. The goal of the model is to satisfy all 

the demand scenarios with the minimum cost. Notice that since the demand must be 

satisfied for all realizations in the scenario tree, a feasible solution may also yield an 

excessive amount of donations that result in spoilage of some of the products when a 

non-worst-case scenario is realized; nevertheless, the associated drawback is avoided in 

our setting by utilizing wait-and-see donors who are flexible in cooperating with the 

donation center to adjust their donation types according to the realized demand over 

the planning horizon. Scenario tree-based techniques have been utilized in different do- 

mains to deal with uncertainty (Aghaei et al. 2013; Niknam, Azizipanah-Abarghooee, 

and Narimani 2012; Freeman, Melouk, and Mittenthal 2016).
The contribution of this study is threefold. First, there are only a limited number 

of studies in the literature on donation tailoring that suggest utilizing optimization 

methods within an uncertain framework; the SDTP is a problem that aims to de- 

velop a flexible donation system for MCA and offers solutions to handle uncertainty

3



in demand through donor segmentation while considering participation ratio of the 

donors. The proposed approach is a column generation-based heuristic that can han- 

dle realistically sized instances that cannot be solved with commercial solvers. The 

algorithm’s performance is assessed by using a mechanism for determining a lower 

bound that is efficient and achieved by solving the linear programming relaxation of 

the mixed-integer programming models. The findings indicate that the CG suggested 

method has a less than 7% average deviation from optimal for situations involving 

both wait-and-see and here-and-now donors. In addition, effective donation schedules 

are developed that incorporate wait-and-see donors and improve the operational cost 

of standard donation schemes by an average of 18%.
The rest of the paper is structured as follows: The literature review is presented in 

Section 2, the problem is defined, and the mathematical model of SDTP is introduced 

in Section 3; the solution methods are discussed in Section 4, the numerical results are 

presented in Section 5, and the conclusion and the managerial insights of the study 

are provided in Section 6.

2. Literature Review

BSM has been widely studied by researchers in recent years. In this study, we mainly 

focus on the papers that consider uncertainty in demand. We refer the reader to the sur- 

veys written by Belien and Force (2012), Osorio, Brailsford, and Smith (2015), Pirabán, 

Guerrero, and Labadie (2019), Keskinocak and Savva (2020), Williams, Harper, and 

Gartner (2020), and Meneses, Santos, and Barbosa-Póvoa (2023) that propose a de- 

tailed overview of the blood supply chain by analyzing its features from different per- 

spectives. As pointed out in all of these surveys, one of the biggest challenges of BSM 

is to satisfy the demand on time by utilizing (repeat) donors that form the donation 

pool.
Research in BSM focuses primarily on inventory control policies to balance the 

shortage and disposal of whole blood products (Brodheim, Hirsch, and Prastacos 1976; 

Cohen et al. 1979; Pereira 2005; Rytila and Spens 2006; Haijema, van der Wal, and van 

Dijk 2007; Kopach, Balcioglu, and Carter 2008; Fontaine et al. 2009; Zhou, Leung, and 

Pierskalla 2011; Civelek, Karaesmen, and Scheller-Wolf 2015; Hosseinifard and Abbasi 

2018). For example, Pereira (2005) studies stochastic models that simulate the daily 

operations of a hospital blood bank inventory in a finite horizon. The numerical results 

show that the hospitals with larger variations in daily transfusion must be supplied by 

young red blood cells while the hospitals with smaller ones must be supplied by older 

stocks. Kopach, Balcioglu, and Carter (2008) evaluate the performance of a regional 

blood center in Canada by employing the two demand rate models proposed by Perry 

and Posner (1990). The authors seek an optimal policy in which the objective is to 

minimize the cost, shortages, and expiration with multiple demand and service levels 

by using a queuing model and using level crossing techniques. Civelek, Karaesmen, 

and Scheller-Wolf (2015) consider mismatching costs as well as holding, shortage, and 

spoil costs in blood platelets. Modelling the problem as a Markov Decision Process, 

the authors propose a heuristic algorithm to compare the results with near-optimal 

approaches in the literature.
Another aspect that has been widely studied by researchers is issuing policies. Signif- 

icant research is conducted to study the impacts of different issuing policies on average 

inventory level, shortage, and wastage rates (Pegels and Jelmert 1970; Ohsaka et al. 

2009; Haijema et al. 2009; Haijema 2011; Abbasi and Hosseinifard 2014; Lowalekar, Ni-
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lakantan, and Ravichandran 2016). Even though a blood supply chain network consists 

of four different echelons, namely, collection, processing, inventory, and distribution 

(Osorio, Brailsford, and Smith 2015), hitherto models that are mainly based on inven- 

tory control is still lagging behind in integrating the two critical phases, i.e., production 

and inventory. By improving and integrating production and inventory management 

of blood and blood products, MCA can help donation organizations to alleviate the 

donor shortage and to reduce healthcare costs. Despite this, donor tailoring has largely 

been overlooked as one of the major benefits of MCA (Pierskalla 2004; Özener, Ekici, 

and Çoban 2019). Only a few studies have focused on this aspect of MCA: Valbonesi 

et al. (2005) provide donation patterns by implementing MCA in a health center in 

Italy; Osorio et al. (2017) propose an integer programming model to decide on the 

donation amounts of each blood product under a capacity constraint without the de- 

ferral time restriction; finally, to study the importance of MCA in production and 

cost management, Özener, Ekici, and Çoban (2019) combine inventory management 

with scheduling of donations. Notice that the associated stream of research assumes 

that the demand is known, and this is why the proposed donation schedules and the 

solutions of the models, in general, may be infeasible for the problem at hand when 

demand is uncertain.
Studies that focus on BSM under demand uncertainty, on the other hand, focus 

on different aspects of the problem without utilizing MCA or donation scheduling. 

To reduce the costs of purchasing, shortages, holding costs, and waste, Gunpinar and 

Centeno (2015) propose an integer programming model for uncertain demand. More- 

over, other studies have been conducted that aim to study blood distribution while 

minimizing shortages and spoilage, as well as arrange the distribution of blood prod- 

ucts (Prastacos 1981; Gregor, Forthofer, and Kapadia 1982; Federgruen, Prastacos, 

and Zipkin 1986; Alshamrani, Mathur, and Ballou 2007; Hemmelmayr et al. 2010; 

Chaiwuttisak et al. 2016; Sarhangian et al. 2018; Jafarkhan and Yaghoubi 2018).
Dehghani, Abbasi, and Oliveira (2021) consider a network of the central blood bank 

and several hospitals with uncertain demand during each review period. The validity 

of the proposed two-stage stochastic programming approaches for ordering from a cen- 

tral blood bank and transshipping to other hospitals in each period has been presented 

via extensive numerical experiments in their study. Ghasemi et al. (2022) consider a 

multi-echelon mathematical model for managing the blood supply chain in disaster 

situations. The proposed model aims to minimize costs while maximizing satisfaction 

by determining the need for reliable and unreliable distributors and central warehouses 

and calculating the amount of blood to be sent to distribution centres. The authors 

also consider pre- and post-disaster modes, investigate flow between centres, and em- 

ploy a robust optimization approach for solving the proposed model, demonstrating 

its effective performance. Momenitabar et al. (2022) focus on the reconfiguration of 

a closed-loop blood supply chain network considering blood group compatibility and 

blood product shelf-life. A fuzzy multi-objective mixed-integer non-linear program- 

ming model is proposed to minimize network costs and maximize the minimum service 

level to patients.
Ghahremani-Nahr et al. (2022) present an approach for designing a blood sup- 

ply chain network that considers economic and environmental factors. The proposed 

model aims to minimize both operational costs and logistical carbon footprint. Three 

multi-objective decision-making approaches are examined and ranked based on vari- 

ous attributes using statistical tests and the TOPSIS method. The study includes a 

real case study involving 21 cities in the North-West of Iran, with a 12-month im- 

plementation time window, to illustrate the trade-offs between cost and carbon emis-
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sions. Xu and Szmerekovsky (2022) propose a multi-product multi-period stochastic 

program to optimize the integrated blood supply chain. By considering interactions 

between red blood cells and platelets, demand uncertainty, blood age information, 

blood type substitution, and multiple patient types, the objective is to minimize costs 

throughout the collection, production, inventory, and distribution process. The study 

demonstrates the cost advantages of the multi-product model compared to an un- 

coordinated approach, highlighting the importance of integrating red blood cell and 

platelet supply chains, particularly in scenarios with increased whole blood dona- 

tions and a higher percentage of whole blood derived platelets pooled for transfusion. 

Khalilpourazari and Hashemi Doulabi (2022) present a multi-objective formulation to 

address the challenges faced by the blood supply chain during the COVID-19 pan- 

demic. The authors propose two flexible uncertain models to account for parameter 

uncertainties and offer robust solutions for emergency blood supply chain design. The 

findings demonstrate that the robust model effectively handles uncertainties, result- 

ing in lower costs and delivery time, and provides valuable managerial insights for 

enhancing the effectiveness of the supply chain. Xu and Szmerekovsky (2023) study 

a multi-stage stochastic optimization model for a platelet supply chain under central- 

ized control. The authors investigate the impact of transshipment between hospitals 

on performance improvement and identify strategies such as donor recruitment, suit- 

able inventory management, and shorter stage lengths for enhanced cost efficiency. The 

proposed model outperforms a two-stage stochastic program in handling random daily 

demand and demonstrates that transshipment helps alleviate shortages and wastage 

and improves stock allocation.
Our optimization methodology is also different from other studies in the BSM lit- 

erature that tackle the demand uncertainty because we aim to gain resilience against 

the uncertainty via segmentation of donors as wait-and-see and here-and-now in the
donation tailoring problem while other studies such as Fattahi et al. (2015), Dillon, 

Oliveira, and Abbasi (2017), Cunha, Raupp, and Oliveira (2017) and Hamdan and 

Diabat (2019) focus on two-stage stochastic programming to formulate the recourse 

decisions. By including both wait-and-see and here-and-now donors in the donation 

plan, it allows for more flexibility in scheduling as the wait-and-see donors can ad- 

just their donation schedules based on the actual demand over time. Lastly, different
from the standard parametric decision rule functions that are often used in stochastic 

programming (Shapiro, Dentcheva, and Ruszczyński 2014) and robust optimization 

(Ben-Tal et al. 2004), we adopt scenario-based adjustable decisions.

3. Problem Definition

In SDTP, the main objective of the blood donation organization is to satisfy the 

uncertain demand with the supply of blood while minimizing the holding, disposal, and 

donation costs. The expenses associated with donation cost encompass various items 

such as bags, equipment like centrifuges, the time spent by technical and medical 

personnel, filtration processes, labelling, and general expenses (Özener, Ekici, and 

Çoban 2019).
We consider only one blood type, and the proposed model can be utilized for all 

blood types separately. This approach is predicated on the standard medical prac- 

tice which, despite the technical feasibility of substituting compatible blood types, 

generally prefers to use blood with the same ABO type as the patient for optimal 

compatibility and safety (Harmening, Forneris, and Tubby 2012). Furthermore, this
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strategy aligns with previous studies in the field, including the work by Özener, Ekici, 

and Çoban (2019). Three main blood products are studied; platelets, plasma, and red 

blood cells (RBCs), and their shelf-lives are considered as one week, one year, and 

six weeks, respectively. Every time a donor performs a donation, they need to wait 

for an amount of time, namely deferral time before making another donation. Donors 

can only perform a limited number of donations depending on the donation performed 

during their planning horizon; deferral times are determined by the type of the current 

and upcoming donation (American Association of Blood Banks 2020a). For example, 

after donating whole blood, a donor has to wait eight weeks until they can donate 

again; however, they have to only wait for four weeks to donate single-unit platelets 

after whole blood donation.

Table 1. Nomenclature for SDTP

[Alt-Text: ]Sets, parameters, and decision variables used in SDTP are presented in 

this table.
Sets
I set of donation types ({1, 2, . . . , L}) – indexed by i
J set of blood products ({red blood cells, platelets, plasma}) – indexed by j
K set of donors ({1, 2, ..., K}) – indexed by k
T set of time periods in the planning horizon ({1, 2, ..., T}) – indexed by t
N set of demand nodes ({1, 2, ..., N}) in scenario tree – indexed by e
Nt set of nodes in period t ∈ T
Pd(e, l) set of l − 1 predecessors of node e ∪ {e}
Pt(e) set of nodes in the path from the source node to e
N̄(e, l) set of children nodes of e in the next l periods ∪ {e}

Parameters
chn 

i cost of performing type i here-and-now donation
cw s 

i cost of performing type i wait-and-see donation
hj unit holding cost of blood product j (per period)
oj unit disposal cost of blood product j 

sii′ deferral time between donation types i and i′

ηj shelf-life of blood product j 

aij units of blood product j collected when donation type i is performed
dej demand of blood product j at node e 

Ej upper bound on the number of units of blood product j that can be collected 

from a donor in the planning horizon 

ipd(e) immediate predecessor of node e 

t(e) period of node e
pr(e) probability of node e being realized
θ percentage of wait-and-see donors in the pool
ξt ratio of participation in a donation for a donor in period t 

M significantly a large number 

Ω penalty cost for the shortage of blood

Decision Variables
xik e 1 if donor k performs donation type i at node e; 0, otherwise
yik t 1 if donor k performs donation type i in time period t; 0, otherwise
Iej inventory of blood product j at the end of time period of node e (t(e))
Pej amount of blood product j disposed at the end of time period of node e (t(e))
Bej amount of shortage of blood product j at the end of time period of node e (t(e))

In this study, we assume a multi-period, multi-product, and multi-stage problem, 

the demand of which is satisfied by a limited donor pool in which all donors are repeat 

blood donors and are willing to cooperate with the donation center according to the 

preferred donation schemes. The amount of product j obtained by donation type i is 

denoted by aij . The total number of donations in the planning horizon is indirectly 

limited by blood products. A donor can donate only a limited amount of blood product
j within the planning horizon (Valbonesi et al. 2005), and that limit is denoted by Ej .
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The sets, parameters and decision variables are presented in Table 1.

Figure 1. Problem structure for SDTP

[Alt-Text: ]This figure represents the demand structure tree for blood products.

A scenario tree approach is used to model the demand uncertainty. The here-and- 

now decision variables are determined at the start of the planning horizon, while 

wait-and-see decision variables are more flexible, and the donation plan is adjusted 

based on the projected needs within the planning period.

Remark 1. In this study, we introduce the concepts of “wait-and-see” and “here-and- 

now” donors to describe differing behavioral patterns observed in the donor population. 

These terms are not meant to suggest that donors are the primary decision-makers 

in the donation process. Instead, they serve as descriptive categorizations to aid in 

understanding variability in donor behavior. The decision-making power unequivocally 

remains with the blood centers. This terminology, while novel, is conceptually similar 

to the wait-and-see strategy commonly employed in two-stage modeling and other 

methodologies.

Figure 1 shows a general scenario tree with the notations used in SDTP, providing 

a visual representation of the demand tree structure. The immediate predecessor of 

node e6 is node e2 = ipd(e6). Also, the set of children of node e1 in the next period 

is represented by N̄(e1, 1) and for the next two periods is represented by N̄(e1, 2). 

Each node e ∈ N in the scenario tree denotes a demand realization at period t(e) with 

its associated probability pr(e); and each path from the root node (0) to a leaf node
e ∈ N is referred to as a scenario of the tree, i.e., denoted by Pt(e14) = {0, e2, e6, e14}, 

where NT denotes the set of nodes in the last period of the planning horizon.

Remark 2. Donor segmentation into here-and-now and wait-and-see categories, as 

we have proposed, introduces a crucial aspect of flexibility and resilience to the blood 

donation system. The here-and-now donors with fixed schedules and predetermined 

quantities provide stability and facilitate the planning process, as their contributions 

remain unaffected by uncertainties or scenario shifts. In contrast, the introduction of 

wait-and-see donors adds a robust and adaptable aspect to our model. These donors 

serve as a contingent force, ready to respond to variable requirements as different sce- 

narios unfold. This segmentation enables blood centers to adjust the contribution from
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wait-and-see donors according to specific unfolding scenarios, significantly enhancing 

a more resilient and efficient blood donation system.

In the SDTP model, here-and-now decisions, represented by y, are made at the 

start of the planning horizon and are not affected by specific scenario outcomes, and 

wait-and-see decisions, represented by x, are specific to a particular scenario. The 

resulting multi-stage mathematical optimization model [MIP-WS] is presented below:

[MIP-WS]:

min
∑
e∈NT

pr(e)

[ ∑
e′∈Pt(e)

(
ξt(e)

∑
i

∑
k

(
cw s 

i xik e′ + chn 

i yik t(e′)

)
+ · · · 

· · ·
∑
j

(
hjIe′j + ojPe′j +ΩBe′j

))]
s.t. (M − 1)xik e +

∑
i′

∑
e′∈N̄(e,sii′−1)

xi′k e′ ≤ M ∀e, i, k (1) 

(M − 1)yik t +
∑
i′

t+sii′−1∑
t′=t

yi′k t′ ≤ M ∀i, k , t (2)

Iipd(e) j − Iej − Pej+Bej + · · · 

· · ·
∑
i

∑
k

ξt(e)aij
(
xik e + yik t(e)

)
= dej ∀e, j (3)∑

i

∑
e′∈Pt(e)

aijxik e′ +
∑
i

∑
t

aijyik t ≤ Ej ∀e ∈ NT , j , k (4)

I0j +
∑

e′∈Pd(e,min{ηj ,t(e)−1})

∑
i

∑
k

ξt(e′)aijxik e′ + · · · 

· · ·
t(e)∑
t′=1

∑
i

∑
k

ξt′aijyik t′ − Iej ≥ 0 ∀j , e : t(e) ≤ ηj (5)

t(e)∑
t′=t(e)−ηj+1

∑
i

∑
k

ξt′aijyik t′ − Iej + · · · 

· · ·
∑

e′∈Pd(e,ηj)

∑
i

∑
k

ξt(e′)aijxik e′+ ≥ 0 ∀j , e : t(e) > ηj (6)

xik e ≤ zk ∀e, i, k (7)∑
i

∑
t

yik t ≤ M(1− zk) ∀k (8)∑
k

zk ≤ θ K (9)

xik e, yik t ∈ {0, 1} ∀e, i, k , t (10)

Iej , Pej , Bej ≥ 0 ∀e, j (11)

zk ≥ 0 ∀k (12)
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The objective is to minimize the sum of expected costs, which consist of dona- 

tion, holding, and discarding costs. It must be noted that it is difficult to accurately 

determine a value for the shortage cost (Ω) in the general model. To mitigate this chal- 

lenge, we set Ω to a relatively large value to ensure that the model satisfies demand 

when supply meets demand. Constraints (1) enforce deferral time between succes- 

sive wait-and-see donations of a donor; constraints (2) enforce the same deferral time 

restriction for the here-and-now donations. It must be noted that donors who miss 

their scheduled donations are still subject to the same deferral period before they 

can donate again. The constraints in (3) are designed to maintain inventory balance 

for every blood product and across all time periods’ scenarios. A single donor may 

only donate product j of blood during the planning horizon up to a limit and that 

is guaranteed by constraints (4). The shelf-life of blood products is restricted by the 

constraints (5) and (6). Finally, constraints (7) and (8) ensure that a donor can either 

appear in a wait-and-see or a here-and-now schedule but not both, and we limit the 

number of wait-and-see donors by constraint (9). As discussed in Özener, Ekici, and 

Çoban (2019), the deterministic form of the proposed model is related to the general 

lot-sizing and scheduling problem and the cutting stock problem. The proposed mixed 

integer program (MIP) is a challenging model, in particular if the planning horizon is 

long and there are many donor. Therefore, in the next section, we propose a column 

generation-based heuristic approach to solve this problem effectively.

Remark 3. The role of first-time or single donations in maintaining the blood supply 

chain is significant and we duly acknowledge this. However, gathering reliable data on 

these one-time donors within the strategic planning horizon is inherently challenging, 

particularly when compared to the more predictable pattern of repeat donors. De- 

spite this obstacle, we propose that should reliable data on single donations become 

accessible, it would be feasible to incorporate this into the existing system. Under 

such circumstances, the demand scenarios within the planning model would need to 

be updated in line with single donation forecasts. Once this is achieved, the planning 

approach, primarily designed for repeat donors, would then be applied considering the 

revised scenario tree.

4. Column Generation-Based Heuristic Approach

The proposed algorithm for solving the MIP-WS problem, which is a mixed-integer 

programming problem with a large number of donors and scenarios as well as long 

planning horizons, is a column generation-based heuristic. The algorithm begins by 

starting with a feasible set of columns for the LP-relaxation of the restricted mas- 

ter problem (RMP-WS) that includes both here-and-now and wait-and-see decisions. 

Then, by obtaining the dual variables and solving corresponding subproblems, prof- 

itable columns are added to the model. This process is repeated until all decision 

variables in the RMP-WS are integers or the time limit is reached. In this stage, un- 

like the branch and price approach, which starts branching on the decision variables, 

the master problem with integer decision variables and both here-and-now and wait- 

and-see decisions (MP-WS) is solved using all the generated columns. To clarify the 

procedure adopted in our methodology, we diverge from the traditional branch and 

price approach, where branching commences on the decision variables. In contrast, 

our process begins by solving the master problem incorporating both integer decision

10



variables and a combination of here-and-now and wait-and-see decisions (MP-WS). 

This is undertaken utilizing the entirety of the generated columns rather than initi- 

ating column generation in each node on the branch tree. The key advantage of the 

algorithm is that it is able to efficiently solve realistically sized instances of the prob- 

lem. We refer the readers to Lübbecke and Desrosiers (2005), Desaulniers, Desrosiers, 

and Solomon (2005) and Lübbecke (2010) for a detailed explanation of the column 

generation algorithm.
The proposed column generation-based heuristic has a set sequence of steps to 

follow. First, we introduce a column, denoted as α, to the reduced master problem 

([RMP-WS]) that is associated with a wait-and-see donor, denoted as x. Then, we 

introduce another column, denoted as β, to the [RMP-WS] that is associated with 

a here-and-now donor, denoted as y. It is important to note that in the [RMP-WS], 

we ignore the shelf-life constraint. This method will continue until the values of the 

objective functions for the subproblems [PP-x] and [PP-y] are non-negative, indicat- 

ing that useful columns for the [RMP-WS] have been generated or the time limit 

has reached. Finally, by incorporating the shelf-life constraint, the [RMP-WS], which 

includes binary and integer decision variables, such as yl representing the number of 

donors who follow here-and-now schedule l, and xm representing the number of donors 

who follow wait-and-see schedule m, will be solved. The solution of this [RMP-WS] 

with the shelf-life constraint will be the final solution of the SDTP. It also needs to 

be noted that a total donation cost of c̃l is the cost of here-and-now schedule l, and a 

total donation cost of ĉm is the cost of a wait-and-see schedule m.
The total number of blood product j collected during a time period t(e) is calculated 

using βl 

j t(e). Meanwhile, αm 

ej denotes the amount of blood product j collected at node

e under a wait-and-see donation schedule. [RMP-WS] is presented as follows:

[RMP-WS]:

min
∑
e∈NT

pr(e)

 ∑
j

∑
e′∈Pt(e)

hjIe′j + ojPe′j +ΩBe′j

 + · · · 

· · ·
∑
m

ĉmxm +
∑
l

c̃lyl

s.t. Iipd(e) j − Iej − Pej +Bej +
∑
m

α
m

ej xm +
∑
l

β
l

j t(e) yl
= dej ∀e, j (13)∑

l

yl +
∑
m

xm ≤ K (14)∑
m

xm ≤ θ K (15)

Iej , Pej , Bej ≥ 0 ∀e, j (16)

yl, xm ≥ 0 ∀l , m (17) 

In [RMP-WS], donation, holding, and disposal costs should be minimized to minimize 

the total cost of the columns. Each node’s inventory flow balance is ensured by con- 

straints (13). Constraint (14) imposes a limit of K on the number of donors available. 

Constraint (15) ensures that only fraction θ of total donors can follow a wait-and- 

see schedule. Lastly, the non-negativity of decision variables is defined in constraints 

(16) and (17). It must be noted that we handle the separation of wait-and-see and
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here-and-now schedules differently in the master problem. By generating the donation 

schedules separately for wait-and-see and here-and-now donors, we ensure that a donor 

can only appear in either one of these schedules but not both. Moreover, to limit the 

number of wait-and-see donors, we employ constraints (14) and (15) in the master 

problem, which effectively control the number of donors assigned to the wait-and-see 

and here-and-now schedules. The dual variables (wj e) associated with (13) are used in 

the two subproblems [PP-x] and [PP-y]. In the context of the proposed model, the dual 

variables associated with constraints (14) and (15) in the master problem may seem to 

be overlooked. However, due to the nature of our problem structure, these dual vari- 

ables, in practice, present themselves as constants with relatively small values, leading 

to their marginal impact on the overall problem. In particular, during periods when 

the availability of donors is limited, these small discrepancies might potentially cause 

inaccuracies. To circumvent such instances, we add a mechanism to introduce columns 

with small positive costs in the subproblems. This strategy is developed to tackle the 

challenges that might arise from the addition of columns with negative costs, ensuring 

the integrity and reliability of our solution approach. [PP-y], which provides profitable 

here-and-now columns, can be formulated as follows:

[PP-y]:

min
∑
i

∑
t

qit(ξtc
hn 

i −
∑
j

∑
e∈Nt

ξt(e)aijwj e) 

s.t. (M − 1)qit +
∑
i′

t+sii′−1∑
t′=t

qi′t′ ≤ M ∀i, t (18)∑
i,t

aijqit ≤ Ej ∀j (19)

qit ∈ {0, 1} ∀i, t (20)

In [PP-y], a donation of type i at time t will be represented by this binary decision 

variable qit. The objective is to minimize the reduced cost of the column. If the reduced 

cost is negative, there exist donation patterns which, if added to the basis, will improve 

the objective function of [RMP-WS]. In other words, if the objective function value 

of [PP-y] is less than zero, there exists a column (l) related to optimal values of qit
which must be taken to the restricted master problem [RMP-WS]. β

l

j t and c̃l values 

are calculated as follows:

β
l

j t = ξt 

L∑
i=1

aijqit (21) 

c̃l =

L∑
i=1

T∑
t=1

ξtc
hn 

i qit (22)

After each iteration, the process is repeated until the objective function for [PP- 

y] is greater than or equal to zero. The deferral times are imposed by constraints 

(18). For a given blood product, a donor can only donate a limited amount during 

the planning horizon and that is guaranteed by Constraint (19). Constraint (20) is a
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binary constraint. Following that, [PP-x], which is responsible for producing profitable 

wait-and-see columns, can be formulated as follows:

[PP-x]:

min
∑
e

pr(e)

(∑
i

ξt(e)c
w s 

i zie

)
−
∑
e

∑
i

∑
j

ξt(e)zieaijwj e

s.t. (M − 1)zie +
∑
i′

∑
e′∈N̄(e,sii′−1)

zi′e′ ≤ M ∀e, i (23)

∑
i

∑
e′∈Pt(e)

aijzie′ ≤ Ej ∀e ∈ NT , j (24)

zie ∈ {0, 1} ∀e, i (25)

A binary decision variable (zie) in [PP-x] represents if in node e, donation type i is 

performed. Minimizing the reduced cost of the column is the objective of the model. 

Upon a negative objective function value, the column corresponding to all zie that 

are equal to 1 will be added to [RMP-WS]. As a result of constraints (23), successive 

donations are deferred for a certain period of time. Constraints (24) limit the amount 

of blood products that a donor can donate during the planning horizon. Lastly, binary 

variables are declared in constraints (25). Optimal zie values are used to calculate α
m

j e
and ĉm values as follows:

α
m

j e = ξt(e)

L∑
i=1

aijzie (26) 

ĉm =

N∑
e=1

pr(e)

(
L∑
i=1

ξt(e)c
w s 

i zie

)
(27) 

With the newly added column, [RMP-WS] is once again solved.
To obtain a suitable solution, all profitable columns are generated, and then [RMP- 

WS] is solved along with shelf-life constraints and binary decision variables. The new
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model is called [MP-WS], which is presented below:

[MP-WS]:

min
∑
e∈NT

pr(e)

 ∑
j

∑
e′∈Pt(e)

hjIe′j + ojPe′j +ΩBe′j

 + · · · 

· · ·
∑
m

ĉmxm +
∑
l

c̃lyl

s.t. (13)− (16)

I0j +
∑

e′∈Pd(e,ηj)

∑
m

α
m

j e′xm + · · · 

· · ·
t(e)∑
t′=1

∑
l

β
l

j t′yl − Iej ≥ 0 ∀j , e : t(e) ≤ ηj (28)∑
e′∈Pd(e,min{ηj ,t(e)−1})

∑
m

α
m

j e′xm + · · ·

t(e)∑
t′=t(e)−ηj+1

∑
l

β
l

j t′yl − Iej ≥ 0 ∀j , e : t(e) > ηj (29)

yl, xm ≥ 0− integ er ∀l , m (30)

In [MP-WS], constraints (28) and (29) are the shelf-life constraints, and constraints 

(30) define binary variable declarations. This algorithm is not a pure branch-and-price
algorithm because we do not branch on the continuous decision variables; instead, we 

solve the associated master problem with integer decision variables ([MP-WS]).
The suggested method of column generation begins by finding a feasible solution 

to [RMP-WS]. Then, the [PP-y] and [PP-x] problems will be resolved, and the corre- 

sponding columns will be incorporated into the basis of [RMP-WS]. This process will 

be repeated until either the reduced cost is positive or the time limit is reached. If 

the reduced cost is not negative, then [MP-WS] will be solved and the algorithm will 

be terminated. The initial solutions for here-and-now and wait-and-see donations are 

presented in Appendix A and Appendix B , respectively.
Post processing algorithm for donor utilization efficiency. To achieve opti- 

mal donor allocation, we first develop and solve an optimization model. However, rec- 

ognizing the potential for further refinement and improvement, we have incorporated 

a post-processing stage into our approach. The primary objective of this algorithm is 

to address the equitable distribution of donations to the pool without affecting the 

overall benefits derived from the donations yielded by the optimization model. By 

systematically evaluating and reassigning available resources, we aim to demonstrate 

substantial improvements in the utilization efficiency of donors, providing valuable 

insights for optimizing donor allocation strategies in similar contexts. The algorithm 

begins with selecting an unassigned donor (referred to as “donor a”) and identifying 

the donor with the highest number of donations (referred to as “donor b”). Let the 

total number of donations made by “donor b” be denoted by n∗. We randomly assign
⌊n∗

2 ⌋ donations from “donor b” to “donor a”. After this reassignment, the number of 

donations is updated, and these steps are iteratively repeated until all donors have
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been evaluated or until each donor has performed one donation during the planning 

horizon. The procedure is conducted for wait-and-see and here-and-now donors sepa- 

rately.

5. Computational Experiments

We conduct a numerical study to evaluate the effectiveness of the proposed solution 

methods using random examples inspired by real-life scenarios. The study is run on 

a 64-bit Windows Server with two 2.4 GHz Intel Xeon CPUs and 24 GB RAM. The 

algorithms are implemented using the Python Programming Language and GUROBI 

Solver version 9.1.1.

5.1. Data Generation

Throughout this study, we analyze instances that are inspired by real-life data (Do 

Carmo et al. 2013). In this section, a week is referred to as a “period”, and the problem 

is solved over a 12-week planning horizon, which is the longest time frame that can 

be computed within the limitations of CPU time. Özener, Ekici, and Çoban (2019) 

show that out of 17 possible donation types, the following three donation types are
the most utilized ones in donation schedules:

I whole blood (WB)
II single unit platelets (SP) and double units plasma (DPLS)
III double units platelets (DP), single-unit red blood cells (RBC), and single-unit 

plasma (PLS)

We also consider these three types in this study. As mentioned before, there must 

be a deferral period between two different types of donations depending on the current 

type and the upcoming type. Table 2 represents the deferral times of each donation 

type (Valbonesi et al. 2005; Stanford Blood Center 2021; Özener, Ekici, and Çoban 

2019).

Table 2. Deferral times in terms of weeks

[Alt-Text: ]This table presents the diferral times between donations in terms of 

weeks.

From \ To I II III
I 8 4 8
II 8 8 1
III 8 4 8

In the case of a whole blood donation, the donor will have to wait eight weeks 

before he or she can donate whole blood or four weeks before he or she can donate 

SP-DPLS. Moreover, we consider the donation cost of donation types I, II, and III to 

be equal to $138, $364, and $364, respectively. It must be noted that in this study, 

we assume here-and-now and wait-and-see donations to have the same cost. However, 

our proposed model is versatile enough to consider the cases with different donation 

costs. Red blood cells, platelets, and plasma are each limited to 1.5, 6, and 3 units 

of donation per planning horizon, respectively (Valbonesi et al. 2005). Moreover, as 

suggested by Gunpinar and Centeno (2015), the holding cost for each blood product 

is considered as $1.25 per unit per day, red blood cells, plasma, and platelets have
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disposal costs of $0.36, $0.36, and $0.06 per unit, respectively based on an actual 

regional waste management center (Özener, Ekici, and Çoban 2019).

Table 3. Number of unit products collected from each donation type and their shelf-life

[Alt-Text: ]This table provides information on the number of unit products collected 

from each donation type and their shelf-life.

Donation Type \ Blood Products Red Blood Cells Plasma Platelets

I 1 0.5 0.1
II 0 2 1
III 1 1 2

Shelf-life (in weeks) 6 50 1

Table 3 represents the number of unit products that are collected from each donation 

type and the shelf-life of each blood product.
To investigate the effect of uncertainty on the results, we conduct computational 

analysis in three ways. First, to provide a better understanding of the problem and 

scenario tree-based reformulation of the blood donation management problem that 

adopts multicomponent apheresis and utilizes donor pool segmentation as here-and- 

now and wait-and-see donors, we propose an illustrative example with a low number of 

repeat donors and time periods. Second, we investigate the seasonality and variability 

of demand. We also provide optimality gaps and improvements the blood organizations 

can get through utilizing wait-and-see donors. Third, to provide a profound insight 

toward utilizing the wait-and-see donors in real life, we propose a road map to the 

computational results.

5.2. Illustrative Example

This section provides an illustrative example to understand the impact of utilizing 

wait-and-see donors compared to the model with only here-and-now donors. In the 

given instance, there are 30 repeat blood donors who perform donations for three time 

periods, and the deferral times of donations are relaxed. The scenario tree and the 

demand for different products are presented in Figure 2 and Table 4, respectively; for 

example, the demand for product 1 in node e2 of period one (t = 1) is equal to 9 units. 

We solve [MIP-HN] and after applying the post-processing algorithm, we present the 

results in Table 5. For here-and-now and wait-and-see decisions, we solve [MIP-WS]
followed by the post-processing algorithm and present the results in Table 6 and Table 

7. Moreover, to have a comparison of the results before and after the post-processing 

algorithm, we present the associated results in Appendix C.
In Table 5, the first column represents the periods, and the second, third, and 

fourth columns provide information on donation patterns. For example, donor 18 only 

performs a donation type 1 in the first period during the planning horizon. It must be 

noted that donors 27 to 30 are not utilized in this setting as the demand is satisfied 

by fewer donors. For the model with only here-and-now donors, the total cost is equal 

to 6571, which is calculated using the data provided.
Table 6 and Table 7 provide the donation schedules of the here-and-now and wait- 

and-see donors, respectively, when both here-and-now and wait-and-see donors are 

available. The first and the second columns in Table 7 represent the time periods and 

nodes, respectively, and the next columns provide the donation schedules of the wait- 

and-see donors according to the donation types. For example, (here-and-now) donor
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Figure 2. Scenario tree of the products in the illustrative example

[Alt-Text: ]This figure represents all the nodes and scenarios of the demand structure 

for blood products in the illustrative example.

10 performs a donation type 3 in the second period (see Table 6); (wait-and-see) donor 

14 performs a wait-and-see donation type 1 in the first node (e1) (see Table 7). The 

total cost for the general model that contains both types of donors is 4634 using the 

data provided above. We set the limit for the total number of wait-and-see donors 

to 18 (i.e., θ = 0.60). In the optimal solution, 18 wait-and-see and 12 here-and-now 

donors are scheduled for donation.
The efficiency of utilizing wait-and-see donors is clear considering the donation 

schedules in Table 6 and Table 7. Notice that the total cost of the donation is sig- 

nificantly less than that of the model with only here-and-now donations (compare 

the optimal objective function values 4634 and 6571). Moreover, utilizing wait-and- 

see donors alongside the here-and-now ones provides adjustable donation schedules. 

It must be noted that when only here-and-now donors are considered in the system, 

the solutions obtained are robust as they are worst-case-oriented solutions. On the 

other hand, wait-and-see donors are more flexible, and they adapt their donations 

according to different demand realizations in the scenario tree, which yields better 

inventory management for the system under different scenarios. Last but not least, 

when only here-and-now donors are used, 26 donors are used in the optimal dona- 

tion schedule—the total number of donors to satisfy the same demand increases to 

30 when wait-and-see donors are utilized. In other words, the number of donors uti- 

lized increases in the setting with wait-and-see donors, as these donors provide more 

flexible donations, and the system uses more donors to reduce the overall cost and 

this trade-off between the number of the utilized donors and the overall cost must be
highlighted.

5.3. Impact of Seasonality and Time Variability of Demand

In this section, to provide insight into the benefits the system can get from wait-and- 

see donors and to investigate the impact of seasonality and variability of demand, we 

propose four different settings and compare the improvements we gain when using 

wait-and-see donors as well as reporting the optimality gaps with respect to a lower
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Table 4. The demand of nodes for different products

[Alt-Text: ]This table provides information on the demand of the nodes for different 

blood products.

Products
1 2 3

Nodes
e1 9 8 8
e2 1 5 5
e3 6 6 7
e4 4 3 2
e5 6 6 7
e6 4 3 2
e7 7 7 8
e8 2 3 2
e9 7 7 8
e10 2 3 2
e11 7 7 8
e12 2 3 2
e13 7 7 8
e14 2 3 2

Table 5. The donation schedule of donors for the setting with only here-and-now donation schedules

[Alt-Text: ]This table provides information on the donation schedule of donors for 

the setting with only here-and-now donation schedules.

Time Periods 

Donation Types
1 2 3

1
[10, 11, 12, 13, 14, 

15, 16, 17, 18, 

19, 20, 21, 22] 

[23, 7, 8, 26] [1, 2, 3, 4, 5]

2 

3 [6, 24, 25, 9]

bound. We consider two different cases for demand seasonality (late and early shocks) 

and two different ones for the variability of demand (low variance and high variance); 

therefore, four cases in total. In all of the settings, considering 100 repeat donors, the 

instances are generated from the data set of the study by Do Carmo et al. (2013) and
modified to be used for this study with 12 time periods as weeks. We consider low,
nominal, and high demand nodes at each period. In other words, there will be 312 leaf 

nodes in total. In addition, in this section, we assume that all the repeat donors will be 

ready at the donation organization for donating though our model is versatile enough 

to consider participation ratio of the donors too by setting the percentage of presence 

of donors to a value lower than 1. Moreover, we set the value of θ (percentage of the 

wait-and-see donors in the pool) equal to 40%. We set the probability of low, nominal, 

and high demand nodes as 0.32, 0.44, and 0.24, respectively. Furthermore, the initial 

inventory of each blood product is considered to be equal to the average demand for 

two periods. Notice that solving [MIP-WS] for these settings is impossible because of 

the number of decision variables and constraints, and commercial solvers are not even 

capable of establishing the model. The settings for four different cases as well as the
results obtained are as follows:
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Table 6. The donation schedule of here-and-now donors for the setting with both here-and-now and wait- 

and-see donation schedules

[Alt-Text: ]This table provides information on the donation schedule of here-and-now 

donors for the setting with both here-and-now and wait-and-see donation schedules.

Time Period 

Donation Type
1 2 3

1 [1, 2] [3] [11, 12]
2 [4, 5] [6] [9, 10]
3 [7] - [8]

Table 7. The donation schedule of wait-and-see donors

[Alt-Text: ]This table provides information on the donation schedule of wait-and-see 

donors for the setting with both here-and-now and wait-and-see donation schedules.

Time Periods Nodes 

Donation Types
1 2 3

1 

1 [13, 14, 19, 21] - [16, 22]
2 - - -

2 

3 - - [26, 18]
4 - - -
5 - - [23]
6 - - -

3 

7 [20] - [17, 24, 25]
8 - - -
9 [29, 24, 25] - [15]
10 - - -
11 [14] [28] [15, 27]
12 - [19] -
13 [30] [20] [23]
14 - - -

Case 1: Seasonality with Late Demand Shocks with Low Variance

In this case, the nominal demand value of each product for the first period is set 

equal to the average demand of the data proposed by Do Carmo et al. (2013). The 

nominal demand values for the next periods are multiplied by some coefficients to 

generate instances of late seasonality. Figure 3 represents the late seasonality case for
the nominal demand value of a product. The high demand value of a product for each 

period is equal to the nominal demand plus the standard deviation of the sampled 

data. That value for the low demand of a product in each period is equal to the
nominal demand minus the standard deviation of the sampled data. The results for 

this case are summarised in Table 8. The first column indicates the instance number, 

followed by the number of different here-and-now donation schedules (HNP) in the 

second column and the number of different wait-and-see donation schedules (WSP) 

in the third column. The fourth column (HND) displays the count of here-and-now 

donors, while the fifth column (WSD) represents the number of wait-and-see donors. 

For all the settings, we do not apply the post-processing algorithm to get a better 

understanding of the utilized donors without it. Columns 6 to 8 provide contributions 

for different cost components, namely donation cost (Don.), inventory cost (Inv.), and
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disposal cost (Dis.).Further, columns 9, 10, and 11 indicate the improvements in cost 

savings when utilizing only here-and-now donors. In addition, column 12 represents 

the total improvement achieved when utilizing wait-and-see donors along with here- 

and-now donors compared to relying solely on only here-and-now donors. Lastly, the 

final column (Gap) displays the optimality gap concerning the optimality gap of the 

proposed algorithm with respect to the LP-relaxation of [MIP-WS].

Figure 3. Demand histogram for seasonality with late demand shocks

[Alt-Text: ]This figure represents the demand histogram when there exist late 

demand shocks.

Table 8. Case 1: Seasonality with late demand shocks with low variance
[Alt-Text: ]This table provides results for Case 1: seasonality with late demand shocks and low variance. The columns of the 

table are: Instance number; Number of different here-and-now donation schedules (HNP); Number of different wait-and-see 

donation schedules (WSP); Count of here-and-now donors (HND); Number of wait-and-see donors (WSD); Donation cost 

(Don.); Inventory cost (Inv.); Disposal cost (Dis.); Improvements in cost savings when utilizing only here-and-now donors; 

Further improvements in cost savings when utilizing only here-and-now donors; Additional improvements in cost savings when 

utilizing only here-and-now donors; Total improvement achieved when utilizing wait-and-see donors along with here-and-now 

donors compared to relying solely on only here-and-now donors; The optimality gap concerning the optimality gap of the 

proposed algorithm with respect to the LP-relaxation of [MIP-WS].

Ins. HNP WSP HND WSD 

Contribution of Cost Improvement 

Gap
Don. Inv. Dis. Don. Inv. Dis. Total

1 15 24 55 36 90.84% 7.41% 1.75% 22.36% 16.21% 7.54% 15.37% 9.72% 

2 7 28 54 36 86.28% 12.37% 1.35% 16.87% 9.83% 8.65% 11.78% 8.18% 

3 10 29 60 37 93.31% 4.74% 1.95% 18.32% 10.69% 9.02% 12.68% 3.68% 

4 10 22 58 36 90.80% 7.38% 1.82% 14.04% 12.14% 9.22% 11.80% 5.60% 

5 8 11 52 37 90.37% 8.19% 1.44% 17.04% 11.92% 7.85% 12.27% 5.86% 

6 11 28 59 39 93.18% 5.33% 1.48% 36.44% 17.72% 8.09% 20.75% 3.73% 

7 10 20 57 40 89.82% 9.14% 1.04% 50.88% 18.39% 7.47% 25.58% 8.81% 

8 12 19 58 37 89.38% 9.11% 1.52% 20.94% 16.48% 8.57% 15.33% 9.80% 

9 12 15 60 34 90.06% 8.52% 1.42% 36.37% 18.94% 8.64% 21.32% 4.24% 

10 7 24 56 39 89.10% 9.14% 1.76% 19.87% 7.78% 7.18% 11.61% 6.96%
Average 90.32% 8.13% 1.55% 25.31% 14.01% 8.22% 15.85% 6.66%

Best 50.88% 18.94% 9.22% 25.58% 3.68%
Worst 14.04% 7.78% 7.18% 11.61% 9.80%

Comparing the HNP and WSP columns, we observe that the number of different 

wait-and-see donation schedules (WSP) tends to be higher than the number of here- 

and-now donation schedules (HNP). This diversity in strategies implies a more nuanced 

and adaptive response to the specific circumstances of each instance. Analyzing the 

HND and WSD columns, the presence of both types of donors indicates a dynamic 

donor population with varying preferences and decision-making processes.
Examining the contribution of cost components in columns 6 to 8, we observe that
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the donation cost tends to have the highest proportion in all instances. However, there 

are variations in the relative contributions of inventory and disposal costs across differ- 

ent cases. Comparing these contributions allows us to identify cost drivers and allocate 

resources more effectively based on their relative significance. Regarding columns 9 to 

11, the improvements in cost savings achieved by incorporating wait-and-see strate- 

gies are substantial across all instances. However, there are noticeable variations in 

the magnitudes of these improvements. Instance 7, for example, stands out as having 

the greatest improvements in all three cost components. This implies that in certain 

scenarios, wait-and-see strategies can yield particularly significant cost savings. On 

the other hand, instance 10 exhibits the smallest improvements overall. This suggests 

that the benefits of wait-and-see strategies may be less pronounced in some instances, 

potentially due to factors such as demand patterns.
In terms of the total improvement (column 12), the average improvement across all 

instances is 15.85%. This indicates a considerable enhancement in cost savings when 

combining the benefits from all three cost components through the use of wait-and-see 

donation strategies. However, it is important to note that the best case (instance 7) 

achieves a total improvement of 25.58%, while the worst case (instance 10) only sees a 

total improvement of 11.61%. These disparities emphasize the influence of specific in- 

stance characteristics and highlight the potential for substantial cost savings in certain 

scenarios. Lastly, the optimality gap column shows the proposed algorithm provides 

high-quality solutions.

Case 2: Seasonality with Late Demand Shocks with High Variance

In this case, the nominal demand value of a product is obtained using the approach 

explained in Section 5.3. The high demand value of the product for each period is 

equal to the nominal demand plus two times the standard deviation of the sampled 

data. That value for the low demand of the product in each period is equal to the
nominal demand minus two times the standard deviation of the sampled data. The 

results for this case are summarised in Table 9. On average, the algorithm provides 

only 5.76% gaps while improving the results with only here-and-now donors by 18.78%. 

Comparing the results with those in Section 5.3, proves that the algorithm provides 

more quality results when the variance is higher. Generally, utilizing wait-and-see 

donors helps the donation organizations satisfy the demand for the blood with a high 

variance. Therefore, for the case where the demand for the blood has a high variance, 

the improvement of using wait-and-see donors over utilizing only here-and-now donors 

is more than that of the demand with a low variance. Comparing the results in Table 8 

and Table 9 reveals this fact. On average, when the variance is higher, the improvement 

is higher by 3.31%.
Looking at the contribution of cost components in columns 6 to 8, we can see that 

the donation cost remains the highest proportion in all instances, which is consistent 

with Case 1. The relative contributions of inventory and disposal costs also exhibit 

variations across different instances, highlighting the impact of demand variance on 

these cost components. Regarding columns 9 to 11, which represent the improvements 

in cost savings, we find that incorporating wait-and-see strategies still leads to sub- 

stantial improvements in all instances. However, comparing these improvements with 

Case 1, we can observe that the magnitudes of the improvements tend to be higher 

in Case 2. This implies that the benefits of wait-and-see donors may be pronounced 

more in scenarios with high demand variance.
Examining the total improvement (column 12), the average improvement across all
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Table 9. Case 2: Seasonality with late demand shocks with high variance
[Alt-Text: ]This table provides results for Case 2: seasonality with late demand shocks and high variance. The columns of the 

table are: Instance number; Number of different here-and-now donation schedules (HNP); Number of different wait-and-see 

donation schedules (WSP); Count of here-and-now donors (HND); Number of wait-and-see donors (WSD); Donation cost 

(Don.); Inventory cost (Inv.); Disposal cost (Dis.); Improvements in cost savings when utilizing only here-and-now donors; 

Further improvements in cost savings when utilizing only here-and-now donors; Additional improvements in cost savings when 

utilizing only here-and-now donors; Total improvement achieved when utilizing wait-and-see donors along with here-and-now 

donors compared to relying solely on only here-and-now donors; The optimality gap concerning the optimality gap of the 

proposed algorithm with respect to the LP-relaxation of [MIP-WS].

Ins. HNP WSP HND WSD 

Contribution of Cost Improvement 

Gap
Don. Inv. Dis. Don. Inv. Dis. Total

1 13 20 59 36 91.08% 7.05% 1.87% 19.14% 16.40% 9.79% 15.11% 2.75% 

2 12 17 64 35 89.23% 9.67% 1.10% 32.23% 19.80% 8.30% 20.11% 5.26% 

3 12 22 57 35 93.67% 4.35% 1.98% 11.28% 13.60% 7.10% 10.66% 4.55% 

4 10 17 59 40 93.02% 6.05% 0.93% 33.46% 19.10% 6.45% 19.67% 5.48% 

5 12 14 60 34 91.79% 7.17% 1.04% 30.61% 14.01% 8.42% 17.68% 6.11% 

6 7 20 56 39 92.96% 6.13% 0.91% 55.98% 26.40% 9.48% 30.62% 8.47% 

7 10 11 56 36 93.11% 5.06% 1.83% 38.37% 14.90% 16.00% 23.09% 6.58% 

8 12 15 62 36 91.65% 7.44% 0.91% 18.57% 13.10% 9.73% 13.80% 6.73% 

9 9 13 52 37 92.04% 6.01% 1.95% 26.16% 16.10% 10.09% 17.45% 6.49% 

10 13 30 60 37 93.34% 5.75% 0.91% 30.42% 19.40% 9.13% 19.65% 5.18%
Average 92.19% 6.47% 1.34% 29.62% 17.28% 9.45% 18.78% 5.76%

Best 55.98% 26.40% 16.00% 30.62% 2.75%
Worst 11.28% 13.10% 6.45% 10.66% 8.47%

instances is 18.78%. This indicates a significant enhancement in cost savings when 

combining the benefits from all three cost components through the use of wait-and-see 

donation strategies. However, similar to Case 1, there are notable variations in total 

improvement. The best case (instance 6) achieves a total improvement of 30.62%, while 

the worst case (instance 3) only sees a total improvement of 10.66%. Comparing Case 

2 with Case 1, we can observe some differences. In Case 2, the average improvement in 

cost savings is slightly higher (18.78% in Case 2 vs 15.85% in Case 1), indicating that 

higher demand variance can lead to increased benefits from wait-and-see strategies. 

However, the average contributions of inventory and disposal costs are lower in Case 2 

compared to Case 1. In addition, the optimality gap column shows that the proposed 

algorithm provides high-quality solutions in both cases. The results for Case 3 and 

Case 4 are presented in Appendix D and Appendix E, respectively.

5.4. Impact of Uncertainty in the Presence of Donors

In this section, we study the impact of the probability of the donors not showing up
at the donation center, and by varying the probability of donor presence, we aim to 

understand how this probability influences the overall effectiveness of the donation 

organization in terms of the number of here-and-now and wait-and-see donors. We 

consider 200 repeat donors for five time periods. We generate the demand for blood 

products the same way as in Case 1. Moreover, the probability of participation in 

a donation for a donor is considered to be the same for all periods. The value of θ
is set to 0.4. Table 10 presents the results for different values of the probability of 

participation in a donation for a donor (ξ). In Table 10, the first column, labeled ξ, 

presents different values of the probability of participation, ranging from 0.1 to 1.0 in 

increments of 0.1. The second and third columns present the number of donors who 

perform here-and-now and wait-and-see donations, respectively. The fourth to sixth 

columns present the donation cost, inventory cost, and disposal cost gaps, respectively. 

The last column presents the gap in the total cost with respect to the case where all 

donors are present in the donations, represented as a percentage.
The results indicate that as the probability of donor participation decreases, there 

is a significant increase in the gaps, especially in donation costs. For example, when 

the probability is 0.1, 175 out of 200 donors are utilized, resulting in a total cost gap 

of 31.78% with respect to the 100% participation rate when only 50 donors are uti-
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Table 10. Impact of the probability of participation in a donation for a donor

[Alt-Text: ]This table provides results for evaluation of the impact of the probability 

of participation in a donation for a donor

ξ HN donors WS donors Utilized donors 

Gap
Don. Inv. Dis. Total

0.1 105 70 175 30.10% 0.78% 0.90% 31.78% 

0.2 75 50 125 25.42% 0.43% 0.62% 26.47% 

0.3 60 40 100 20.11% 0.89% 0.56% 21.56% 

0.4 57 38 95 18.07% 0.17% 0.67% 18.91% 

0.5 54 36 90 15.97% 0.22% 0.20% 16.39% 

0.6 48 32 80 11.24% 0.43% 0.43% 12.10% 

0.7 45 30 75 7.53% 0.57% 0.41% 8.51% 

0.8 42 28 70 6.48% 0.63% 0.16% 7.27% 

0.9 33 22 55 4.01% 1.02% 0.09% 5.12% 

1 30 20 50 0.00% 0.00% 0.00% 0.00%

lized. This suggests that when there is a high likelihood of donors not showing up, 

the donation organization incurs higher costs to hedge against the risk of not having 

enough donations. On the other hand, as the probability of donor participation in- 

creases towards 100% (i.e. ξ = 1), the gaps in costs gradually decrease. This highlights 

the importance of managing and mitigating uncertainties in donor turnout for blood 

donation organizations.

5.5. Utilization of Wait-and-see Donation Schedules in Real-life

Even though donations made by here-and-now donors are predetermined and inde- 

pendent from the realized demand, wait-and-see donors are flexible, and they adapt 

according to different demand realizations in the scenario tree. Nevertheless, as it may 

be anticipated, in practice, the actual demand will rarely be equivalent to one of the 

scenarios in the tree. To ensure the validity of wait-and-see decisions in such cases, 

we propose two approaches for donation organizations on selecting donation schedules 

of wait-and-see donors when the realized demand is different from the predetermined 

scenarios in the tree; both methods guarantee the feasibility of a donation schedule 

obtained from SDTP. As the first approach, one may choose the wait-and-see donation 

schedule of the nearest larger demand node (NLDN) in the decision tree with respect 

to the realized demand of the associated period. The NLDN approach always yields 

a solution that fully satisfies the demand even though it may result in excess blood 

product inventory under the assumption that the realized demand is always less than 

the “high” demand node at each period. The second approach that is referred to as
folding horizon (FH) reoptimizes the wait-and-see donation schedules of SDTP after 

the demand of each period is realized, i.e., the problem is reoptimized T times in the 

planning horizon when the here-and-now donations are fixed to the initial plan that 

is decided before the uncertain demand reveals itself. The advantage of the NLDN 

approach is that it works much faster than FH since it is a simple selection rule and 

does not require solver integration; the FH approach, on the other hand, is very time 

consuming, and it may yield better solutions than NLDN since it uses the information 

of the realized demand. It is worthwhile to mention that when adjustable donation

23



decisions must be decided immediately after the demand has occurred, FH may not 

be applicable in practice due to increased CPU time requirements.
Lastly, it is essential to point out that donation organizations may use adjustable 

decision-making in their routine process because such organizations usually satisfy 

demand from their donation bank inventory and refill the associated inventory with 

new donations after the demand has been served. Therefore, organizations have the re- 

quired flexibility to wait for the demand as long as the donation plan may be promptly 

executed afterwards, given that an extended waiting time for the new plan is not in- 

tended.

Table 11. Comparison of wait-and-see decisions and FH

[Alt-Text: ]This table provides results for comparing the results of donations with 

wait-and-see decisions and the folding horizon.
Instance # Best Worst Average

1 5.27% 18.86% 11.17% 

2 8.84% 19.99% 13.25% 

3 7.55% 18.90% 11.71% 

4 4.89% 22.40% 12.57% 

5 3.09% 15.16% 9.55% 

6 8.27% 16.29% 12.21% 

7 7.31% 13.34% 10.61% 

8 6.22% 15.84% 11.45% 

9 5.29% 20.24% 12.42% 

10 3.21% 18.36% 8.99% 

11 2.27% 21.35% 12.32% 

12 2.27% 17.59% 12.10% 

13 6.25% 21.35% 12.91% 

14 2.20% 18.41% 10.02% 

15 1.24% 15.57% 9.82% 

16 8.30% 22.39% 13.23% 

17 0.74% 19.53% 10.30% 

18 2.81% 18.39% 10.27% 

19 3.85% 18.74% 11.24% 

20 4.75% 18.10% 11.79%
Best 0.74% 

Worst 22.40% 

Average 11.40%

To analyze the optimality performance of SDTP with the NLDN approach, we use 

the FH approach as the benchmark that resolves SDTP for the realized data at each 

period. We randomly sample demand ten times for each instance and compare the ob- 

jective function values of solutions gathered from FH and SDTP with NLDN in Table 

11. We run the algorithms for five-period instances with low, regular, and conserva- 

tive demand nodes at each period (i.e., we have 35 leaf nodes in total). We generate 

our instances by randomly sampling 84 (= 7 × 12) daily demands from the data set 

of the study by Do Carmo et al. (2013). Regular demand of a given period (week) 

is equivalent to the sum of daily demands that coincide with the associated period 

in the sampled data. Low demand of a given period is obtained by multiplying the 

regular demand with a uniformly sampled coefficient from [0.7, 0.9], and for conserva-
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tive demand of a given period, the coefficient is uniformly sampled from [1.05, 1.85] 

and multiplied by the regular demand. Moreover, the probability of low, regular, and 

conservative demand nodes are randomly generated, as explained above. In the FH 

approach, we solve the SDTP first to fix here-and-now decisions and use [MIP-WS] 

at each period to reoptimize wait-and-see decisions. The numerical results show that 

SDTP with NLDN approach has (on average) an 11.4% optimality gap with respect 

to FH while the best and the worst gaps are 0.7% and 22.4%, respectively.

6. Managerial Implications

Donation organizations can benefit from the presented research from four different 

aspects.

6.1. Importance of Optimization

While MCA may increase the complexity of managing blood donations, optimiza- 

tion techniques effectively streamline the scheduling process, increasing the efficiency 

of these high-stakes, high-cost operations. Our findings suggest that managing this 

complexity can provide considerable benefits. From a cost perspective, we observed 

that donation costs consistently accounted for the highest proportion of the total cost 

across instances. Therefore, strategies that can effectively reduce donation costs, such 

as better targeting of potential donors, can yield substantial savings. Inventory and 

disposal costs also played notable roles in several instances, emphasizing the impor- 

tance of efficient inventory management and the minimization of waste.
In terms of algorithm performance, the optimization solution demonstrated high 

quality, with an average optimality gap of 6.66% across all instances. This reinforces 

the reliability and robustness of our optimization approach in providing near-optimal 

solutions within practical timeframes, even in the face of increased complexity intro- 

duced by MCA. In conclusion, optimization techniques for viable MCA donations offer 

significant benefits to blood donation organizations, allowing them to manage their 

resources more effectively, respond to uncertain demand patterns, and, ultimately, 

save more lives. Considering the unique characteristics of each instance and integrat- 

ing wait-and-see donors into the donation strategy can significantly reduce costs and 

improve operational efficiency. By doing so, blood donation organizations can ensure 

they are leveraging their resources to the fullest potential in their noble mission to 

save lives.
6.2. Importance of Wait-and-See Donors

When faced with a highly unstable demand pattern and its variance, the customiz- 

ability of the supply becomes paramount. This highlights the significance of utilizing 

wait-and-see donors, a fact further substantiated by the numerical results of this study. 

The introduction of wait-and-see donation schedules demonstrated a significant pos- 

itive impact on cost savings. Across all instances, the average improvement in cost 

savings when including these donors was between 15% and 21%, with some scenarios 

even showing an improvement of 25.58%. This underscores the potential of adaptive, 

responsive strategies in the face of demand uncertainty, which can yield sizeable cost 

savings. It is important to note that these cost savings were derived from all three 

cost components, indicating that using wait-and-see donation strategies can improve
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efficiency across the entire supply chain, not just in one area.
Wait-and-see donors play a pivotal role in resource management. Unlike regular 

donors who contribute consistently, these donors provide resources during times of un- 

expected or increased demand. They function as a just-in-time supply system, reducing 

the need for large-standing inventories. The variance in improvements between differ- 

ent instances emphasizes the importance of tailoring donation strategies to specific 

contexts. While on average, wait-and-see strategies offered significant improvements, 

there were instances where the benefits were less pronounced. Such scenarios could 

be due to certain demand patterns or unique characteristics of the donor population. 

It underscores the need for donation organizations to understand their unique envi- 

ronments, apply optimization methods accordingly, and show their utmost effort to 

convince donors to follow flexible wait-and-see donation schemes to achieve a higher 

quality service. As we limit the number of wait-and-see donors in our experiments, 

more significant improvements would be achieved when this percentage increases, mak- 

ing it one of the ultimate goals of donation organizations.

6.3. Implementation of Wait-and-see Donors in Real-life

In practice, the actual demand will rarely be equivalent to one of the scenarios in 

the tree. It is worthwhile to mention that when adjustable donation decisions must 

be decided immediately after the demand has occurred, FH may not be applicable 

in practice since reoptimizing the wait-and-see decisions takes several hours when the 

number of periods in the planning horizon is higher than ten. To this end, the proposed 

NLDN approach is a tractable and feasible way of selecting the wait-and-see donation 

schedules according to the realized demand and may be easily implemented by the 

donation organization according to the SDTP solution at hand. Ultimately, we suggest 

donation organizations adopt the NLDN approach over the SDTP solution since it is 

relatively more implementable in practice when the demand realization is different than 

the scenario tree and results in very close solutions to the FH benchmark. Lastly, it is 

essential to point out that donation organizations may use adjustable decision-making 

in their routine process because they usually satisfy demand from their donation bank 

inventory and refill the associated inventory with new donations after the demand 

has been served. Therefore, organizations have the required flexibility to wait for the 

demand as long as the donation plan may be promptly executed afterward, given that 

an extended waiting time for the new plan is not intended.
Moreover, using incentives for wait-and-see blood donors can be an effective way 

to increase the number of people who donate blood. Incentives can range from small 

tokens of appreciation to more significant rewards, like a cash prize. The average 

improvement of utilizing wait-and-see donors over here-and-now ones in Cases 1-4 are 

15.85%, 18.75%, 17.84%, and 21.04%, respectively. Therefore, it can be concluded that 

the cost savings generated by using wait-and-see donors can then be used to provide 

incentives and rewards for these donors. This can help to build a stronger relationship 

with wait-and-see donors and increase their likelihood of making a donation in the 

future.

6.4. Effects of the Donation Participation Ratio

The uncertainty in blood product demand is influenced by unpredictable factors. Ig- 

noring this can endanger patients. Blood donation organizations must consider this
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uncertainty in operations. Our study suggests a strategy using both wait-and-see and 

here-and-now donors. In our model, here-and-now donors meet regular demand, while 

wait-and-see donors address high-demand situations. Results show that when donor 

participation likelihood is low, both donation types peak, optimizing resource use and 

ensuring operational efficiency. However, decreased donor participation can increase 

donation, inventory, disposal, and total costs. Managers must recognize the financial 

effects of donor uncertainty and develop strategies to reduce these costs, enhancing 

cost-effectiveness. Addressing donor turnout uncertainties is crucial. Our findings show 

cost increases as donor participation likelihood drops. Organizations can use risk man- 

agement tactics like targeted engagement and marketing to reduce donor attendance 

uncertainty, improving performance.
Understanding donor participation probability is key for capacity planning. High ab- 

sence probability may require capacity adjustments to avoid waste, while high presence 

probability means preparing for more donors. Long-term effects of donor probabilities 

should be considered. Analyzing historical data helps in decision-making regarding 

resources and costs. Effective donor engagement strategies, like incentives and com- 

munity building, can boost attendance. The study emphasizes cost sensitivity to donor 

participation, so monitoring turnout and analyzing cost gaps is vital for continuous 

improvement.

7. Conclusion

In this research, we introduce the stochastic donation tailoring problem (SDTP), a 

model that considers the shelf-life, deferral times, and unpredictable demand of blood 

products. Our objective is to minimize associated costs while leveraging multicom- 

ponent apheresis (MCA) technology. Unlike previous deterministic models, SDTP is 

innovative in offering a flexible donation strategy for MCA. It does this by segment- 

ing donors into two categories: wait-and-see and here-and-now. This categorization 

allows donation centers to dynamically adjust donation schedules based on real-time 

demand. To address the inherent challenges of this problem, we propose a column 

generation (CG) based heuristic. This heuristic can efficiently solve the problem in 

under 24 hours for realistic scenarios, outperforming commercial solvers. Our numer- 

ical results validate the effectiveness of the CG approach. Importantly, our model 

successfully navigates the complexities of the blood donation process, such as deferral 

times and uncertain demand, and offers improved operational cost savings compared 

to traditional donation schemes.
Future studies should refine the developed stochastic model to optimize blood dona- 

tion management. Exploring the integration of dynamic machine learning algorithms 

could address fluctuating demands, enhancing the model’s precision. The benefits of 

using multicomponent apheresis and flexible donations highlight new research avenues, 

especially in their practical implementation. Evaluating the integration of these strate- 

gies through a cost-benefit analysis can provide insights into both financial and health 

outcomes. Additionally, understanding donor behavior towards flexible schedules can 

reveal potential sociological barriers, aiding in smoother transitions to efficient sys- 

tems. In terms of blood type management, there’s an evident need for models that 

can incorporate various blood types, ensuring a comprehensive view of blood bank 

operations and promoting informed decision-making for optimal resource allocation 

and patient care.
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Appendix A Initial solution approach for here-and-now donations

To start the column generation, an initial feasible solution must be passed to the 

[RMP-WS] to have a feasible LP relaxation to ensure that the correct dual information 

is passed to the subproblems. Since the initial basis determines the initial dual variables 

that will be passed to the pricing problem, a good initial basis for the restricted 

master problem can be of high importance. We propose a simple heuristic approach 

for generating initial columns of [RMP-WS]. Taking into account the deferral times 

for each specific type of donation, we assume that each donor may just make one type 

of donation at a time. When a single donation type is made, donor tracking will be 

simplified, as keeping track of previous donation dates is sufficient for keeping track of 

donors. As an example, if a person donates whole blood today, he/she must wait for 

eight weeks before donating whole blood again. To provide the first solution for the 

problem with 12 periods, we can have a person who donates whole blood in week 1, and 

the second donation in week 9. The next whole blood donation can be performed in 

week two by another person, and the next donation in week 10. Notice that if the first 

donation of the planning horizon is performed after week 4, then only one donation can 

be performed. For this given scenario, by sliding the start time of donations, we create 

12 different donation patterns. We adopt the same approach for other donation types 

as well. In other words, we assume the number of periods between the 2 consecutive 

donations in the initial solution approach is exactly equivalent to the deferral time of 

the donation type.
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Appendix B Initial solution approaches for wait-and-see donations

Starting with a good initial solution for wait-and-see donors is at least as important 

as that for here-and-now because of the structure of the columns that are more complex 

and the higher number of decision variables. We utilize three different algorithms one 

by one to generate initial solutions for wait-and-see donors.
Algorithm I. A wait-and-see donation pattern may be equivalent to a here-and-now 

one when the same donation type is performed for all the nodes that are in the same 

period. Therefore, the initial solution approach for here-and-now decisions presented 

before may also be used for generating feasible wait-and-see patterns, as we can easily 

translate a here-and-now pattern to a wait-and-see one. Notice that this might not yield 

high-quality columns for the problem, but it is still practical for the rapid generation 

of initial columns.
Algorithm II. We solve the problem with the column generation approach for only 

here-and-now decision variables by setting the value of θ equal to zero and not solving 

[PP-y]. We denote the associated restricted master problem by [RMP-HN]. Subse- 

quently, we take the columns that are on the basis of the final solution of [RMP-HN] 

and use them as initial here-and-now and wait-and-see columns for the [RMP-WS]. 

Again, it is just a practical way of generating initial columns that does not necessarily 

guarantee high-quality columns. Notice that the updated demand values in the first 

constraint of [WS-In] cannot be less than zero; nevertheless, this could be the case 

when the demand of a node is greater than the nominal demand of the associated 

period. To avoid such cases, we take the maximum of zero and the updated demand. 

On the other hand, the updated demand may result in an instance that cannot be 

served by one wait-and-see donor. To yield feasibility in such cases, we include the 

auxiliary variable (Rej) that determines the unsatisfied demand penalty in the objec- 

tive. Ultimately, [WS-In] provides feasible wait-and-see columns. As before, optimal
zie values are used to obtain the columns αm and ĉm as follows:

αm 

j e = ξt(e)

L∑
i=1

aijzie (31) 

ĉm =

N∑
e=1

pr(e)

(
L∑
i=1

ξt(e)c
w s 

i zie

)
(32)

It must be noted that solving [WS-In] to optimality by a commercial solver may not 

be straightforward due to the complexity of this mixed-integer linear program (MILP). 

Therefore, we terminate the commercial solver with a safe optimality gap. Moreover, 

instead of adding a single feasible solution, we utilize a solution pool to add more than 

one feasible column.
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[WS-In]:

min
∑
e∈NT
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 ∑
j

∑
e′∈Pt(e)
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· · ·M
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∑
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∑
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∑
e′∈Pt(e)

aijzie′ ≤ Ej ∀e ∈ NT , j 

Iej , Pej , Rej , Bej ≥ 0 ∀e, j 

zie ∈ {0, 1} ∀e, i

Appendix C Effect of the Post-Processing Algorithm on Illustrative 

Example

In this section, we present the detailed results and analysis obtained from the il- 

lustrative example discussed in the main report. We define two different cases (Case I 

and Case II). In Case I, the post-processing algorithm is not applied; however, in Case 

II, the post-processing algorithm is applied after solving [MIP-HN] or [MIP-WS]. The 

donation patterns of here-and-now donors for the setting in which only here-and-now 

donations are allowed are presented in Table 12 for both cases. Applying the post- 

processing algorithm does not provide any change for the here-and-now donations 

for the setting in which both here-and-now and wait-and-see donations are allowed. 

However, the wait-and-see donation patterns are presented in Table 13 for both cases.

Table 12. The donation schedule of donors for the setting with only here-and-now donation schedules for 

Case I and Case II
[Alt-Text: ]This table provides results for the donation schedule of donors for the setting with only 

here-and-now donation schedules for Case I and Case II

Time Period 

Case I Case II
Donation Type

1 2 3 1 2 3

1
[10,11,12,13,14, 

15,16,17,18, 

19,20,21,22] 

[6,7,8,9] [1,2,3,4,5] 

[10,11,12,13,14, 

15,16,17,18, 

19,20,21,22] 

[23,7,8,26] [1,2,3,4,5]

2 

3 [6,7,8,9] [6,24,25,9]

In Case II of Table 12, where the post-processing algorithm is applied after solving
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[MIP-HN], the donation schedule for donation Type 1 remains the same as in Case I. 

However, for Donation Types 2 and 3, there is a noticeable change in their donation 

patterns during Time Period 1 and Time Period 3, respectively.

Table 13. The donation schedule of wait-and-see donors for Case I and Case II
[Alt-Text: ]This table provides results for the donation schedule of wait-and-see donors for Case I and Case 

II.

Time Periods Nodes 

Case I Case II
Donation Types

1 2 3 1 2 3

1 

1 [13, 14, 19, 21] - [16, 22] [13, 14, 19, 21] - [16, 22]
2 - - - - - -

2 

3 - - [15, 18] - - [26, 18]
4 - - - - - -
5 - - [23] - - [23]
6 - - - - - -

3 

7 [20] - [17, 24, 25] [20] - [17, 24, 25]
8 - - - - - -
9 [18, 24, 25] - [15] [29, 24, 25] - [15]
10 - - - - - -
11 [14] [24] [15, 20] [14] [28] [15, 27]
12 - [19] - - [19] -
13 [17] [20] [23] [30] [20] [23]
14 - - - - - -

In Table 13, comparing the wait-and-see donations between Case I and Case II, we 

can observe that some donation patterns are changed for some wait-and-see donors in 

Case II due to the application of the post-processing algorithm. These changes suggest 

that the post-processing algorithm has influenced the decisions regarding some wait- 

and-see donors, leading to different donation patterns in Case II.

Appendix D Case 3: Seasonality with Early Demand Shocks with Low 

Variance

In this case, the nominal demand value of the product for the last period is set 

equal to the average demand of the data proposed by Do Carmo et al. (2013). This 

value for the other periods is multiplied by some coefficients to have early seasonality 

for the data as is presented in Figure 4. The high\low demand values of a product for 

each period are calculated as the nominal plus\minus the standard deviation of the 

sampled data. Table 14 presents the results for this case.
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Figure 4. Demand histogram for seasonality with early demand shocks

[Alt-Text: ]This figure represents the demand histogram when there exist early 

demand shocks

Table 14. Case 3: Seasonality with early demand shocks with low variance
[Alt-Text: ]This table provides results for Case 3: seasonality with early demand shocks and low variance. The columns of the 

table are: Instance number; Number of different here-and-now donation schedules (HNP); Number of different wait-and-see 

donation schedules (WSP); Count of here-and-now donors (HND); Number of wait-and-see donors (WSD); Donation cost 

(Don.); Inventory cost (Inv.); Disposal cost (Dis.); Improvements in cost savings when utilizing only here-and-now donors; 

Further improvements in cost savings when utilizing only here-and-now donors; Additional improvements in cost savings when 

utilizing only here-and-now donors; Total improvement achieved when utilizing wait-and-see donors along with here-and-now 

donors compared to relying solely on only here-and-now donors; The optimality gap concerning the optimality gap of the 

proposed algorithm with respect to the LP-relaxation of [MIP-WS].

Contribution of Cost Improvement
Ins. HNP WSP HND WSD 

Don. Inv. Dis. Don. Inv. Dis. Total 

Gap

1 13 25 58 36 97.92% 0.87% 1.21% 42.71% 6.73% 9.99% 19.81% 10.59% 

2 15 11 57 37 94.79% 1.78% 3.43% 25.70% 5.18% 6.71% 12.53% 6.69% 

3 8 14 55 40 95.23% 1.73% 3.04% 43.82% 7.34% 11.87% 21.01% 9.00% 

4 11 29 57 40 96.32% 0.61% 3.07% 37.55% 6.08% 14.24% 19.29% 7.49% 

5 12 19 61 34 91.99% 3.48% 4.53% 34.32% 2.17% 3.89% 13.46% 7.21% 

6 14 22 54 38 95.68% 1.09% 3.23% 37.91% 6.22% 8.01% 17.38% 7.92% 

7 11 20 61 39 95.26% 0.54% 4.20% 43.16% 15.21% 17.74% 25.37% 5.24% 

8 13 29 58 34 95.37% 1.13% 3.50% 29.69% 11.47% 15.39% 18.85% 6.60% 

9 11 12 60 34 95.22% 0.98% 3.80% 22.36% 6.86% 8.16% 12.46% 6.80% 

10 13 15 58 40 94.61% 2.25% 3.14% 30.26% 10.38% 14.17% 18.27% 4.48%
Average 95.24% 1.45% 3.32% 34.75% 7.76% 11.02% 17.84% 7.20%

Best 43.82% 15.21% 17.74% 25.37% 4.48%
Worst 22.36% 2.17% 3.89% 12.46% 10.59%

On average, the algorithm provides a 7.20% gap with respect to the lower bound, 

while the best and the worst gaps are equal to 4.48% and 10.53%, respectively. It 

must be noted that when demand shocks happen in early periods (see Case 1), be- 

cause of an unforeseen calamity as an example, the donation organizations will invite 

more wait-and-see donors to donate blood to satisfy the demand for product. In other 

words, utilizing wait-and-see donors will help the donation organizations reduce costs. 

Comparing the results in Table 8 and Table 9 also shows this fact. When the demand 

receives an early shock, the average improvement of utilizing wait-and-see donors over 

here-and-now donors is about 2% higher than the case of late shocks.
Examining the contribution of cost components in columns 6 to 8, we find that 

the donation cost remains the highest proportion in all instances, consistent with the 

previous cases. However, there are variations in the relative contributions of inven- 

tory and disposal costs, highlighting the impact of demand variance on these cost 

components. Regarding columns 9 to 11, which represent the improvements in cost
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savings, we can observe that incorporating wait-and-see strategies leads to substantial 

improvements across all instances. Analyzing the total improvement (column 12), we 

see that the average improvement across all instances in Case 3 is 17.84%. This indi- 

cates a significant enhancement in cost savings when utilizing wait-and-see donation 

strategies. Comparing Case 3 with Case 1, we observe that the average improvement 

in cost savings is higher in Case 3 (17.84% vs 15.85%), suggesting that the benefits 

of wait-and-see strategies may be more pronounced in scenarios with early demand 

shocks and low variance.

Appendix E Case 4: Seasonality with Early Demand Shocks with High 

Variance

In this case, the nominal demand value of a product for each period is calculated 

as is explained in Appendix D, and the low and high demand values are calculated as 

is explained in Section 5.3. The associated results are presented in Table 15.

Table 15. Case 4: Seasonality with early demand shocks with high variance.
[Alt-Text: ]This table provides results for Case 4: seasonality with early demand shocks and high variance. The columns of the 

table are: Instance number; Number of different here-and-now donation schedules (HNP); Number of different wait-and-see 

donation schedules (WSP); Count of here-and-now donors (HND); Number of wait-and-see donors (WSD); Donation cost 

(Don.); Inventory cost (Inv.); Disposal cost (Dis.); Improvements in cost savings when utilizing only here-and-now donors; 

Further improvements in cost savings when utilizing only here-and-now donors; Additional improvements in cost savings when 

utilizing only here-and-now donors; Total improvement achieved when utilizing wait-and-see donors along with here-and-now 

donors compared to relying solely on only here-and-now donors; The optimality gap concerning the optimality gap of the 

proposed algorithm with respect to the LP-relaxation of [MIP-WS].

Ins. HNP WSP HND WSD 

Contribution of Cost Improvement 

Gap
Don. Inv. Dis. Don. Inv. Dis. Total

1 15 15 55 36 95.83% 1.06% 3.11% 30.39% 13.43% 15.52% 19.78% 4.04% 

2 15 30 63 35 94.94% 2.19% 2.87% 34.18% 7.27% 9.28% 16.91% 6.22% 

3 9 27 63 37 97.89% 0.79% 1.32% 39.45% 4.81% 6.83% 17.03% 6.08% 

4 10 13 58 39 97.36% 1.20% 1.44% 40.97% 9.50% 11.51% 20.66% 9.69% 

5 8 10 60 35 96.32% 1.71% 1.97% 45.81% 15.95% 18.31% 26.69% 6.14% 

6 11 25 58 36 97.18% 1.19% 1.63% 45.83% 4.42% 6.96% 19.07% 7.00% 

7 14 30 61 34 93.85% 2.60% 3.55% 30.86% 11.29% 13.29% 18.48% 9.86% 

8 7 24 59 40 94.86% 1.30% 3.84% 41.82% 12.38% 12.67% 22.29% 5.06% 

9 13 29 60 35 95.32% 1.66% 3.02% 45.83% 19.56% 20.41% 28.60% 5.15% 

10 11 20 61 39 97.41% 0.72% 1.87% 48.09% 6.24% 8.25% 20.86% 5.14%
Average 96.10% 1.44% 2.46% 40.32% 10.49% 12.30% 17.84% 7.20%

Best 48.09% 19.56% 20.41% 25.37% 4.48%
Worst 30.39% 4.42% 6.83% 12.46% 10.59%

The improvement we obtain from utilizing wait-and-see donors is the highest (on 

average) among the four different cases (21.04%). On average, the algorithm provides 

a 6.44% gap with respect to the lower bound. The algorithm in this case, provides 

more improvement than case 2 and case 3, and the reason is that utilizing wait-and- 

see donors helps donation organizations to deal with early demand shocks and high 

variances in demand for blood. It must be noted that this fact is a clear-cut manifesta- 

tion of the fact that utilizing wait-and-see donors helps blood donation organizations 

to deal with demand uncertainty regardless of variability and seasonality of demand.
Looking at the contribution of cost components in columns 6 to 8, we find that the 

donation cost remains the highest proportion in all instances, which aligns with the 

findings in previous cases. However, the relative contributions of inventory and disposal 

costs exhibit variations across different instances, highlighting the impact of demand 

variance on these cost components. Regarding columns 9 to 11, which represent the 

improvements in cost savings, we can observe that incorporating wait-and-see strate- 

gies leads to significant improvements in all instances. Comparing these improvements 

with previous cases, we can observe that the magnitudes of the improvements tend 

to be higher in Case 4. This suggests that wait-and-see donors play a crucial role in
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scenarios with high demand variance, as they enable donation organizations to better 

satisfy the fluctuating demand for blood products. Examining the total improvement 

(column 12), the average improvement across all instances in Case 4 is 17.84%, indi- 

cating a substantial enhancement in cost savings when combining the benefits from all 

three cost components through the use of wait-and-see donation strategies. Comparing 

Case 4 with previous cases, we can observe that the average improvement in cost sav- 

ings is slightly higher in Case 4. This highlights the increased benefits of wait-and-see 

strategies in scenarios with high demand variance.
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