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Abstract. We show that the existence of a first-order formula separa-
ting two monadic second order formulas over countable ordinal words is
decidable. This extends the work of Henckell and Almeida on finite words,
and of Place and Zeitoun on ω-words. For this, we develop the algebraic
concept of monoid (resp. ω-semigroup, resp. ordinal monoid) with aperio-
dic merge, an extension of monoids (resp. ω-semigroup, resp. ordinal
monoid) that explicitly includes a new operation capturing the loss of
precision induced by first-order indistinguishability. We also show the
computability of FO-pointlike sets, and the decidability of the covering
problem for first-order logic on countable ordinal words.

Keywords: Regular languages · Separation, Pointlike sets · Countable
Ordinals · First-order logic · Monadic second-order logic

A full version of this paper can be found on arXiv. This document contains
internal hyperlinks, and is best read on an electronic device.

1 Introduction

In this paper, we establish the decidability of FO-separability over countable
ordinal words:

Theorem 1. There is an algorithm which, given two regular languages of count-
able ordinal words K,L, either:

– answers ‘yes’, and outputs an FO-separator which is an FO-formula φ which
separates K from L, i.e. such that u |= φ for all u ∈ K, and v |= ¬φ for
all v ∈ L, or

– answers ‘no’, and outputs a witness function, i.e., a computable function
taking as input an FO-sentence φ and returning a pair of words (u, v) ∈ K×L
such that u |= φ if and only if v |= φ.
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The decidability of FO-separability was previously only known for finite
words [19,2,25,17] and for words of length ω [25]. Countable ordinal words are
sequences of letters that are indexed by a countable total well-ordering, i.e.,
up to isomorphism, by a countable ordinal. There is a natural notion of regu-
lar languages over these objects which can be equivalently described in terms of
logic (either monadic second-order logic or weak monadic second-order logic), au-
tomata (Büchi introduced a notion of automata for countable ordinal words [13],
which was studied in more detail by Wojciechowski [39] and which generalises
Choueka’s automata [15] for words of length at most ωn—the fact that Choueka’s
automata can be seen as a restriction of Büchi’s automata for countable ordinals
was proven by Bedon [5]), rational expressions (introduced by Wojciechowski
[40]), or algebra (recognisable by finite ordinal monoids—introduced by Bedon
and Carton [8]). A detailed survey of the equivalence between all these notions
can be found in Bedon’s thesis [6].

Our algorithm follows the approach initiated by Henckell, and constructs the
FO-pointlike sets in an ordinal monoid that recognises the two input languages
simultaneously. FO-pointlike sets are subsets of a monoid whose elements are
inherently indistinguishable by first-order logic. Our completeness proof for the
algorithm follows a scheme similar to the one followed by Place and Zeitoun in the
context of finite and ω-words [25], which was inspired by Wilke’s characterisation
of FO-definable languages [38]. We had to make several substantial changes
to this approach for the proofs to generalize from finite and ω-words to the
setting of countable ordinal words. A seemingly slight modification of the notion
of saturation (Definition 8) allows for a careful redesign of several of the core
lemmas in the proof of completeness, and in particular the construction of an
FO-approximant in Section 5 below.

Related work This work lies in a line of research that aims to obtain a decid-
able understanding of the expressive power of subclasses of the class of regular
languages. The seminal work in this area is the Schützenberger-McNaughton-
Papert theorem [34,22] which effectively characterizes the languages of finite
words definable in first-order logic as the ones which have an aperiodic syntactic
monoid. This theorem was at the origin of a large body of work that studies
classes of languages through the corresponding classes of monoids, including for
instance Simon’s result characterising piecewise-testable languages via J -trivial
monoids [36]. FO-pointlike sets are also known in the literature as aperiodic
pointlike sets, and were first studied and shown to be computable by Henckell
[19], in the context of the Krohn-Rhodes semigroup complexity problem. The
computability of pointlike sets was shown to be equivalent to the decidability of
the covering problem by Almeida [2]. Alternative proofs of separation and cov-
ering problems for FO were given recently in [25,17], and, ever since Henckell’s
work, the computability of FO-pointlike sets was also extended to pointlike sets
for other varieties—for example [4] for the variety of finite groups, [3] for the
variety of J -trivial finite semigroups and [18] for varieties of finite semigroups
determined by a variety of finite groups; also see [18] for further references. Place
and Zeitoun recently used pointlike sets, in the form of covering problems [27],
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to resolve long-standing open membership problems for the lower levels of the
dot-depth and of the Straubing-Thérien hierarchies [26,28,29].

Another, orthogonal, line of research consists in the extension of the notions
of regularity (logic/automata/rational expressions/algebra) to models beyond
finite words. This is the case for finite or infinite trees [30]. In this paper, we are
concerned with words that go beyond finite, such as words of length ω [12,37,24],
of countable ordinal length [6,5], of countable scattered3 length [31,32], or of
general countable length [30,35,14].

These two branches have also been studied jointly, and first-order logic was
characterised on words of length ω [23], of countable ordinal length [7], of count-
able scattered length [10] (and in [9] for first-order augmented with quantifiers
over Dedekind cuts), and for words of countable length [16] (as well as other
logics [16,21,1]). Prior to the current work, the questions of computing the FO-
pointlike sets and deciding FO-separation for languages of infinite words had
only been investigated for words of length ω [25].

Structure of the document In Section 2, we introduce important definitions for
manipulating infinite words in algebraic terms (ordinal monoids and their pow-
erset), and in logical terms (first-order logic and first-order definable maps). In
Section 3, we describe the algorithm, and in particular its core, a saturation
construction. The correctness of the algorithm is then proved in Section 4, and
the completeness in Section 5. In Section 6, we show two stronger results that
arise from the same technique: the decidability of the covering problem and the
computability of pointlikes. Section 7 concludes.

2 Preliminaries

2.1 Ordinals

A linear ordering is a set equipped with a total order. It is countable (resp.
finite) if the underlying set is countable (resp. finite). Let α and β be two linear
orderings. A morphism from α to β is a monotonic function, and an isomorphism
between α and β is a bijective morphism. The (ordered) sum of two linear orders
α and β is denoted by α + β and is defined, as usual, on the disjoint union of the
linear orders α and β, by further postulating that every element of α is below
every element of β. The product of two linear orders is denoted by α · β and is
defined to be the right-to-left lexicographic ordering on the Cartesian product
of the two orders, i.e., (x, y) ⩽ (x′, y′) iff y < y′ or y = y′ and x ⩽ x′. The n-fold
product of α with itself is denoted by αn. A linear ordering is well-founded when
it does not contain an infinite strictly decreasing sequence. An ordinal is a well-
founded linear ordering, considered only up to isomorphism of linear orderings.
The empty linear ordering, the linear ordering with a single element and the
linear ordering of natural numbers are all ordinals, and are denoted 0, 1 and ω,
respectively. The class of all ordinals is itself totally ordered by the embedding
3 A linear ordering is scattered if it does not contain a dense subordering.
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relation: α ≼ β means that there exists an injective monotonic function from α
to β. The relation ≺ denotes the strict ordering associated with ≼. An ordinal
is a successor ordinal if it has a maximum, and a limit ordinal otherwise.

2.2 Ordinal words

Given a set X, a word w over X is a map from some linear ordering to X.
The linear ordering is called the domain of w, and denoted dom(w). A word is
countable (resp. finite, resp. scattered, resp. ω-word), if its domain is countable
(resp. finite, resp. scattered, resp. ω). In this paper, a countable ordinal word
is a word that has a countable and ordinal domain (hence, the countability
assumption in silently assumed throughout the paper). The set of all finite words
over X is denoted by X∗, and the collection of all countable ordinal words over
X is denoted by Xord. Similarly, the set of finite non-empty words is denoted
by X+ and the collection of non-empty countable ordinal words is denoted by
Xord+. The concatenation of two countable ordinal words u and v over X is the
word u ·v : dom(u) + dom(v) → X over X defined by (u ·v)ι := uι if ι ∈ dom(u)
and (u · v)ι := vι if ι ∈ dom(v). If w is a countable ordinal word, we define its
omega iteration, denoted by wω, as the word with domain dom(w) · ω defined
by (wω)(ι,n) := wι for every ι ∈ dom(w) and n ∈ ω. For example, if a, b ∈ X,
then the omega iteration (ab)ω of the two-letter word ab is the word ababab · · ·
with domain 2 · ω = ω.

2.3 Ordinal monoids

A semigroup is a set S equipped with an associative binary product, denoted by ·.
A monoid is a semigroup with a distinguished neutral element for the product,
denoted as 1. An element x ∈ S is called idempotent if x2 = x. In a finite finite
semigroup S, every element x ∈ S has a unique idempotent power, denoted by4

xidem, which we recall is the limit of the ultimately constant series n 7→ xn!.
We also denote xidem+k, for k integer, the limit of the ultimately constant series
n 7→ xn!+k. Note that xidem is the identity element of the unique maximal group
inside the subsemigroup generated by x. A finite semigroup is aperiodic (we
equivalently write group-trivial) if aidem = aidem+1 for all of its elements a.

We now extend the notion of monoid to obtain an algebraic structure in which
one can evaluate a product indexed by any countable ordinal. Let Σ be any set,
and α a countable ordinal. For any word (wι)ι<α over the set Σord of countable
ordinal words—i.e. (wι)ι<α is a word whose letters are words over Σ— we define
flat(wι | ι < α) to be the word over Σ with domain

∑
ι<α dom(wι), which has

the letter (wι)κ ∈ Σ at position (ι, κ), for every ι ∈ α and κ ∈ dom(wι).

4 The standard notation is xω, but this notation conflicts with the linear ordering ω.
It is sometimes denoted xπ or x! when in the context of infinite words. We find the
notation xidem more self-explanatory.
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Definition 2. An ordinal monoid5 is a pair M = (M,π) where M is a set and
π : Mord → M is a function, called generalised product, such that:

– π(x) = x for every x ∈ M , and
– π((π(uι))ι<α) = π(flat((uι)ι<α)) for every word (uι)ι<α ∈ (Mord)ord.

The second axiom is called generalised associativity. An ordinal monoid mor-
phism is a map between ordinal monoids preserving the generalised product.
An ordinal monoid is ordered if it is equipped with an order ⩽ that makes π
monotonic, i.e. such that u ⩽ v implies π(u) ⩽ π(v), in which ⩽ is extended
letter-by-letter to words in Mord.

Given a set Σ (the alphabet), an ordinal monoid M = (M,π), a letter-
to-letter map σ : Σ → M extended to σord : Σord → Mord, and F ⊆ M , the
language L ⊆ Σord recognised by (M, σ, F ) is

L = {u ∈ Σord : π(σord(u)) ∈ F},

and a language L ⊆ Σord is called recognisable if it is recognised by some such
tuple (M, σ, F ). We recall that recognisable languages of ordinal words coincide
with the ones definable in monadic second-order logic, or definable by suitable
automata. These languages are called regular. Example 9 below will illustrate
this concept.

We now recall a finite presentation of finite ordinal monoids (originally for
ordinal semigroups), first given by Bedon [6] by extending a similar result es-
tablished by Perrin and Pin [24, prop II.5.2] for ω-semigroups6. Let (S, π) be an
ordinal monoid. We define the constant 1 and two functions · : S × S → S and
−ω : S → S by

1 := π(ε) x · y := π(xy) and xω := π(xω) = π(

ω times︷ ︸︸ ︷
xxx · · ·) .

The following proposition lets us interchangeably regard an ordinal monoid M
as either a pair (M,π) or as a quadruple (M, 1, ·,−ω), that we refer to as its
presentation.

Proposition 3 ([6, Thm. 3.5.6], originally for ordinal semigroups). In
a finite ordinal monoid the generalised product is uniquely determined by the
operations 1, · and −ω.

An important construction on which our proof relies is the power ordinal
monoid : given an ordinal monoid (M,π), we equip the powerset P(M) of M
with a generalised product π : P(M)ord → P(M) defined by

π((Xι)ι<κ) := {π((xι)ι<κ) | xι ∈ Xι for all ι < κ}
for all words (Xι)ι<κ ∈ (P(M))ord.

5 The object should probably be called a ‘countable ordinal monoid’ since its intent is
to model countable ordinal words. However the naming becomes clumsy for ‘finite
countable ordinal monoids’...

6 The finitary reprensation of ω-semigroups is usually called a Wilke algebra, which is
the algebraic structure introduced by Wilke in [37] to recognise regular ω-languages.

268 T. Colcombet et al.



Observe that if M is a finite ordinal monoid, then so is P(M). We can
compute a finite representation of the power ordinal monoid P(M) of M from
a finite representation of M . Indeed,

1 = {1}, X · Y = {x · y | x ∈ X, y ∈ Y }, and Xω = {u · vω | u, v ∈ X+}

for all X,Y ∈ P(M). The two first properties are trivial while the third one can
be proven using the infinite Ramsey’s theorem—this is a classical argument used
to give finite representation of infinite structures, see e.g. [24, Theorem II.2.1].
Note that this power ordinal monoid is indeed an ordinal monoid. It is even an
ordered ordinal monoid when equipped with the inclusion ordering.

2.4 First-order logic

Over a fixed (finite) alphabet Σ, we define the set of first-order logic formulæ
or FO-formulæ for short, by the grammar:

φ ::= ∃x. φ | ∀x. φ | φ ∧ φ | φ ∨ φ | ¬φ | x < y | a(x)

where x, y range over some fixed infinite set of variables, and a over Σ. Free
variables are defined as usual, and an FO-sentence is a formula with no free
variables. In our setting, a model is a countable ordinal word, and a valuation
over this model is a total map from variables to the domain of the word. We
define, for any word w and any valuation ν, the semantic relation w, ν |= φ of
first-order logic on countable ordinal words by structural induction on the FO-
formula φ, by interpreting variables as positions in the word and propositions of
the form a(x) as “the letter at position x is an a”. If φ is an FO-sentence, then
the semantics of φ over a word w does not depend on the valuation, and thus
we write w |= φ or w ̸|= φ. When w |= φ we say that w satisfies φ, or also that
φ accepts w.

A language L ⊆ Σord is said to be FO-definable if L = {w ∈ Σord | w |= φ}
for some FO-sentence φ. For example, the language of words over the alphabet
{a, b, c} such that every ‘a’ is at a finite distance from a ‘b’ is defined by the
FO-sentence ∀x.a(x) → ∃y.b(y) ∧ finite(x, y), where:

isSuccessor(z) ::= ∃y.y < z ∧ (∀x. x < z → x ⩽ y)

finite(x, y) ::= ∀z.(x < z ⩽ y ∨ y < z ⩽ x) → isSuccessor(z) .

Bedon [7] extended the Schützenberger-McNaughton-Papert theorem [34,22]
to countable ordinal words.

Proposition 4 (Bedon’s theorem [7, Theorem 3.4]). A language of count-
able ordinal words is FO-definable if and only if it is recognised by a finite ape-
riodic ordinal monoid.

Let L ⊆ Σord. A function f : L → X whose codomain X is a finite set is said
to be FO-definable when every preimage f−1[x], with x ∈ X, is an FO-definable
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language. Note that if f is FO-definable, then its domain L is necessarily an
FO-definable language.

For example, the function Σ∗ → Z/2Z, sending a word w ∈ Σ∗ to its length
modulo 2, is not FO-definable. On the other hand, for a fixed letter a ∈ Σ, the
total function sending a word w ∈ Σord+ to ⊤ if w contains the letter ‘a’ and to
⊥ otherwise is FO-definable.

A useful tool to manipulate words is the notion of condensation — see, e.g.,
[33, §4] for an introduction to the subject. A condensation of a countable ordinal
α is an equivalence relation ∼ over α whose equivalence classes are convex. Note
that the quotient of an countable ordinal by a condensation is still a countable
ordinal.

A condensation formula φ(x, y) is a formula which is interpreted as a con-
densation of the domain over all countable ordinal words, i.e. for every word
w ∈ Σord, the relation defined on dom(w) by ι ∼φ κ if and only if w, [x 7→
ι, y 7→ κ] |= φ(x, y) is a condensation. A condensation formula φ(x, y) induces a
map:

φ̂ : Σord → (Σord+)ord

where for every u ∈ Σord, φ̂(u) is a word whose domain is dom(w)/∼φ, and
such that for every class I ∈ dom(w)/∼φ, the I-th letter of φ̂(u) is the word
(uι)ι∈I—hence flat(φ̂(u)) = u.

For example, the formula finite(x, y) is a condensation formula, called finite
condensation. The function φ̂finite : Σ

ord → (Σord)ord that it induces sends the
word ababab · · · cdcdcd · · · abc ∈ Σord of length ω · 2 + 3 to the 3-letter word
(ababab · · · )(cdcdcd · · · )(abc). Observe that for every word w ∈ Σord, every letter
of φ̂finite(w) is a word of length ω, except possibly for the last letter (if the word
has one), which can be finite.

Given two FO-definable functions—one that describes “local transformations”
and another that described how to glue these local transformations together—
the following lemma allows us to build a new FO-definable function. It is one of
the key ingredients in our proof of Theorem 1.

Lemma 5. Let A,B,C be finite sets. Let φ(x, y) be a condensation FO-formula
over A, let f : Aord+ → B and g : Bord → C be FO-definable functions. Then,
the map

g ◦φ f : Aord → C

u 7→ g

 ∏
i∈dom(φ̂(u))

f(φ̂(u)i)


is FO-definable.
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3 The algorithm

In this section we describe the algorithm behind Theorem 1. We first introduce
the key notion of saturation in Section 3.1, and formalise the algorithm in Sec-
tion 3.2.

3.1 The saturation construction

Until the end of Section 3.1, we fix a finite ordinal monoid M = (M, ·, 1,−ω).
The saturation construction is at the heart of the algorithm, both in this pa-

per, and in previous work. We introduce the necessary definitions. Note however
that in our case, we do not close the definition under subsets as is usually done.
This change, which may look minor, is in fact key for our proof to go through in
the case of countable ordinals, and we find it also simplifies some points in the
setting of finite words. We first recall an essential operation on P(M) that we
denote −grp. Applied to a set X ⊆ M , it computes the union of all the elements
that belong to the maximal group in the subsemigroup of P(M) generated by X.

Definition 6. Let X ⊆ M . Define

Xgrp =
⋃
k∈N

X idem+k =⋆
⋂
n∈N

⋃
m≥n

Xm.

Note that the ⋆ equality holds: Left to right inclusion comes from the fact that
X idem+k = Xm holds for infinitely many values of m, while the other inclusion
stems from the fact that Xm can be written as X idem+k for some k whenever m
is sufficiently large.

Some important properties of this operation are the following.

Lemma 7. The operation −grp is monotonic, and for all A,B ⊆ M , and all
integers k,

Aidem+k ⊆ Agrp, (A · B)grp = A · (B · A)grp · B ,

and Agrp · Agrp = (Agrp)grp = Agrp.

The core of the algorithm computes the closure under −grp and all the oper-
ations of the algebra of the images of the letters.

Definition 8. Let A ⊆ P(M). The set ⟨A⟩grp,ord ⊆ P(M) is defined to be the
least set containing A, {1}, and closed under ·, grp and ω.7

This definition is close in spirit to what is called saturation in previous works,
with the difference that we do not take the downward closure, and that we close
under the operation −ω. Despite this difference, we sometimes call ⟨A⟩grp,ord the
saturation.

Observe that the ordinal monoid M is aperiodic if and only if

⟨{{x} | x ∈ M}⟩grp,ord = {{x} | x ∈ M} .
7 Recall that we showed that in a power ordinal monoid, the operation −ω is com-

putable.
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3.2 The algorithm

We are now ready to describe the core of the algorithm that is claimed to exist
in Theorem 1. Let K and L be two regular languages of countable ordinal words
over the alphabet Σ. The algorithm is:

1. Let M, σ, FK , FL be such that K is recognised by (M, σ, FK) and L by
(M, σ, FL).

2. Compute Sat := ⟨{{σ(a)} | a ∈ Σ}⟩grp,ord (inside P(M)).
3. If FK ∩X ̸= ∅ and FL ∩X ̸= ∅ for some X ∈ Sat, answer ‘no’. Otherwise

answer ‘yes’.

aωaa∗ aωa∗ aω
∗

a,
aa∗

1∗
the
group
Z/2Z

· 1 a aa aω aωa aωaa

1 1 a aa aω aωa aωaa
a a aa a aω aωa aωaa
aa aa a aa aω aωa aωaa
aω aω aωa aωaa aω aωa aωaa
aωa aωa aωaa aωa aω aωa aωaa
aωaa aωaa aωa aωaa aω aωa aωaa

−ω 1 aω aω aω aω aω

⟨{{a}}⟩grp,ord = {{1}, {a}, {aa}, {a, aa}, {aω}, {aωa}, {aωaa}, {aωa, aωaa}}

Fig. 1. Egg-box diagram of a finite ordinal monoid M recognising J , K and L (left),
multiplication table and ω-iteration of M (right) and saturation (bottom).

Example 9. We illustrate the saturation construction and the algorithm on the
following three languages over the singleton alphabet {a}:

J = {infinite words whose longest finite suffix has even length},
K = {infinite words whose longest finite suffix has odd length},

and L = { words that do not have a last letter}.

It is classical that J and K are not FO-definable, while L is defined by the
formula ∀x. ∃y. y > x. We can build a finite ordinal monoid M recognising all
three languages: it has six elements, 1, a, aa, aω, aωa and aωaa. Its presentation
its described Figure 1. Naturally, the letter a is mapped to σ(a) = a. Then
J , K and L are recognised by FJ := {aω, aωaa}, by FK := {aωa} and by
FL := {1, aω}, respectively.

The languages K and L are FO-separable: in fact L is an FO-separator of
K and L. On the other hand, J and K are not FO-separable, as witnessed
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by the saturation algorithm. Indeed, the saturation ⟨{{σ(a)} | a ∈ Σ}⟩grp,ord
contains all singletons, and furthermore {a, aa} = {a}grp. As a consequence, it
also contains {aωa, aωaa} = {a}ω · {a, aa}. This last set intersects both FJ and
FK .

The rest of the paper is dedicated to establishing the validity of this approach.
In Section 4, we prove Proposition 12 stating that if the algorithm answers ‘no’,
then the languages cannot be separated, as described in Theorem 1. In Section 5,
we prove Corollary 16 stating that if the algorithm answers ‘yes’, then it is
possible to construct an FO-separator sentence as described in Theorem 1. In
Section 6, we shall package the results of Sections 4 and 5 differently, concluding
that we have in fact computed the pointlike sets, and that we can also decide
the more general covering problem.

4 When the algorithm says ‘no’

In this section, we establish the correctness of the algorithm, i.e., when the al-
gorithm answers ‘no’, we have to prove that the two input languages cannot
be separated by an FO-definable language, and that we can produce a witness
function. This is established in Proposition 12. The proof follows standard ar-
guments.

The quantifier depth, a.k.a. quantifier rank, of an FO-formula is the maximal
number of nested quantifiers in the formula. Two words u, v ∈ Σord are said
to be FOk-equivalent, denoted by u ≡FOk

v, if every FO-sentence of quantifier
depth at most k accepts u if and only if it accepts v.

Proposition 10. Let k ∈ N.

– For u, u′, v, v′ ∈ Σord, if u ≡FOk
u′ and v ≡FOk

v′ then uv ≡FOk
u′v′,

– for all Σord-valued sequences (un)n∈N and (vn)n∈N, if un ≡FOk
vn for all

n ∈ N, then flat(un | n ∈ N) ≡FOk
flat(vn | n ∈ N), and

– for all n ⩾ 2k − 1, for all u ∈ Σord, un ≡FOk
un+1.

This can be proved, for example, by using Ehrenfeucht-Fraïssé games—see
e.g. [33, Lemma 6.5 & Corollary 6.9] for a proof of the first and third items ;
the proof of the second item is similar8. Note that the first two items are also
immediate corollaries of the Feferman-Vaught theorem [20, Theorem 1.3]. Note
that the third property can be used to prove that every FO-definable language
is recognised by an aperiodic finite ordinal monoid—this is the easy direction of
Bedon’s theorem [7].

Throughout the rest of this section, we fix K and L, two regular languages of
countable ordinal words over an alphabet Σ. Recall that the algorithm computes
the subset Sat := ⟨{{σ(a)} | a ∈ Σ}⟩grp,ord of P(M), where M is a finite ordinal
monoid recognizing both K and L.
8 Moreover, note that the first item can be deduced from the second item by taking
un = vn = ε for n ≥ 2.
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We begin with a lemma which states that to all sets that belong to Sat
can be effectively associated witnesses of indisinguishability (we shall see in
Proposition 30 that what we have proved is that the elements in Sat are pointlike
sets).

Lemma 11. There exists a computable function which takes as input a number
k ∈ N and an element X ∈ Sat, and produces an X-indexed sequence of ordinal
words (ux)x∈X ∈ (Σord)X such that,

– π(σord(ux)) = x for all x ∈ X, and
– ux ≡FOk

ux′ for all x, x′ ∈ X.

The proof is by structural induction on the definition of Sat, making use of
the two first items of Proposition 10 for composing witnesses, and of furthermore
the third item for treating the −grp operation.

From the above lemma, one can easily deduce that when the algorithm an-
swers ‘no’, there is indeed an obstruction to the fact that K and L can be
FO-separated.

Proposition 12. Assume that the algorithm answers ‘no’ when run with input
languages K and L. Then there is a witness function which computes, for any
FO-sentence φ, a pair of words (u, u′) ∈ K × L such that u |= φ if and only if
u′ |= φ. In particular, K and L cannot be FO-separated.

Proof. Since the algorithm answered ‘no’, pick a pair (x, x′) ∈ FK×FL such that
x, x′ ∈ X for some X ∈ Sat. Now, for any FO-sentence φ, using the function of
Lemma 11 with k the quantifier depth of φ, we can compute a sequence (ux)x∈X

of ordinal words. Now define u := ux and u′ := ux′ . Then u ≡FOk
u′, so that

u |= φ if and only if u′ |= φ. Also, π(σord(u)) = x ∈ FK and π(σord(u′)) = x′ ∈
FL, so u ∈ K and u′ ∈ L.

Example 13 (Continuing Example 9). Recall that J and K are not FO-separable.
Because of the set {aωa, aωaa} ∈ ⟨{σ(a) | a ∈ Σ}⟩grp,ord, the algorithm outputs
‘no’, and can return, to witness the FO-inseparability of the two languages the
computable map φ 7→ (aωa2

k+1, aωa2
k+2) ∈ J ×K, where k denoted the quan-

tifier depth of φ. To prove that aωa2
k+1 ≡FOk

aωa2
k+2, one can simply use the

first and third items of Proposition 10.

5 When the algorithm says ‘yes’

We now establish the completeness part of the proof of the main theorem, The-
orem 1. The goal of this proof is to establish that if the algorithm answers ‘yes’,
it is indeed possible to produce an FO-separator (Corollary 16).

This is the part of the proof that differs most substantially from previous
works on separation. In Section 5.1, we abstract the question with the notion of
ordinal monoids with merge, and we introduce the notion of FO-approximants
which are FO-definable over-approximations of the product. The key result,
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Lemma 15, states their existence for all finite ordinal monoid with merge. Corol-
lary 16 follows immediately. The proof of Lemma 15 is then established in Sec-
tion 5.2 for words of finite or ω length. Building on these simpler cases, the
general case is the subject Section 5.3.

5.1 Merge operators and FO-approximants

We abstract in this section the ordinal P(M) equipped with the −grp operator
into a new algebraic structure. A finite ordinal monoid with merge M = (M, 1,⩽
, ·,ω ,grp ) consists of:

– a presentation of an ordered ordinal monoid (M, 1,⩽, ·,ω ), together with
– a monotonic merge operator −grp : M → M such that for all a, b ∈ M , and

all integers k,

aidem+k ⩽ agrp, (aidem)grp = aidem,

agrp · agrp = (agrp)grp = agrp, and (a · b)grp = a · (b · a)grp · b .

The following lemma is an immediate consequence of Lemma 7.

Lemma 14. Both (P(M), {1},⊆, ·,ω ,grp ) and (Sat, {1},⊆, ·,ω ,grp ) are ordinal
monoids with merge.

The idea behind ordinal monoids with merge is that not only there is a
product operation as for every ordinal monoid, but also an FO-definable over-
approximation for it. This is the concept of FO-approximant that we introduce
now. Given a an FO-definable language L ⊆ Mord, an FO-approximant of π
over L is an FO-definable map ρ : L → M such that:

π(u) ⩽ ρ(u), for all u ∈ L.

The key result concerning ordinal monoids with merge is the existence of a total
FO-approximant:

Lemma 15. There is an FO-approximant ρ over Mord for all ordinal monoids
with merge M.

An example of an FO-approximant can be found in Example 26. Before
establishing Lemma 15, let us explain why it is sufficient for concluding the
proof of Theorem 1 in the case the algorithm answers ‘yes’.

Corollary 16. If the algorithm answers ‘yes’, there exists an FO-separator.

Proof. By Lemmas 14 and 15, there exists an FO-approximant ρ : Aord →
⟨A⟩grp,ord over the power ordinal monoid P(M), where A = {{σ(a)} | a ∈ Σ}.
Now define the language

S := {u ∈ Σord | ρ(σ̃ord(u)) ∩ FK ̸= ∅}
where σ̃ord(u) := ({σ(ui)})i∈dom(u) ∈ Aord for all u ∈ Σord.
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Note first that since ρ is FO-definable, this language is FO-definable. Let us
show that it separates K from L.

For every u ∈ K, FK ∋ π(σord(u)) ⊆ ρ(σ̃ord(u)), and as a consequence
ρ(σ̃ord(u)) ∩ FK ̸= ∅. We have proved K ⊆ S.

Conversely, consider some u ∈ L. We have FL ∋ π(σord(u)) ∈ ρ(σ̃ord(u)) ∈
⟨A⟩grp,ord, and thus ρ(σ̃ord(u))∩FL ̸= ∅. Since the algorithm returns ‘yes’, this
means that there is no set in ⟨A⟩grp,ord that intersects both FK and FL. In our
case, this means that ρ(σ̃ord(u))∩FK = ∅, proving that u ̸∈ S. We have proved
L ∩ S = ∅.

Overall, S is an FO-separator for K and L.

Remark 17. Notice how the “difficult” implication of Bedon’s theorem (Propo-
sition 4) can be easily deduced from Lemma 159: recall that this implication
consists in showing that a regular language L ⊆ Σord, recognised by some
triplet (M, σ, F ) with M is aperiodic is definable in first-order logic. Indeed,
by aperiodicity of M, the operation grp applied to a singleton {a} yields the sin-
gleton {aidem}. Hence, the set ⟨{{σ(a)} | a ∈ Σ}⟩grp,ord = {{π ◦ σord(u)} | u ∈
Σord} consists only of singletons, and as a consequence, all FO-approximants
ρ (and in particular the one constructed in Lemma 15) maps a word u to π(u).
Hence, π is an FO-definable map, and thus L is an FO-definable language.

The rest of this section is devoted to establishing Lemma 15. The construction
is based on subresults showing the existence of FO-approximants over subsets
of Mord; first for finite and ω-words in Section 5.2, and finally for words of any
countable ordinal length in Section 5.3. But beforehand, we shall introduce some
more definitions and elementary results.

In what follows we use the notation ⟨−⟩grp,ord from Definition 8, interpreted
in a generic ordinal monoid with merge, as well as some variants. Let A ⊆ M .
We define ⟨A⟩+ as the closure of A under ·, ⟨A⟩grp+ as the closure of A under ·
and −grp, and ⟨A⟩grp∗ as ⟨A⟩grp+∪{1}. We define ⟨A⟩grp,ord+ as the closure of A
under ·, grp and ω. Note that thanks to the identities of ordinal monoids with
merge, we have ⟨A⟩grp,ord = ⟨A⟩grp,ord+ ∪ {1}. Moreover, we have the following
identities10:

Proposition 18. Let M be an ordinal monoid with merge. For every A ⊆ M,

⟨A⟩grp+ = A⟨A⟩grp∗ = ⟨A⟩grp∗A and ⟨A⟩grp,ord+ = A⟨A⟩grp,ord .

Proof. Note, by definition, that ⟨A⟩grp∗ = ⟨A⟩grp+ ∪ {1}, so

A⟨A⟩grp∗ = A⟨A⟩grp+ ∪A ⊆ ⟨A⟩grp+.

The converse inclusion ⟨A⟩grp+ ⊆ A⟨A⟩grp∗ is obtained by induction. Let b ∈
⟨A⟩grp+. If b ∈ A, then b ∈ A⟨A⟩grp∗ since 1 ∈ ⟨A⟩grp∗. If c = cd with c, d ∈
9 Similarly, for finite words, Schützenberger-McNaughton-Papert’s theorem is a con-

sequence of Henckell’s algorithm for aperiodic pointlikes—see e.g. [25, Corollary 4.8]
10 Notice the similarity with the (trivial) identities A+ = AA∗ = A∗A and Aord+ =

AAord.

276 T. Colcombet et al.



⟨A⟩grp+, then, by induction, c = ac′ for some a ∈ A and c′ ∈ ⟨A⟩grp∗, thus b =
a(c′d) ∈ A⟨A⟩grp∗ since a ∈ A and c′d ∈ ⟨A⟩grp∗. Finally, if b = cgrp, then, again
by induction, c = ac′ for some a ∈ A and c′ ∈ ⟨A⟩grp∗, and thus b = cgrp =
ccgrp = a(c′cgrp) ∈ A⟨A⟩grp∗.

The equality ⟨A⟩grp+ = ⟨A⟩grp∗A is symmetric.
The identity ⟨A⟩grp,ord+ = A⟨A⟩grp,ord is similar. The new case in the induc-

tion is if some b ∈ ⟨A⟩grp,ord+ is of the form cω, then, by induction hypothesis,
c = ac′ for some a ∈ A and c′ ∈ ⟨A⟩grp,ord, and thus b = cω = ccω = a(c′cω) ∈
A⟨A⟩grp,ord.

Proposition 19. If there are FO-approximants over K and L respectively, then
there exist effectively FO-approximants over K ∪ L and KL.

5.2 Construction of FO-approximants for words of finite and
ω-length

First, we show how to construct FO-approximants for finite words. It serves at
the same time as a building block for more complex cases, as a way to show the
proof mechanisms in simpler cases, as well as to comment on differences with
previous works.

Lemma 20. Let A ⊆ M , then either

– a · ⟨A⟩grp+ ⊊ ⟨A⟩grp+, for some a ∈ A,
– ⟨A⟩grp+ · a ⊊ ⟨A⟩grp+, for some a ∈ A, or
– ⟨A⟩grp+ has a maximum.

Proof. Assume the two first items do not hold. Because of the non-first-one, the
map x 7→ a · x is surjective on ⟨A⟩grp+, for all a ∈ A. Since ⟨A⟩grp+ is finite,
this means that it is bijective on ⟨A⟩grp+. Hence it is also bijective on ⟨A⟩+. The
negation of the second item has a symmetric consequence. Together we get that
⟨A⟩+ is a group. Let I be its neutral element. Note first that for all x ∈ ⟨A⟩+,
I = xk for some k, and hence, I ⩽ xgrp. Set now a1, . . . , an to be the elements
in A, and define: M = (agrp1 · agrp2 · · · agrpn )grp.

By the above remark ai = Ii−1 · ai · In−i ⩽ agrp1 · agrp2 · · · agrpn ⩽ M for
all i. Since furthermore for all x, y ⩽ M , x · y ⩽ M and xgrp ⩽ M , it follows
that z ⩽ M for all z ∈ ⟨A⟩grp+.

A similar lemma is used in [25], but concludes with the existence of a pseudo-
group as the third item.

Lemma 21. For all a ∈ M there exists an FO-approximant from a+ to ⟨{a}⟩grp+.

Construction. Let k be such that aidem = ak. Define

ρ(

length n︷ ︸︸ ︷
a · · · a ) =

{
an if n < k,
agrp otherwise.
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We can now use this for proving the finite word case.

Lemma 22. For all A ⊆ M there exists an FO-approximant from A+ to ⟨A⟩grp+.

Proof. We use a double induction on |⟨A⟩grp+| and |A|. The induction is guided
by Lemma 20. The base case is A = ∅, and the nowhere defined FO-approximant
proves it.

First case: a · ⟨A⟩grp+ ⊊ ⟨A⟩grp+ for some a ∈ A. This part of the proof is
similar to [25, Lemma 6.7]. Let B ::= A∖ {a}.

We first construct an FO-approximant from a+B+ to a · ⟨A⟩grp+. Indeed, we
know by Lemma 21 that there is an FO-approximant from a+ to ⟨{a}⟩grp+ ⊆ a ·
⟨A⟩grp∗. We also know by induction11 that there is an FO-approximant from B+

to ⟨B⟩grp+ ⊆ ⟨A⟩grp+. Thus by Proposition 19, there exists effectively an FO-
approximant τ from a+B+ to a · ⟨A⟩grp∗ · ⟨A⟩grp+ ⊆ a · ⟨A⟩grp+.

We now provide an FO-approximant for (a+B+)+ (which is FO-definable),
and for this, define the condensation FO-formula φ(x, y) that expresses that “two
positions x and y are equivalent if the subword on the interval [x, y] belongs to
a∗B∗” (this can be expressed in first-order logic). Over a word u ∈ (a+B+)+,
each of the condensation classes belong to a+B+ and its image under τ be-
longs to a · ⟨A⟩grp+. Furthermore, still by induction hypothesis12, there is an
FO-approximant from (a · ⟨A⟩grp+)+ to ⟨A⟩grp+. By Lemma 5, we thus obtain
an FO-definable map from (a+B+)+ to ⟨A⟩grp+. It is an FO-approximant by
construction.

Using the above case and Proposition 19, it can be easily extended to an
FO-approximant from A+ = AB∗(a+B+)∗a∗ to ⟨A⟩grp+.

Second case: ⟨A⟩grp+ · a ⊊ ⟨A⟩grp+. This case is symmetric to the first case.
Third case: ⟨A⟩grp+ has a maximum M . Then the constant map that sends

every word u ∈ A∗ to M is an FO-approximant over A∗.

Following similar ideas, we can treat the case of ω-words. We define here
⟨A⟩grp,ω as the elements of the form {a · bω | a, b ∈ ⟨A⟩grp+}—or, equivalently,
⟨A⟩grp,ω = (⟨A⟩grp+)ω.

Lemma 23. Let M be an ordinal monoid with merge. For all A ⊆ M , there
exists an FO-approximant from Aω to ⟨A⟩grp,ω.

5.3 Construction of FO-approximants for countable ordinal words

As for the finite case, the proof revolves around a carefully designed case distinc-
tion. This one is more complex to establish, and makes use of Green’s relations
and a precise understanding of the properties of ordinal monoids with merge.

Lemma 24 (Trichotomy principle). Let M be a finite ordinal monoid with
merge and A ⊆ M , then either
11 Indeed, |B| < |A|.
12 This time, we can use the induction hypothesis because |⟨(a · ⟨A⟩grp+)+⟩grp+| <

|⟨A⟩grp+|. Indeed, by Proposition 18, ⟨(a · ⟨A⟩grp+)+⟩grp+ ⊆ (a · ⟨A⟩grp+)+⟨(a ·
⟨A⟩grp+)+⟩grp∗ ⊆ a · ⟨A⟩grp+ ⊊ ⟨A⟩grp+.
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– a · ⟨A⟩grp,ord+ ⊊ ⟨A⟩grp,ord+, for some a ∈ A,
– ⟨⟨A⟩grp,ω⟩grp,ord+ ⊊ ⟨A⟩grp,ord+, or
– x · y = y and xω = yω, for all x, y ∈ ⟨A⟩grp,ord+.

The above lemma is key in the proof of the existence of an FO-approximant.

Lemma 25. For all a ∈ M, there exists an FO-approximant over aord.

The proof follows a similar structure as the one for Lemma 22 for the finite case.
This time, Lemma 24 is the key argument that makes the induction progress,
playing the same role as Lemma 20 in the finite case. Note, however, that the
second items in Lemmas 20 and 24 are very different in structure. And indeed,
this entails a different argument for constructing the FO-approximant. It is based
on performing in one step the condensation of all the maximal factors of order-
type ω.

Example 26 (Continuing Example 13). An FO-approximant ρ of π over aord in
the ordinal monoid defined in Example 9 can be defined for all u ∈ {a}ord as:

ρ(u) :=


{1} if dom(u) is empty,
{a, aa} if dom(u) is finite and non-empty,
{aω} if dom(u) is a non-zero limit ordinal,
{aωa, aωaa} if dom(u) is an infinite successor ordinal.

Lemma 27. For all A ⊆ M, there exists an FO-approximant from Aord+ to
⟨A⟩grp,ord+.

Proof. We prove the result by induction on |⟨A⟩grp,ord+| and |Aord+|. The base
case A = ∅ is trivial. If A is non-empty, following Lemma 24, there are three
cases to treat.

First case: There exists a ∈ A such that a · ⟨A⟩grp,ord+ ⊊ ⟨A⟩grp,ord+. This
case is as in the proof for finite words, Lemma 22, using Lemma 25 in place of
Lemma 21. The key reason why the proof remains valid is because the hypothesis
a·⟨A⟩grp,ord+ ⊊ ⟨A⟩grp,ord+ implies |⟨(a·⟨A⟩grp,ord+)ord+⟩grp,ord+| < |⟨A⟩grp,ord+|
by Proposition 1813.

Second case14: ⟨⟨A⟩grp,ω⟩grp,ord+ ⊊ ⟨A⟩grp,ord+. By Lemma 23, there is an
FO-approximant from Aω to ⟨A⟩grp,ω. By induction hypothesis15, we have an
FO-approximant from (⟨A⟩grp,ω)ord+ to ⟨⟨A⟩grp,ω⟩grp,ord+ ⊆ ⟨A⟩grp,ord+. Since
13 More precisely, we are using the property ⟨B⟩grp,ord+ = B⟨B⟩grp,ord of Proposi-

tion 18. By thinking of elements of ⟨B⟩grp,ord+ as “countable ordinal words with
merge”, this property is simply saying that every “countable ordinal word with
merge” has a first letter. However, countable ordinal words need not have a last
letter: this is what makes an hypothesis of the form ⟨A⟩grp,ord+ · a ⊊ ⟨A⟩grp,ord+
unusable—and this is the motivation behind the trichotomy principle Lemma 24.

14 Note here that it is different from the second case in the proof of Lemma 22.
15 Indeed, ⟨⟨A⟩grp,ω⟩grp,ord+ ⊊ ⟨A⟩grp,ord+.
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the formula finite(x, y) is a condensation FO-formula, we obtain by Lemma 5
an FO-approximant from (Aω)ord+ → ⟨A⟩grp,ord+. Using Proposition 19 and
Lemma 22, we easily extend it to an FO-approximant from Aord+ = A(Aω)ordA∗

to ⟨A⟩grp,ord+.
Third case: x · y = y and xω = yω, for all x, y ∈ ⟨A⟩grp,ord+. Then the

product over A sends a countable ordinal word u ∈ Aord+ to its last letter if
the word has a last letter, and to the unique omega power of ⟨A⟩grp,ord+ if the
word has no last letter. Since the languages of the form Aord+a where a ∈ A and
{u ∈ Aord+ | dom(u) is a limit ordinal} all are FO-definable, it follows that the
product over A is FO-definable.

6 Related problems

In this section, we solve two related problems: the decidability of the cover-
ing problem (Proposition 28), and the computability of pointlike sets (Proposi-
tion 30). Both are direct applications of the key lemmas presented above.

The FO-covering problem asks, given regular languages, in our case of count-
able ordinal words, L,K1, . . . ,Kn, to determine if there exist FO-definable lan-
guages C1, . . . , Cn such that L ⊆ ∪iCi and Ci ∩ Ki = ∅ for all i—see [27] for
more details. In general, separation problems trivially reduce to covering prob-
lems, since L and K are separable if and only if there is a solution to the covering
problem for the instance (L,K). In the other direction, there is no known ex-
ample of a variety with decidable separation problem but undecidable covering
problem. We show that a further consequence of the above results is that the
FO-pointlike sets in a finite ordinal monoid (see Definition 29) are computable,
from which we deduce:

Proposition 28. The FO-covering problem for countable ordinal words is de-
cidable.

Let us now introduce, and explain, the relation with pointlike sets. The FOk-
closure of a word u is the set [u]FOk

which contains all words that are FOk-
equivalent to u.

Definition 29. Given a finite ordinal monoid M the FO-pointlike sets of a
map σ : Σ → M are defined by

PlFO(σ) ::=
⋂
k∈N

↓
{
π(σord([u]FOk

)) | u ∈ Σord
}
,

where ↓ X denotes the downward closure of X.

The definition of pointlike sets is in fact more general16: given a variety of
finite semigroups V one can define a notion of pointlike sets with respect to this
16 In the following discussion, we focus on finite words, but the notion of variety—of

algebras, or of languages—can be extended to countable ordinal words [8] and many
other settings [11, §4].
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variety. Almeida observed that the separation problem for the variety V—given
two regular languages, can they be separated by a V-recognisable language?—is
decidable if and only if the V-pointlikes of size 2 of every morphism are com-
putable [2, Prop. 3.4]. The covering problem also has an algebraic counterpart:
it is decidable for the variety V if and only if, for every morphism, the collection
of all V-pointlike sets of this morphism is computable [2, Prop. 3.6]17. Hence,
the fact that FO-covering and FO-separation are decidable for finite words is
simply a corollary of Henckell’s theorem on aperiodic pointlikes [19, Fact 3.7 &
Fact 5.31], stating that they are computable. Place & Zeitoun’s simpler proof
of the decidability of FO-covering for finite words and for ω-words [25] relies
on the same principle.18 Unsurprisingly, our result can be interpreted in the
same way: we are implicitly showing the following property, from which one can
immediately deduce the computability of PlFO(σ).

Proposition 30. Given a finite ordinal monoid M and σ : Σ → M ,

PlFO(σ) = ↓ ⟨{{σ(a)} | a ∈ Σ}⟩grp,ord.

7 Conclusion

In this paper, we have studied the problem of FO-separation over words of count-
able ordinal length. Our proof is based on the work of Place and Zeitoun over
words of length ω [25]. We build an FO-approximant using essentially the same
technique as Place and Zeitoun. However a key difference is that for finite words
and ω-words, the proof relies on a case distinction (Lemma 20) which is concep-
tually similar to the characterisation of groups as semigroups whose translations
are bijective. This was no longer sufficient for countable ordinal words because
of ω-iterations. In this situation, our new case distinction (Lemma 24) captures
the subtle interaction of ω-iteration with groups in finite ordinal monoids. In
particular, a difference with previously known algorithms is that we do not close
the saturation under subset. This a priori innocuous difference has significant
consequences on the proof of completeness, yielding some simplifications in the
finite and ω-case, and necessary for the proof to be extendable to all ordinals.

Of course, the next step is to go to longer words, in particular scattered
countable words, or even better to all countable words. Here, there are conceptual
difficulties, and let us stress also that, starting from scattered countable words,
first-order logic and first-order logic with access to Dedekind cuts begin to have
a different expressiveness. Thus several notions of separation have to be studied.
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