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1 Introduction

Instantons play a prominent role in many areas of particle physics: they are responsible
for the topologically non-trivial θ-vacuum for non-abelian gauge theories, when the gauge
coupling is small [1–5], they are an important source of baryon number violation in the
standard model (SM) [5–8], and are also responsible for numerous non-perturbative effects
in asymptotically free supersymmetric (SUSY) gauge theories (such as the Affleck-Dine-
Seiberg superpotential for certain numbers of flavors and colors [9–11] or the structure of the
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Seiberg-Witten moduli space for theories with Coulomb branches [12, 13]). While the mass
of the QCD axion itself is not due to an instanton effect [14–16], the axion potential remains
sensitive to corrections from small size instantons (“small instantons”) [17–25]. Performing an
instanton calculation is usually quite tedious, and involves the use of the explicit expressions
of the fermionic zero modes in an instanton background, as well as integrating over the zero
and non-zero mode fluctuations. It is natural to ask whether there are some simple power
counting rules that could reproduce the bulk of the effects of the full instanton calculation
(up to possible O(1) factors). In this paper we explicitly present the rules of an “Instanton
NDA”, which should be viewed as the analog of the usual Naive Dimensional Analysis (NDA)
for ordinary Feynman diagrams [26]. Our rules will correctly account for the 4π factors
appearing due to insertions of fermion zero modes or loop integrals, and are typically accurate
up to factors of few.

Our main applications of Instanton NDA will be to carefully examine the effects of
small instantons on the axion potential and on the neutron EDM in various axion models.
The QCD axion is introduced to solve the strong CP problem, and it generally suffers from
the so-called axion quality problem: the Peccei-Quinn symmetry (whose breaking produces
the axion) has to be very close to an exact symmetry, because even very high-dimensional
operators, suppressed by the Planck scale, can misalign the axion potential and reintroduce
a large correction to θ̄, the parameter entering the neutron EDM.

A less appreciated aspect of the axion quality problem is that there is another potential
source of misalignment for θ̄. New CP violating sources at high energies can enter the axion
potential via small instanton effects. This is a perfect arena to demonstrate the power of
Instaton NDA. We show that by inspecting just a few diagrams one can easily decide which
models suffer from this source of misalignment and which ones are UV-safe.

One class of models that is sensitive to these corrections are those where the axion mass
is enhanced by slowing down the running of the QCD gauge coupling in the UV, by adding
more matter. The enhanced gauge couplings in the UV enhance small instanton corrections,
and, depending on the details of the model, they could even dominate over the usual IR
contributions due to confinement in QCD. We show (following [27]) that this enhancement
generically also increases the misalignment effects from small instantons, if new sources of
CP violation are present in the UV completion of the theory. This makes it very difficult
to have a successful solution to the strong CP problem. Hence generic models of enhanced
axion mass should also explain why new sources of CP violation are absent in the UV.

We find, however, that two mechanisms [28, 29], recently introduced to solve the axion
quality problem, are generically quite safe against these new misalignment effects originating
from small instantons interacting with new UV sources of CP violation. Misalignment effects
in composite axion models [29] are generically negligibly small, and they also remain very
small in the ZN axion model of Hook [28], as long as one doesn’t introduce too much explicit
breaking of the ZN symmetry. The presence of such explicit breaking terms can, however,
potentially spoil the model, placing a lower bound on the scale of UV completion that could
be much higher than in models without the explicit breaking. Finally we also examine axion
GUT models, and find that small instantons are strongly suppressed, unless a very large set
of new particles in complete unified multiplets is added below the GUT scale.
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The paper is organized as follows: In section 2 we introduce Instanton NDA and give a few
simple examples of its use in the calculation of the axion potential. We also comment on how
the estimates can be promoted to a full instanton calculation. In section 3 we apply Instanton
NDA to demonstrate how small instantons can give a contribution to the axion potential
comparable to confining dynamics in the IR. Section 4 is dedicated to the study of misaligned
contributions to the axion potential from small instantons in theories with CP violating
higher-dimensional operators. In section 5 we demonstrate that ZN axion and composite
axion models are safe against misaligned small instanton contributions to their potential. In
section 6 we finally discuss small instantons in GUT models. We conclude in section 7.

2 Instanton NDA vs. full instanton calculations

The axion a is the Goldstone boson (GB) of a non-linearly realized chiral U(1)PQ, the
Peccei-Quinn (PQ) symmetry, which has a mixed anomaly with QCD. The anomaly induces
a coupling of the axion to the QCD field strength Gµν and its dual G̃µν

La ⊃
(
θ̄ +A

a

fa

)
g2

32π2

8∑
a=1

GaµνG̃
aµν , (2.1)

where g is the QCD coupling, fa the axion decay constant and A a model dependent
anomaly coefficient. The PQ symmetry acts on the axion as a continuous shift symmetry:
a/fa → a/fa + α. If unbroken, the symmetry makes the angle θ̄ unphysical. However, in the
instanton background, the topological charge is non-vanishing Q = ⟨ g2

32π2G
a
µνG̃

aµν⟩inst ∈ Z,
and quantized, such that the continuous shift-symmetry is broken to a discrete shift-symmetry
of the form a/fa → a/fa + 2πn/A, n ∈ Z. For simplicity we will take A = 1 in the following.

Since instantons break the continuous axion shift symmetry explicitly, they also generate
a potential for the axion. They give the leading contribution to the potential when the
gauge coupling is small (g2ℏ ≪ 1). At low energy, where QCD confines, the axion potential
should be computed using the Chiral Lagrangian, which also incorporates additional effects
of the strong dynamics besides those from instantons, as discussed in section 2.4. However,
in this work we discuss mostly UV effects that can be computed via reliable instanton
calculations at small coupling.

An explicit computation of the potential including all O(1) factors is typically technically
involved and for most purposes it is not necessary to fix all O(1) coefficients. In such occasions
a few simple power counting rules are in general sufficient to identify and estimate instanton
contributions to the axion potential. The goal of this section is to provide the reader with
the necessary tools to understand instanton effects and perform quick back-of-the-envelope
estimates. In section 2.5, we make our approach more rigorous and explain how a fully
accurate instanton computation can be performed.

2.1 Instanton basics

The QCD or Yang-Mills vacuum is a superposition of degenerate, but topologically distinct,
vacua, the so-called “n-vacua”, characterized by (assuming a proper gauge choice) an integer
winding number n of the gauge field at infinity (see e.g. [30] for a pedagogical introduction).
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Instantons are localized and topologically stable gauge field configurations in Euclidean
spacetime that interpolate between the n-vacua with different winding number. They are
solutions of the Euclidean equations of motion and are therefore saddle points of the action.
At small gauge coupling one can show that one-instanton solutions (i.e. solutions of the
equation of muotion characterized by a topological charge of Q = ±1) are the dominant
saddle point. Correlation functions in the one-instanton background can then be obtained by
performing a semi-classical expansion of the Euclidean action around the instanton solution

S = S0 +
∫
d4x

∑
i

δΦiMΦiδΦi = 8π2

g2 ± i
a

fa
+ (quadratic fluctuations) , (2.2)

where S0 = 8π2/g2 ± ia/fa is the classical action in the instanton background and δΦi are
quantum fluctuations around the classical field values in the instanton background. The
axion dependent term in the classical action is the a

fa
GG̃ term in eq. (2.1) evaluated in the

instanton (+) or anti-instanton (−) background, respectively, with θ̄ absorbed in the axion
field. The computation of the quantum fluctuations in the instanton background has been
performed by ’t Hooft in [2]. Performing the calculation one finds that

• Instantons are characterized by their spacetime position x0, their size ρ and their
orientation within the gauge group. A change in any of these quantities leads to
an equally valid instanton solution, i.e. these so-called collective coordinates are flat
directions, also called zero-modes, in the path integral and the integral over them has
to be separated out∫

DA = C̃N

(
8π2

g2

)2N ∫
dκ

∫
d4x0

∫
dρ

ρ5 (ρµ0)4N
∫

DÃ , (2.3)

where
∫
dκ and

∫
DÃ denote the integral over the group orientation and the non-zero

modes of the gauge field, respectively. The prefactors C̃N , (8π2/g2)2N as well as ρ−5

and (ρµ0)4N originate from the Jacobian of the transformation to collective coordinates,
where we included a regulator mass scale µ0 which is introduced when regularizing the
UV divergences in the integral over non-zero modes. This is most easily done using
Pauli-Villars regularization in which case µ0 is the regulator mass, i.e. the UV cutoff.
Note that g in eq. (2.3) is the bare gauge coupling. One expects that two loop effects
will introduce a scale dependence for the coupling. In the following we will ignore
two-loop effects and always evaluate the coupling at the scale where the integral over
the instanton size is dominated.

• The path integral over non-zero modes of the gauge and matter fields, in addition to
the (ρµ0) dependence from the zero-modes and UV regulator, makes the coupling in
eq. (2.2) scale dependent1 and modifies the numeric prefactor C̃N , i.e.

(ρµ0)4Ne
− 8π2

g2 → (ρµ0)b0e
− 8π2

g2 = e
− 8π2
g2(1/ρ) , C̃N → CN , (2.4)

where we took the tree-level gauge coupling to be defined at µ0, i.e. g ≡ g(µ0), and b0
is the one-loop beta function coefficient. The explicit form of CN is given in eq. (2.11).

1Note that in supersymmetric theories the full scale dependence originates from the zero-modes.
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• The Dirac operator of fermions in non-trivial representations under the gauge group has
2k zero modes in the instanton background. k is the Dynkin index of the representation
which we take to be normalized as k = 1/2 and k = N for the fundamental and adjoint
representations of SU(N), respectively. Therefore, after perfoming the gaussian part of
the path integral over the other modes, we are still left with the integral over the 2k
zero modes. This implies that any non-vanishing correlation function needs at least 2k
insertions of each fermion which transforms non-trivially under the gauge group.

Thus any non-vanishing correlation function in the instanton background is schematically
of the form

N
∫

DADψ ψ · · ·ψ︸ ︷︷ ︸
2k times

e−S ∼ CN

(
8π2

g2

)2N ∫
dκ

∫
d4x0

∫
dρ

ρ5 e
− 8π2
g2(1/ρ)

±i a
fa ψ(0) · · ·ψ(0)︸ ︷︷ ︸

2k times

, (2.5)

where ψ(0) is the zero-mode wavefunction whose explicit form for a fermion in the fundamental
representation of SU(N) is shown in eq. (2.22) and CN is the constant which we introduced
in eq. (2.4). Its value for SU(N) is given in eq. (2.11). For asymptotically free theories the
integral over the instanton size is dominated by large IR instantons where the coupling gets
large and the exponential suppression vanishes. This is due to the logarithmic running of the
gauge coupling in the exponential instanton factor which is generated after performing the
path integral over non-zero modes (see eq. (2.4)). The coupling evolution 8π2

g2(1/ρ) = 8π2

g2(µ0) −
b0 logµ0ρ, where µ0 is a reference scale and b0 the one-loop beta function coefficient, gives
an additional factor of ρb0 in the integrand. For b0 > 0, as is the case for asymptotically
free theories, this makes the integral more IR dominated. However, in this region instantons
are no longer the dominant saddle point of the path integral, the integral becomes IR
divergent, and the one-instanton calculation does not give reliable results. We will come
back to this issue momentarily.

The above discussion implies that the effects of an instanton can be captured by a local
fermion operator, the so-called ’t Hooft operator. Schematically this operator is of the form

∼ CN

(
8π2

g2(MIR)

)2N

e
±i a

fa
e
− 8π2
g2(MIR)

M
3(k1+...+kn)−4
IR

ψ2k1
1 · · ·ψ2kn

n , (2.6)

and captures the effect of instantons of size ρ < 1/MIR in the UV theory where MIR is an IR
cutoff. Note that in order to arrive at the exact expression for the local ’t Hooft operator
(which can then be used as an ordinary vertex in a Feynman diagram) one has to apply the
LSZ reduction formula to the correlation function in eq. (2.5). In the previous expression we
also evaluate the gauge coupling in the prefactor at MIR where the integral over the instanton
size is dominated. Note that the integral over the instanton orientation within the gauge
group ensures gauge invariance and fixes the index contractions of the fermion fields. It is
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often convenient to trade e−
8π2
g2(M) for the RG invariant scale ΛG which is defined as

Λb0
G ≡M b0e

− 8π2
g2(M) , (2.7)

where the subscript G stands for the gauge group. For asymptotically free theories ΛG is
the one-loop definition of the confinement scale.

2.2 Instanton NDA

With this picture in mind we can formulate a set of simple rules to obtain instanton
contributions to the axion potential. The axion potential can be obtained from the vacuum-
to-vacuum amplitude in the one-(anti)-instanton background, which can be obtained by
closing the fermion legs of the ’t Hooft operator, i.e. we have to soak up the fermion zero
modes. Let us also stress at this point that the fermionic legs of the ’t Hooft operator
stand for zero-mode wavefunctions, i.e. some caution is required when interpreting it as an
effective operator. An estimate for the contribution to the axion potential can be obtained
by following these simple steps:

1. Identify the ’t Hooft operator. It contains one leg for each fermionic zero mode. The
number of zero modes for each fermion is given by 2k. k is the Dynkin index of
the representation under the gauge group, in the convention where k = 1/2 for the
fundamental representation. For example in an SU(N) gauge theory with two flavors
of vector like fermions in the fundamental representation ψ1, ψ̄1 and ψ2, ψ̄2 the ’t Hooft
vertex looks like

(2.8)

2. Treat the ’t Hooft operator as a 2k-point vertex in a Feynman diagram and close the
fermion legs using any available coupling, as you would do for an ordinary vacuum-
to-vacuum amplitude. Particles with mass m < 1/ρ propagate freely, and can appear
in loops, those of mass m > 1/ρ should be integrated out, and the resulting effective
operators can be used to close fermion legs. The ’t Hooft vertex in eq. (2.8) can e.g. be
closed with Yukawa couplings and a loop of light scalars ϕ

(2.9)
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3. Combine the couplings used to close the ’t Hooft operator with the instanton density
and the integral over the instanton size, which corresponds to an overall factor

CN

(
8π2

g2

)2N ∫
dρ

ρ5 (ΛGρ)b0 (2.10)

and add appropriate powers of ρ, the only available dimensionful parameter, to get
the right dimensions (i.e. those of a potential V ). Propagators should not be added
to the estimate. The integral over their momenta is cut off at 1/ρ in the instanton
background (see section 2.5) such that adding the appropriate powers of ρ to get the
right dimension automatically takes propagators of light particles into account. The
instanton density for SU(N), i.e. CN , is given by [2, 31]

CN = K1e
−(S(1/2)−F (1/2))α(1/2)−(S(1)−F (1))α(1)

(N − 1)!(N − 2)! e−K2N , (2.11)

with K1 ≈ 0.466, K2 ≈ 1.678 and α(0) = 0, α(1/2) = 0.145873, α(1) = 0.443307.
Numerical values for the function α(t) for different isospin representations t can be
found in [2]. S(t) and F (t) are the number of scalars and fermions which transform in
the isospin t representation under the SU(2) containing the instanton. For instance the
closed ’t Hooft vertex in eq. (2.9) is associated with an expression of the form

∼ CN

(
8π2

g2

)2N

e
±i a

fa

∫
dρ

ρ5 (ΛSU(N)ρ)b0(y1y2) (2.12)

4. Add a factor of (4π)−α, where α is given by

α = # fermion zero-modes − 2 · # vertices + 2 · # propagators . (2.13)

The vertices do not include the ’t Hooft vertex and propagators do not include the
fermion legs that exit it. Mass insertions count as a vertex, such that there is no
loop factor associated with a ’t Hooft operator closed exclusively with mass insertions.
See appendix A for a derivation of this rule. The reason why the naive loop factor
counting needs to be modified is that the fermion legs in the ’t Hooft operator stand
for zero-mode wavefunctions in the instanton background that contain explicit factors
of π and ρ. Including the (4π) factors eq. (2.12) finally becomes

∼ CN

(
8π2

g2

)2N

e
±i a

fa

∫
dρ

ρ5 (ΛSU(N)ρ)b0 y1y2
(4π)2 (2.14)
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5. Perform the integral over the instanton size ρ and evaluate the gauge coupling in the
prefactor at the scale where the integral over the instanton size is dominated. The
running of the coupling in the pre-factor is a two-loop effect in the gauge coupling
that one can neglect when performing our estimates. The limits of integration over
the instanton size ρ are [M−1

UV,∞]. MUV is the UV cutoff of the EFT where we are
performing the calculation. In the case of asymptotically-free theories we also need an
IR cutoff M−1

IR . We discuss how to choose MIR in the rest of section 2 and comment on
MUV at the end of this section.

Depending on the particle content and the couplings needed to close the ’t Hooft operator,
the integral can be UV or IR dominated. If the diagram contains loops the IR cutoff is the
mass of the particle propagating in the loop. At lower energies the particle propagating
in the loop should be integrated out. The ’t Hooft vertex can still be closed with the
resulting effective operator.

In asymptotically free gauge theories the integral over the instanton size is in general
IR divergent. However, a fully reliable instanton calculation is still possible if the gauge
group is completely broken by the VEV of a scalar field Φ. In this scenario large instantons
of size gρ⟨Φ⟩ ≫ 1 are exponentially suppressed and the computation can be performed in
the constrained instanton formalism [32]. The exponential suppression originates from the
classical action of the scalar field in the instanton background δSΦ

0 ∼ 2π2ρ2⟨Φ⟩2. Thus we
can add a step 6 to our recipe

6. If the gauge group is completely broken by a scalar VEV of magnitude v, add a factor
e−2π2ρ2v2 to the integrand and then integrate over the instanton size. This also regulates
the IR divergence in asympotically free gauge theories. If the group is partially broken
one has to separately account for the instantons in the broken group which have the
e−2π2ρ2v2 exponential suppression, and the instantons in the unbroken group without
such a suppression. In such case additional O(1) factors will arise from accounting for
the group theory factors of rotating the broken group inside the full group.

The above rules give a relatively precise estimate which differs from the full calculation
at most by a factor of a few. Typically there is not a unique way to close the legs of the
t’Hooft operator, and the above rules can help to identify the dominant contribution. In
the next section we show how to apply these rules to toy examples that illustrate all cases
of physical relevance.

Note that there is at least one case where our rules could be off by more than O(1) from
the full result.2 This could happen if the scalar in the loop used to close up the ’t Hooft
operator’s legs is itself charged under the gauge group of the instanton. In this case one would
need to use the scalar propagator in the instanton background which is known analytically
only in certain limiting cases [33, 34], and could lead to modifications of our rules for this case.

It is also useful to comment on the role of the UV cutoff MUV. In many theories the
integral is exponentially convergent ∼ e−2π/α(ρ) and one can formally take MUV → ∞ without
affecting the computation. This is the case in the SM when computing QCD instantons.

2We thank Pablo Sesma for pointing this out to us.
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However, we find it more physical to adopt a Wilsonian point of view and always impose
a UV cutoff.

Whenever Instanton NDA gives a UV-dominated result this should be taken with a
grain of salt, as is always the case for UV-sensitive quantities in a EFT. It is possible, as
in section 6, that at MUV the axion potential receives instanton contributions from a larger
gauge group and the estimate in the EFT is incorrect by large numerical factors. In these
cases one has to apply Instanton NDA also in the UV theory to get a reliable estimate.

2.3 Examples of instanton NDA

There are three physically distinct cases: we can close the legs of the t’Hooft operator with
1) relevant, 2) marginal or 3) irrelevant interactions of the fermions. We now go through
three examples that illustrate these three possibilities and make the application of our
power-counting rules more concrete.

We consider instanton contributions within an energy range [MIR,MUV] which is well
above the strong coupling scale MIR ≫ ΛG. This restriction ensures that instanton effects
are calculable even when they are IR dominated. In the following we consider a SU(N)
gauge theory with two flavors of vector like fermions in the fundamental representation ψ1, ψ̄1
and ψ2, ψ̄2. In this case the ’t Hooft operator has four legs, one for each fermion (2k = 1
for the fundamental representation). The simplest way to close the ’t Hooft operator is
to use a relevant operator, in particular fermion mass insertions. This, according to the
above rules, yields

∼CN

(
8π2

g2

)2N

e
±i a

fa

∫ 1/MIR

1/MUV

dρ

ρ5 (ΛSU(N)ρ)b0m1m2ρ
2

∼CN

(
8π2

g2(MIR)

)2N

e
±i a

fa
m1m2
M2

IR

(
ΛSU(N)
MIR

)b0−4

Λ4
SU(N) for b0 > 2 ,

(2.15)

where we assumed that the integral is IR dominated, which is the case for b0 > 2, and
introduced IR and UV cutoffs MIR and MUV, respectively.3 Note that in order for the
estimate to make sense MIR ≫ ΛSU(N), such that the coupling is still perturbative. ΛSU(N)
is the RG invariant scale defined in eq. (2.7).

The second general possibility is to use a marginal interaction. If the theory contains a
scalar ϕ with Yukawa couplings to the fermions of the form yiϕψiψ̄i one can also use Yukawa

3For SU(N) the beta function coefficient is given by b0 = 11
3 N − 2

3
∑

F
T (F )d(F ) − 1

3
∑

S
T (S)d(S), where

the sum is over fermions (F ) and complex scalars (S), T is the Dynkin index and d the dimension of the
representation under further gauge groups.
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couplings and ϕ loops to close the ’t Hooft vertex

∼CN

(
8π2

g2

)2N

e
±i a

fa

∫ 1/MIR

1/MUV

dρ

ρ5 (ΛSU(N)ρ)b0 y1y2
16π2

∼CN

(
8π2

g2(MIR)

)2N

e
±i a

fa
y1y2
16π2

(
ΛSU(N)
MIR

)b0−4

Λ4
SU(N) for b0 > 4 ,

(2.16)

where we again assumed that the integral is IR dominated, which is the case for b0 > 4, and
took MIR > mϕ such that ϕ is a propagating degree of freedom all the way to the IR cutoff.
For instantons of size 1/ρ ∈ [MIR,MUV] this contribution dominates over the mass insertions
in eq. (2.15) if m1m2/M

2
IR < y1y2/(16π2). In theories where the scalar generates the fermion

masses by obtaining a VEV ⟨ϕ⟩ = v the contribution from ϕ loops dominates for MIR > 4πv.
The couplings used to close the legs of the ’t Hooft operator do not have to be masses

or marginal couplings but can also be higher-dimensional effective operators. Insertions of
effective operators make the integral over the instanton size more UV dominated since powers
of ρ in the integrand are replaced by inverse powers of the EFT scale in the higher-dimensional
operator, giving a smaller power of ρ. In the current example we use a four-fermion operator
of the form

cF
Λ2
F

ψ1ψ̄1ψ2ψ̄2 (2.17)

to close all legs of the ’t Hooft vertex

∼ CN

(
8π2

g2

)2N

e
±i a

fa

∫ 1/MIR

1/MUV

dρ

ρ5 (ΛSU(N)ρ)b0 cF
(4π)2ρ2Λ2

F

, (2.18)

which is UV dominated for b0 < 6. Note that we have also included a factor of 1/(4π)2

according to rule number 4 in the previous section. This is also required for UV dominated
instanton effects within the EFT to match IR dominated instanton effects in the UV theory.
As an example consider the above theory with two vector like fermions in the fundamental
representation and a real scalar ϕ with Yukawa couplings yiϕψiψ̄i and assume that 4 < b0 < 6.
At energies where ϕ is a propagating degree of freedom we can close the ’t Hooft operator
with ϕ loops which yields eq. (2.16). At energies E ≪ mϕ we can integrate out ϕ and obtain
an effective operator of the form y1y2

m2
ϕ
ψ1ψ̄1ψ2ψ̄2. If we use this operator to close the ’t Hooft
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operator we find eq. (2.18) which is UV dominated and gives

∼ CN

(
8π2

g2

)2N

e
±i a

fa

∫ 1/MIR

1/MUV

dρ

ρ5 (ΛSU(N)ρ)b0

(
y1y2

(4π)2ρ2m2
ϕ

)

∼ CN

(
8π2

g2(MUV)

)2N

e
±i a

fa
y1y2
16π2

M2
UV
m2
ϕ

(
ΛSU(N)
MUV

)b0−4

Λ4
SU(N) ,

(2.19)

which for the natural choice of MUV = MIR = mϕ gives parametrically identical contributions
to the potential in the EFT and UV theory.

2.4 Axion potential from low-energy QCD

In the previous section we outlined how to estimate instanton contributions to the axion
potential. However, in order to make meaningful statements we always had to introduce an
IR cutoff for the instanton size integration. This was necessary to stay within the perturbative
regime, where instantons are the dominant saddle of the path integral.

If the contribution to the potential is dominated by large IR instantons, which is typically
the case in asymptotically free gauge theories, it is tempting to extrapolate the estimate
into the non-perturbative region by taking MIR → ΛQCD. However, in this region multi-
instanton effects are not suppressed, implying that any attempt of finding contributions to
the axion potential from closing legs of ’t Hooft operators at the strong coupling scale is
not very meaningful. In fact arguments from large N QCD [14, 15, 35] and supersymmetric
QCD [36, 37] suggest confinement dynamics and not large instantons give the dominant
contribution to the axion and η′ potentials. Let us however stress that this does not rule
out the existence of contributions to the potential from small UV instantons which can be
estimated according to the rules in the previous section.

The appropriate way to determine the axion potential from low-energy QCD is within
chiral perturbation theory that yields [38]

VIR(a) = −m2
πf

2
π

√
1 − 4mumd

(mu +md)2 sin2
(
a

2fa

)
. (2.20)

One can then use Instanton NDA to compare this irreducible IR contribution with the
model-dependent UV-instantons of choice. In the perturbative regime UV contributions are
always exponentially suppressed by the one-instanton action VUV(a)/VIR(a) ∼ e−2π/α(MUV).
Therefore, it is legitimate to wonder if the UV contribution can ever dominate over the IR
one when the UV instanton calculation is under pertubative control. In practice you might
wonder if our rules are ever useful at all. However, performing the Instanton NDA estimate,
including dimensionful factors, one can see immediately that the ratio VUV(a)/VIR(a) ∼
(MUV/ΛQCD)4e−2π/α(MUV) can easily be larger than one, even if α(MUV) is perturbative.
This is discussed in more detail in the first paragraph of section 3.1.

In the next section we make contact between Instanton NDA and full instanton calcu-
lations. We then move on to examples of physical relevance.
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2.5 Full instanton computation

Let us now outline how to turn the estimates and power counting rules of the previous
sections into a fully-fledged instanton calculation which includes all O(1) factors, following
the conventions of [22]. For more details and background information see [22, 30, 39]. We
would also like to remind the reader that all calculations are performed in Euclidean spacetime.

In order to compute contributions to the axion potential one has to find the vacuum-to-
vacuum transition amplitude in the one-instanton and axion background. As we have outlined
in section 2.1 this is done by expanding the fields around the classical instanton background
and performing the quadratic part of the path integral over the quantum fluctuations with
the integral over zero-modes separated out. For an SU(N) gauge theory the resulting
vaccum-to-vacuum amplitude takes the form

WSU(N) = CN

(
8π2

g2

)2N ∫
dκ

∫
d4x0dρ

ρ5 e
− 8π2
g2(1/ρ)

−i a
fa e−Sscalar(κ)

∫ ∏
f

ρ1/2dξ
(0)
f , (2.21)

where the integral is over all fermion zero modes ξ(0)
f and the instanton collective coordinates:

the instanton location x0, the instanton size ρ and the orientation within the gauge group,
denoted by the normalized integral over κ. Note that, as already mentioned, the gauge
coupling in the prefactor comes without any explicit scale dependence as the running of
the gauge coupling in the instanton measure is a two-loop effect. In the following we will
always use the gauge coupling at the scale where the instanton size integration is dominated.
We have also included a possible contribution to the classical action from a scalar charged
under the gauge group which obtains a VEV, Sscalar(κ). In general this contribution depends
on the orientation of the instanton in the gauge group w.r.t. the scalar VEV, which has
to be taken into account when performing the

∫
dκ integral. The numerical prefactor CN

from the Jacobian associated to the transformation of zero modes to collective coordinates
and the integral over the non-zero modes of all particles charged under the gauge group
is given in eq. (2.11).

Let us now elaborate further on how eq. (2.21) is connected to closing legs of the ’t Hooft
operator. The integral

∫
dξ

(0)
f projects onto the zero mode wavefunction of fermion fields. For

ψf (x) = ∑
i ψ

(i)
f (x)ξ(i)

f the integral yields
∫
dξ

(0)
f ψf (x) = ψ

(0)
f , where ψ(0)

f is the zero mode
wavefunction. For a Weyl fermion in the fundamental representation in singular gauge, where
the topological charge of the instanton is saturated at the instanton center, this is given by [30]

ψ
(0)
f (x)αi = ρ

π

i (x− x0)µ U
j
i

(
τ+
µ

)k
j

((x− x0)2)1/2((x− x0)2 + ρ2)3/2
φαk , (2.22)

where φαk ∼ ϵαk is a Weyl spinor, α, i, j, k are the spinor and SU(N) indices, respectively,
and τ±µ = (τ⃗ ,∓i) with τ⃗ being the vector of Pauli matrices. Note that U ≡ U(κ) ∈ SU(N)
parameterizes the arbitrary orientation of the instanton within the gauge group.4

In order to soak up the zero modes one needs further interactions involving the fermions
charged under the gauge group. The simplest example is to treat the mass term as an

4Note that U typically drops out in the computation of the vacuum-to-vacuum amplitude since the couplings
used to close the legs of the ’t Hooft operator originate from gauge invariant operators.
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interaction. Going back to the example we considered in the previous sections, i.e. an SU(N)
gauge group with two vector like fermions in the fundamental representation, we can add
a mass term for both fermions in the action

−Sψ = i

∫
d4x

(
m1ψ̄1ψ1 +m2ψ̄2ψ2

)
. (2.23)

Adding this to eq. (2.21) and performing the integral over the zero modes one finds∫
ρ2dξ̄

(0)
1 dξ

(0)
1 dξ̄

(0)
2 dξ

(0)
2 e−Sψ = −ρ2

∫
d4x1m1ψ̄

(0)
1 (x1)ψ(0)

1 (x1)
∫
d4x2m2ψ̄

(0)
2 (x2)ψ(0)

2 (x2)

= −ρ2m1m2 , (2.24)

where we used that the zero-mode wavefunction is normalized. This exactly reproduces
the power counting rules and confirms that closing legs of the ’t Hooft operator with mass
insertions is not a loop.

When using propagating particles in loops to close the operator one has to include them
and their interaction in WSU(N). Let us assume that the theory contains a neutral scalar ϕ
with Yukawa couplings to the fermions. In this case WSU(N) is of the form

WSU(N) = CN

(
8π2

g2

)2N ∫
dκ

∫
d4x0dρ

ρ5 e
− 8π2
g2(1/ρ)

−i a
fa e−Sscalar(κ)

∫
Dϕ e−S0[ϕ]

×
∫ 2∏

i=1
ρ dξ̄

(0)
i dξ

(0)
i ei

∫
d4x
∑

i
yiϕ(x)ψ̄i(x)ψi(x) ,

(2.25)

where S0[ϕ] is the free action for the scalar ϕ. Performing the integral over the fermion zero
modes and the functional integral over ϕ one finds

I =
∫

Dϕ e−S0[ϕ]
2∏
i=1

(
iyiρ

∫
d4xi ϕ(xi)ψ̄(0)

i (xi)ψ(0)
i (xi)

)
= −y1y2ρ

2
∫
d4x1

∫
d4x2ψ̄

(0)
1 (x1)ψ(0)

1 (x1)ψ̄(0)
2 (x2)ψ(0)

2 (x2)∆F (x1 − x2) , (2.26)

where the integral over the fermion zero modes picks the second order term in the expansion of
the exponential containing the Yukawa interaction. The path integral over ϕ gives a Feynman
propagator ∆F (x1 − x2). Using the explicit expression of the zero modes in eq. (2.22) and
the usual scalar propagator this evaluates to

I = y1y2ρ
2
∫

d4p

(2π)4
(pρ)2K2

1 (pρ)
p2 +m2

ϕ

=


y1y2
5π2

1
ρ2m2

ϕ
, ρmϕ ≫ 1

y1y2
12π2 , ρmϕ ≪ 1

, (2.27)

where K1 is a modified Bessel function of the second kind. Thus the loop momentum
integral is cut off at p ∼ 1/ρ. For 1/ρ ≪ mϕ this essentially corresponds to integrating
out the scalar. The result is consistent with the power counting rules which would predict
I = y1y2

16π2 for 1/ρ ≫ mϕ.
In order to obtain the axion potential from the vacuum-to-vacuum amplitude WSU(N)

one has to sum over all instanton and anti-instanton configurations. In the dilute instanton
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gas approximation [40] one assumes that the dominant contribution to this sum originates
from well-separated, non-interacting instantons and anti-instantons. This gives an effective
axion potential of the form

e−
∫
d4xV (a) ≈

∞∑
n+,n−=0

1
n+!

1
n−!W

n+
SU(N)W̄

n−
SU(N) = eWSU(N)+W̄SU(N) , (2.28)

where n+ and n− are the number of instantons and anti-instantons and WSU(N) and W̄SU(N)
are the vacuum-to-vacuum amplitudes in the instanton and anti-instanton background,
respectively. The dilute instanton gas description is a good approximation for exp[−8π2

g2 ] ≪ 1
and breaks down when the theory becomes strongly coupled.

3 Applications of instanton NDA

In this section we apply the instanton power counting rules introduced in section 2 to
illustrate a few mechanisms to modify the axion mass using UV instantons which have been
proposed in the literature [17–25]. We additionally comment on misaligned contributions
to the axion potential which may enter the instanton calculation through CP violating
higher-dimensional operators.

3.1 Enhanced UV instanton contributions to the axion potential

The absolute size of instanton contributions is determined by a combination of the running
coupling and the energy scale one is sensitive to in the integral over the instanton size, i.e.
if one uses only marginal couplings to close the legs of the ’t Hooft operator the size of the
instanton contribution is roughly given by maxM exp(− 8π2

g2(M))M4. This implies that UV
instantons get more important if the running to smaller couplings in the UV is slower than
the increase in the scale, which naively occurs for b0 < 4. If dimensionful couplings close
the legs of the ’t Hooft operator there are additional suppression factors which are powers
of mψ/M for insertions of light fermion masses (mψ < M) or M/MUV where MUV ≥ M

is the suppression scale of higher-dimensional operators. This modifies the above estimate
for the size of the instanton contribution to

m
nψ
ψ M−nUV

UV · max
M

M4−nψ+nUVe
− 8π2
g2(M) , (3.1)

where nψ is the number of mass insertions and nUV the power of suppression scales from
higher-dimensional operators. This implies that the instanton contribution is UV dominated
if b0 < 4 − nψ + nUV. However, it is important to keep in mind that even if a particular
instanton configuration is UV dominated this does not necessarily imply that there are no
other IR contributions which are larger.

Any attempt to make UV instantons more important requires an effective reduction
of the beta function in the UV. There are various ways to achieve this which have been
proposed in the literature. The simplest possibility is to add additional matter charged under
the gauge group (see e.g. [17–19]). Note however, that if the additional particles are fermions,
these have zero modes in the instanton background such that there are additional legs in the
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’t Hooft vertex that have to be closed. If those legs are closed with mass insertions this will
suppress UV instantons (see below for an example). This suppression may be overcome if the
new fermions have Yukawa couplings that can be used to close the legs with scalar loops.

Let us now see how this enhancement of small instantons can be seen with the power
counting rules of the previous section. We again work with an SU(N) gauge theory with
two vector like fermions in the fundamental representation and assume for simplicity that all
additional particles responsible for reducing the beta function are scalars with a mass M .
Then the RGE invariant scale of the low energy theory ΛIR

SU(N) < M is related to the one of the
UV theory ΛSU(N) (which contains the additional particles), through the matching relation

(ΛIR
SU(N)
M

)bIR
0

=
(

ΛSU(N)
M

)b0

. (3.2)

Note that ΛIR
SU(N) is fixed given knowledge of the low-energy theory. In the following we

will also take (ΛIR
SU(N))4 as the typical size of IR strong dynamics effects and compare that

to the size of UV instanton contributions.
We can now go through the different possibilities to close the ’t Hooft operators that we

outlined in the previous section and use the matching relation in eq. (3.2) to compare it to
the IR contribution. Whenever the integral over the instanton size is IR dominated we take
MIR = M . Closing the ’t Hooft operator with mass insertions we find

∼ CN

(
8π2

g2(MUV)

)2N

e
±i a

fa (ΛIR
SU(N))4 ×


(
g2(MUV)
g2(M)

)2N
m1m2
M2

(
ΛIR

SU(N)
M

)bIR
0 −4

, b0 > 2

m1m2
M2

(
MUV
M

)2−b0
(

ΛIR
SU(N)
M

)bIR
0 −4

, b0 < 2

(3.3)

Mass insertions make the instanton size integral more IR dominated because the masses
enter the instanton calculation in the combination (ρmψ) which grows in the IR. Thus a
stronger reduction of the beta function is needed to make instantons UV-dominated. For
b0 > 2 the instanton is IR dominated and all numerical factors that multiply the dimensionful
quantity (ΛIR

SU(N))4 in eq. (3.3) are strictly smaller than one, such that this contribution
is always smaller than the contribution from IR strong dynamics effects which scales like
(ΛIR

SU(N))4. In contrast for b0 < 2 the instanton is UV dominated since (MUV/M)2−b0 becomes
an enhancemant instead of a suppression. This means that UV instanton contributions can
be larger than contributions from IR strong dynamics if MUV ≫M and M ∼ ΛIR

SU(N), but
there is an irreducible suppression of m1m2/M

2 and the beta function has to be extremely
small, b0 < 2. For reference, in QCD b0 = 7 above the top mass, and at least 4 new quark
flavors are required for b0 ≤ 2.
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Closing the ’t Hooft operator with Yukawa couplings and loops of scalars resolves both
problems

∼ CN

(
8π2

g2(MUV)

)2N

e
±i a

fa (ΛIR
SU(N))4 ×


y1y2
16π2

(
g2(MUV)
g2(M)

)2N (ΛIR
SU(N)
M

)bIR
0 −4

, b0 > 4

y1y2
16π2

(
MUV
M

)4−b0
(

ΛIR
SU(N)
M

)bIR
0 −4

, b0 < 4

(3.4)

there is no mass suppression and one obtains an enhancement by powers of MUV/M ≫ 1
already for b0 < 4.

Using the four fermion operator in eq. (2.17) to close the legs yields a parametrically
similar result with the main difference that the integral over instanton sizes is UV dominated
already for b0 < 6

∼ CN

(
8π2

g2(MUV)

)2N

e
±i a

fa (ΛIR
SU(N))4

×



cF
(4π)2

(
g2(MUV)
g2(M)

)2N (
M
ΛF

)2
(

ΛIR
SU(N)
M

)bIR
0 −4

, b0 > 6

cF
(4π)2

(
M
ΛF

)2 (MUV
M

)6−b0
(

ΛIR
SU(N)
M

)bIR
0 −4

, 4 < b0 < 6

cF
(4π)2

(
MUV
ΛF

)2 (MUV
M

)4−b0
(

ΛIR
SU(N)
M

)bIR
0 −4

, b0 < 4

(3.5)

Once the instanton contribution is UV dominated the (M/ΛF )2 suppression gets gradually
turned into (MUV/ΛF )2 for 4 < b0 < 6. For b0 < 4 the suppression essentially vanishes since
one expects ΛF ∼MUV and one obtains an additional enhancement from the (MUV/M)4−b0

factor. This implies that for b0 < 4 contributions including insertions of higher-dimensional
operators are not suppressed w.r.t. contributions which use only marginal couplings to close
the legs of the ’t Hoof operator. They can even be larger depending on the size of the Wilson
coefficient cF relative to the Yukawa couplings. This shows the surprising result that even
instanton effects with effective operators can lead to contributions to the axion potential
which are larger than the one from low-energy non-perturbative dynamics.

These examples also illustrate why SU(2)L instantons are UV dominated when the SM
is embedded in a Grand Unified Theory, while the axion potential from QCD remains IR
dominated. SU(2)L instantons generate the ’t Hooft operator (qqqℓ)3 and can give an axion
potential together with three insertions of the operator (qqqℓ)/Λ2

F . The latter is generated by
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integrating out the triplet Higgs in GUTs. Three insertions make the instanton calculation
strongly UV dominated, with an instanton measure scaling as ∼

∫
(dρ/ρ5)(1/(ρΛF )6). The

QCD instantons generate the operator ∏F
i=1 q̄iqi, whose legs can be closed with relevant

interactions (quark masses) or marginal interactions (Yukawa couplings), giving rise to a
IR dominated result (for QCD b0 ≤ 7 at all scales).

The above discussion suggests that obtaining UV-dominated QCD axion potentials in
the SM requires the introduction of a large set of new particles to modify the beta function.
However there is another possibility: one can consider embeddings of QCD into a larger
gauge group G′ in the UV with a non-trivial index of embedding (see e.g. [22, 41–44]). In
appendix B we demonstrate how this mechanism can be understood with Instanton NDA.

Further possibilities to modify the axion potential from UV contributions include em-
bedding the theory into an extra dimension [20] or coupling the axion to a new confining
gauge group [25, 45–50], but we do not discuss these examples here.

3.2 Misalignment from CP-violating operators

In order to solve the strong CP problem the axion potential must have a minimum close to zero
since a non-vanishing axion VEV induces an effective θ̄ angle, θ̄ind = ⟨a⟩/fa, which is bounded
to be θ̄ind < 10−10 from neutron electric dipole moment measurements. It is well-known that
higher-dimensional operators that break the PQ symmetry generate a contribution to the
potential which misaligns the minimum from zero. Consider e.g. an effective operator of
the form c

2Mn−4 Φn + h.c. where Φ = fae
ia/fa is the fundamental PQ scalar whose angular

component can be identified with the axion. In combination with the potential generated
from instantons or the strong dynamics, this takes the form

V (a) = −Λ4
QCD cos

(
a

fa
+ θ̄

)
+ cf4

a

(
fa
M

)n−4
cos

(
na

fa

)
. (3.6)

To leading order in the effective operator the minimum of the potential is at
〈
a

fa

〉
= −θ̄ − c n

(
M

ΛQCD

)4 (
fa
M

)n
sin(nθ̄) . (3.7)

If we take c, θ̄ ∼ O(1), even for Planck suppressed operators, i.e. M = MPl, and fa = 1010 GeV,
one needs n ≳ 10 (see also [51]). This is the so-called PQ quality problem, i.e. the axion
solution to the strong CP problem requires a high-quality global PQ symmetry. Quantum
gravity is not expected to respect global symmetries such that Planck suppressed PQ-violating
operators are generically present, but note that they could also exist with only a small pre-
factor c, i.e. c ∼ e−Scl , and be an instanton-like non-perturbative effect.

However, even if there is a high-quality PQ symmetry and PQ breaking operators are
absent up to a high operator dimension, a misaligned contribution to the axion potential
can also be generated from instantons (see e.g. [52]). It is easy to see how this works. In
sections 2 and 3 we implicitly assumed that all couplings are real. However, if the couplings
have a non-vanishing phase and violate CP, the phase will enter the axion potential. In
the example of the QCD axion this already happens within the SM where the CP violating
phase of the Yukawa matrices produces a misalignment in the axion potential which is
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however far below the experimental sensitivity [53]. This becomes more relevant in the
presence of higher-dimensional CP-violating operators which give a potentially measurable
contribution to the neutron dipole moment [54–56]. To see how this works let us go back to
our example in section 2 with an SU(N) gauge group and two vector like fermions in the
fundamental representation. If we now close the fermion legs of the ’t Hooft operator with
an effective operator cF

Λ2
F
ψ1ψ̄1ψ2ψ̄2 + h.c. which has a complex coefficient, i.e. cF = |cF |eiδF

the contribution to the axion potential is of the form

+ h.c. ∼ |cF |
(4π)2CN

(
8π2

g2(MUV)

)2N

Λ4
SU(N) cos

(
a

fa
+δF

)

×


(
g2(MUV)
g2(MIR)

)2N (
MIR
Λ2
F

)2 (ΛSU(N)
MIR

)b0−4
, b0 > 6(

MUV
Λ2
F

)2 (ΛSU(N)
MUV

)b0−4
, b0 < 6

(3.8)

where we expect ΛF ∼MUV. If there is a mechanism that increases the axion mass through
enhanced small instantons, these small instantons also enhance the effect of CP violating
higher-dimensional operators as was pointed out in [27]. Thus a successful axion solution
of the strong CP problem does not only require a high-quality PQ symmetry but also the
absence of CP violation up to a high scale. The vulnerability to these misaligned instanton
contributions in the axion potential is however strongly model dependent. We discuss this
in more detail in the next section.

4 Misalignment from instantons: A large UV axion mass increases θ̄

As we have already mentioned in section 3.2, a high-quality PQ symmetry does not necessarily
guarantee a successful axion solution to the strong CP problem. Instanton effects involving
CP-violating higher-dimensional operators can generate a misaligned contribution to the
axion potential which induces a non-vanishing effective QCD θ̄ angle.

In this section we use the insights and power counting rules developed in section 2 to
estimate such effects. Misaligned contributions to the axion potential can generically be either
IR or UV dominated. IR dominated contributions can easily be estimated within a low-energy
EFT whereas UV dominated contributions and their sizes are extremely model dependent
and crucially rely on the particle spectrum and the running of the QCD coupling in the UV.
As was already pointed out in [27] mechanisms which enhance small instantons also boost the
effect of CP violating operators in misaligning the axion potential. See also [52] for a related
discussion mainly in the context of supersymmetric theories and Grand Unified Theories.

4.1 Enhanced small instantons

In scenarios where the axion mass is enhanced by small instantons the misaligned contribution
to the axion potential from CP violating effective operators also gets boosted.
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Figure 1. Six flavor QCD ’t Hooft operator closed up with Yukawa couplings a), Yukawa couplings
and effective operators b) or only effective four-fermion operators c).

Before putting the discussion into a broader context we go through two simple examples
where CP violating effects mediated by UV dominated instantons play an important role:
models with a reduced QCD beta function in the UV and possible misaligned contributions
from SU(2)L instantons.

4.1.1 Modified QCD beta function in the UV

As we have seen in section 3.1 one of the simplest ways to enhance the contribution of small
instantons to the axion potential is to add new colored matter which lowers the QCD beta
function (see e.g. [19]). For concreteness we consider here ordinary QCD, which for six flavors
has a beta function of bQCD6

0 = 7, and assume for simplicity that at a scale M above the top
mass threshold a set of colored scalars is added to the theory which modifies the beta function
to b0 < b

QCD6
0 .5 Using only SM couplings the largest contribution to the axion potential

originates from ’t Hooft vertices closed with Higgs loops as shown in figure 1 a). Extending the
estimate of eq. (3.4) to six flavors we find that the contribution to the axion potential scales as

δV (a) ≃ −2C3

(
8π2

g2(MUV)

)6(∏
i

yi
(4π)

)(
MUV
M

)4−b0 (ΛQCD6

M

)bQCD6
0 −4

Λ4
QCD6

cos
(
a

fa

)
,

(4.1)
where ΛQCD6 is the RG invariant scale of six flavor QCD and we assumed that b0 < 4 which
is required to get an enhancement of small instantons (see eq. (3.4)). We also assume that
the gauge coupling coincides with the QCD coupling at the Z-pole and determine g(MUV)
through RG running, taking into account mass thresholds. If the new particles have masses
around the TeV scale, i.e. if we take M = 1 TeV we get up to O(1) factors

δV (a) ≃ −10−28
(
MUV
1 TeV

)4−b0

Λ4
QCD6

cos
(
a

fa

)
. (4.2)

5If the additional particles are colored fermions, their contribution to the axion potential will be suppressed
by their mass, which has to be inserted to close the zero modes. However, this mass suppression can be
avoided if the spectrum also contains scalars with Yukawa couplings to the new fermions, which can be used
to close up the zero modes.
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For MUV = 1010, 1012, 1016 GeV this gives an O(1) contribution to the axion potential for
b0 < 1.2, 1.67, 2.25, respectively. However, as we will show momentarily, if the theory contains
CP violating effective operators there will also be a misaligned contribution to the axion
potential of similar size as eq. (4.2) or even larger.

In order to be more concrete, assume there are operators of the form cij
M2

UV
ψ̄iψiψ̄jψj +h.c.,

where cij = |cij |eiδij . For the suppression scale of the effective operator we take the UV-cutoff
of the instanton calculation which can be interpreted as the scale of new physics. For b0 < 6
any instanton contribution which uses effective operators to close the ’t Hooft operator is
UV dominated, such that diagrams with one insertion of the effective operator, as shown in
figure 1 b), scale in the same way as diagrams with two or three insertions of an effective
operator (see figure 1 c)). The only difference is the number of Yukawa couplings needed to
close the remaining legs. For |cij | ∼ O(1) it can be beneficial to use effective operators to
close zero modes in order to avoid the Yukawa suppression. For b0 < 4, and three insertions
of the effective operator, the contribution to the axion potential scales as (see eq. (3.5))

δV (a) ≃ −2C3

(
8π2

g2(MUV)

)6 |cij ||ckl||cmn|
(4π)6

(
MUV
M

)4−b0 (ΛQCD6

M

)bQCD6
0 −4

× Λ4
QCD6

cos
(
a

fa
+ δij + δkl + δmn

)
,

(4.3)

which for |cij | ∼ O(1) is much larger than the contribution aligned with QCD from eq. (4.1)
since one avoids the Yukawa suppression ∏i yi ≪ 1. This implies that if one wants to raise
the mass of the QCD axion purely by modifying the QCD beta function in the UV, i.e. the
contribution to the axion mass from eq. (4.2) is of the same order or larger than from low-
energy QCD, any CP violation not aligned with QCD will in general spoil the axion solution
to the strong CP problem. It is legitimate to wonder about flavor and EDM constraints on the
new CP-violating operators that we are introducing. They have O(1) phases and low energy
probes of approximate SM symmetries are very sensitive to the effects that they induce. We
do not discuss these constraitnts here because they decouple when MUV → ∞, while the
misaligned instanton contribution to the axion potential does not decouple if b0 is sufficiently
small, so there are always values of MUV and b0 for which instantons give the dominant effect.

Even if the contribution to the axion mass from small instantons is negligible compared
to the one from low-energy QCD it can still misalign the minimum of the axion potential.
This can be phrased as a bound on the number of colored particles in the UV or equivalently
the beta function coefficient b0 which has to be satisfied in order for the axion solution to
the strong CP problem not to be endangered. In the left panel of figure 2 we show the
minimal value of b0 as a function of the UV cutoff MUV for several choices of M , where the
new particles appear. In the plot we assumed O(1) Wilson coefficients and CP violating
phases. The region shaded in blue depicts the bound on the EFT cutoff from IR dominated
contributions from effective CP violating operators in low-energy QCD which will be discussed
in section 4.2. Note that reaching b0 ∼ 4 requires the addition of 18 scalars in the fundamental
representation. Lower values of b0 require even more colored particles.

Let us also mention that instead of adding additional colored matter, the beta function
is also modified if QCD propagates in a flat extra dimension as discussed in [20]. The KK
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b 0
Figure 2. Minimal value of b0 for SU(3) (left) and SU(2) (right) as a function of the UV cutoff MUV
for which the induced θ̄ angle due to CP violating effective operators is θ̄ind < 10−10. The different
colors stand for various values of M , the scale where new charged particles appear. The blue shaded
region shows the bound on MUV from the contribution of CP violating higher-dimensional operators
within low-energy QCD as discussed in section 4.2. Note that we do not show further flavor and EDM
bounds on MUV.

modes lead to an effective linear running of the gauge coupling and render the instanton
calculation UV dominated. If the Wilson coefficient of CP violating operators are not tuned
or small because of a symmetry their effect does not decouple, making an enhancement of
the axion mass in the presence of CP violation impossible. This was also pointed out in [27].

4.1.2 Misaligned axion potential from SU(2) instantons

For general axion models U(1)PQ is typically not only anomalous under SU(3)QCD but also
under SU(2)L. This implies that there will be a coupling of the form(

a

fa
+ θEW

)
g2
w

32π2W
A
µνW̃

Aµν , (4.4)

where we neglected a possible non-trivial anomaly coefficient and WA
µν is the electroweak

field strength and W̃A
µν its dual. In the SM, θEW is unobservable since U(1)B+L is only

broken by SU(2)L [57, 58] and therefore a U(1)B+L rotation can remove eq. (4.4) from the
Lagrangian with no other effect on the SM. Therefore there is no contribution to the axion
potential from SU(2)L instantons.

However, if there is an additional explicit breaking of U(1)B+L, e.g. through higher-
dimensional operators, SU(2)L instantons contribute to the axion potential. If this is the
case the axion quality problem might become an issue if θ̄EW ̸= θ̄QCD.

Examples of higher-dimensional operators which violate B + L are

cijklL

M2
L

qiqjqkLl + cijklR

M2
R

(uc)i(uc)j(dc)k(ec)l + . . . , (4.5)
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Figure 3. SU(2)L ’t Hooft operator closed up with the higher-dimensional operators in eq. (4.5).

where i, j, k, l are generation indices. Such operators generically appear in the low-energy
EFT of GUTs after the heavy (triplet) Higgses are integrated out.

Examples of contributions to the axion potential from insertions of these two effective
operators are shown in figure 3. Without additional matter charged under SU(2)L the
contribution from both diagrams is negligible. Note that the second diagram is additionally
parametrically suppressed by (4π)−12(yuycyt)2(ydysyb)(yeyµyτ ) ≃ 10−48 with respect to the
first diagram which is why we will not consider it any further in the following. The contribution
to the axion potential generated from the first diagram scales as

δVSU(2)(a) ≃ −2C2

(
8π2

g2
w(MUV)

)4 |cL|3

(4π)6

(
ΛSU(2)
MUV

)bSU(2)
0 −4

Λ4
SU(2) cos

(
a

fa
+ θEW + 3δcL

)
,

(4.6)
where ΛSU(2) is the RG invariant scale of SU(2) and δcL the phase of cL which for simplicity
we assume to be universal for all generations. For bSU(2)

0 < 10, which is always the case
for SU(2) gauge theories, the integral over the instanton size is UV dominated and cut
off at 1/MUV which we identify with the EFT cutoff and suppression scale of the effective
operator. Note that SU(2)L is spontaneously broken in the IR, such that instantons of size
ρ ≫ 1/(gwv) are exponentially suppressed.

In the SM b
SU(2)
0 = 19

6 with an RG invariant scale of ΛSU(2) ≃ 3 · 10−24 GeV, which
makes the contribution numerically insignificant

δVSU(2)(a)
cos

(
a
fa

+ θEW + 3δcL
) ≃ −

(
2 · 10−15 GeV

)4
(
g2
w(1016 GeV)
g2
w(MUV)

)4 (
MUV

1016 GeV

)5/6
. (4.7)

However, since the contribution to the potential is dominated by small instantons, this is a
UV dependent statement. UV modifications of SU(2)L, such as the non-trivial embedding
into a larger gauge group (see e.g. [59, 60]) or additional matter charged under SU(2)L, can
further enhance small instantons. As an example let us assume as before that at a scale
M a set of scalars charged under SU(2)L is added to the spectrum, modifying the beta
function coefficient to b0 < b

SU(2)
0 . Incorporating the scale matching condition at M leads
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to an expression analogous to eq. (4.3)

δVSU(2)(a) ≃ −2C2

(
8π2

g2
w(MUV)

)4 |cL|3

(4π)6

(
MUV
M

)4−b0
(

ΛSU(2)
M

)bSU(2)
0 −4

× Λ4
SU(2) cos

(
a

fa
+ θEW + 3δcL

)
.

(4.8)

Assuming O(1) Wilson coefficients we can again find the minimal value of b0 as a function
of the UV cutoff MUV for which θ̄ind < 10−10. As shown in the right panel of figure 2 the
beta function coefficient in general has to switch sign in order for the axion solution to the
strong CP problem to be in danger.

Let us finally mention that instanton contributions to the mass of electroweak axions
have also been discussed in [61–63] in the context of axionic quintessence models and in [52]
mainly in the context of Grand Unified Theories.

4.2 IR dominated misaligned contributions in QCD

In this work we are mainly interested in UV instanton effects on the magnitude and alignment
of the axion potential. However, for completeness, in this section we review very briefly the
impact that a CP-violating operator, generated at high-energy, can have on this potential,
purely from the IR dynamics of QCD. These effects are also present when UV instantons
are negligible.

Assuming there is no non-trivial UV modification of QCD the SM QCD contribution
to the axion potential is dominated by non-perturbative effects in the IR at the QCD scale.
This contribution cannot be reliably computed with instantons as QCD gets strongly coupled
and all order instanton contributions are equally important. In fact instantons do not even
give the leading contribution to the axion potential (see e.g. [37] for a recent discussion).
CP violating effective operators, such as |cud|

M2
UV
eiδud ūud̄d + h.c. nonetheless affect the axion

potential and generate a misaligned contribution.6 It is tempting to estimate this effect by
using the effective operator to close up zero modes in the ’t Hooft operator, however in the
strongly-coupled regime the instanton calculation is IR divergent and does not provide a
reliable estimate. Thus in order to estimate the effect one has to resort to non-perturbative
methods. In order to do so it is more convenient to parameterize the axion potential in terms
of the topological susceptibility χ(0) and an additional correlator χO(0) which parameterizes
the misalignment due to an effective operator O. Up to quadratic order in the axion field
its potential can be expressed as

V (a) = χO(0) a
fa

+ 1
2χ(0)

(
a

fa

)2
+ . . . . (4.9)

Both χO(0) and χ(0) can be expressed in terms of correlators of the form [16, 54, 56, 65]

χ(0) = −i lim
k→0

∫
d4xeikx

〈
0
∣∣∣∣T { 1

32π2G
a
µνG̃

aµν(x) 1
32π2G

a
µνG̃

aµν(0)
}∣∣∣∣ 0〉 , (4.10)

χO(0) = −i lim
k→0

∫
d4xeikx

〈
0
∣∣∣∣∣T
{

g2

32π2G
a
µνG̃

aµν(x) cO
M2

UV
O(0)

}∣∣∣∣∣ 0
〉
, (4.11)

6Note that some effective operators can also directly contribute to the neutron dipole moment [54–56, 64].
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which have to be evaluated using non-perturbative methods, such as QCD sum rules (see
e.g. [65–67]). The explicit definition of χO(0) and χ(0) and the way they enter the axion
potential in eq. (4.9) can be intuitively understood by noticing that in the QCD Lagrangian
one can choose a basis in which a

fa
GaµνG̃

aµν is the only non-derivative axion coupling. Thus
when computing contributions to the potential each power of the axion field has to be
accompanied with a GaµνG̃aµν factor in a vacuum-to-vacuum correlator. A simple estimate
using dimensional analysis assuming that only one power of the effective operator enters
the computation yields an induced θ angle of

θ̄ind ≃ cO
Λ2

QCD
M2

UV
sin(δ) ∼ cO

mπfπ
M2

UV
sin(δ) ⇒ MUV

c
1/2
O

≳ 106 GeV · sin1/2(δ) , (4.12)

where cO and δ are the magnitude and phase of the Wilson coefficient of the effective
operator and we used the experimental bound θ̄ < 10−10. In this estimate we used that the
contribution from one insertion of the effective operator is proportional to cO sin(δ)/M2

UV
and that ΛQCD ≃ (mπfπ)1/2 is the only other relevant dimensionful scale. This estimate is
consistent with the findings of [27]. The important difference with respect to UV-instantons
is that these effects decouple as MUV → ∞, even if we do arbitrary violence to b0 in the UV.

4.3 Misaligned axion potential

We have seen in the previous examples that small instanton corrections to the axion potential
may or may not be aligned with the QCD contribution. Aligned contributions simply raise
the axion mass and can lead to interesting novel phenomenology for the axion. Misaligned
contributions however usually exacerbate the axion quality problem by leading to additional
corrections to θ̄, and hence should ideally be avoided. We can parameterize these new
contributions to the axion potential using the general form

−V (a) =
(
m2
πf

2
π + Λ4

SI

)
cos

(
a

fa

)
+ Λ4

CPV cos
(
a

fa
+ δ

)
, (4.13)

where m2
πf

2
π is the contribution from low-energy QCD, Λ4

SI is a possible aligned contribution
from small instantons (SI stands for small instantons) and Λ4

CPV is the misaligned contribution
generated from CP violating sources with an additional phase δ in the axion potential. Of
course if there is no additional source of CP violation present in the UV theory, then
instantons will not contribute to ΛCPV.

In one of the examples above, eq. (4.1), the ’t Hooft operator closed with Higgs loops is
aligned with the low-energy QCD axion potential and therefore contributes to Λ4

SI. However,
closing the ’t Hooft operator with higher-dimensional operators as in eq. (4.3) contributes
to Λ4

CPV if the Wilson coefficient has a non-vanishing CP violating phase. In the limit
Λ4

CPV ≪ (m2
πf

2
π + Λ4

SI) this induces an axion VEV or effective θ̄ angle

θ̄ind ≡
〈
a

fa

〉
= Λ4

CPV
f2
πm

2
π + Λ4

SI
sin(δ) < 10−10 . (4.14)

Λ4
CPV and Λ4

SI, if both present, are often related, since enhanced small instantons typically
also enhance the effects of CP violating operators. However, this is not necessarily the case
as we saw in section 4.1.2 in the example where SU(2)L instantons only generate Λ4

CPV.
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If both Λ4
CPV and Λ4

SI are present we can distinguish between two different scenarios.

CP violating effects decouple (ΛCPV/ max[ΛSI, m2
πf2

π ] → 0 for MUV → ∞). Here
we assume a common cutoff MUV, for the integral over instanton sizes, and the suppression
scale of the higher-dimensional operator, e.g. cij

M2
UV
ψ̄iψiψ̄jψj + h.c.. If ΛCPV/ΛSI → 0 for

MUV → ∞, the CP violating effects decouple. This can only happen if ΛSI is generated
at a scale MSI ≪MUV much below the suppression scale of the effective operator and UV
cutoff. This naturally occurs if the contribution to ΛSI is IR dominated and the one to
ΛCPV is UV dominated. In this case θ̄ind ∝ Λ4

CPV/Λ4
SI ∝ M2

SI/M
2
UV for the insertion of

one dimension-six operator. This never happens in our two simple examples discussed in
section 4.1, where ΛSI and ΛCPV are dominated by the same instanton sizes, regardless of
the β-function. However, this behavior can be observed in many UV modifications of QCD
that were studied in [27]. These include non-trivial embeddings of QCD into a larger gauge
group [21, 22, 68] and mirror QCD [25, 45–47, 69]. By performing the explicit computation
the authors found that one has to require that MUV ≳ (105 − 108)MSI in order not to spoil
the axion solution to the strong CP problem [27].

CP violating effects do not decouple (ΛCPV ∼ ΛSI). If we again identify the UV cutoff
of the EFT and instanton size integral with the suppression scale of the higher-dimensional
operator, CP violating effects do not decouple if both ΛSI and ΛCPV are generated by UV
dominated instantons. In this case we naturally find Λ4

CPV ∼ Λ4
SI. If these are comparable

to the low-energy QCD contribution to the axion potential this implies that an O(1) CP
violating phase δ prevents a successful axion solution to the strong CP problem if the Wilson
coefficient of the effective operator is not tuned or protected by symmetries. An example of
such a setup is the modified QCD beta function in section 4.1.1 or 5D small instantons [20].

5 UV-safe models: composite axions and ZN axions

As we have demonstrated above, even if the axion is equipped with a high-quality Peccei-
Quinn symmetry, a successful axionic solution to the strong CP problem crucially depends on
UV physics. If the UV theory contains CP violating couplings, which is in general expected,
any modification of the particle spectrum or the running of the gauge coupling can endanger
the solution to the strong CP problem. For this reason it would be desirable to identify
models which do not suffer from this UV sensitivity.

In this section we want to present two models which have this property: ZN axions [28]
and composite axions [29]. They achieve the UV insensitivity in different ways. ZN axions
possess a discrete shift symmetry which protects them from m-instanton effects with m < N ,
implying that as long as the coupling is perturbative, the usual exponential suppression
of small instantons is enhanced.

Composite axions [29], on the other hand, do not exist as elementary degrees of freedom
above the compositeness scale. Misalignment effects can therefore only originate from low-
energy PQ-breaking. If the model does not allow such operators up to a high mass dimension,
such as in [29], misaligned contributions to the axion potential from UV instantons are
irrelevant. Note however, that this does not prevent misalignment effects in low-energy QCD
along the lines of section 4.2. These, however, decouple as MUV → ∞.

– 25 –



J
H
E
P
0
4
(
2
0
2
4
)
0
7
4

5.1 ZN axions

A class of UV-safe models are axions in a ZN symmetric world. Proposed by Hook [28],
and further investigated in [70], such models assume that there are N identical copies of
the SM related by a ZN symmetry, but a single axion coupling to all the sectors. Under
the ZN symmetry we have

SMk
ZN−−→ SMk+1 , (5.1)

a

fa

ZN−−→ a

fa
+ 2π
N
, (5.2)

where k = 0, . . . , N−1 and SMN = SM0. As we will see momentarily for odd N the strong-CP
problem will be solved in the k = 0 sector, which we identify with the sector that we live
in. The ZN -symmetric axion couplings to the different sectors are given by

La =
N−1∑
k=0

(
a

fa
+ 2πk

N
+ θ̄

)
g2

32π2G
a
k µνG̃

aµν
k . (5.3)

The axion potential from low-energy QCD can be computed within chiral perturbation theory.
Summing up the contributions from all sectors in 2-flavor chiral perturbation theory yields [28]7

VN (a) = −m2
πf

2
π

md

mu +md

N−1∑
k=0

√
1 + z2 + 2z cos

(
a

fa
+ 2πk

N

)
, (5.4)

where z = mu/md ≈ 1/2 and we have absorbed θ̄ into the axion field. Expanding the above
in powers of z one can see that the first contribution to the axion potential arises at order zN .
All lower-order terms cancel or are independent of the axion field due to a set of trigonometric
identities which for N > m ≥ 0 can be written as [28]

N−1∑
k=0

cosm
(
a

fa
+ 2πk

N

)
=

0 m = odd
N
2m

m!
(m/2)!!2 m = even

. (5.5)

Thus the first axion-dependent contribution arises at m = N , leading to an exponential
suppression of the axion mass. In the large N limit the potential has the form [70]

VN (a) ≃ m2
πf

2
π√
π

√
1 − z

1 + z
N−1/2(−1)NzN cos

(
Na

fa

)
, (5.6)

such that ⟨a⟩ = 0 is a minimum for odd N . This implies that for odd N the strong CP
problem is still solved in one of the sectors, i.e. the k = 0 sector, what corresponds to a
tuning of the order of 1/N , from the discrete choice of living at k = 0 to solve the problem
in our sector. Also note that the axion mass from eq. (5.6) is exponentially suppressed
and scales as m2

af
2
a ∝ m2

πf
2
π N

3/2zN .
Let us now consider small instanton contributions to the axion potential from all N

sectors, i.e. we restrict ourselves to an energy range where the coupling is perturbative. Due
to the ZN symmetry the one-instanton contributions from all sectors are identical except for
a different effective θ̄k angle of θ̄k = θ̄ + 2πk

N , which results in different phases for instanton
contributions from different sectors. The different phases from the N sectors lead to a

7Note that this is equivalent to our eq. (2.20).

– 26 –



J
H
E
P
0
4
(
2
0
2
4
)
0
7
4

cancellation of the whole potential

Va = −Λ4
SI

N−1∑
k=0

cos
(
a

fa
+ 2πk

N

)
= 0 , (5.7)

where we again absorbed θ̄ in the axion field and introduced the dimensionful scale ΛSI
generated by small instantons in each sector.

Thus any small one-instanton contribution in the ZN model does not give a contribution to
the axion potential. The first non-vanishing contribution originates from an N -instanton effect
which is suppressed by exp(−N 8π2

g2 ). The above considerations also apply to contributions
from CP violating effective operators which must have the same phase in all sectors due
to the ZN symmetry.

Hence the ZN axion is by construction safe from CP violating small instanton contribu-
tions. However, if the ZN symmetry is explicitly broken this is not necessarily true anymore.
Furthermore the reduced axion mass in the ZN model (see eq. (5.6)) leads to a more severe
misalignment than in ordinary axion models if the ZN symmetry is broken. As an example
of this effect let us consider the model introduced in ref. [71] where the axion also plays the
role of the relaxion. Note that for the rest of this section we will slightly modify our notation
to make contact with [71]. Our previous identification Λ4

QCD ≃ m2
πf

2
π assumed a Higgs VEV

of v = ⟨H⟩ = 174 GeV. However, in a relaxion setup the Higgs VEV is not fixed and m2
πf

2
π

scales approximately8 as v2. In order to make this more explicit we make the replacement
m2
πf

2
π = 1+z

z yuv
2 Λ̃2

QCD where z and Λ̃QCD are approximately independent of the Higgs VEV.
Note that Λ̃QCD ≡ (zm2

πf
2
π/(1 + z)yuv2)SM is smaller than the usual ΛQCD. In terms of this

new parameter the relaxion-Higgs potential considered in [71] takes the form

V (a,H) = (M2
UV − gMUVa)|H|2 + λ|H|4 + Vroll(a) + Vbr(a, ⟨H⟩) ,

Vroll(a) = −gM3
UVa , Vbr(a, ⟨H⟩) = (−1)N Λ̃2

QCDyuv
2κ cos

(
Na

fa

)
,

(5.8)

where the backreaction potential is the one of eq. (5.6) with κ = zN−1√(1 − z2)/(πN), MUV
is the UV cutoff and g a dimensionless coupling constant. In this setup the relaxion stops
when V ′

roll ≃ V ′
br which happens for Na/fa ∼ 3π/2 for N even and at Na/fa ∼ π/2 for N

odd [72]. For both cases there is no SM sector in which the strong CP problem is solved.9
For this reason the authors introduce an explicit breaking of the ZN symmetry in the k = 0
sector (that is no longer our sector in this model), where they take y′u > ySM

u and also v′ ≥ v,
what also leads to Λ̃′

QCD ≥ Λ̃QCD. Due to this explicit breaking not all z1 terms cancel
exactly and one obtains a back-reaction potential of the form10

Vbr(a) ∼ −Λ̃′2
QCDy

′
u(v′)2 cos

(
a

fa

)
(1 − ϵbγ) − Λ̃2

QCDyuv
2κ cos

(
Na

fa

)
, (5.9)

8In [71] they considered a linear scaling, neglecting the dependence of the running of αs on v due to quark
thresholds. If we include this effect, fπ ∼ v0.3 for vSM ≲ v ≲ 104vSM. Note that when v ≳ 104vSM up and
down quarks become heavier than the QCD scale and also the dependence of m2

π on v changes. Our modified
v2 scaling does not affect the conclusions of [71].

9The effective θ̄ angle in the k-th sector is θ̄
(k)
eff = ⟨a⟩

fa
+ 2πk

N
.

10Note that due to the breaking of the ZN symmetry, not only does the leading term in z not cancel but
also higher order terms. As was pointed out in [71] these play an important role in the dynamics but here we
only consider the leading order term.
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where ϵb = Λ̃2
QCDyu/(Λ̃′2

QCDy
′
u) and γ = (v/v′)2 parameterize the breaking of the ZN symmetry.

The first term is simply the leading contribution in z from the k = 0 sector axion potential.
For ϵbγ = 1 we recover the ZN symmetry and this term cancels. However, if the first term
dominates, i.e. if ϵbγ ≪ 1 the relaxion stopping point is determined by this term and occurs
at a/fa ∼ π/2. This implies that for N = 4n, where n is a positive integer, there is one
sector in which the strong CP problem is solved.

However, the larger QCD scale in the k = 0 sector together with the small axion
mass at the relaxion stopping point make the setup vulnerable to misaligned contributions
from CP violating higher-dimensional operators. E.g. if we consider the insertion of either
fabcGaµνG

b νρG̃cρ
µ (see e.g. [27]) or a CP violating four fermion operator we expect to get

an additional contribution to the potential of size

δV (a) = |cδ′ |
Λ̃′2

QCD
M2

UV
Λ̃′2

QCDy
′
uv

′2 (1 − ϵbγ) cos
(
a

fa
+ δ′

)
, (5.10)

where cδ′ = |cδ′ |eiδ
′ is the Wilson coefficient of the operator and δ′ is an O(1) C P-violating

phase and MUV the suppression scale of the CP-violating operator. Here we assumed one
insertion of the CP-violating operator and used dimensional analysis to fix the dependence
on Λ̃′

QCD. The (1 − ϵbγ) factor arises from the fact that this contribution also vanishes in
the ZN symmetric limit.

Let us now estimate for which values of MUV this would misalign the axion potential and
spoil the axion solution to the strong CP problem. Using eq. (III.22) of [71] we consider the
axion potential around its stopping point with the addition of the misalignment contributions
from CP violating operators in eq. (5.10)

V (a) = |cδ′ |
Λ̃′2

QCD
M2

UV
Λ̃′2

QCDy
′
uv

′2 (1 − ϵbγ) cos
(
a

fa
+ δ′

)
−m2

af
2
a cos

(
a

fa

)
, (5.11)

where m2
af

2
a = δΛ̃2

QCDyuv
2/(ϵbγ). Finding the minimum via

0=V ′(a) = |cδ′ |
Λ̃′2

QCD
M2

UV
Λ̃′2

QCDy
′
uv

′2 sin(δ′) −
δΛ̃2

QCDyuv
2

ϵbγ

a

fa
+ O(a2) , (5.12)

where we expanded in small a and dropped subleading terms. Solving this for a we find
∣∣∣∣ afa

∣∣∣∣ =
∣∣∣∣∣|cδ′ | Λ̃

′2
QCD
M2

UV

sin(δ′)
δ

∣∣∣∣∣ ≲ 10−10 . (5.13)

Following eq. (III.20) in [71] we take

δ ≃ 4 × 10−11
(

106GeV
MUV

)√
γ

ϵb
, (5.14)

and with
√
γ/ϵb ∼ |cδ′ | sin(δ′) ∼ O(1) we find

MUV ≥ 1010Λ̃′
QCD ∼ 1013 GeV , (5.15)
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where we used the benchmark value Λ̃′
QCD ∼TeV from [71]. This is a much stronger

bound than in pure QCD, where one finds MUV ≳ 106 GeV from similar considerations
(see eq. (4.12)). Thus while Planck suppressed Peccei-Quinn breaking operators are not
an issue in this model for large enough N and small enough fa, CP-violating dimension-6
operators with a suppression scale as high as 1013 GeV can be enough to spoil the solution
to the strong CP problem. Note that generic explicit breaking of the ZN symmetry would
also allow a new θ-angle in the k = 0 sector that would misalign the axion potential. Here
we followed [71] and assumed a specific source of ZN breaking in the UV theory, namely
y′u > yu and v′ > v in the k = 0 sector.

5.2 Composite axions

Another setup that provides protection from misaligned small instantons are composite axion
models with a high-quality PQ symmetry, as proposed in [29]. The axion is only a relevant
degree of freedom below the confinement scale of a new gauge group and is therefore screened
from UV contributions to its potential. This is interesting to us because these models typically
contain a large number of particles charged under SU(3) or SU(2)L which might enhance
small instantons. In the following we outline the structure of these models with an emphasis
on possible effects from small instantons.

The models in [29] assume a gauge symmetry SU(NDC) × U(1)D ×GSM, with additional
fermions which are vector like under SU(NDC)×GSM but chiral under the full gauge group due
to their U(1)D charge assignment, i.e. we have LH fermions ψi and χi with quantum numbers

ψi ∼ (□, pi, ri) , χi ∼
(
□̄, qi, r̄i

)
, i = 1, . . . , nf (5.16)

under SU(NDC) × U(1)D × GSM, where the U(1)D charges are chosen such that no mass
terms are allowed, in particular pi ̸= −qi for irreducible SM representations ri and r̄i. The
BSM part of the Lagrangian is therefore given by

LBSM = −1
4G

a
µνGa,µν −

1
4F

D
µνF

Dµν + ε

2F
D
µνB

µν +
∑
i

ψ†
i iDµσ̄

µψi +
∑
i

χ†
i iDµσ̄

µχi , (5.17)

where i sums over irreducible representations and ϵ parameterizes a possible kinetic mixing
between U(1)D and U(1)Y . Let us have a look at the minimal model to understand how
the mechanism works.11 The particle content is given by

SU (NDC) U(1)D GSM
ψ1 □ +1 1
ψ2 □ −1 1
ψ3 □ +1 r

ψ4 □ −1 r̄

χ1 □̄ −q 1
χ2 □̄ +q 1
χ3 □̄ −q r̄

χ4 □̄ +q r

(5.18)

11Note that the minimal model does not have a high-quality PQ symmetry and allows for PQ violating
operators already at dimension 6. However, if small instanton effects are irrelevant in this scenario they are
even more so in safer models.
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with r = (3,1)y of (SU(3), SU(2)L)U(1)Y for an arbitrary hypercharge y and q is a rational
number in the interval (−1, 1). This model has the global symmetry U(1)4

L × U(1)4
R, which

corresponds to phase rotations of the ψ and χ fields. Once the SU(NDC) gauge coupling
becomes strong and the group confines, the global symmetry is spontaneously broken by the
condensate ⟨ψiχi⟩ ̸= 0 to U(1)4

V . Thus there are four broken axial U(1)′s which means there are
also four GBs: one is eaten by the U(1)D gauge boson giving it a mass of mγD = 2(1−q)eDfDC
with fDC ∼ ΛDC/(4π), one is associated to an anomalous U(1)A under SU(NDC) (the SU(NDC)
axion) and receives a large mass, one corresponds to a U(1)A anomalous under SU(3)c (the
composite axion) and one is an exact GB. Note that the remaining GBs of the approximate
U(4)L × U(4)R → U(4)V , which is explicitly broken by the weak gauging of the SM gauge
group, obtain a mass of the order g2

SM
(4π)2 Λ2

DC. The PQ symmetry current is of the form
(see [29] for details)

jµPQ = Ψ̄γµγ5QPQΨ , QPQ = diag(−3,−3, 1, 1) , (5.19)

with ΨL = (ψ1, ψ2, ψ3, ψ4)T and ΨR = (χc1, χc2, χc3, χc4)T . Note that U(1)PQ does not have an
SU(NDC) anomaly, i.e. SU(NDC) instantons do not contribute to the axion potential.

How can small QCD instantons contribute to the axion potential in this scenario? Below
the confinement scale the composite axion behaves like an elementary axion and the discussion
in sections 4.1 and 4.2 fully applies. However, above the confinement scale of SU(NDC) the
axion is not a relevant degree of freedom and U(1)PQ is a linearly realized anomalous symmetry
such that the QCD θ-angle is unobservable (there are massless fermions in the spectrum).
This implies that completely closing up all legs of the ’t Hooft operator will not give a
contribution to the axion potential above the confinement scale.

However, instantons above the confinement scale can still generate effective operators, e.g.
by closing only some of the legs of the ’t Hooft operator. If this effective operator explicitly
breaks the PQ symmetry and has a non-vanishing overlap with the axion after confinement
it will give a contribution to the axion potential. This contribution is only misaligned with
respect to the low-energy QCD contribution if a new CP violating phase enters the instanton
computation. This can happen if we use CP violating higher-dimensional operators to close
some of the legs of the ’t Hooft operator.

To contribute to the axion potential the operator must have the same quantum numbers
as the axion and in particular vanishing vectorial charges, i.e. the relevant PQ breaking
operators can be written as polynomials of (ψiχi), (ψiχi)†, (ψ†

iψi) or (χ†
iχi) [29].

The ’t Hooft operator itself already satisfies the above requirements: it explicitly breaks
the PQ symmetry and it is a singlet under all vectorial U(1)’s. However, even after closing a
few of its legs the result has to be gauge invariant and the gauge charge assignment of the
new fermions greatly restricts the form of PQ breaking operators. The lowest dimensional
PQ breaking operators for the current example are ψ1ψ2χ1χ2 and ψ3ψ4χ3χ4. Instantons
can only generate the second operator since all fermions in the first are color singlets. In
order to close all legs of the ’t Hooft operator in figure 4, except for the ones in the PQ
breaking operator ψ3ψ4χ3χ4, one can use Yukawa couplings and Higgs loops for the SM
quarks and higher-dimensional operators for the remaining NDC − 1 new fermions legs (see
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Figure 4. Contribution to the lowest-dimensional PQ breaking operator ψ3ψ4χ3χ4 from QCD
instantons above the confinement scale of SU(NDC), i.e. ρ < 1/ΛDC. The SM quark zero-modes are
closed with Higgs loops, whereas the remaining NDC − 1 zero-modes for ψ3, ψ4, χ3, χ4 are assumed to
be closed with one effective operator.

again figure 4). Thus the contribution from ρ ≪ 1/ΛDC scales as

ψ
(0)
3 ψ

(0)
4 χ

(0)
3 χ

(0)
4 |c∆|eiδ∆

C3
(4π)α

(
8π2

g2

)6 6∏
i=1

yi
4π

∫ 1/ΛDC

1/MUV

dρ

ρ5 ρ
6
(
ΛSU(3)ρ

)b0 (MUVρ)−∆ (5.20)

where ∆ counts the power of 1/MUV from the suppression scale of higher-dimensional
operators and the ψ(0)

i and χ(0)
i are fermion zero mode wavefunctions. If we use nO operators

to close the ’t Hooft vertex this is given by ∆ = 6(NDC − 1) − 4nO where we used that there
are 4(NDC − 1) zero-modes which have to be closed with higher-dimensional operators. The
definition for α is given in eq. (2.13). Here we restrict it to the zero-modes for the BSM
fermions in which case it takes the form α = 4(NDC − 1) − 2nO. In figure 4 we show an
example where we use only one higher-dimensional operator to close ψi and χi zero-modes. In
this case ∆ = 2(3NDC − 5) and α = 2(2NDC − 3). The exact values depend on the number of
operators we use to close the zero-modes but it will not affect our qualitative conclusions. c∆
is the combination of Wilson coefficients used to close the zero-modes and δ∆ their combined
phase. Due to the large number of colored particles also b0 is modified to b0 = 7 − 4NDC/3.
For NDC ≥ 3 the integral is always UV dominated and one obtains

|c∆|
M2

UV

C3
(4π)α

(
8π2

g2(MUV)

)6(ΛSU(3)
MUV

)b0

eiδ∆
6∏
i=1

(
yi
4π

)
ψ

(0)
3 ψ

(0)
4 χ

(0)
3 χ

(0)
4

= e
− 8π2

g2(MUV)

M2
UV

|c∆|
(4π)2∆UV

C3

(
8π2

g2(MUV)

)6

eiδ∆
6∏
i=1

(
yi
4π

)
ψ

(0)
3 ψ

(0)
4 χ

(0)
3 χ

(0)
4 .

(5.21)

For g2(MUV) < 8π2 this is always suppressed w.r.t. the natural expectation for the operator
coefficient ∼ O(1)/M2

UV from other possible UV dynamics. Note that in order to match this
expression to an ordinary operator one has to use the explicit expression for the zero mode
wavefunctions. However, this does not change the conclusion that the Wilson coefficient
is exponentially suppressed for perturbative couplings. Thus effects from small instantons
above the confinement scale seem to be negligible in composite axion models. However,
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below the confinement scale there can still be IR-dominated misaligned contributions to the
axion potential along the lines of section 4.2.

A simple way to summarize this, rather detailed, discussion is that UV instantons can pose
a problem only if they generate the same PQ-breaking operators that the symmetries of [29]
are designed to suppress or eliminate altogether. UV instantons respect these symmetries and
so these models are structurally safe from the UV effects that we considered in this paper.

6 Small instantons in GUTs are negligible (unless you work hard to
enhance them)

There are many models of GUTs which include an axion originating from a representation of
the unified theory [73–83]. When studying instanton contributions to the axion potential in
GUTs there are a few subtleties that one has to keep in mind (see also [83]):

• The PQ symmetry is by definition anomalous under SU(3). However, in GUTs the PQ
symmetry is anomalous under the full unified gauge group which in particular contains
both SU(3) and SU(2)L. This implies that the PQ symmetry must also be anomalous
under SU(2)L, i.e. the axion coupling at the GUT scale is

a

fa

g2
GUT

32π2 G
A
µν G̃Aµν ⊃ a

fa

(
r3
g2

GUT
32π2 G

A
µνG̃

Aµν + r2
g2

GUT
32π2 W

a
µνW̃

aµν

)
, (6.1)

where r3 and r2 denote the index of embedding of SU(3) and SU(2) into the GUT group,
respectively. For a trivial embedding, as is the case for most simple GUTs, r3 = r2 = 1.
Thus both SU(3) and SU(2)L instantons contribute to the axion potential. For UV
dominated contributions their relative size scales with their instanton densities

C2
(

2π
αGUT

)4

C3
(

2π
αGUT

)6 ≃ 0.27 · α2
GUT , (6.2)

where we used the MSSM particle content in the instanton densities and that the
couplings unify at the GUT scale. Thus while SU(2)L instantons contribute, their
relative size is always subleading in perturbative GUTs. Note that here we imagine to
ignore the UV theory and we perform our estimates in the SM EFT. However, this
is one of the cases, mentioned at the end of section 2.2, where Instanton NDA in the
UV theory can give a larger effect than Instanton NDA in the EFT, if the result is
UV-dominated. Nonetheless SU(5) instantons do not change our conclusion: you need
to drastically change the SM β-functions before any of this becomes important.

• SU(3) and SU(2)L unify into a simple group, so there is only one θ angle in the UV, i.e.

θQCD = θEW = θGUT at the GUT scale, (6.3)

for trivial embeddings. This means that SU(2)L instanton contributions to the axion
potential are in general not misaligned with respect to QCD contributions.
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Aside from these points that are common to all GUTs, to compute the axion potential we
have to make also a model-dependent choice. We have to specify an extension of the SM
where gauge couplings unify. As is well-known the SM gauge couplings do not unify exactly.
Successful gauge coupling unification requires extra matter in SM representations between
the TeV and GUT scale, possibly in the form of superpartners of the SM particles. In the
MSSM, coupling unification works intriguingly well.

Due to the requirement of extra matter charged under the SM gauge group it is natural
to ask if small instantons can play an important role in generating the axion potential in such
a setup. In this section we approach this question from a bottom-up perspective and only
add enough matter such that the couplings actually unify and assess how far this is from
making small instantons important. For concreteness we focus on unification into SU(5).

6.1 Split-SUSY inspired GUT

In order to achieve unification into SU(5) ref. [84] (see also [85]) considered the addition
of vector like fermions to the SM which are part of the 5 + 5̄, 10 + 10, 15 + 15 or 24
representations of SU(5). Under (SU(3), SU(2)L,U(1)Y ) these branch into

Q = (3,2, 1/6) + (3,2,−1/6) U = (3,1, 2/3) + (3,1,−2/3) (6.4)
D = (3,1,−1/3) + (3,1, 1/3) L = (1,2, 1/2) + (1,2,−1/2) (6.5)
E = (1,1, 1) + (1,1,−1) V = (1,3, 0) (6.6)
G = (8,1, 0) X = (3,2,−5/6) + (3,2, 5/6) (6.7)
T = (1,3, 1) + (1,3,−1) S = (6,1,−2/3) + (6,1, 2/3) (6.8)

One of the simplest choices which allows for unification is the addition of (L+ V +G). For
TeV-scale vector like fermion masses this leads to unification at MGUT = 1.6 · 1016 GeV with
α−1

GUT = 35.9 and predicts αs(MZ) = 0.102 and therefore requires some threshold effects to
correctly reproduce the PDG value of αs(MZ) = 0.1179(9) [86]. (L+ V +G) is particularly
interesting since it corresponds to the low-energy spectrum of split-supersymmetry [87], i.e.
light gauginos and higgsinos and heavy squarks and sleptons.12 The addition of (L+ V +G)
modifies the (SU(3), SU(2)L,U(1)Y ) one-loop beta function coefficients to bLV G =

(
5, 7

6 ,−
9
2

)
.

As we saw in section 4 this is not sufficient for small instantons to give a sizable contribution
to the axion potential. However, bLV G can easily be modified without spoiling coupling
unification by adding additional matter in full SU(5) representations. Let us first discuss how
the additional fermions affect the instanton contribution to the axion potential in this setup
before we mention possible modifications that would enhance small instantons.

We assume that L+ V +G have TeV scale vector like masses and make the connection
to SUSY even more obvious by denoting the fermions by L = H̃d ⊕ H̃u, V = W̃ and G = g̃.
The most general renormalizable Lagrangian for the fermions is given by

−Lferm = yuij q̄juiϵH
∗ + ydij q̄jdiH + yeij ℓ̄jeiH + MG

2 g̃Ag̃A + MV

2 W̃ aW̃ a

+ µH̃T
u ϵH̃d + g̃u√

2
H†σaW̃ aH̃u + h.c.− g̃d√

2
HT ϵσaW̃ aH̃d + h.c. ,

(6.9)

12Note that the split-SUSY spectrum also contains a light bino, which is however not needed for coupling
unification and therefore completely irrelevant for the further discussion.
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where µ ∼ MV ∼ MG ∼TeV. In split-SUSY g̃u and g̃d are related to the gauge couplings,
but in our setup they are arbitrary O(1) Yukawa couplings for the new fermions. Note that
terms of the form yℓW̃i HT ϵ σaW̃ aℓi and yH̃ei H†H̃dēi do not appear in R-parity-conserving
split-SUSY but they are consistent with all symmetries and originate from allowed SU(5)
Yukawa couplings. However, they violate lepton number and therefore have to be strongly
suppressed. For this reason we will not consider them in the following.

For our purposes this renormalizable Lagrangian is not enough. As we have seen,
instanton-generated ’t Hooft operators can also be closed with effective operators. This is
crucial for SU(2)L instantons which require an explicit breaking of U(1)B+L in order to give
a contribution to the axion potential. B + L violating operators, e.g. of the type qqqℓ, are
present in GUTs even without the inclusion of extra matter such as L + V + G.

In order to estimate the size of these operators we need to have a class of UV-completions
in mind. The most standard option consists in embedding the SM fermions d, ℓ in the 5̄ and
q, u, e in the 10 representation of SU(5). V +G are part of the 24 and L of the vector like
pair 5 + 5̄ since integrating them out leads to higher-dimensional operators with two fermions
and two scalars which require additional scalar loops to close the ’t Hooft operator. Assuming
for now that there is only one scalar field H5 = (T,H) in the 5 representation, containing
the light SM Higgs H and a heavy colored Higgs T , the following Yukawa interactions exist
in the SU(5) symmetric theory

(yu)ij10i10jH5 ⊃ (yu)ij [qiϵHūj + T ūiēj + qiϵqjT ] , (6.10)

(yd)ij 5̄i10j(H∗
5 )β ⊃ (yd)ij

[
d̄iūjT

∗ + ℓiqjT
∗ +H†qid̄j +H†ℓiēj

]
, (6.11)

(y1)i5̄L10iH∗
5 ⊃ (y1)i

[
qiϵH̃dT

∗ +H†H̃dēi
]
, (6.12)

y25̄L24V GH5 ⊃ y2H̃dW̃
aσaH , (6.13)

y3H
†
524V G 5L ⊃ y3H

†W̃ aσaH̃u , (6.14)

where gauge index contractions are left implicit and fermion fields are denoted by the dimension
of their representation under SU(5). The heavy vector like fermions L+ V +G are embedded
into the SU(5) multiplets 5L + 5̄L and 24V G. Note that we have not added a Yukwawa
coupling of the form (yi4)5̄i 24H5 which would produce the lepton number violating operators
mentioned below eq. (6.9). The couplings (yu)ij and (yd)ij are the SM Yukawa matrices. We
have left out couplings including heavy fermions in the 24 and 5L, 5̄L. Integrating out the
colored triplet Higgs T one arrives at dimension six operators of the form

L6 ⊃
cijkmqqqℓ

m2
T

qiqjqkℓm +
cijkmqqdu

m2
T

qiqj ūkd̄m +
cijk
qqqH̃

m2
T

qiϵqjqkϵH̃d , (6.15)

where we only kept operators where all fermions are charged under either SU(3) or SU(2)L.
The Wilson coefficients for these operators scale as cqqqℓ, cqqdu ∝ yuyd and cqqqH̃ ∝ y1yu with
y1, y2, y3 ∼ O(1) in general. Note that y2, y3 can be identified with g̃d, g̃u in eq. (6.9).

Using the couplings in eq. (6.9) and eq. (6.15) we can close the SU(2)L and SU(3)
’t Hooft operators as shown in figure 5 and obtain a contribution to the axion potential.
Note that in addition to the zero-modes for the SM fermions there are also zero-modes for
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Figure 5. Contributions to the axion potential from SU(2)L and SU(3) instantons using the couplings
in eq. (6.9) and eq. (6.15).

L + V + G. V and G transform in the adjoint representations of SU(2)L and SU(3) and
have four and six zero-modes, respectively. In order to close the zero-modes of the fermions
in the adjoint representation mass insertions are required. Using the power counting rules
of section 2, we find that the contributions from SU(2)L instantons, depicted in the left
panel of figure 5, scale as

Λ4
SI, SU(2)L ≃ 2C2

(
8π2

g2
w(MGUT)

)4 (
cqqqℓ
16π2

)3 g̃ug̃d
(4π)2

Λ(LV G)
SU(2)
MGUT

b
LVG
SU(2)−4 (

MV

MGUT

)
Λ(LV G)

SU(2)
4 .

(6.16)
The integral over the instanton size is UV dominated and we have taken mT ≃ MGUT.
The RGE invariant scale is given by (Λ(LV G)

SU(2) )b
LVG
SU(2) = M

bLVGSU(2)
GUT e

− 2π
αGUT and evaluates to

Λ(LV G)
SU(2) ≃ 1.7 · 10−68 GeV. Taking g̃u ∼ g̃d ∼ O(1) and cqqqℓ ∼ yuyd this leads to ΛSI, SU(2)L ≃

1.7 · 10−16 GeV ≪ ΛQCD.
The perturbative QCD contribution, from instantons of size ρ < M−1

G , depicted in the
right panel of figure 5 is dominated by its lowest scale ρ ≃ M−1

G , and gives a contribution
that is largely subdominant to IR QCD dynamics at scales O(ΛQCD). This can be seen by
applying our power-counting rules to the right panel of figure 5,

Λ4
SI, SU(3) ≃ 2C3

(
8π2

g2(MG)

)6∏
i

yi
(4π)

Λ(LV G)
SU(3)
MG

b
LVG
SU(3)−4

Λ(LV G)
SU(3)

4 , (6.17)

where we used the mass threshold MG as the IR cutoff. With the RGE invariant scale
Λ(LV G)

SU(3) ≃ 4.1 · 10−4 GeV this evaluates to ΛSI, SU(3) ≃ 4.4 · 10−9 GeV ≪ ΛQCD.
In this setup the suppression of small instantons does not only originate from a small

gauge coupling at the GUT scale, but also from the TeV-scale mass insertions required to
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Figure 6. GUT coupling (left) and small instanton contribution to the axion potential relative to the
low-energy QCD contribution for SU(2) (middle) and SU(3) (right) as a function of the scale MVL at
which new vector like fermions or superpartners appear. Dashed lines assume the mini split-SUSY
spectrum with sleptons and squarks with masses of the order 100 TeV in addition to the vector like
fermions at the mass scale MVL > 100 TeV. The orange dot-dashed line shows the maximally allowed
contribution that does not spoil the solution to the strong-CP problem if a new source of CP violation
enters the small instanton contribution.

close zero-modes of fermions in the adjoint representation. Note that this is also a feature of
supersymmetric theories where at least one insertion of the supersymmetry breaking scale,
corresponding to the masses of the adjoint fermions in our model, is needed to generate
a potential for the axion [23, 52].

In the present case the number of mass insertions for QCD instanton contributions can
easily be reduced by introducing a real singlet scalar ϕ with a Yukawa coupling to the 24
representation that W̃ and g̃ are embedded in, i.e.

y24 ϕ 24 24 ⊃ y24 ϕ
(
W̃ aW̃ a + g̃Ag̃A

)
. (6.18)

If ϕ is light the zero-modes can be closed with a ϕ loop, removing the extra MG/MGUT
suppression. If it is heavy, for instance because of a (more natural) GUT scale mass, it can
be integrated out producing four-fermions contact interactions that can close the zero-modes,
giving parametrically the same result as of a light ϕ.

However, note that one TeV-scale mass insertion is unavoidable since both for SU(2)L
and SU(3) there are six zero-modes of TeV-scale fermions and only four of them can be closed
with Yukawa couplings or an effective four-fermion operator.

Let us now discuss a few simple modifications of the model which might change the
above conclusions and make UV instanton contributions sizable. The size of the contribution
to the axion potential in all these setups compared to the low-energy QCD contribution
is shown in figure 6.

• Scalar superpartners. A well motivated addition to the particle spectrum are the
scalar superpartners of the SM fermions, i.e. the squarks and sleptons. In mini-split
SUSY (see e.g. [88]) the scalars have masses which are about a loop factor larger than the
fermion masses. The squarks and sleptons change the SU(3) and SU(2)L beta functions
by ∆b3 = −2 and ∆b2 = −13/6, respectively. The addition of the superpartners alone
is however not enough to get a sufficiently large coupling at the GUT scale (see figure 6
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left), but in combination with further SU(5) symmetric matter a sizable coupling can
be reached.

• 24 + real scalar ϕ. The arguably simplest option is to add an additional set of
fermions in the adjoint representation of SU(5) 2̃4 with a real scalar ϕ. This allows us
to add the following term to the Lagrangian(

m̃24
2 + ỹ24ϕ

)
2̃4A2̃4A . (6.19)

Adding a 24-plet implies that there are 10 new zero modes both for SU(3) and SU(2)L.13

The Yukawa coupling can be used to close eight of them with ϕ loops, so that one only
has to pay the loop factor suppression. If ϕ also couples to g̃A and W̃ a as in eq. (6.18)
all zero-modes from adjoint fermions can be closed. The 24-plet contributes with
∆b3 = ∆b2 = −10/3 to the beta functions. The size of the corresponding contribution
to the axion potential as a function of the vector like fermion mass is shown in blue in
figure 6.

• Vector like complex representations + real scalar ϕ. Another possibility is to
add an even number of vector like fermions in a complex representations such as e.g.
5 + 5̄ and 10 + 10 with a real scalar ϕ that couples to the fermions as

y5ϕ 5̄ 5 + y10ϕ10 10 . (6.20)

This adds 2n5+5̄ + 6n10+10 new zero modes for SU(2)L and SU(3).14 If n5+5̄ + n10+10
is even they can be closed with ϕ loops or effective operators that one would obtain
when integrating out ϕ in case it is heavy. Figure 6 shows n5+5̄ = n10+10 = 1 in green.

Instead of introducing the real scalar ϕ one can also add a full vector like fourth family,
in which case the SM Yukawa couplings can be replicated for this new family, such
that the zero modes can be closed with Higgs loops in the SU(3) case or the effective
operators obtained by integrating out the color triplet Higgs T in the SU(2)L case. This
changes the beta functions by ∆bi = −2 · n10+10 −

2
3n5+5̄.

The GUT coupling and the instanton contribution to the axion potential for the above cases
is shown in figure 6 as a function of the scale where the new particles appear. Note that
the SU(3) instanton contribution in figure 6 has a lower bound. This originates from the
IR dominated contribution between 1/MVL < ρ < 1/MG given in eq. (6.17) which is always
present. The kink both in the SU(2)L and SU(3) contributions occours at MGUT/(4π) where
it becomes favorable to close the zero-modes of the new vector like fermions with a MVL
mass insertion instead of Yukawa couplings and a ϕ loop. For the parametric scaling of the
instanton contributions see appendix C. In conclusion the supersymmetric particle spectrum
alone is not enough to make small instantons important. However, as in all previous sections

13Under (SU(3), SU(2)L)U(1)Y
the 24 representation of SU(5) branches into 24 = (8, 1)0 + (1, 3)0 + (1, 1)0 +

(3, 2)−5/6 + (3̄, 2)5/6.
14Under the SM gauge group these branch into 5 + 5̄ = (3̄, 1)1/3 + (3, 1)−1/3 + (1, 2)1/2 + (1, 2)−1/2 and

10 + 10 = (3̄, 1)−2/3 + (3, 1)2/3 + (1, 1)−1 + (1, 1)1 + (3, 2)1/6 + (3̄, 2)−1/6.
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this is a UV dependent statement as additional matter in SU(5) representations can modify
the running of the gauge coupling. Depending on the CP structure of the GUT this would
either enhance the axion mass (no additional CP vioalation) or spoil the axion solution to
the strong CP problem (new CP violating phases enter the instanton calculation).

7 Conclusions

In this work we presented simple power counting rules that allow us to instantly evaluate
vacuum-to-vaccum amplitudes in an instanton background up to O(1) factors. The six
steps, listed in section 2.2, are as simple as what one would normally use to estimate the
contribution of a Feynman diagram to the amplitude of a physical process. We called these
rules Instanton NDA, as their application is rather similar to that of regular NDA. The
basic conceptual steps of an instanton calculation and the process that leads to this set
of rules are explained in section 2.

These rules constitute a considerable simplification compared to the standard procedure
of evaluating instanton effects. Ordinarily, computing a vacuum-to-vacuum amplitude in
an instanton background requires: 1) Computing the zero-mode wavefunctions of all fields
charged under the gauge group and the solutions of the equations of motion in an instanton
background, 2) Expanding the path integral around these solutions at least up to quadratic
order in the fluctuations, 3) Performing the Gaussian path integral over the non-zero modes of
the fields 4) Integrating the zero-mode wavefunctions over the instanton size and orientation
within the gauge group. This procedure is obviously cumbersome and unsuitable for a quick
order-of-magnitude estimate. Additionally, it is often impossible to complete it analytically,
either because the zero-mode wavefunctions or propagators are not known for arbitrary
representations or because the integral over instanton sizes can only be done numerically. The
simple rules presented here bypass these difficulties and streamline the process of estimating
instanton effects.

As interest in axion physics is steadily growing, performing such estimates is becoming
increasingly relevant. The axion potential in QCD is dominated by confining dynamics in
the IR, as reviewed in section 2.4, and an instanton calculation cutoff at ΛQCD would give
the wrong result. However, instantons encode correctly high-energy contributions when the
gauge coupling is perturbative. These contributions can be important both for the size of
the potential and that of the neutron EDM.

In sections 3, 4, 5, and 6 we applied Instanton NDA to the calculation of UV effects on
the axion potential. In section 3 we discussed, as a warm up exercise, three toy examples that
capture the three physically distinct ways of generating an axion potential from instantons.
In section 4 we emphasized the dangers posed by enhancing the UV contributions to the axion
mass. Enhancing these effects also enhances the neutron EDM and make it sensitive to high-
energy sources of CP violation. The peculiarity of instanton effects is that they do not always
decouple as the UV scale of CP violation goes to infinity. This is an important qualitative
feature that emerges immediately from Instanton NDA and allows to asses whether a model
is UV-safe or not. Two UV-safe models are discussed in detail in section 5. We conclude our
list of applications of Instanton NDA in section 6, by showing that UV effects in GUTs are
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highly subdominant to the QCD potential in the IR. We discuss a number of possible ways
of enhancing UV effects, but they all require the addition of many new matter multiplets.

In conclusion, we have introduced a simple but powerful tool to streamline estimates
of instanton calculations that greatly reduces the burden of evaluating UV contributions
to the axion potential. We then discussed in detail multiple possible applications, ranging
from GUTs to misalignment from high-energy CP violation.
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A Loop factor counting for instanton NDA

In this appendix we justify the loop factor counting for closed ’t Hooft operators as given
in eq. (2.13). The contribution to the vacuum energy is computed according to eq. (2.21).
This entails projecting out fermion zero modes from mass or interaction terms and a path
integral over all remaining dynamical fields. As can be seen in the example in eq. (2.25)
this reduces to a perturbative expansion in the couplings up to an order that is sufficient
to provide one fermion field for each zero mode. All additional fields that appear in the
interactions only survive the path integral if they can be fully Wick-contracted, yielding
propagators. Up to O(1) factors these yield the following factors of π

zero-mode ψ(0) ∼ 1
π
, vertex ∼ π2 , propagator ∆F ∼ 1

π2 , (A.1)

where we used that the explicit expression for the zero mode in eq. (2.22) is ψ(0) ∝ 1/π,
each vertex comes with an integral over spacetime

∫
d4x ∝ π2 ∫ dxx3 and the propagator

∆F contains an integral over all momenta
∫ d4p

(2π)4 ∝ 1
π2
∫
dp p3. Writing this in powers of the

conventional NDA loop factor (4π) one arrives at eq. (2.13).

B Enhanced axion mass from instantons in partially broken gauge groups

In this appendix we demonstrate how embedding QCD into a larger gauge group G′ in the
UV with a non-trivial index of embedding enhances UV instanton contributions to the axion
potential. In such a case instantons in the UV gauge group are not matched one-to-one
to low-energy instantons (see e.g. [22, 41–44]). An index of embedding r means that a
one-instanton effect in the IR theory corresponds to a r-instanton effect in the UV theory.
This implies that one-instanton effects in the UV theory effectively scale like 1/r fractional
instantons and have to be integrated out when matching to the IR theory. The instanton
matching is taken into account through a modified scale-matching relation of the form [44](

ΛIR
G

M

)bIR
0

=
(ΛG′

M

)r·b0

, (B.1)
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where r is the index of embedding and M the matching scale, where we now assume M ≫ ΛIR
G .

Let us demonstrate this effect using one of the simplest cases where a non-trivial index of
embedding occurs. If we assume that the SU(N) gauge group of the examples we considered
in section 3.1 is the diagonal combination of a product gauge group SU(N)r which is
spontaneously broken by the VEV v of a scalar, one-instanton configurations in any of the
SU(N) factors in the UV have no analog in the IR. A one-instanton configuration in the
IR gauge group is a simultaneous (1, 1, . . . , 1) instanton in the r factors, i.e. the index of
embedding is r (see e.g. [21, 22, 68]). In order to be more concrete we assume that the two
vector like fermions in the previous result couple to the first factor of the product gauge group.
In this case the one-instanton configuration within the first factor sits completely in the
broken part of the gauge group and has a natural IR cutoff due to the exponential suppression
of instantons which are much larger than 1/v. Thus if we can close the zero-modes with
loops of scalars, the instanton effect scales as

∼ CN

(
8π2

g2

)2N

e
±i a

fa

∫ ∞

1/MUV

dρ

ρ5 (ΛSU(N)ρ)b0e−2π2ρ2v2 y1y2
16π2

∼ CN

(
8π2

g2(2πv)

)2N

e
±i a

fa
y1y2
16π2

(
ΛSU(N)

2πv

)b0

(2πv)4

∼ CN

(
8π2

g2(2πv)

)2N

e
±i a

fa
y1y2
16π2

(
g(2πv)

2π

)b0−4(ΛIR
SU(N)
M

)b0/r−4

(ΛIR
SU(N))4

(B.2)

where we dropped O(1) factors and took into account that the physical matching scale
associated to particle masses is of the order M ∼ gv. As can be seen, already for an index
of embedding of r = 2 there is an enhancement for b0 < 8.15 For r ≫ 1 one achieves the
maximal enhancement and an axion potential that scales as Va ∼ M4, with no trace of
the IR contribution remaining.

C Instanton contributions to the axion potential in GUTs

Here we collect the expressions for the instanton contributions to the axion potential for
the GUT modifications discussed in section 6.1 and plotted in figure 6. In all of these
expressions we assume that a Yukawa coupling of the form eq. (6.18) for the adjoint fermions
exists, which can be beneficial to avoid mass suppressions. Note that here we only consider
contributions from instantons of sizes 4π/MGUT < ρ < 1/MVL. For SU(3) there still exists an
IR dominated contribution from 1/MVL < ρ < 1/MG, which will dominate if the contribution
from 4π/MGUT < ρ < 1/MVL is smaller. This can be seen in the right panel of figure 6. For
1/MGUT < ρ < 4π/MGUT it is favorable to close zero modes of the new vector like fermions
with MVL mass insertions instead of Yukawa couplings and ϕ loops.

15Note that for product gauge groups the matching relation is
(

ΛIR
G
M

)bIR
0

=
∏r

i=1

(
Λ(i)

G
M

)b(i)
0

which simplifies

to eq. (B.1) if all group factors are identical, which is what we assumed for simplicity.
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Scalar superpartners. The addition of scalar superpartners is not enough to make the
SU(3) instanton UV dominated. The contribution from MG < 1/ρ < MVL given in eq. (6.17)
is still the leading one from small instantons. Using the Yukawa couplings from eq. (6.18)
to close the zero modes of the adjoint fermion is subleading for O(1) Yukawa couplings due
to the IR dominance of the instanton size integral and the loop suppression.

For SU(2)L instantons the Yukawa couplings cannot prevent one TeV-scale mass insertion.
The dominant contribution is therefore still given by eq. (6.16) with the replacement bLV GSU(2) →
bSUSY

SU(2) and Λ(LV G)
SU(2) → ΛSUSY

SU(2) with bSUSY
SU(2) = −1. Thus there is an enhancement from the

larger gauge coupling at the GUT scale.

24 + real scalar. The addition of a full 24-plet changes the beta functions by ∆bi = −10/3
which is enough to make the contribution from SU(3) instantons UV dominated for ρ < 1/MVL
if we close the zero-modes with Yukawa couplings. This can be done for the zero-modes of
all new particles and a pair of g̃A with ϕ loops. This results in an expression of the form

Λ4
SI ≃ 2C3

(
8π2

g2(MGUT)

)6(∏
i

yi
4π

)
y3

24ỹ
5
24

(4π)8

(
ΛSU(3)
MGUT

)bSU(3)−4

Λ4
SU(3) , (C.1)

with bSU(3) = 5/3 and ΛSU(3) = MGUT exp
[
−2π/(αGUT b

SU(3))
]
, where αGUT depends on

MVL and is shown in the left panel of figure 6.
Contributions from SU(2)L instantons are UV dominated and analogously to the SU(3)

case above all new zero-modes and one pair of W̃ a zero-modes can be closed with ϕ loops.
The corresponding scale generated by instantons is given by

Λ4
SI ≃ 2C2

(
8π2

g2
w(MGUT)

)4 (
cqqqℓ
16π2

)3 g̃ug̃d
(4π)2

y24ỹ
5
24

(4π)6

(
ΛSU(2)
MGUT

)bSU(2)−4

Λ4
SU(2) , (C.2)

with bSU(2) = −13/6 and ΛSU(2) defined in the same way as for SU(3).

Vector like complex representations + real scalar ϕ. If we add n5+5̄ = n10+10 = 1
fermions to the theory the beta functions get modified by ∆bi = −8/3. Since we added eight
zero-modes both to SU(3) and SU(2)L we can no longer close all zero-modes with Yukawa
couplings and ϕ loops but need at least one mass insertion. It is favorable to use the mass
insertion for one of the vector like fermions and not for g̃A or W̃ a. For SU(3) this yields

Λ4
SI ≃ 2C3

(
8π2

g2(MGUT)

)6(∏
i

yi
4π

)
y3

24y
3
10

(4π)6

(
MVL
MGUT

)(ΛSU(3)
MGUT

)bSU(3)−4

Λ4
SU(3) , (C.3)

with bSU(3) = 7/3. For SU(2)L one finds

Λ4
SI ≃ 2C2

(
8π2

g2
w(MGUT)

)4 (
cqqqℓ
16π2

)3 g̃ug̃d
(4π)2

y24y
3
10

(4π)4

(
MVL
MGUT

)(ΛSU(2)
MGUT

)bSU(2)−4

Λ4
SU(2) , (C.4)

where bSU(2) = −3/2. In both cases we chose to close the zero-modes of 5 + 5̄ with a
mass insertion.
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24 + vector like complex representations + real scalar ϕ. Now we combine the
above scenarios and add n5+5̄ = n10+10 = n24 = 1 vector like fermions. This modifies the
beta functions by ∆bi = −18/3 and adds 18 zero-modes. We can again close all zero-modes
with Yukawa couplings, such that we obtain for SU(3)

Λ4
SI ≃ 2C3

(
8π2

g2(MGUT)

)6(∏
i

yi
4π

)
y3

24ỹ
5
24

(4π)8
y5y

3
10

(4π)4

(
ΛSU(3)
MGUT

)bSU(3)−4

Λ4
SU(3) , (C.5)

with bSU(3) = −1. The SU(2)L contribution is given by

Λ4
SI ≃ 2C2

(
8π2

g2
w(MGUT)

)4 (
cqqqℓ
16π2

)3 g̃ug̃d
(4π)2

y24ỹ
5
24

(4π)6
y5y

3
10

(4π)4

(
ΛSU(2)
MGUT

)bSU(2)−4

Λ4
SU(2) , (C.6)

where bSU(2) = −29/6.

Superpartners at 106 GeV. Including the scalar superpartners at a scale of 106 GeV does
not affect the form of the instanton contributions. It simply modifies the beta functions
by ∆bSU(2) = −13/6 and ∆bSU(3) = −2.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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