
HAL Id: hal-04324071
https://hal.science/hal-04324071

Submitted on 4 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an Independent Version of Tarski’s System of
Geometry

Pierre Boutry, Stéphane Kastenbaum, Clément Saintier

To cite this version:
Pierre Boutry, Stéphane Kastenbaum, Clément Saintier. Towards an Independent Version of Tarski’s
System of Geometry. 14th International Conference on Automated Deduction in Geometry, Sep 2023,
Belgrade, Serbia. pp.73-84, �10.4204/EPTCS.398.11�. �hal-04324071�

https://hal.science/hal-04324071
https://hal.archives-ouvertes.fr


Towards an Independent Version of Tarski's

System of Geometry

Pierre Boutry1, Stéphane Kastenbaum2, and Clément Saintier2

1 Centre Inria d'Université Côte d'Azur, Sophia Antipolis, France
pierre.boutry@inria.fr

2 No a�liation
{stephane.kastenbaum, clement.saintier}@gmail.com

Abstract. In 1926-1927, Tarski designed a set of axioms for Euclidean
geometry which reached its �nal form in a manuscript by Schwabhäuser,
Szmielew and Tarski in 1983. The di�erences amount to simpli�cations
obtained by Tarski and Gupta. Gupta presented an independent ver-
sion of Tarski's system of geometry, thus establishing that his version
could not be further simpli�ed without modifying the axioms. To ob-
tain the independence of one of his axioms, namely Pasch's axiom, he
proved the independence of one of its consequences: the previously elim-
inated symmetry of betweenness. However, an independence model for
the non-degenerate part of Pasch's axiom was provided by Szczerba for
another version of Tarski's system of geometry in which the symmetry
of betweenness holds. This independence proof cannot be directly used
for Gupta's version as the statements of the parallel postulate di�er.
In this paper, we present our progress towards obtaining an independent
version of a variant of Gupta's system. Compared to Gupta's version,
we split Pasch's axiom into this previously eliminated axiom and its
non-degenerate part and change the statement of the parallel postulate.
We veri�ed the independence properties by mechanizing counter-models
using the Coq proof-assistant.

Keywords: Independence · Coq · Formalization of geometry.

1 Introduction

The independence1 of axioms for geometry has often been an important topic in
the �eld of geometry. For centuries, many mathematicians believed that Euclid's
�fth postulate was rather a theorem which could be derived from the �rst four of
Euclid's postulates. History is rich with incorrect proofs of Euclid's �fth postu-
late. In 1763, Klügel provided, in his dissertation, a survey of about 30 attempts
to �prove Euclid's parallel postulate� [13]. The question was �nally settled in 1832
and 1840, when Bolyai [5] and Lobachevsky [14] exhibited models of hyperbolic
geometry, thus establishing that this postulate was independent. Later, Hilbert

1 We recall that an axiom is said to be independent from a set of axiom if it is not
derivable from the axioms in this set.
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dedicated the second section of his famous Grundlagen der Geometrie [12] to
independence properties. Then, when working out the �nal version [22] of the
axioms for Metamathematische Methoden in der Geometrie [19], commonly re-
ferred to as SST, independence results proved very helpful.

So it is a surprise that, now that we have access to tools like proof assistants
which we believe to be perfectly suited for the task, the only independence to
be mechanized was the one for Euclid's �fth postulate [18]. To the best of our
knowledge, the most recent work on the topic is the formalization of the Poincaré
disk model in Isabelle/HOL [20].

In this paper, we study independence properties linked to SST [19]. SST has
the advantage of being expressed in the �rst-order language rather than natural
language which leaves room for interpretation leading to possible problems [8].2

There are several ways to prove independence results [4]. Here we focus on in-
dependence through counter-model, i.e. constructing a model where the axiom
to be proven independent will not hold while all the others will.

In 1965, Gupta presented an independent version of Tarski's system of ge-
ometry [11]. To obtain the independence of one of his axioms, namely Pasch's
axiom, he proved the independence of one of its consequences: the previously
eliminated symmetry of betweenness. However, an independence model for the
non-degenerate part of Pasch's axiom was provided by Szczerba for another
version of Tarski's system of geometry in which the symmetry of betweenness
holds [21]. This independence proof cannot be directly used for Gupta's version
as the statements of the parallel postulate di�er. This can be remedied by care-
fully choosing the statement of the parallel postulate amongst the ones known
to be equivalent [7]. We aim to verify that splitting Pasch's axiom into its non-
degenerate part and the symmetry of betweenness in addition to changing the
statement of the parallel postulate allows to obtain a system that is still inde-
pendent. So we go in the opposite direction of what Makarios did by removing
the need of the re�exivity properties for congruence thanks to a modi�cation to
the �ve-segment property [17]. Indeed, our view is that an axiom should capture
a limited and well-de�ned property, instead of trying to minimize the needed
number of axioms at any cost.

We remark that a small change in the statement of an axiom can change
whether or not it holds in a speci�c model. This makes a computer very well
suited to the veri�cation that an axiom holds in a model. So we chose to
mechanize the various counter-models needed for this task in the Coq proof-
assistant [23].

The rest of the paper is structured as follows. First, in Sec. 2, we present the
system we will be working on throughout the rest of this paper. Then, in Sec. 3,
we show how to build a model of Tarski's axiom. Finally, before concluding on
the achieved results, we present an example of independence proof in Sec. 4.

2 A possible interpretation of Hilbert's axiom could lead to a degenerate model for
�rst two groups of Hilbert's axioms.
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2 A Variant of Tarski's System of Geometry

In this section, we start by recalling the axioms of Tarski's system of geometry.
Then, we present the modi�cation Gupta made to it to obtain a fully independent
system [11]. Finally, we describe how to modify his system to combine his results
and the ones from Szczerba [21].

2.1 Tarski's System of Geometry

Tarski's axiom system is based on a single primitive type depicting points and
two predicates, namely congruence and betweenness. AB ≡ CD states that the
segments AB and CD have the same length. A B C means that A, B and C
are collinear and B is between A and C (and B may be equal to A or C). For
an explanation of the axioms and their history see [22]. Table 1 lists the axioms
for planar Euclidean geometry.

A1 Symmetry AB ≡BA
A2 Pseudo-Transitivity AB ≡ CD ∧AB ≡ EF ⇒ CD ≡ EF
A3 Cong Identity AB ≡ CC ⇒ A = B
A4 Segment construction ∃E,A B E ∧BE ≡ CD
A5 Five-segment AB ≡A′B′ ∧BC ≡B′C′∧

AD ≡A′D′ ∧BD ≡B′D′∧
A B C ∧A′ B′ C′ ∧A ̸= B ⇒ CD ≡ C′D′

A6 Between Identity A B A ⇒ A = B
A7 Inner Pasch A P C ∧B Q C ⇒ ∃X,P X B ∧Q X A
A8 Lower Dimension ∃ABC,¬A B C ∧ ¬B C A ∧ ¬C A B
A9 Upper Dimension AP ≡AQ ∧BP ≡BQ ∧ CP ≡ CQ ∧ P ̸= Q ⇒

A B C ∨B C A ∨ C A B
A10 Euclid A D T ∧B D C ∧A ̸= D ⇒

∃XY,A B X ∧A C Y ∧X T Y
A11 Continuity (∃A, (∀XY,Ξ(X) ∧ Υ (Y ) ⇒ A X Y )) ⇒

∃B, (∀XY,Ξ(X) ∧ Υ (Y ) ⇒ X B Y )
Table 1. Tarski's axiom system for planar Euclidean geometry.

2.2 Gupta's Contribution

The problem of the independence of Tarski's axiom system, as de�ned in Table 1,
remains open. Let us introduce the modi�cations Gupta made to it to obtain
an independent system. He reintroduced the inner transitivity of betweenness
A153 in Table 2. Having added this axiom, the identity axiom for betweenness
A6 became a theorem and could then be removed from the system. Finally A2,
A9 and A11 are replaced by A2', A9' and A11'. We omit the details of how
to mechanize in Coq that this system, consisting of A1, A2', A3-A5, A7, A8,
A9', A10, A11' and A15,4 and Tarski's system are equivalent. Gupta proves that

3 We number them as in [22].
4 Actually the statement for A7 di�ers in [22] but the change is not important here.
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this system is independent. To prove that A7 is independent in this system, he
shows that A14, a consequence of A7 in this system, does not hold. However,
Szczerba [21] found that A7 does not hold when A14 and all the other axioms,
with the exception of A10, in Gupta's system do. So this would suggest that
A7 can be split into A14 and a variant of A7 while still having an independent
system.

A0 Point equality decidability X = Y ∨X ̸= Y
A2' Pseudo-Transitivity AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CD
A7' Inner Pasch A P C ∧B Q C∧

A ̸= P ∧ P ̸= C ∧B ̸= Q ∧Q ̸= C∧
¬ (A B C ∨B C A ∨ C A B) ⇒
∃X,P X B ∧Q X A

A9' Upper Dimension AP ≡AQ ∧BP ≡BQ ∧ CP ≡ CQ∧
P ̸= Q ∧A ̸= B ∧A ̸= C ∧B ̸= C ⇒
A B C ∨B C A ∨ C A B

A10' Proclus AB ∥ CD ∧ Col AB P ∧ ¬Col ABQ ⇒
∃Y,Col C DY ∧ Col P QY

A11' Continuity (∃A, (∀XY,Ξ(X) ∧ Υ (Y ) ⇒ A X Y )) ⇒
∃B, (∀XY,Ξ(X) ∧ Υ (Y ) ⇒

X = B ∨B = Y ∨X B Y )
A14 Between Symmetry A B C ⇒ C B A
A15 Between Inner Transitivity A B D ∧B C D ⇒ A B C

Table 2. Added axioms to Tarski's system of geometry.

2.3 An Independent System for Planar Geometry

The system that we want to prove independent is very close to the one Gupta
studied in his thesis [11]. We split Pasch's axiom A7 into its non-degenerate part
A7' and A14, change the version of the parallel postulate A10 and add one axiom
(for reasons explained later). A7' excludes from A7 the degenerate cases where
the triangle ABC is �at or when P or Q are respectively not strictly between A
and C or B and C. We cannot use A10 as it does not hold in the counter-model
found by Szczerba [21]. We chose Proclus postulate,5 denoted as A10' in Table 2,
veri�ed to be equivalent to it when assuming A0-A9, using Coq [7], as it holds in
all the counter-models provided by Gupta as well as in the one found by Szczerba,
thanks to Theorem 1 in [21]. Finally, the formal development found in SST [19]
is essentially classical due to the many case distinctions found in the proofs of
its lemmas. However, the decidability of point equality is su�cient to obtain
the arithmetization of geometry in an intuitionistic setting [6]. So we add the
decidability of point equality A0 so that we can work in an intuitionistic setting.
The reader not familiar with the di�erence between classical and intuitionistic

5 Col ABC and AB ∥ CD denotes that A, B and C are collinear and that lines AB
and CD are parallel according to the de�nitions given in SST [19].
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logic may refer to [1]. This system, consisting of A0, A1, A2', A3-A5, A7', A8,
A9', A10', A11', A14 and A15, and Tarski's system are equivalent. Again, we do
not detail how to mechanize this fact in Coq.

3 A model of Tarski's system of geometry

In this section, we present our proof that Cartesian planes over a Pythagorean
ordered �eld form a model of the variant of Tarski's system of geometry that we
have introduced in the previous section. First, we present the structure that we
used to de�ne this model. Then we de�ne the model that we used, that is, the
way we instantiated the signature of this system. Finally, we detail the proofs of
some of the more interesting axioms.

3.1 The Real Field Structure

The structure that was used to de�ne this model was built by Cohen [9]. The
real �eld structure results of the addition of operators to a discrete6 �eld: two
boolean comparison functions (for strict and non-strict order) and a norm op-
erator. Elements of this real �eld structure verify the axioms listed in Table 3.
Finally, the elements of a real �eld structure are all comparable to zero. We
should remark that this �eld is not necessarily Pythagorean. In fact, there is no
de�ned structure in the Mathematical Components library [15] for Pythagorean
�elds. This can however be added much more easily than before thanks to the
recent modi�cation of the Mathematical Components library to make use of the
Hierarchy Builder [10]. However, the Pythagorean property is only required for
the proof of the segment construction axiom A4. So we chose to prove that this
axiom holds in our model by admitting an extra axiom which was de�ned in
this library: the real closed �eld axiom. It states that intermediate value prop-
erty holds for polynomial with coe�cients in the �eld. While it is much stronger
than Pythagoras' axiom, we only used it to be able to de�ne the square root
of a number which is a sum of squares and would therefore have a square root
in a Pythagorean �eld. Finally, we did not yet prove that A11 holds in our
model since it would require a much more involved e�ort. Indeed, this is similar
to verifying that Tarski's system of geometry admits a quanti�er elimination
procedure.

Subadditivity of the norm operator |x + y| ≤ |x| + |y|
Compatibility of the addition with the strict comparison 0 < x ∧ 0 < y ⇒ 0 < x + y

De�niteness of the norm operator |x| = 0 ⇒ x = 0
Comparability of positive numbers 0 ≤ x ∧ 0 ≤ y ⇒ (x ≤ y)||(y ≤ x)

The norm operator is a morphism for the multiplication |x ∗ y| = |x| ∗ |y|
Large comparison in terms of the norm (x ≤ y) = (|y − x| == y − x)7

Strict comparison in terms of the large comparison (x < y) = (y ! = x)&&(x ≤ y)

Table 3. Axioms of the real �eld structure.

6 Discrete �elds are �elds with a decidable equality.
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3.2 The Model

Let us now de�ne our model. Being based on a single primitive type and two
predicates, the signature of Tarski's system of geometry is rather simple. How-
ever, this system has the advantage of having a n-dimensional variant. To obtain
this variant, one only needs to change the dimension axioms. So far, we have
restricted ourselves to the planar version of this system. With a view to extend
the GeoCoq library to its n-dimensional variant, we wanted to de�ne a model in
which we could prove all but the dimension axioms in an arbitrary dimension to
be able to construct a model of the n-dimensional variant by only proving the
new dimension axioms. Hence we chose to de�ne Tpoint as a vector of dimen-
sion n + 1 with coe�cient in the real �eld structure F (we used the real �eld

structure for all the development with the exception of the proof of the segment
construction axiom) for a �xed integer n, that is 'rV[R]_(n.+1). We adopted
Gupta's de�nition [11] for the congruence cong, namely that AB ≡ CD if the
squares of the Euclidean norms of B −A and D −C are equal. Actually Gupta
also proved that any model of the n-dimensional variant of Tarski's system of
geometry is isomorphic to his model. He de�ned that A B C holds if and only
if there exists a k ∈ F such that 0 ≤ k ≤ 1 and B−A = k(C−A). In fact, if such
a k exists, it can be computed. By letting A = (ai)1≤i≤n+1, B = (bi)1≤i≤n+1

and C = (ci)1≤i≤n+1, if A ̸= C then there exists a i ∈ N such that 1 ≤ i ≤ n+1

and ai ̸= ci and in this case we set k to bi−ai

ci−ai
and if A = C we set k to zero.

Therefore we de�ned a function ratio that computes the possible value for k,
thus allowing us to de�ne the betweenness by the boolean equality test. This
was actually important as it permitted to directly manipulate the de�nition for
betweenness by rewriting since we de�ned it as a boolean test. Finally, as it was
often necessary to distinguish whether or not A B C holds due to a degener-
acy, we split the de�nition bet of the betweenness into two predicates: the �rst
one, betS, capturing the general case of k being strictly between 0 and 1 and the
second one, betE, capturing the three possible degenerate cases, namely either
A = B, B = C or A = B and B = C.

Formally, we consider the following model:

Variable R : realFieldType.

Variable n : nat.

Implicit Types (a b c d : 'rV[R]_(n.+1)).

Definition cong a b c d := (b - a) *m (b - a)^T == (d - c) *m (d - c)^T.

Definition betE a b c := [ || [ && a == b & b == c ], a == b | b == c ].

Definition ratio v1 v2 :=

if [pick k : 'I_(n.+1) | v2 0 k != 0] is Some k

then v1 0 k / v2 0 k else 0.

7 == denotes the boolean equality test for the elements of the �eld.
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Definition betR a b c := ratio (b - a) (c - a).

Definition betS a b c (r := betR a b c) :=

[ && b - a == r *: (c - a), 0 < r & r < 1].

Definition bet a b c := betE a b c || betS a b c.

3.3 Proof that the Axioms hold in the Model

Now that we have de�ned the model, we focus on the proof that the axioms of
the system from Sec. 2.3 hold in this model. However, we omit the details of the
proofs for axioms A1, A2', A3 and A14 since they are rather straightforward.
For the same reason, we do not cover the decidability of point equality A0.

Let us start by focusing on axioms A7' and A15 as the proofs that they hold
in our model are quite similar. In the case of axiom A15 we know that A B D
and B C D so let k1 ∈ F be such that 0 < k1 < 1 and B−A = k1(D−A) (the
degenerate case of this axiom is trivial so we only consider the general case) and
k2 ∈ F be such that 0 < k2 < 1 and C −B = k2(D −B). In order to prove that
A B C we need to �nd a k ∈ F such that 0 < k < 1 and B − A = k(C − A).
By calculation we �nd that k = k1

k1+k2−k1k2
and we can verify that 0 < k < 1. In

a similar way, for axiom A7', we know that A P C and B Q C so let k1 ∈ F
be such that 0 < k1 < 1 and P − A = k1(C − A) (the hypotheses imply that
0 < k1 < 1 because A ̸= P and P ̸= C) and k2 ∈ F be such that 0 < k2 < 1
and Q − B = k2(C − B). In order to prove that there exists a point X such
that P X B and Q X A we need to �nd a k3 ∈ F and a k4 ∈ F such that
0 < k3 < 1, 0 < k4 < 1 and k3(B−P )+P = k4(A−Q)+Q. By calculation we �nd

that k3 = k1(1−k2)
k1+k2−k1k2

and k4 = k2(1−k1)
k1+k2−k1k2

and we can verify that 0 < k3 < 1
and 0 < k4 < 1. In both of these proof, the ratios are almost identical to the
point that it su�ces to prove the following lemma:

Lemma ratio_bet a b c k1 k2 k3 :

0 < k1 -> 0 < k2 -> k1 < 1 -> 0 < k3 -> k3 < k1+k2-k1*k2 ->

b - a == ((k1+k2-k1*k2)/k3)^-1 *: (c - a) -> bet a b c.

It allows to prove quite easily both of these axioms. For axiom A4, we pro-
ceeded in a analogous way: it su�ces to set the point E that can be constructed

using this axiom to ∥D−C∥
∥B−A∥ (B − A) + A and to verify this point satis�es the

desired properties by calculation.

We now turn to axiom A5. We followed Makarios' approach for the proof
that this axiom holds in our model [16]. In his proof he used the cosine rule: in
a triangle whose vertices are the vectors A, B and C we have

∥C −B∥2 = ∥C −A∥2 + ∥B −A∥2 − 2(B −A) · (C −A).
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As noted by Makarios, using the cosine rule allows to avoid de�ning angles and
properties about them. Applying the cosine rule for the triangles BCD and
B′C ′D′ allows to prove that ∥D − C∥2 = ∥D′ − C ′∥2 by showing that

(C −B) · (D −B) = (C ′ −B′) · (D′ −B′)

which can be justi�ed, by applying the cosine rule again, this time in the triangles
ABD and A′B′D′, if

∥D −A∥ − ∥D −B∥ − ∥A−B∥ = ∥D′ −A′∥ − ∥D′ −B′∥ − ∥A′ −B′∥

which we know from the hypotheses and if the ratios corresponding to the be-
tweenness A B C and A′ B′ C ′ are equal which can be obtained by calcula-
tion.

Next, let us consider axiom A10.8 From the hypotheses we have two ratios
k1 ∈ F and k2 ∈ F such that 0 < k1 < 1, 0 < k2 < 1, D − A = k1(T − A) and
D−B = k2(C−B). Using these ratios, it su�ces to de�ne X such that B−A =
k1(X−A) and Y such that C−A = k1(Y −A). So we know by construction that
A B X and A C Y and we easily get that T −X = k2(Y −X) by calculation,
thus proving that X T Y . Since A10 and A10' are equivalent when A0, A1,
A2', A3-A5, A7', A8, A9', A11', A14 and A15 hold, this allows to prove that
A10' holds in our model.

Finally the remaining two axioms are treated in a slightly di�erent setting
since they are the dimension axioms. Formally we �x the value of n to 1. In
order to simplify the many rewriting steps needed for these proofs we started by
establishing the following two lemmas:

Definition sqr_L2_norm_2D a b :=

(b 0 0 - a 0 0) ^+ 2 + (b 0 1 - a 0 1) ^+ 2.

Lemma congP a b c d :

reflect (sqr_L2_norm_2D a b = sqr_L2_norm_2D c d) (cong a b c d).

Lemma betSP' a b c (r := betR a b c) :

reflect ([ /\ b 0 0 - a 0 0 = r * (c 0 0 - a 0 0),

b 0 1 - a 0 1 = r * (c 0 1 - a 0 1), 0 < r & r < 1])

(betS a b c).

The reader familiar with SSReflect will have recognized the reflect pred-
icate, described in [9] for example. In practice, these lemmas allowed to spare
many steps that would have been repeated in almost every proof concerning
the dimension axioms. It was much more straightforward to prove that axiom
A8 holds in our model than for axiom A9'. In fact, it is enough to �nd three
non-collinear points. We simply took the points (0, 0), (0, 1) and (1, 0):

8 Similarly to A7, when we were proving Euclid's axiom, we realized that the same
kind of distinctions was also needed. The degenerate cases are implied by the other
betweenness axioms so it su�ces to show that A10 holds when the angle ∠BAC is
non-�at and when D is di�erent from T .
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Definition row2 {R : ringType} (a b : R) : 'rV[R]_2 :=

\row_p [eta \0 with 0 |-> a, 1 |-> b] p.

Definition a : 'rV[R]_(2) := row2 0 0.

Definition b : 'rV[R]_(2) := row2 0 1.

Definition c : 'rV[R]_(2) := row2 1 0.

It was then an easy matter to verify that axiom A8 holds in our model. For
axiom A9, the idea of the proof that we formalized was to �rst show that, by
letting M be the midpoint of P and Q, the equation (xP − xM )(xM − xX) +
(yP − yM )(yM − yX) = 0, capturing the property that the points P , M , and X
form a right angle with the right angle at vertex M , was veri�ed when X would
be equal to A, B or C:

Lemma cong_perp (a p q : 'rV[R]_(2)) (m := (1 / (1 + 1)) *: (p + q)) :

cong a p a q ->

(p 0 0 - m 0 0) * (m 0 0 - a 0 0) +

(p 0 1 - m 0 1) * (m 0 1 - a 0 1) = 0.

Next, we demonstrated that for three points A, B and C verifying (xA −
xB)(yB−yC)−(yA−yB)(xB−xC) = 0 are collinear in the sense that A B C∨
B C A ∨ C A B:

Lemma col_2D a b c :

(a 0 0 - b 0 0) * (b 0 1 - c 0 1) ==

(a 0 1 - b 0 1) * (b 0 0 - c 0 0) ->

(bet a b c \/ bet b c a \/ bet c a b).

Using the equations implied by cong_perp we could derive that

(xP − xM )(yM − yP ) ((xA − xB)(yB − yC)− (yA − yB)(xB − xC)) = 0.

We were then left with three cases: either the abscissas of P and M are equal in
which case the ordinate of A, B and C were equal thus su�cing to complete the
proof, or the ordinates of P and M are equal in which case the abscissas of A,
B and C were equal thus completing the proof, or (xA − xB)(yB − yC)− (yA −
yB)(xB − xC) = 0 corresponding to the lemma that we had proved and again
allowing to conclude.

Putting everything together, we could prove that Cartesian planes over a
Pythagorean ordered �eld form a model of the variant of Tarski's system of
geometry, thus proving the satis�ability of the theory.9

Global Instance Rcf_to_T2D : Tarski_2D Rcf_to_T_PED.

Global Instance Rcf_to_T_euclidean : Tarski_euclidean Rcf_to_T_PED.

9 Tarski_euclidean is the type class that captures the theory consisting of axioms
A0-A10.
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4 An Example of Independence Proof

To illustrate how we obtain formal proofs of independence we present an exam-
ple. We start by de�ning the counter-model we will use to prove the independence
of axiom A10'. We then provide the sketch of the formal proof.

4.1 Klein's Model

To prove Euclid's Parallel Postulate independent from the other axiom we work
in Klein's model as de�ned in SST [19]:

Variable R : realFieldType.

Variable n : nat.

Definition Vector := 'rV[R]_(n.+1).

Definition Point : Type := {p : Vector | (p *m p^T) 0 0 < 1}.

Notation "#" := proj1_sig.

Implicit Types (a b c d : Point).

Implicit Types (v w x y : Vector).

Definition bet' a b c := bet (#a) (#b) (#c).

Definition omd_v v w := (1 - (v *m (w)^T) 0 0).

Definition cong_v v w x y :=

(omd_v v w)^+2/(omd_v v v * omd_v w w) ==

(omd_v x y)^+2/(omd_v x x * omd_v y y).

Definition cong' a b c d := cong_v (#a) (#b) (#c) (#d).

Here, Point is the type of Vector, vectors of dimension n+1 with coe�cient
in the real �eld structure, lying inside the unit disk and # the projection allowing
to recover the coordinate part of this dependent type. In Klein's model, b is said
to be between a and c i� their coordinate parts can be said to be bet in the
model from Sec. 3 and line-segments ab and cd are said to be congruent i�

(1−#a ·#b)2

(1−#a ·#a) (1−#b ·#b)
=

(1−#c ·#d)2

(1−#c ·#c) (1−#d ·#d)

where · denotes the dot product of two vectors.

4.2 Independence of Euclid's Parallel Postulate via Klein's Model

Here we only detail the proof that A10' does not hold in this model. Mechanizing
the following proof sketch allows to derive.

Lemma euclid : ~ euclidP (@Point R 1) (@bet' R 1).
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To make sure that we did not introduce any change in the axioms between
the various models we relied on predicates such as euclidP, which depend on
possibly the type for points and the predicate(s) for betweenness and/or con-
gruence.

Theorem 1. Axiom A10' does not hold in Klein's model.

Proof. Since Klein's model forms a model of neutral geometry,10 it su�ces to
prove that any version of the parallel postulate, proven equivalent to A10' in Coq
when assuming A0-A9, does not hold. We choose to work with A10. Picking a,
b, c, d and t to be of coordinates (0, 0), (0, 1

2 ), (
1
2 , 0), (

1
4 ,

1
4 ) and ( 12 ,

1
2 ), some

computations allow to verify that #a #d #t, #b #d #c b ̸= d, d ̸= c and
¬Col #a#b#c. So, to prove that this version does not hold, it is enough to
show that for any x and y such that x lies inside the unit disk, #a #b #x,
#a #c #y and #x #t #y, it holds that y is not a Point, meaning that it lies
outside the unit disk. Let us �rst eliminate the case where b = x as it would lead
to a contradiction. Here, we use the algebraic characterization of collinearity11

to obtain that, if b = x, the ordinate of x would need to be equal to both 0 and
1
2 which is impossible. Now let us pose b′ to be the vector x+a− b. It is an easy
matter to check that #a #b′ #x so let us pose k1 to be the ratio associated
to this betweenness. We can verify that k1 ≤ 1

2 since x is supposed to belong to
the unit disk. We can then take d′ at ratio k1 from a to t. Applying what was
proven to show that A10' holds in Cartesian planes over a Pythagorean ordered
�eld, we can show that y′ at ratio 1

k1
from a to c is such that #a #c #y′ and

#x #t #y′. If we can prove that y = y′ we will be done as y′ lies outside of the
unit disk because k1 ≤ 1

2 so 2 ≤ 1
k1
. Finally, to prove that y = y′ we can reason

by uniqueness of the intersection of lines which is valid in neutral geometry.

5 Conclusion

We de�ned ten out of the eleven counter-models present in Gupta's thesis [11],
thus obtaining the Coq formal proof of the independence of ten out of the thirteen
axioms of the system presented in Sec. 2.3. This seems to indicate that Pasch's
axiom could indeed be split into two meaningfully di�erent parts as done in this
paper while still having an independent system. However, we will only be sure of
this once we will have formalized the missing three counter-models. These can
be found in Gupta's thesis [11], Szczerba's paper [21], and Beeson's section The

recursive model in [2].
Five of the formalized models are �nite and the other �ve are modi�cations

of the model presented in Sec. 3. We highlight that, for the latter �ve, A11' is not
veri�ed for the same reason as for the model from Sec. 3.. All these models are
available in the GeoCoq library12 and represent about 4k lines of formal proof.

10 Neutral geometry is de�ned by the set of axioms of Euclidean geometry from which
the parallel postulate has been removed.

11 Here we use the converse of col_2D.
12 http://geocoq.github.io/GeoCoq/
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We are currently extending this work by proving the independence of a
more constructive version13 of the axioms which would also allow to capture
n-dimensional geometry. For this extension we could not rely on A9(n) from [22].
Indeed, we found that it can only be assumed as an upper n-dimensional axiom
when n = 2 or 3. A9(n) is stated as follows.

∧
1≤i≤j≤n

Pi ̸= Pj ∧
n∧

i=2

AP1 ≡APi ∧
n∧

i=2

BP1 ≡BPi ∧
n∧

i=2

CP1 ≡CPi ⇒ Col ABC

By taking Pi = (cos 2iπ
n , sin 2iπ

n , 0, ..., 0) for 1 ≤ i ≤ n then (0, 0, x3, x4, ..., xn)
satis�es the premises for any x3, x4, · · · , xn in the standard n-dimensional model
while triplets of points of this form are not necessarily collinear. The various mod-
i�cations did not allow to reuse some of the counter-models already mechanized,
so new ones are necessary.

We are convinced that using a proof-assistant is crucial when proving the
independence of a system, where small changes in a statement are critical. Actu-
ally, there was a typo in Gupta's counter-model for A2 and we just exhibited a
problem with axiom A9(n) from [22]. The GeoCoq library also proved very useful
as it allowed us to combine the algebraic and geometric14 reasoning.

Acknowledgments: We would like to thank Marius Hinge for his contribu-
tion to the early stage of this work.
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