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, Tarski designed a set of axioms for Euclidean geometry which reached its nal form in a manuscript by Schwabhäuser, Szmielew and Tarski in 1983. The dierences amount to simplications obtained by Tarski and Gupta. Gupta presented an independent version of Tarski's system of geometry, thus establishing that his version could not be further simplied without modifying the axioms. To obtain the independence of one of his axioms, namely Pasch's axiom, he proved the independence of one of its consequences: the previously eliminated symmetry of betweenness. However, an independence model for the non-degenerate part of Pasch's axiom was provided by Szczerba for another version of Tarski's system of geometry in which the symmetry of betweenness holds. This independence proof cannot be directly used for Gupta's version as the statements of the parallel postulate dier.

In this paper, we present our progress towards obtaining an independent version of a variant of Gupta's system. Compared to Gupta's version, we split Pasch's axiom into this previously eliminated axiom and its non-degenerate part and change the statement of the parallel postulate.

We veried the independence properties by mechanizing counter-models using the Coq proof-assistant.

Introduction

The independence 1 of axioms for geometry has often been an important topic in the eld of geometry. For centuries, many mathematicians believed that Euclid's fth postulate was rather a theorem which could be derived from the rst four of Euclid's postulates. History is rich with incorrect proofs of Euclid's fth postulate. In 1763, Klügel provided, in his dissertation, a survey of about 30 attempts to prove Euclid's parallel postulate [13]. The question was nally settled in 1832 and 1840, when Bolyai [5] and Lobachevsky [START_REF] Lobatschewsky | Geometrische Untersuchungen zur Theorie der Parallellinien[END_REF] exhibited models of hyperbolic geometry, thus establishing that this postulate was independent. Later, Hilbert 1 We recall that an axiom is said to be independent from a set of axiom if it is not derivable from the axioms in this set.

dedicated the second section of his famous Grundlagen der Geometrie [START_REF] Hilbert | Les fondements de la géométrie[END_REF] to independence properties. Then, when working out the nal version [START_REF] Tarski | Tarski's System of Geometry[END_REF] of the axioms for Metamathematische Methoden in der Geometrie [START_REF] Schwabhäuser | Metamathematische Methoden in der Geometrie[END_REF], commonly referred to as SST, independence results proved very helpful.

So it is a surprise that, now that we have access to tools like proof assistants which we believe to be perfectly suited for the task, the only independence to be mechanized was the one for Euclid's fth postulate [START_REF] Narboux | Computer-assisted Theorem Proving in Synthetic Geometry[END_REF]. To the best of our knowledge, the most recent work on the topic is the formalization of the Poincaré disk model in Isabelle/HOL [START_REF] Simi¢ | Formalization of the Poincaré Disc Model of Hyperbolic Geometry[END_REF].

In this paper, we study independence properties linked to SST [START_REF] Schwabhäuser | Metamathematische Methoden in der Geometrie[END_REF]. SST has the advantage of being expressed in the rst-order language rather than natural language which leaves room for interpretation leading to possible problems [START_REF] Braun | From Hilbert to Tarski[END_REF]. 2

There are several ways to prove independence results [START_REF] Beeson | Herbrand's theorem and non-Euclidean geometry[END_REF]. Here we focus on independence through counter-model, i.e. constructing a model where the axiom to be proven independent will not hold while all the others will.

In 1965, Gupta presented an independent version of Tarski's system of geometry [START_REF] Gupta | Contributions to the Axiomatic Foundations of Geometry[END_REF]. To obtain the independence of one of his axioms, namely Pasch's axiom, he proved the independence of one of its consequences: the previously eliminated symmetry of betweenness. However, an independence model for the non-degenerate part of Pasch's axiom was provided by Szczerba for another version of Tarski's system of geometry in which the symmetry of betweenness holds [START_REF] Szczerba | Independence of Pasch's axiom[END_REF]. This independence proof cannot be directly used for Gupta's version as the statements of the parallel postulate dier. This can be remedied by carefully choosing the statement of the parallel postulate amongst the ones known to be equivalent [START_REF] Boutry | Parallel Postulates and Continuity Axioms: A Mechanized Study in Intuitionistic Logic Using Coq[END_REF]. We aim to verify that splitting Pasch's axiom into its nondegenerate part and the symmetry of betweenness in addition to changing the statement of the parallel postulate allows to obtain a system that is still independent. So we go in the opposite direction of what Makarios did by removing the need of the reexivity properties for congruence thanks to a modication to the ve-segment property [START_REF] Makarios | A further simplication of Tarski's axioms of geometry[END_REF]. Indeed, our view is that an axiom should capture a limited and well-dened property, instead of trying to minimize the needed number of axioms at any cost.

We remark that a small change in the statement of an axiom can change whether or not it holds in a specic model. This makes a computer very well suited to the verication that an axiom holds in a model. So we chose to mechanize the various counter-models needed for this task in the Coq proofassistant [START_REF] Team | The Coq Proof Assistant[END_REF].

The rest of the paper is structured as follows. First, in Sec. 2, we present the system we will be working on throughout the rest of this paper. Then, in Sec. 3, we show how to build a model of Tarski's axiom. Finally, before concluding on the achieved results, we present an example of independence proof in Sec. 4.

2 A possible interpretation of Hilbert's axiom could lead to a degenerate model for rst two groups of Hilbert's axioms.

A Variant of Tarski's System of Geometry

In this section, we start by recalling the axioms of Tarski's system of geometry.

Then, we present the modication Gupta made to it to obtain a fully independent system [START_REF] Gupta | Contributions to the Axiomatic Foundations of Geometry[END_REF]. Finally, we describe how to modify his system to combine his results and the ones from Szczerba [START_REF] Szczerba | Independence of Pasch's axiom[END_REF].

Tarski's System of Geometry

Tarski's axiom system is based on a single primitive type depicting points and two predicates, namely congruence and betweenness. AB ≡ CD states that the segments AB and CD have the same length. A B C means that A, B and C are collinear and B is between A and C (and B may be equal to A or C). For an explanation of the axioms and their history see [START_REF] Tarski | Tarski's System of Geometry[END_REF]. Table 1 lists the axioms for planar Euclidean geometry.

A1

Symmetry AB ≡ BA A2 Pseudo-Transitivity AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF A3 Cong Identity AB ≡ CC ⇒ A = B A4 Segment construction ∃E, A B E ∧ BE ≡ CD A5 Five-segment AB ≡ A ′ B ′ ∧ BC ≡ B ′ C ′ ∧ AD ≡ A ′ D ′ ∧ BD ≡ B ′ D ′ ∧ A B C ∧ A ′ B ′ C ′ ∧ A ̸ = B ⇒ CD ≡ C ′ D ′ A6 Between Identity A B A ⇒ A = B A7 Inner Pasch A P C ∧ B Q C ⇒ ∃X, P X B ∧ Q X A A8 Lower Dimension ∃ABC, ¬A B C ∧ ¬B C A ∧ ¬C A B A9 Upper Dimension AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P ̸ = Q ⇒ A B C ∨ B C A ∨ C A B A10 Euclid A D T ∧ B D C ∧ A ̸ = D ⇒ ∃XY, A B X ∧ A C Y ∧ X T Y A11 Continuity (∃A, (∀XY, Ξ(X) ∧ Υ (Y ) ⇒ A X Y )) ⇒ ∃B, (∀XY, Ξ(X) ∧ Υ (Y ) ⇒ X B Y ) Table 1.
Tarski's axiom system for planar Euclidean geometry.

Gupta's Contribution

The problem of the independence of Tarski's axiom system, as dened in Table 1, remains open. Let us introduce the modications Gupta made to it to obtain an independent system. He reintroduced the inner transitivity of betweenness A15 3 in Table 2. Having added this axiom, the identity axiom for betweenness A6 became a theorem and could then be removed from the system. Finally A2, A9 and A11 are replaced by A2', A9' and A11'. We omit the details of how to mechanize in Coq that this system, consisting of A1, A2', A3-A5, A7, A8, A9', A10, A11' and A15, 4 and Tarski's system are equivalent. Gupta proves that this system is independent. To prove that A7 is independent in this system, he

shows that A14, a consequence of A7 in this system, does not hold. However, Szczerba [START_REF] Szczerba | Independence of Pasch's axiom[END_REF] found that A7 does not hold when A14 and all the other axioms, with the exception of A10, in Gupta's system do. So this would suggest that A7 can be split into A14 and a variant of A7 while still having an independent system.

A0 Point equality decidability

X = Y ∨ X ̸ = Y A2' Pseudo-Transitivity AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CD A7' Inner Pasch A P C ∧ B Q C∧ A ̸ = P ∧ P ̸ = C ∧ B ̸ = Q ∧ Q ̸ = C∧ ¬ (A B C ∨ B C A ∨ C A B) ⇒ ∃X, P X B ∧ Q X A A9' Upper Dimension AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ∧ P ̸ = Q ∧ A ̸ = B ∧ A ̸ = C ∧ B ̸ = C ⇒ A B C ∨ B C A ∨ C A B A10' Proclus AB ∥ CD ∧ Col A B P ∧ ¬ Col A B Q ⇒ ∃Y, Col C D Y ∧ Col P Q Y A11' Continuity (∃A, (∀XY, Ξ(X) ∧ Υ (Y ) ⇒ A X Y )) ⇒ ∃B, (∀XY, Ξ(X) ∧ Υ (Y ) ⇒ X = B ∨ B = Y ∨ X B Y ) A14 Between Symmetry A B C ⇒ C B A A15 Between Inner Transitivity A B D ∧ B C D ⇒ A B C Table 2.
Added axioms to Tarski's system of geometry.

2.3

An Independent System for Planar Geometry

The system that we want to prove independent is very close to the one Gupta studied in his thesis [START_REF] Gupta | Contributions to the Axiomatic Foundations of Geometry[END_REF]. We split Pasch's axiom A7 into its non-degenerate part A7' and A14, change the version of the parallel postulate A10 and add one axiom (for reasons explained later). A7' excludes from A7 the degenerate cases where the triangle ABC is at or when P or Q are respectively not strictly between A and C or B and C. We cannot use A10 as it does not hold in the counter-model found by Szczerba [START_REF] Szczerba | Independence of Pasch's axiom[END_REF]. We chose Proclus postulate, 5 denoted as A10' in Table 2, veried to be equivalent to it when assuming A0-A9, using Coq [START_REF] Boutry | Parallel Postulates and Continuity Axioms: A Mechanized Study in Intuitionistic Logic Using Coq[END_REF], as it holds in all the counter-models provided by Gupta as well as in the one found by Szczerba, thanks to Theorem 1 in [START_REF] Szczerba | Independence of Pasch's axiom[END_REF]. Finally, the formal development found in SST [START_REF] Schwabhäuser | Metamathematische Methoden in der Geometrie[END_REF] is essentially classical due to the many case distinctions found in the proofs of its lemmas. However, the decidability of point equality is sucient to obtain the arithmetization of geometry in an intuitionistic setting [START_REF] Boutry | Formalization of the Arithmetization of Euclidean Plane Geometry and Applications[END_REF]. So we add the decidability of point equality A0 so that we can work in an intuitionistic setting.

The reader not familiar with the dierence between classical and intuitionistic 5 Col A B C and AB ∥ CD denotes that A, B and C are collinear and that lines AB and CD are parallel according to the denitions given in SST [START_REF] Schwabhäuser | Metamathematische Methoden in der Geometrie[END_REF].

logic may refer to [START_REF] Beeson | A Constructive Version of Tarski's Geometry[END_REF]. This system, consisting of A0, A1, A2', A3-A5, A7', A8, A9', A10', A11', A14 and A15, and Tarski's system are equivalent. Again, we do not detail how to mechanize this fact in Coq.

3

A model of Tarski's system of geometry

In this section, we present our proof that Cartesian planes over a Pythagorean ordered eld form a model of the variant of Tarski's system of geometry that we have introduced in the previous section. First, we present the structure that we used to dene this model. Then we dene the model that we used, that is, the way we instantiated the signature of this system. Finally, we detail the proofs of some of the more interesting axioms.

3.1

The Real Field Structure

The structure that was used to dene this model was built by Cohen [START_REF] Cohen | Formalized algebraic numbers: construction and rst-order theory[END_REF]. The real eld structure results of the addition of operators to a discrete 6 eld: two boolean comparison functions (for strict and non-strict order) and a norm operator. Elements of this real eld structure verify the axioms listed in Table 3.

Finally, the elements of a real eld structure are all comparable to zero. We should remark that this eld is not necessarily Pythagorean. In fact, there is no dened structure in the Mathematical Components library [START_REF] Mahboubi | Mathematical Components[END_REF] for Pythagorean elds. This can however be added much more easily than before thanks to the recent modication of the Mathematical Components library to make use of the Hierarchy Builder [START_REF] Cohen | Hierarchy Builder: Algebraic hierarchies Made Easy in Coq with Elpi (System Description)[END_REF]. However, the Pythagorean property is only required for the proof of the segment construction axiom A4. So we chose to prove that this axiom holds in our model by admitting an extra axiom which was dened in this library: the real closed eld axiom. It states that intermediate value property holds for polynomial with coecients in the eld. While it is much stronger than Pythagoras' axiom, we only used it to be able to dene the square root of a number which is a sum of squares and would therefore have a square root in a Pythagorean eld. Finally, we did not yet prove that A11 holds in our model since it would require a much more involved eort. Indeed, this is similar to verifying that Tarski's system of geometry admits a quantier elimination procedure. 6 Discrete elds are elds with a decidable equality.

Subadditivity of the norm operator

3.2

The Model

Let us now dene our model. Being based on a single primitive type and two predicates, the signature of Tarski's system of geometry is rather simple. However, this system has the advantage of having a n-dimensional variant. To obtain this variant, one only needs to change the dimension axioms. So far, we have restricted ourselves to the planar version of this system. With a view to extend the GeoCoq library to its n-dimensional variant, we wanted to dene a model in which we could prove all but the dimension axioms in an arbitrary dimension to be able to construct a model of the n-dimensional variant by only proving the new dimension axioms. Hence we chose to dene Tpoint as a vector of dimension n + 1 with coecient in the real eld structure F (we used the real eld structure for all the development with the exception of the proof of the segment construction axiom) for a xed integer n, that is 'rV[R]_(n.+1). We adopted Gupta's denition [START_REF] Gupta | Contributions to the Axiomatic Foundations of Geometry[END_REF] 

k ∈ F such that 0 ≤ k ≤ 1 and B -A = k(C -A). In fact, if such a k exists, it can be computed. By letting A = (a i ) 1≤i≤n+1 , B = (b i ) 1≤i≤n+1 and C = (c i ) 1≤i≤n+1 , if A ̸ = C then there exists a i ∈ N such that 1 ≤ i ≤ n + 1
and a i ̸ = c i and in this case we set k to bi-ai ci-ai and if A = C we set k to zero. Therefore we dened a function ratio that computes the possible value for k, thus allowing us to dene the betweenness by the boolean equality test. This was actually important as it permitted to directly manipulate the denition for betweenness by rewriting since we dened it as a boolean test. Finally, as it was often necessary to distinguish whether or not A B C holds due to a degeneracy, we split the denition bet of the betweenness into two predicates: the rst one, betS, capturing the general case of k being strictly between 0 and 1 and the second one, betE, capturing the three possible degenerate cases, namely either A = B, B = C or A = B and B = C. 

Proof that the Axioms hold in the Model

Now that we have dened the model, we focus on the proof that the axioms of the system from Sec. 2.3 hold in this model. However, we omit the details of the proofs for axioms A1, A2', A3 and A14 since they are rather straightforward.

For the same reason, we do not cover the decidability of point equality A0.

Let us start by focusing on axioms A7' and A15 as the proofs that they hold in our model are quite similar. In the case of axiom A15 we know that A B D and B C D so let k 1 ∈ F be such that 0 < k 1 < 1 and B -A = k 1 (D -A) (the degenerate case of this axiom is trivial so we only consider the general case) and

k 2 ∈ F be such that 0 < k 2 < 1 and C -B = k 2 (D -B). In order to prove that A B C we need to nd a k ∈ F such that 0 < k < 1 and B -A = k(C -A).
By calculation we nd that k = k1 k1+k2-k1k2 and we can verify that 0 < k < 1. In a similar way, for axiom A7', we know that A P C and B Q C so let k 1 ∈ F be such that 0 < k 1 < 1 and P -A = k 1 (C -A) (the hypotheses imply that 0 < k 1 < 1 because A ̸ = P and P ̸ = C) and k 2 ∈ F be such that 0 < k 2 < 1 and Q -B = k 2 (C -B). In order to prove that there exists a point X such that P X B and Q X A we need to nd a k 3 ∈ F and a k 4 ∈ F such that 0 < k 3 < 1, 0 < k 4 < 1 and k 3 (B-P )+P = k 4 (A-Q)+Q. By calculation we nd that k 3 = k1 (1-k2) k1+k2-k1k2 and k 4 = k2(1-k1) k1+k2-k1k2 and we can verify that 0 < k 3 < 1 and 0 < k 4 < 1. In both of these proof, the ratios are almost identical to the point that it suces to prove the following lemma:

Lemma ratio_bet a b c k1 k2 k3 :

0 < k1 -> 0 < k2 -> k1 < 1 -> 0 < k3 -> k3 < k1+k2-k1*k2 -> b -a == ((k1+k2-k1*k2)/k3)^-1 *: (c -a) -> bet a b c.
It allows to prove quite easily both of these axioms. For axiom A4, we proceeded in a analogous way: it suces to set the point E that can be constructed using this axiom to ∥D-C∥ ∥B-A∥ (B -A) + A and to verify this point satises the desired properties by calculation.

We now turn to axiom A5. We followed Makarios' approach for the proof that this axiom holds in our model [START_REF] Makarios | A Mechanical Verication of the Independence of Tarski's Euclidean Axiom[END_REF]. In his proof he used the cosine rule: in a triangle whose vertices are the vectors A, B and C we have

∥C -B∥ 2 = ∥C -A∥ 2 + ∥B -A∥ 2 -2(B -A) • (C -A).
As noted by Makarios, using the cosine rule allows to avoid dening angles and properties about them. Applying the cosine rule for the triangles BCD and B ′ C ′ D ′ allows to prove that ∥D -

C∥ 2 = ∥D ′ -C ′ ∥ 2 by showing that (C -B) • (D -B) = (C ′ -B ′ ) • (D ′ -B ′ )
which can be justied, by applying the cosine rule again, this time in the triangles

ABD and A ′ B ′ D ′ , if ∥D -A∥ -∥D -B∥ -∥A -B∥ = ∥D ′ -A ′ ∥ -∥D ′ -B ′ ∥ -∥A ′ -B ′ ∥
which we know from the hypotheses and if the ratios corresponding to the betweenness A B C and A ′ B ′ C ′ are equal which can be obtained by calculation.

Next, let us consider axiom A10.

8 From the hypotheses we have two ratios

k 1 ∈ F and k 2 ∈ F such that 0 < k 1 < 1, 0 < k 2 < 1, D -A = k 1 (T -A) and D -B = k 2 (C -B). Using these ratios, it suces to dene X such that B -A = k 1 (X -A) and Y such that C -A = k 1 (Y -A).
So we know by construction that A B X and A C Y and we easily get that T -X = k 2 (Y -X) by calculation, thus proving that X T Y . Since A10 and A10' are equivalent when A0, A1, A2', A3-A5, A7', A8, A9', A11', A14 and A15 hold, this allows to prove that A10' holds in our model. The reader familiar with SSReflect will have recognized the reflect predicate, described in [START_REF] Cohen | Formalized algebraic numbers: construction and rst-order theory[END_REF] for example. In practice, these lemmas allowed to spare many steps that would have been repeated in almost every proof concerning the dimension axioms. It was much more straightforward to prove that axiom A8 holds in our model than for axiom A9'. In fact, it is enough to nd three non-collinear points. We simply took the points (0, 0), (0, 1) and (1, 0): 8 Similarly to A7, when we were proving Euclid's axiom, we realized that the same kind of distinctions was also needed. The degenerate cases are implied by the other betweenness axioms so it suces to show that A10 holds when the angle ∠BAC is non-at and when D is dierent from T . It was then an easy matter to verify that axiom A8 holds in our model. For axiom A9, the idea of the proof that we formalized was to rst show that, by letting M be the midpoint of P and Q, the equation (x P -x M )(x M -x X ) + (y P -y M )(y M -y X ) = 0, capturing the property that the points P , M , and X form a right angle with the right angle at vertex M , was veried when X would be equal to A, B or C:

Lemma cong_perp (a p q : 'rV[R]_( 2)) (m := (1 / (1 + 1)) *: (p + q)) : cong a p a q -> (p 0 0 -m 0 0) * (m 0 0 -a 0 0) + (p 0 1 -m 0 1) * (m 0 1 -a 0 1) = 0.

Next, we demonstrated that for three points A, B and C verifying ( Using the equations implied by cong_perp we could derive that

x A - x B )(y B -y C ) -(y A -y B )(x B -x C ) = 0 are collinear in the sense that A B C ∨ B C A ∨ C A B:
(x P -x M )(y M -y P ) ((x A -x B )(y B -y C ) -(y A -y B )(x B -x C )) = 0.
We were then left with three cases: either the abscissas of P and M are equal in which case the ordinate of A, B and C were equal thus sucing to complete the proof, or the ordinates of P and M are equal in which case the abscissas of A, B and C were equal thus completing the proof, or (x A -x B )(y B -y C ) -(y Ay B )(x B -x C ) = 0 corresponding to the lemma that we had proved and again allowing to conclude.

Putting everything together, we could prove that Cartesian planes over a

Pythagorean ordered eld form a model of the variant of Tarski's system of geometry, thus proving the satisability of the theory. 9

Global Instance Rcf_to_T2D : Tarski_2D Rcf_to_T_PED.

Global Instance Rcf_to_T_euclidean : Tarski_euclidean Rcf_to_T_PED. 9 Tarski_euclidean is the type class that captures the theory consisting of axioms A0-A10.

To make sure that we did not introduce any change in the axioms between the various models we relied on predicates such as euclidP, which depend on possibly the type for points and the predicate(s) for betweenness and/or congruence.

Theorem 

#a #d #t, #b #d #c b ̸ = d, d ̸ = c and ¬ Col #a #b #c. So,
to prove that this version does not hold, it is enough to show that for any x and y such that x lies inside the unit disk, #a #b #x, #a #c #y and #x #t #y, it holds that y is not a Point, meaning that it lies outside the unit disk. Let us rst eliminate the case where b = x as it would lead to a contradiction. Here, we use the algebraic characterization of collinearity 11 to obtain that, if b = x, the ordinate of x would need to be equal to both 0 and 1 2 which is impossible. Now let us pose b ′ to be the vector x + a -b. It is an easy matter to check that #a #b ′ #x so let us pose k 1 to be the ratio associated to this betweenness. We can verify that k 1 ≤ 1 2 since x is supposed to belong to the unit disk. We can then take d ′ at ratio k 1 from a to t. Applying what was proven to show that A10' holds in Cartesian planes over a Pythagorean ordered eld, we can show that y ′ at ratio 1 k1 from a to c is such that #a #c #y ′ and #x #t #y ′ . If we can prove that y = y ′ we will be done as y ′ lies outside of the unit disk because k 1 ≤ 1 2 so 2 ≤ 1 k1 . Finally, to prove that y = y ′ we can reason by uniqueness of the intersection of lines which is valid in neutral geometry.

Conclusion

We dened ten out of the eleven counter-models present in Gupta's thesis [START_REF] Gupta | Contributions to the Axiomatic Foundations of Geometry[END_REF],

thus obtaining the Coq formal proof of the independence of ten out of the thirteen axioms of the system presented in Sec. 2.3. This seems to indicate that Pasch's axiom could indeed be split into two meaningfully dierent parts as done in this paper while still having an independent system. However, we will only be sure of this once we will have formalized the missing three counter-models. These can be found in Gupta's thesis [START_REF] Gupta | Contributions to the Axiomatic Foundations of Geometry[END_REF], Szczerba's paper [START_REF] Szczerba | Independence of Pasch's axiom[END_REF], and Beeson's section The recursive model in [START_REF] Beeson | Constructive Geometry and the Parallel Postulate[END_REF].

Five of the formalized models are nite and the other ve are modications of the model presented in Sec. 3. We highlight that, for the latter ve, A11' is not veried for the same reason as for the model from Sec. 3.. All these models are available in the GeoCoq library 12 and represent about 4k lines of formal proof.

10 Neutral geometry is dened by the set of axioms of Euclidean geometry from which the parallel postulate has been removed. 11 Here we use the converse of col_2D.

12 http://geocoq.github.io/GeoCoq/ We are currently extending this work by proving the independence of a more constructive version 13 of the axioms which would also allow to capture n-dimensional geometry. For this extension we could not rely on A9 (n) from [START_REF] Tarski | Tarski's System of Geometry[END_REF]. Indeed, we found that it can only be assumed as an upper n-dimensional axiom when n = 2 or 3. A9 (n) is stated as follows.

1≤i≤j≤n

P i ̸ = P j ∧ n i=2 AP 1 ≡ AP i ∧ n i=2 BP 1 ≡ BP i ∧ n i=2 CP 1 ≡ CP i ⇒ Col A B C
By taking P i = (cos 2iπ n , sin 2iπ n , 0, ..., 0) for 1 ≤ i ≤ n then (0, 0, x 3 , x 4 , ..., x n ) satises the premises for any x 3 , x 4 , • • • , x n in the standard n-dimensional model while triplets of points of this form are not necessarily collinear. The various modications did not allow to reuse some of the counter-models already mechanized, so new ones are necessary.

We are convinced that using a proof-assistant is crucial when proving the independence of a system, where small changes in a statement are critical. Actually, there was a typo in Gupta's counter-model for A2 and we just exhibited a problem with axiom A9

(n) from [START_REF] Tarski | Tarski's System of Geometry[END_REF]. The GeoCoq library also proved very useful as it allowed us to combine the algebraic and geometric 14 reasoning.

  |x + y| ≤ |x| + |y| Compatibility of the addition with the strict comparison 0 < x ∧ 0 < y ⇒ 0 < x + y Deniteness of the norm operator |x| = 0 ⇒ x = 0 Comparability of positive numbers 0 ≤ x ∧ 0 ≤ y ⇒ (x ≤ y)||(y ≤ x) The norm operator is a morphism for the multiplication |x * y| = |x| * |y| Large comparison in terms of the norm (x ≤ y) = (|y -x| == y -x) 7 Strict comparison in terms of the large comparison (x < y) = (y ! = x)&&(x ≤ y)

Formally, we

  consider the following model: Variable R : realFieldType. Variable n : nat. Implicit Types (a b c d : 'rV[R]_(n.+1)). Definition cong a b c d := (b -a) *m (b -a)^T == (d -c) *m (d -c)^T. Definition betE a b c := [ || [ && a == b & b == c ], a == b | b == c ]. Definition ratio v1 v2 := if [pick k : 'I_(n.+1) | v2 0 k != 0] is Some k then v1 0 k / v2 0 k else 0. 7 == denotes the boolean equality test for the elements of the eld. Definition betR a b c := ratio (b -a) (c -a). Definition betS a b c (r := betR a b c) := [ && b -a == r *: (c -a), 0 < r & r < 1]. Definition bet a b c := betE a b c || betS a b c.

Finally the remaining two

  axioms are treated in a slightly dierent setting since they are the dimension axioms. Formally we x the value of n to 1. In order to simplify the many rewriting steps needed for these proofs we started by establishing the following two lemmas: Definition sqr_L2_norm_2D a b := (b 0 0 -a 0 0) ^+ 2 + (b 0 1 -a 0 1) ^+ 2. Lemma congP a b c d : reflect (sqr_L2_norm_2D a b = sqr_L2_norm_2D c d) (cong a b c d). Lemma betSP' a b c (r := betR a b c) : reflect ([ /\ b 0 0 -a 0 0 = r * (c 0 0 -a 0 0), b 0 1 -a 0 1 = r * (c 0 1 -a 0 1), 0 < r & r < 1]) (betS a b c).

  Definition row2 {R : ringType} (a b : R) : 'rV[R]_2 := \row_p [eta \0 with 0 |-> a, 1 |-> b] p. Definition a : 'rV[R]_(2) := row2 0 0. Definition b : 'rV[R]_(2) := row2 0 1. Definition c : 'rV[R]_(2) := row2 1 0.

  b c \/ bet b c a \/ bet c a b).

Table 3 .

 3 Axioms of the real eld structure.

  for the congruence cong, namely that AB ≡ CD if the squares of the Euclidean norms of B -A and D -C are equal. Actually Gupta also proved that any model of the n-dimensional variant of Tarski's system of geometry is isomorphic to his model. He dened that A B C holds if and only if there exists a

We number them as in[START_REF] Tarski | Tarski's System of Geometry[END_REF].

Actually the statement for A7 diers in[START_REF] Tarski | Tarski's System of Geometry[END_REF] but the change is not important here.

We replace point equality decidability by point equality stability, namely ∀XY, ¬¬X = Y ⇒ X = Y , which allows to prove equality of points by contradiction but does not allow case distinctions. We do not go as far as in[START_REF] Beeson | Brouwer and Euclid[END_REF] where not even stability is assumed. We also apply the same modications made to obtain what is called continuous Tarski geometry in[START_REF] Beeson | A Constructive Version of Tarski's Geometry[END_REF].

Acknowledgments: We would like to thank Marius Hinge for his contribution to the early stage of this work.

An Example of Independence Proof

To illustrate how we obtain formal proofs of independence we present an example. We start by dening the counter-model we will use to prove the independence of axiom A10'. We then provide the sketch of the formal proof.

Klein's Model

To prove Euclid's Parallel Postulate independent from the other axiom we work in Klein's model as dened in SST [START_REF] Schwabhäuser | Metamathematische Methoden in der Geometrie[END_REF]:

Variable R : realFieldType. Here, Point is the type of Vector, vectors of dimension n + 1 with coecient in the real eld structure, lying inside the unit disk and # the projection allowing to recover the coordinate part of this dependent type. In Klein's model, b is said to be between a and c i their coordinate parts can be said to be bet in the model from Sec. 3 and line-segments ab and cd are said to be congruent i

where • denotes the dot product of two vectors.

Independence of Euclid's Parallel Postulate via Klein's Model

Here we only detail the proof that A10' does not hold in this model. Mechanizing the following proof sketch allows to derive.

Lemma euclid : ~euclidP (@Point R 1) (@bet' R 1).