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ABSTRACT: Dynamic building energy simulation and life cycle assessment (LCA) are useful ecodesign tools to mitigate the energy and 
environmental impacts of buildings. Various uncertain factors can affect the building energy and environmental modelling, including continuous 
and categorical factors (i.e. discrete factors without logical ranking). Sensitivity analysis (SA) is applied to identify the most influential factors on 
which additional research efforts are needed to increase the robustness of results. The Sobol method (Sobol) is the reference SA method, but it 
requires a significant amount of computation. Less time-consuming methods, such as an adaptation of the Morris screening (Morris), have shown 
a good ability to quantify the influence of factors, but their performance has not been investigated for categorical factors having many (more than 
two) levels. Ttwo strategies (2LA-Morris and MA-Morris) based on the adaptation of Morris are proposed to handle many-level factors. Their 
performance is compared to that of Sobol based on four criteria: computation time, factor’s relative influence, factor’s ranking, and ability to detect 
interactions. For the LCA of a house including 24 uncertain factors, MA-Morris was able to quantify the influence of factors in the same way as 
Sobol, while reducing the computation time by a factor of 12. 
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1. INTRODUCTION 

The building sector is responsible for high energy 

consumptions and environmental impacts [1–3]. 

Ecodesign tools are increasingly used to mitigate 

these impacts. Among them dynamic building 

energy simulation (DBES) precisely assesses the 

temporal evolution of heating and cooling loads, 

and comfort. In addition, the life cycle assessment 

(LCA) methodology [4,5] applied to buildings, 

allows to evaluate the environmental impacts of a 

construction over its long life cycle, as well as 

compare the performance of building alternatives. 

Associating DBES and LCA is essential for a 

precise assessment of the impacts of the building 

sector [6]. 
Because of the variability of the use of buildings  

and their long lifetime, many input factors of DBES 

and LCA are uncertain. These uncertainties could 

question the reliability of decisions based on 

building LCA. Uncertainties have been discussed in 

building LCA since the mid-1990s. However, they 

are still rarely addressed and most studies present 

deterministic results [7,8]. Uncertain factors in 

building energy and environmental simulations 

have been classified according to their origin (i.e. 

lack of knowledge of the true value of a quantity, 

stochastic variations, mistakes…), or to the life 

cycle stage at which they occur (i.e. construction, 

use, renovation, end-of-life) [8–10]. Beside these 

general classifications, factors can also be sorted 

according to their type, which ranges from 

continuous factors (e.g. uncertainties on materials 

and building lifetimes) to categorical inputs which 

are discrete factors with no logical ranking (e.g. 

scenarios describing climate or occupancy 

variability). 

Uncertainty analysis and sensitivity analysis (SA) 

methods are used to better understand the effect of 

uncertain factors. They allow uncertainties to be 

quantified and they can help improving both the 

reliability of results and the quality of the 

subsequent decision-making. For instance, SA 

methods are useful to identify the most uncertain 
factors that could change the decision and that 

should be further investigated. 

Many SA methods are available to identify the 

most uncertain factors [11]. Variance-based global 

SA methods have proven to be the most relevant 

[12]; among them, the Sobol method [13] has often 

been used in DBES and LCA [14]. It has the 

advantage of handling all types of uncertain factors, 

such as continuous, discrete and categorical factors. 

Despite being accurate, this method has the 

disadvantage of requiring a significant computation 

effort to perform all DBES and LCA, as well as to 

calculate Sobol indices. Other methods, such as 

local SA or screening, require less effort but not 

cover the entire variation space of uncertain factors, 
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and therefore quantify the influence of uncertain 

factors less precisely.  

Previous studies compared the performances of 

different SA methods in DBES and LCA [14–19] 

and found that linear regression-based SA, Morris 

and SA applied to metamodels yielded a good 

compromise between accuracy and computation 

time. However, they did not focus on the ability of 

low-computationally intensive methods to deal with 

all types of factors, such as categorical inputs with 

more than two levels. In this article, two less 

computationally intensive methods based on the 

Morris method [20] are proposed to deal with many-

level inputs. They are compared on their ability to 

quickly rank influential factors in the same way as 

the Sobol method. 

2. METHODOLOGY 

The two methods proposed to deal with many-

level inputs are based on an adaptation of the Morris 

screening method. This adaptation, noted A-Morris 

hereafter, has been shown to precisely quantify the 

influence of uncertain factors [14]. The two 

adaptations and the comparison metrics are 

presented in the next paragraphs. 

2.1. SA methods 

Sobol method. The variance-based Sobol method 

[13] is used as a reference to investigate the 

performance of the proposed methods. As a global 

SA method, the continuous uncertain factors are 

assessed over their entire variation range, following 

their probability distribution. For discrete and 

categorical inputs, a possible value is randomly 

sampled. Total Sobol indices 𝑇𝑆𝑖 [21,22] are 

computed for the comparison as they include 

factors’ non-linear and interactions effects. They are 

calculated, as in equation (1), for each uncertain 

factor 𝑋𝑖, by studying the variation of the model 

output 𝑌 = 𝑓(𝑋) when the value of the 𝑖𝑡ℎ factor 
changes while all others are kept constant. 

𝑇𝑆𝑖 =
𝐸[𝑉𝑎𝑟(𝑌|𝑋~𝑖)]

𝑉𝑎𝑟(𝑌)
  (1) 

𝑉𝑎𝑟(𝑌) and 𝐸[𝑌] are the variance and the 

expectation. 𝑁(𝐾 + 2) model evaluations are 

required, 𝐾 being the number of uncertain factors 

and 𝑁 the sample size.  
The total Sobol Jansen indices [21] are used as 

they are the best estimate of Sobol indices according 

to Saltelli [22]. For further investigations, the first 

order indices were assessed following Saltelli [22] 

for consistency reasons [23,24]. 

Morris method. In the Morris method [20], the 

uncertain factors variation ranges are discretised 

into levels. The exploration space is then a grid of 

nodes on which different trajectories are performed. 

A trajectory corresponds to a list of 𝐾 + 1 

simulations. Between two consecutive simulations 

of the trajectory, the value of only one factor is 

modified. A One-factor-At-Time design of 

experiment (DoE) is thus followed. Starting from 

one randomly chosen point 𝑋, values of each 

coordinates 𝑋𝑖 are changed one after the other, 
according to the discretised levels available, 

considering a jump of length 𝛿 on the grid of nodes. 

𝑟 trajectories are repeated, so that 𝑟. (𝐾 + 1) 
simulations are required. Elementary effects (EE) 

can then be computed for each factor 𝑖 and each 

trajectory 𝑗, as in (2). 

𝐸𝐸𝑖
𝑗

=
𝑓(𝑋1

𝑗
, … , 𝑋𝑖

𝑗
+ 𝛿𝑥𝑖

𝑗
, … , 𝑋𝐾

𝑗
) − 𝑓(𝑋1

𝑗
, … , 𝑋𝑖

𝑗
, … , 𝑋𝐾

𝑗
)

𝛿
  (2) 

In the original Morris method, the influence of a 

factor is quantified by the mean of the absolute 

value of EE over the trajectories 𝜇𝑖
∗. In addition, the 

standard deviation of EE 𝜎𝑖 informs on the non-

linearity and on the presence of interactions between 

the 𝑖𝑡ℎ factor and the other factors. 
A-Morris method. A-Morris is an improvement 

of the Morris methods proposed in [14]. It allows 

the influence of uncertain factors to be quantified 

more precisely than with the original Morris method 

but with far fewer simulations than for the Sobol 

method. In A-Morris, the DoE, i.e. the list of 

simulations to perform, remains the same as in the 

original method. However, for each uncertain factor 

𝑖 and repetition 𝑗, an elementary variance (EV) is 
calculated, instead of an EE, as in (3). 

𝐸𝑉𝑖
𝑗

= [𝑓(𝑋1
𝑗
, … , 𝑋𝑖

𝑗
+ 𝛿𝑥𝑖

𝑗
, … , 𝑋𝐾

𝑗
) − 𝑓(𝑋1

𝑗
, … , 𝑋𝑖

𝑗
, … , 𝑋𝐾

𝑗
)]

2
  (3) 

Then, a sensitivity index 𝑆𝑖, similar to the 

expectancy of the variance computed for the Sobol 

method, is obtained by averaging the 𝐸𝑉𝑗
𝑖 over 𝑟 

repetitions, as in (4). 

𝑆𝑖 =
1

𝑟
∑ 𝐸𝑉𝑗

𝑖

𝑖

𝑟=1

  (4) 

The performances of A-Morris were investigated 

for continuous factors and for categorical factors 

with only two levels by Pannier et al. [14]. In each 

trajectory, the value of the categorical input was 
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changed from one level to the other one. As 

categorical factors may have more than two levels, 

two strategies are proposed and assessed in this 

article to deal with many-level inputs with A-

Morris. 

2LA-Morris method. In the first strategy, only 

two levels that give extreme results for all outputs 

are selected and used for all repetitions. At each 

repetition, a jump is performed from the first to the 

second level. This strategy is called 2LA-Morris 

(for two Level Adapted Morris). 

MA-Morris method. In this second strategy, at 

each repetition, two different levels are randomly 

sampled and the jump is performed from one level 

to the other. The levels sampled may be different at 

each repetition. In this strategy, 2 ∗ 𝑟 levels are 

explored. This strategy is called MA-Morris (for 

Many-level Adapted Morris). 

2.2. Comparison metrics 

The results of the two strategies (2LA-Morris and 

MA-Morris) are compared with the results of the 

Sobol method based on four criteria. 

Firstly, the computation time is studied. It is 

defined as the time required to run all the 

simulations and to compute the sensitivity indices. 

Secondly, the relative influence (RI) is computed 

as in [14] to get the precision of each method. It is 

defined as the share of the sensitivity index of one 

factor relatively to the sum of the sensitivity indices 

of all factors, as in (5). 

𝑅𝐼𝑖 =
𝑆𝑖

∑ 𝑆𝑖𝑖
  

 
(5) 

RI is useful to identify a relevant set of uncertain 

factors. After sorting the 𝑅𝐼𝑖 by increasing order, the 

number of uncertain factors that cover some share 

of variance can be identified for all methods. 

Thirdly, the factors’ ranking is compared using 

the method proposed by Akkari [19]. Factors are 

plotted according to their rank. In addition, the 

Kendall rank correlation 𝜏 is calculated as in (6) to 
quantify the ranking similarities: 

𝜏 =
2(𝑛𝑐 − 𝑛𝑑)

𝐾(𝐾 − 1)
  

 
(6) 

with 𝑛𝑐 and 𝑛𝑑, the number of concordant and 

discordant pairs. Concordant pairs (𝑎1, 𝑏1) and 
(𝑎2, 𝑏2) are so that 𝑠𝑔𝑛(𝑎2 − 𝑎1) = 𝑠𝑔𝑛(𝑏2 − 𝑏1), 

while discordant pairs have 𝑠𝑔𝑛(𝑎2 − 𝑎1) =
−𝑠𝑔𝑛(𝑏2 − 𝑏1), 𝑠𝑔𝑛 being the signum function 
defined as below: 

𝑠𝑔𝑛(𝑥) = {
−1 𝑖𝑓 𝑥 < 0

0 𝑖𝑓 𝑥 = 0

1 𝑖𝑓 𝑥 > 0
  

 

(7) 

A 𝜏 value close to -1 (resp. +1) indicates a strong 

positive (resp. negative) correlation, while a 𝜏 value 
close to 0 indicates an absence of correlation. 

Finally, the ability of 2LA-Morris and MA-

Morris to detect interaction effects is assessed. √𝜇𝑗
∗  

is therefore plotted as a function of √𝜎𝑗. Non-linear 

or interaction effects are identified when √𝜎𝑗  is of the 

same order of magnitude or greater than √𝜇𝑗
∗ . For the 

reference Sobol method, interactions effects can be 

detected by comparing first 𝑆𝑖 and total 𝑇𝑆𝑖 order 
sensitivity indices. If the total order indices are 

significantly higher than the first order ones, the 

factor has high interaction effects. Non-linear 

effects are quantified both by 𝑆𝑖 and 𝑇𝑆𝑖 as Sobol is 

a global SA method. 

3. CASE STUDY 

After presenting the DBES and LCA calculation 

methods, the building used as a case study and the 

24 uncertain factors are described hereafter. 

3.1. DBES and LCA framework 

The COMFIE [25] model of the software Pleiades 

[26] is used to run the DBES. In this model, whose 

reliability has been validated [27,28], the building is 

divided into thermal zones of homogeneous 

operative temperature before being meshed. A 

thermal balance is applied to each mesh to obtain the 

zone temperatures, as well as the heating and 

cooling loads. This provides a precise assessment of 

the energy consumptions during the building use 

phase [6], which is the life cycle phase having the 

highest share of impacts [2]. 

Since climate and user behaviour have a strong 

influence on the energy performance [29], two 

additional models linked to COMFIE are used to 

generate a set of realistic meteorological years [30] 

and occupancy scenarios [31]. 

The model EQUER [32,33] of Pleiades [26] is 

used to run the LCA simulations, based on the 

DBES results. All building life cycle phase are 

considered and the impacts are calculated for the 14 
indicators listed in Table 1. The results reliability of 

EQUER has been verified by comparison with other 

building LCA models [34–36]. 
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Table 1. Environmental indicators and fluxes. 
Indicator / flux Legend Unit Method 

Climate change 

GWP100 

Clim. 

Change 

kg CO2 eq IPCC 2013 

[37] 

Cumulative Energy 

Demand 

CED MJ CED [38] 

Abiotic Depletion of 

Minerals 

Resources kg Sb CML [39] 

Mass of Waste Waste kg Flux from 

ecoinvent [40] 

Water use Water litre Flux from 

ecoinvent [40] 

Fine particulate 

matter formation 

Particulate 

M. 

kg PM10eq ReCiPe [41] 

Photochemical 

ozone formation 

P. Ozone kg 

NMVOCeq 

ReCiPe [41] 

Volume occupied by 

radioactive waste 

Rad. 

Waste 

m3 Flux from 

ecoinvent [40] 

Ionising radiation Ioni. Rad.  kg 235U eq ReCiPe [41] 

Human toxicity Hum. 

Tox. 

CTUh USEtox [42] 

Eutrophication Eutrop. kg PO43- 

eq 

CML [39] 

Acidification Acid. kg SO2 eq CML [39] 

Ecotoxicity Ecotox. CTUe USEtox 

Land use Land use points ReCiPe [41] 

3.2. Building 

The studied building is a single-family house of 

90 m². It has a shuttered concrete structure, an 

external insulation, a double-flow ventilation 

system and is electrically heated. The performance 

of this building corresponds to the passive house 

standards. A complete description of the DBES and 

LCA assumptions is provided in [10,43]. 

3.3. List of uncertain factors 

In a first step, 153 uncertain factors were 

considered. They are related to the building site, 

materials, components, construction processes, 

systems or use. In addition, some uncertainties on 

the background environmental data and the life 

cycle impact assessment methods were also 

included. The complete list can be found in [10,43]. 

The computation time of SA methods depends on 

the number of uncertain factors and it can be very 

long for the Sobol method. Therefore, a screening 

was performed to select the factors whose 

cumulative relative influence exceeded 99 % for 

both 2LA-Morris and MA-Morris. The three 

methods are applied on this set of 24 uncertain 

factors, given in Table 2. Uniform distributions 

were chosen for all continuous factors in this study. 

Reference values, variation units and variation 

ranges (e.g. lower (LB) and upper (UP) bounds) are 

given in Table 2 along with the data source for the 

uncertainty characterisation. 

20 uncertain factors are continuous. The 

remaining four factors are categorical. One of them 

have two possible levels: the choice of the blowing 

agent for the polystyrene extrusion process. The 

three other categorical factors may have many-level. 

For the variability of climate, a set of 2,000 realistic 

climate files was generated with the model of Ligier 

et al. [30]. Similarly, a set 2,000 realistic occupancy 

scenarios was generated with the model of Vorger 

et al. [31]. Finally, a set of 2,000 background 

environmental data was generated using the 

uncertainty distributions provided by the ecoinvent 

environmental database [46]. 

For the Sobol method, a Latin hypercube 

sampling of size 𝑁 = 1,000 was applied, allowing 

the 2,000 levels available to be used for the 

categorical inputs with many-level. 

Regarding 2LA-Morris, the two extreme 

scenarios for the three many-level categorical 

factors are selected as follow: 

 Variability of climate: the available 

scenarios are ranked by increasing mean 

outside temperature during the year and 

during the heating period. Two scenarios 

close to the 2.5% and 97.5% bounds of the 

two distributions are selected. 

 Variability of occupancy and environmental 

background data: DBES followed by LCA 

simulations are performed for all levels. The 

results are ranked by increasing order. Two 

scenarios for occupancy and two scenarios 

for background data, close to the 2.5% and 

97.5% bounds of the 14 distributions of the 

environmental indicators, are selected. 

Regarding the MA-Morris, the two different 

scenarios are used for each repetition. For a 

previously performed uncertainty analysis, it has 

been shown that after using 200 scenarios, 

convergence was reached for the variability of 

climate and of occupancy, and almost reached for 

the environmental background data [10]. 

200 scenarios are then used for this method, 

corresponding to 100 repetitions. For consistency 

reason, 100 repetitions are also performed for 2LA-

Morris. 
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Table 2. List of uncertain factors. 

Factor Source 
Ref. 

value 
LB UB Unit 

Characterisation 

factor HFC134a  
[44] 1301.3 1190.5 1412.0 

kg 

CO2-eq 

Construction 

material waste  
[45] 5 0 10 % 

Environmental 

background 
data 

[46] 
Categorical: Sampling in 

the available levels 
- 

Fan energy 
consumption  

[47] 0.475 0.105 0.845 Wh/m3 

Lifetime: 
building  

[2,3] 80 40 200 yr. 

Lifetime: 
covering 

[45] 40 15 100 yr. 

Lifetime: doors [45] 37 10 80 yr. 

Lifetime: hot 

water tank 
[45] 15 8 20 yr. 

Lifetime: 

insulation 
[45] 38 20 60 yr. 

Lifetime: 

painting 
[45] 16 5 50 yr. 

Lifetime: roof 

tile 
[45] 50 15 100 yr. 

Lifetime: tiled 

floor 
[45] 50 15 100 yr. 

Lifetime: 

windows 
[45] 38 15 60 yr. 

Polystyrene: 

conductivity 
[48,49] 0.030 0.027 0.033 W/m/K 

Polystyrene 

extrusion 
process 

- 
Categorical: CO2 or 

HFC134a 
- 

Steel rate in 
concrete 

[50] 3 0.2 4.2 - 

Thermal bridge: 
living room  

[51] RT2012  
-0.52 
* Vref 

0 * 
Vref 

W/K 

Transp. distance 
of new 

materials to 

building site 

[52,53] 75 0 200 km 

Transp. distance 

of waste 

materials from 
building to end-

of-life site 

[52,53] 25 0 100 km 

Variability of 

Climate 
[30] 

Categorical: Sampling in 

the available levels 
- 

Variability of 

Occupancy 
[31] 

Categorical: Sampling in 

the available levels 
- 

Ventilation 

double flow 

heat exchanger 

efficiency 

[49] 90.0 85.5 92 % 

Ventilation rate 

in the crawl 
space 

[28] 1 0.5 1.5 vol/h 

Water network 

efficiency 
[54] 74 37 100 % 

 

 

 

4. RESULTS 

4.1. Computation time 

Given the number of uncertain factors and the 

sampling size for Sobol, 26,000 model simulations 

were parallelised on a six-core desktop computer. 

This corresponds to 36 h of computation to pre-

process data, run simulations and post-process 

results. For 2LA-Morris and MA-Morris, the 

2 500 model simulations were parallelised on the 

same computer, leading to 3 h of computation. 

4.2. Relative influence (RI) 

The comparison results in terms of RI are given in 

Figure 1 and in selected to reach RI 95, highlighting 

a ranking difference for this factor between the 

methods. 

For a given share of RI (80 to 99 %), factors 

identified by Sobol are always identified with MA-

Morris. However, this method may select additional 

factors that are not selected by Sobol. As an 

example, in RI 80, MA-Morris selected two 

additional factors, the insulation lifetime and the 

covering lifetime, which are later selected in RI 85 

and in RI 90 by Sobol. On the contrary, there is a 

risk of missing influential factors with the 2LA-

Morris: some factors selected with Sobol may not 

be selected (e.g. the water network efficiency for 

RI 80, or the insulation lifetime in RI 85). MA-

Morris is thus preferred in order to avoid not 

selecting highly influential factors. 

Table 3. In Figure 1, each group of three bars is 

related to one indicator (the names of indicators are 

shown above the groups of bars), and each bar 

stands for one SA method (the names of the methods 

are indicated below the bars). In each bar, each 

colour corresponds to the relative influence 𝑅𝐼𝑗 of 

an uncertain factor. The larger a colour segment in 

a bar, the more influential the corresponding factor 

is. The most influential factors identified across all 

indicators and methods are: the variability of 

occupancy (green), the environmental background 

data (red), and the building lifetime (blue). Visually, 

MA-Morris performs better than 2LA-Morris for all 

indicators. The relative influences of factors given 

with MA-Morris are close to those of Sobol for most 

indicators (the different colour are equally 

represented), except for the eutrophication and the 

human toxicity. However, visually, the ranking of 

the factors appears identical. 
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The conclusion of the visual interpretation are 

confirmed in selected to reach RI 95, highlighting a 

ranking difference for this factor between the 

methods. 

For a given share of RI (80 to 99 %), factors 

identified by Sobol are always identified with MA-

Morris. However, this method may select additional 

factors that are not selected by Sobol. As an 

example, in RI 80, MA-Morris selected two 

additional factors, the insulation lifetime and the 

covering lifetime, which are later selected in RI 85 

and in RI 90 by Sobol. On the contrary, there is a 

risk of missing influential factors with the 2LA-

Morris: some factors selected with Sobol may not 

be selected (e.g. the water network efficiency for 

RI 80, or the insulation lifetime in RI 85). MA-

Morris is thus preferred in order to avoid not 

selecting highly influential factors. 

Table 3. The upper part of this table summarises, 

which factors (in rows) are selected for a certain 

share of RI, for each SA method (in column). In 

addition, the lower part of the table explains the 

number of factors to select in order to reach 80 to 

99 % of the RI for all 14 environmental indicators. 

The corresponding sets are called RI 80 to RI 99. 

For instance, for the Sobol method, RI 80 consists 

of the six factors on the dark green background 

(environmental data, building and tiled floor 

lifetime, polystyrene extrusion process, variability 

of occupancy, and water network efficiency). RI 85 

is reached by adding the insulation lifetime. In 

addition, the water network efficiency should be 

selected to reach RI 80 for Sobol and MA-Morris. 

However, this factor is selected for RI 80 with 2LA-

Morris. It appears to be  

 
Figure 1: RI of the three SA methods. 
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selected to reach RI 95, highlighting a ranking 

difference for this factor between the methods. 

For a given share of RI (80 to 99 %), factors 

identified by Sobol are always identified with MA-

Morris. However, this method may select additional 

factors that are not selected by Sobol. As an 

example, in RI 80, MA-Morris selected two 

additional factors, the insulation lifetime and the 

covering lifetime, which are later selected in RI 85 

and in RI 90 by Sobol. On the contrary, there is a 

risk of missing influential factors with the 2LA-

Morris: some factors selected with Sobol may not 

be selected (e.g. the water network efficiency for 

RI 80, or the insulation lifetime in RI 85). MA-

Morris is thus preferred in order to avoid not 

selecting highly influential factors. 

Table 3. RI 80 to RI 99 factors for the two A-

Morris strategies and for Sobol for all indicators. 
Factor Sobol 2LA-Morris MA-Morris 

Const. material waste 97.5 97.5 97.5 

Envi. background data 80 80 80 

Fan energy consump. 99 99 97.5 

Lifetime: building 80 80 80 

Lifetime: covering 90 90 80 

Lifetime: doors 99 95 97.5 

Lifetime: insulation 85 90 80 

Lifetime: painting 99  99 

Lifetime: roof tile   99 

Lifetime: tiled floor 80 80 80 

Lifetime: windows   99 

Polystyrene: extrusion 

process 
80 80 80 

Steel rate in concrete 95 95 85 

Thermal bridge living room 99  97.5 

Transp. of const. material 99 99 99 

Variability Occupancy 80 80 80 

Variability Climate 90 85 90 

Water network eff. 80 95 80 

Nb. of factors for 80 % 6 5 8 

Nb. of factors for 85 % 7 6 9 

Nb. of factors for 90 % 9 8 10 

Nb. of factors for 95 % 10 11 10 

Nb. of factors for 97.5 % 11 12 14 

Nb. of factors for 99 % 16 14 18 

4.3. Factors’ ranking 

The comparison of the methods in terms of 

ranking of factors is given in Figure 2 (for the 

climate change indicator) and Table 4 (for all 

indicators). 

 
Figure 2: Correlations between Sobol and A-

Morris rankings. 

In Figure 2, factors are ranked by increasing order 

of influence for the Sobol method (x-axis). The 

ranking for the A-Morris methods can be read on the 

y-axis. The blue series represents the correlations 

between Sobol and 2LA-Morris, while the red series 

represents the correlations between Sobol and MA-

Morris. As the first blue point has coordinates (1,1), 

the most influential factor is the same for Sobol and 

2LA-Morris. The first red point has coordinates 

(1,2), meaning that the most influential factor for 

Sobol is the second most influential factor for MA-

Morris. The factors ranking is similar in this case 

study as an almost linear relation is found between 

the results of Sobol and A-Morris for the climate 

change indicator. However, visually the ranking of 

MA-Morris is a little closer to the one of Sobol. This 

is confirmed by the results of the linear regressions 

performed: the R² is higher for MA-Morris (0.971) 

than for 2LA-Morris (0.947). 

The ranking similarities are quantified using the 

Kendall rank correlation 𝜏 in Table 4. 𝜏 is more 

adapted than the R² to quantify the extent to which 

the order of factors is respected between two 

datasets. A value of +1 for  𝜏 indicates that the 
ranking is the same for all factors, while a value of 

-1 indicates a perfect ranking inversion. 

Correlations are weak when the 𝜏 value is close to 

zero. In this study, 𝜏 being generally close to +1, 

there are overall strong positive correlations 

between Sobol and A-Morris. For almost all 

indicators, 𝜏 is higher for the correlations between 
MA-Morris and Sobol, indicating that the MA-

Morris ranking is closer to the Sobol ranking, than 

the 2LA-Morris ranking. 2LA-Morris gives a better 

ranking only for the ionising radiation and human 

toxicity (red font). Both A-Morris methods perform 
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equally well, in terms of uncertain factors ranking, 

for the cumulative energy demand (yellow font).  

Table 4. Kendall rank correlation 𝜏 for all 

indicators. 

  𝝉 Sobol vs. 2LA-Morris 𝝉 Sobol vs. MA-Morris 

Clim. Change 0.884 0.920 

CED 0.957 0.957 

Resources 0.870 0.920 

Waste 0.928 0.935 

Water 0.710 0.754 

Particulate M. 0.862 0.949 

P. Ozone 0.891 0.913 

Rad. Waste 0.841 0.920 

Ioni. Rad. 0.877 0.862 

Hum. Tox. 0.855 0.826 

Eutrop. 0.833 0.891 

Acid. 0.688 0.899 

Ecotox. 0.819 0.877 

Land use 0.862 0.935 

4.4. Interaction effects 

In Figure 3 and Figure 4, the interaction effects 

found in A-Morris and Sobol are shown for the six 

most influential factors of two environmental 

indicators. The upper parts of Figure 3 and Figure 4 

give the first order Sobol indices (in red) and the 

total order indices (in blue). 𝑇𝑆𝑖 values significantly 

higher than 𝑆𝑖 indicate interactions effects between 
factors. The 2LA-Morris (respectively the MA-

Morris results) are shown in the middle part 

(respectively in the lower part) of Figure 3 and 

Figure 4. In these four graphs, the x-axis 

corresponds to the square of the mean of the 

absolute value of the EE over the trajectories √𝜇𝑖
∗; a 

large value for √𝜇𝑖
∗ representing a significant 

influence of the uncertain factor due to linear effect. 

The y-axis value corresponds to the square of the 

standard deviation of the EE √𝜎𝑖; a factor with a 

large value for √𝜎𝑖 is influential because it has 

strong non-linear or interaction effects. Factors with 

a large √𝜇𝑖
∗, a large √𝜎𝑖, or both are therefore 

particularily influential. 

In these results, the convergence of the first order 

Sobol indices is not completely reached due to the 

low sampling size chosen: the uncertainty bars 

obtained by bootstrapping remain large for the first 

order indices. However, for climate change,  𝑇𝑆𝑖 is 

only slightly larger than 𝑆𝑖 for the variability of 

climate, the background environmental data, the 

lifetime of insulation, and the polystyrene extrusion 

process. This indicates weak interaction effects 

between these factors. For the three factors 

mentioned previously, interaction or non-linear 

effects are more important for MA-Morris, than for 

2LA-Morris, as √𝜇𝑖
∗
 is closer to √𝜎𝑖. In addition, the 

lifetime of insulation has a √𝜎𝑖 larger than its √𝜇𝑖
∗
, 

suggesting the presence of non-linear or interaction 

effect in the two A-Morris strategies. In fact, 

interaction effects are expected in this case, as the 

number of replacements of the insulation material 

during the building lifetime depends on both the 

insulation and the building lifetimes. 

 

 

 
Figure 3: Detection of non-linear and interaction 

effects for the climate change indicator. 
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The same phenomenon is observed with the CED 

indicator in Figure 4. Small interactions effects are 

pointed out by the Sobol method for the variability 

of occupancy and the environmental background 

data. For these factors, √𝜎𝑗 is of the same order of 

magnitude as √𝜇𝑗
∗  for MA-Morris, but not for 2LA-

Morris. In addition, interaction effects are found on 

the insulation and building lifetime for both 2LA-

Morris and MA-Morris. 

 

 

 
Figure 4: Detection of non-linear and interaction 

effects for the cumulative energy demand indicator. 

The difference between the two A-Morris 

strategies is linked to the number of levels. In 2LA-

Morris, because only two levels are included, the 

effect of the factor is more likely to be interpreted as 

a linear effect. In comparison, MA-Morris includes 

as well non-linearities. 

5. DISCUSSION 

Overall, in this building LCA case study, the two 

strategies based on A-Morris required twelve times 

less computation effort. This is a lower bound since 

Sobol usually requires a larger sample size. This 

makes them more suitable for application in current 

practice by building designers. 

In A-Morris, the computation time depends on the 

number of uncertain factors included in the SA, as 

well as on the number of repetitions. 100 repetitions 

were performed in this study in order to run 

simulations in MA-Morris, with 200 different levels 

for the many-level factors (variability of climate, 

variability of occupancy and environmental 

background data). It was decided to integrate 

200 levels because a previous uncertainty analysis 

had shown that convergence was reached on the 

environmental indicators after this number of levels. 

However, the number of levels to include (and thus 

the number of repetitions) needs to be further 

investigated, in order to get good performances with 

as few simulations as possible. There is a potential 

for a reduction of the number of simulations with A-

Morris. 

Overall, MA-Morris strategy is more adapted 

than 2LA-Morris to handle many-level categorical 

uncertain factors. In addition, with MA-Morris, the 

preliminary step of selection of scenarios giving 

extreme results is not necessary since all available 

scenarios are investigated. The use of MA-Morris is 

thus easier and recommended. 

The results given by MA-Morris are closer to 

those given by the Sobol method in terms of relative 

influence quantification, and ranking of uncertain 

factors. The discrepancy between MA-Morris and 

Sobol between two of the environmental indicators 

must be further investigated. The PDF of these 

indicators display a long tail due to the 

environmental background data (see annex N of 

[10]). There is higher risk that Sobol samples in this 

tail and therefore overestimates the influence of 

background data. This risk could be minimised by 

somehow truncating the tails of the distributions.  

Three of the four categorical factors (variability 

of climate, environmental background data and 

polystyrene extrusion process) are among the most 

influential factors. They are selected from RI 80 for 

all SA methods. Categorical factors tend to have 
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more influence by construction because changing 

the level for each repetition creates variability in the 

results and induces non-linearities. In addition, there 

are some known interaction effects between the 

three most influential categorical factors and other 

factors, especially regarding the variability of 

occupancy (linked to many factors affecting the 

building use stage) and the environmental data 

(linked to all life cycle uncertain factors). Even 

though these interaction effects remain small based 

on the comparison of first order and total indices for 

Sobol, they are better identified with MA-Morris 

than with 2LA-Morris. 

The performance of MA-Morris should be 

verified for other case studies, for instance for cases 

with more non-linear or interaction effects, or for 

cases for which continuous factors have a larger 

influence than categorical ones. These conditions 

could be met assuming larger variation spaces for 

continuous factors: a larger variation space for some 

factors would indeed potentially increase the 

influence of these factors, which could have more 

interaction effects, and thus non-linear properties 

could emerge. An increase in these values 

corresponds to the case of the early design phase of 

a building project when the values of the factors are 

not yet well known. In addition, discrete factors 

were not taken into account in this case study. The 

behaviour of these factors is expected to be similar 

to the one of continuous factors in A-Morris, as the 

possible values have a logical order. However, this 

needs to be verified for case studies including 

continuous, discrete and categorical factors. 

6. CONCLUSION 

SA methods have been applied in DBES and 

building LCA to quantify the influence of uncertain 

factors. The reliable and recognised Sobol SA 

method is applicable for all kinds of uncertain 

factors, but requires large computational efforts. Its 

long computation time makes it hardly manageable 

for practical application in building projects. 

Previous research identified other SA methods as 

good compromises between accuracy and 

computation time. However, the ability of the low-

computationally intensive methods to deal with 

categorical inputs with more than two levels has not 

yet been investigated. That was the aim of this work, 

in which two strategies based on A-Morris are 

proposed to deal with many-level inputs. 

The results given by the two strategies were 

compared to those of the Sobol method, in order to 

investigate drivers among a set of 24 uncertain 

factors for the LCA of a single family passive house. 

The four categorical factors (variability of 

occupancy, variability of climate, uncertainties on 

the environmental background data, and choice of 

the blowing agent for the polystyrene extrusion) 

were found to be among the most influential factors. 

Both strategies have shown a good ability to 

quantify the influence of uncertain factors in twelve 

times fewer simulations than the Sobol method. The 

MA-Morris strategy, for which two different levels 

are randomly sampled for the categorical factors at 

each repetition, has shown results closer to those of 

Sobol for the investigated performance criteria. This 

strategy quantifies the relative influence in the same 

way as Sobol and does not miss any influential 

factors for a given share of relative influence. The 

factor ranking given by MA-Morris is closer to the 

one given by Sobol for 11 of the 14 environmental 

indicators. 

Further work is needed to investigate the 

performance of the MA-Morris method for other 

case studies with strong non-linear or interaction 

effects, or for which other types of factors (such as 

continuous or discrete factors) are more influential 

than the categorical factors. The optimal number of 

repetitions to perform needs to be examined as well. 
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