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Abstract
We study in this note the stability and inclusion of the jump set of minimizers of

convex denoising functionals, such as the celebrated “Rudin–Osher–Fatemi” functional,
for scalar or vectorial signals. We show that under mild regularity assumptions on the data
fidelity term and the regularizer, the jump set of the minimizer is essentially a subset of
the original jump set. Moreover, we give an estimate on the magnitude of jumps in terms
of the data. This extends old results, in particular of the first author (with V. Caselles
and M. Novaga) and of T. Valkonen, to much more general cases. We also consider the
case where the original datum has unbounded variation, and define a notion of its jump
set which, again, must contain the jump set of the solution.

Keywords Inverse problems, variational methods, total variation, imaging.

1 Introduction

The Total Variation regularizer was proposed for image denoising in [36] and has become
popular for its simplicity and its ability to recover edges and discontinuities in the restored
images. Even if it is largely outdated and has much lower performances than non-local [11, 7,
28], (learned) patches and dictionary-based [16, 42] or neural network based [21] techniques,
it remains useful as a regularizer for large scale inverse problems (sometimes combined with
machine learning and plug-n-play type [40] methods, see for instance [41]), as it is convex and
relatively simple to optimize, in particular in combination with other (ideally also convex)
terms.

An interesting question, answered first in [8], is whether a total variation-denoising method
can create spurious structures and discontinuities, or if the edge set of the original image is
preserved. Precisely, given f ∈ BV (Ω) a (scalar) function with bounded variation, represent-
ing the grey-level values of an image defined in a domain Ω ⊂ Rm (m an integer, 2 or 3 in
most applications), and with jump Jf , one considers u which solves:

min
u

ˆ
Ω

|Du| + 1
2

ˆ
Ω

|u− f |2dx. (1)
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The main result of [8] asserts that Ju ⊂ Jf (up to a negligible set for the surface measure);
in addition, u+ − u− ≤ f+ − f− a. e. on the jump set of u. It is also deduced that the
L2-gradient flow of the total variation, starting from an initial function u(0) ∈ Lm/(m−1)(Ω),
has a diminishing jump set: s > t > 0 ⇒ Ju(s) ⊂ Ju(t) (more precise results are found in [10]).
This is generalized to some integrands (such as the graph area, anisotropic total variations)
already in [8], and further variants (including strictly convex data terms) in [23, 24]; see
also [22]. The approach in the above mentioned papers consists in comparing the curvatures
of the level sets of minimizers. One shows that at (approximate) continuity points of f , these
curvatures are determined by the level, and ordered in a way which excludes the possibility
that the boundaries of two different level sets coincide. The technique is relatively simple and
elegant, and even allows to derive basic regularity results away from the jumps [31, 9], but it
is restricted to the scalar case.

An alternative approach was proposed by T. Valkonen in [38]. It relies only on regularity
properties of the regularizer, and therefore is not limited to the scalar case. In particular, the
case where u, f are vector valued and the total variation is defined by means of the Frobenius
norm of the matrix Du should enter the framework of [38], even if this does not seem to be
explicit in the literature. One reason for this is the relative complexity of the criterion in [38]
(the double-Lipschitz comparability condition), which is not always straightforward to check
in practice, and the technicality of the proofs which most probably limited the audience of
the papers [38, 39], despite their interest and originality.

In this new study, we introduce a general approach for addressing the issue of jump
inclusion and control in total variation denoising and similar variational problems. Essentially,
we show that jump inclusion occurs when the regularizer is differentiable with respect to
an elementary class of inner variations of the solution. We also derive an estimate on the
size of the jump (see for instance [10]). The approach applies to many regularizers, such
as the Frobenius or (more surprisingly) the Nuclear (or Trace) Norm-based total variation
in a vectorial setting1 (see for instance [19, 15]). More interestingly, while the extension
of Valkonen’s approach to higher order regularizers, addressed in [39], excludes the “Total
Generalized Variation” (TGV) of [6], a relatively simple modification of our proof allows
to show jump inclusion in a slightly regularized version of that case, at least whenever the
solution u is bounded (which can be enforced by a box type constraint in the minimization).
The result for the exact “TGV” case remains open and, if true, probably requires a mix of
our techniques and the ideas in [39], which address successfully other types of inf-convolution
based regularizers.

Our approach is based on a very simple observation: at a jump point, the data term (such
as the squared norm in (1)) will have different left and right derivatives along inner variations
orthogonal to the jump, so that, if the regularizer is differentiable, some inequality is derived
which involves only the data term. The idea can be illustrated by an elementary 1D example:
consider Ω =]−1, 1[⊂ R, f ∈ BV (Ω), and let u minimize (1). Consider then x̄ ∈ Ju, with
u+(x̄) > u−(x̄). Without loss of generality we assume u+(x̄) is the right-sided limit of u
at x̄. Denote f+(x̄) the right-sided limit of f , and f−(x̄) the left-sided limit (with possibly
f+(x̄) ≤ f−(x̄)). Then, if φ is a smooth approximation of χ[x̄−δ,x̄+δ], for δ > 0 small, for

1Precisely, our results hold for Schatten-type norms, but not Ky-Fan type norms such as the Spectral Norm.
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τ ∈]0, δ[ one has:ˆ
Ω

(u(x+ τφ(x)) − f(x))2 − (u(x) − f(x))2dx ≈ τ [(u+(x̄) − f−(x̄))2 − (u−(x̄) − f−(x̄))2],

ˆ
Ω

(u(x− τφ(x)) − f(x))2 − (u(x) − f(x))2dx ≈ τ [(u−(x̄) − f+(x̄))2 − (u+(x̄) − f+(x̄))2]

as τ → 0. On the other hand, since the total variation of u(x ± τφ(x)) is the same as the
total variation of u, thanks to minimality of u in (1) we deduce, sending τ → 0:

(u+(x̄) − f−(x̄))2 − (u−(x̄) − f−(x̄))2 ≥ 0,
(u−(x̄) − f+(x̄))2 − (u+(x̄) − f+(x̄))2 ≥ 0,

that is: (u+(x̄) −u−(x̄))(u+(x̄) +u−(x̄) − 2f−(x̄)) ≥ 0 and (u+(x̄) −u−(x̄))(u+(x̄) +u−(x̄) −
2f+(x̄)) ≤ 0. We deduce that

f−(x̄) ≤ u+(x̄) + u−(x̄)
2 ≤ f+(x̄)

(and in particular f−(x̄) ≤ f+(x̄)), so that either x̄ ∈ Jf , or (u+ + u−)/2 = f at x̄. This is
elementary, and almost the conclusion we would like to reach.

Actually proving the jump set inclusion (and an estimate on the jump) in any dimension,
following the same idea, is not much harder but requires a more subtle choice of the varia-
tion. The solution is found in Valkonen’s work [38, Sec. 6], which uses a competitor for the
minimization problem given by a convex combination of the minimizer itself and its inner
variation, see Lemma 2 below. We show here (by a much simpler argument/calculation than
in [38]) that together with the differentiability of the regularizer, it is enough to get a general
estimate on the jump of u. This is done in Section 3 (Theorem 1).

Further (Sec. 4), we discuss general regularizers which satisfy the assumptions for our
main result to hold. In particular, we find that the Frobenius or Nuclear-norm based Total
Variations for vectorial-valued images meet our differentiability criterion (Section 4.2). In
Section 5 we discuss conditions which ensure that the solution u to our variational problems,
in the unconstrained case, are locally bounded. In Section 6 we show how a small adjustment
of the proof extends the result to the inf-convolution type regularizers such as smoothed
variants of the Total Generalized Variation (TGV) [6], studied in [39] again with a more
complicated approach, and only partial conclusions.

Section 7 is devoted to the case where the data term is not necessarily of bounded variation:
in that case, we introduce a notion of jump (as the set of points where the function differs
significantly on both sides of a hyperplane) for which we still can show that it must contain the
jump set of the solution. Interestingly, this should apply to data term consisting of the sum
of a BV function and a bounded oscillating noise, such as many examples of noisy images.
We provide, as an illustration, such an example in Section 8 and show the reconstruction with
various types of color total variations.

2 Preliminaries

2.1 General notation

We will consider Rn-valued functions, n ≥ 1, defined on some open subset of Rm, m ≥ 1 (most
of the proofs are written for m ≥ 2, yet the case m = 1 follows by trivial simplification). Given
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x ∈ Rm, r > 0, ν ∈ Sm−1 a unit vector, one denotes:
Br(x) = {y ∈ Rm : |y − x| < r}, B±

r (x, ν) = {y ∈ Br(x) : ± ν · (y − x) ≥ 0},
Bm−1

r (x, ν) = Br(x) ∩ (x+ ν⊥), Qr(x, ν) = Bm−1
r (x, ν)+]− r, r[ν,

Q+
r (x, ν) = Bm−1

r (x, ν) + [0, r[ν, Q−
r (x, ν) = Bm−1

r (x, ν)+]− r, 0]ν.
(2)

where | · | is the standard Euclidean norm.
For µ a Radon measure and k ≤ m, we define for any x ∈ Ω the k-dimensional density of

µ at x as the limit:
Θk(µ, x) = lim

r→0

µ(Br(x))
ωkrk

,

when it exists. Here, ωk is the volume of the unit ball of dimension k.

2.2 The approximate discontinuity set and the jump set

Let w ∈ L1
loc(Ω)n. Following [3, Definition 3.63], we say that w has an approximate limit at

x ∈ Ω if there exists z ∈ Rn such that

lim
r→0+

 
Br(x)

|w(y) − z|dy = 0. (3)

If no such z exists, x is called an approximate discontinuity point of w. The set of all
approximate discontinuity points of w is denoted Sw. It is well known that Lm(Sw) = 0 [3,
Proposition 3.64].

On the other hand, if there exist νw ∈ Sm−1, w± ∈ Rn, w− ̸= w+, such that

lim
r→0+

 
B±

r (x,νw)
|w(y) − w±|dy = 0, (4)

x is called an (approximate) jump point of w. The set of all jump points of w is called the
(approximate) jump set of w and is denoted by Jw. Clearly Jw ⊂ Sw. However, the condition
defining jump points is rather rigid: even for a general locally integrable function, the jump
set is countably Hm−1-rectifiable [13]—that is, it can be covered up to a Hm−1-negligible set
by a countable union of Lipschitz or, equivalently, C1 graphs [3, p. 80].

We observe that B±
r (x, νw) may be replaced with Q±

r (x, νw) in (4) without changing the
definition. Moreover, if x ∈ Ω \ Sw, then (4) holds with w+ = w− = z and any νw ∈ Sm−1.
Thus, (4) defines a (multi)function x 7→ {w+(x), w−(x)} on Jw ∪ (Ω \ Sw). For x ∈ Jw,
the triple (w+(x), w−(x), νw(x)) is defined uniquely up to a permutation of (w+, w−) and a
change of sign of νw. In particular, the tensor product (w+(x) − w−(x)) ⊗ νw(x) is uniquely
defined for x ∈ Jw (and for x ∈ Ω \ Sw, where it vanishes).

We recall the notion of Lebesgue points closely related to approximate continuity. If µ is
a Radon measure on Ω and w ∈ Lp

loc(Ω, µ)n, p ∈ [1,∞[, we say that x ∈ Ω is a (p-)Lebesgue
point of w (with respect to µ), if

lim
r→0+

 
Br(x)

|w(y) − w(x)|pdµ(y) = 0.

It is known that µ-almost every x ∈ Ω is a Lebesgue point for any given w [17, Section 1.7].
We observe that every p-Lebesgue point is a q-Lebesgue point if 1 ≤ q ≤ p; if w ∈ L∞

loc(Ω, µ)n,
the notion does not depend on p. We will use the notion of Lebesgue points in particular for
functions in the space Lp(Γ)n, with Γ a C1 graph contained in Ω—we note that this space
coincides with Lp(Ω,Hm−1 ¬ Γ)n.
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2.3 Functions of bounded variation

Throughout the paper, we will consider convex functionals E defined in L1
loc(Ω)n, n ≥ 1, for

Ω ⊂ Rm an open set. We will work with minimizers of E , which will be assumed to belong to
BVloc(Ω)n. We recall that

BV (Ω)n =
{
w ∈ L1(Ω)n : TV (w) < ∞

}
where the total variation TV is defined by

TV (w) = sup
{

−
ˆ
w divφdx : φ ∈ C∞

c (Ω;Rm), |φ(x)| ≤ 1 for x ∈ Ω
}
.

It is easily checked (from Riesz’s theorem) that TV (w) is finite if and only if the distributional
derivative Dw is a bounded Radon measure in Ω, in which case

TV (w) =
ˆ

Ω
|Dw| = |Dw|(Ω).

Then, one defines BVloc(Ω)n = ⋂
A⊂⊂ΩBV (A)n, where the intersection is on all open sets

whose closure lies in Ω.
By the Federer–Vol’pert theorem [3, Theorem 3.78], if w ∈ BVloc(Ω)n, the set Sw is count-

ably Hm−1-rectifiable and Hm−1(Sw \ Jw) = 0. In particular, the (multi)function {w+, w−}
is defined Hm−1-a. e. in Ω. Thus also the precise representative w̃ of w given by

w̃ = (w+ + w−)/2

is defined up to Hm−1-null sets. In general, w ∈ BVloc(Ω)n admits one-sided traces on any
oriented, countably Hm−1-rectifiable subset of Ω, see [3, Theorem 3.77]. Those traces coincide
with w± Hm−1-a. e. (up to permutation) [3, Remark 3.79].

The Radon measure Dw can be decomposed as:

Dw = Daw +Dsw , Daw = ∇wLm , Dsw = Dcw + (w+ − w−) ⊗ νw Hm−1 ¬
Jw

where
• Daw is the absolutely continuous part of Dw, Dsw the singular part, and ∇w ∈
L1(Ω)n×m is the Radon–Nikodym derivative of Dw with respect to the Lebesgue mea-
sure Lm;

• Dcw is the “Cantor part” of Dw, which is singular with respect to the Lebesgue measure
and vanishes on sets of finite (m− 1)-dimensional Hausdorff measure Hm−1;

• the last term (w+ − w−) ⊗ νw Hm−1 ¬
Jw is called the “jump part” of Dw.

The matrix (Dcw/|Dcw|)(x) appearing in the polar decomposition of the Cantor part Dcw =
(Dcw/|Dcw|)|Dcw| is known to have rank one for |Dcw|-a. e. x ∈ Ω [1], analogously to the
jump part. We refer to [3] for more details.

Similarly [37], BD(Ω) is defined as the space of displacements u ∈ L1(Ω)m such that the
symmetrized gradient Eu := (Du+DuT )/2 is a bounded Radon measure, and one has:

Eu = Eaw + Esw , Eaw = e(w) Lm , Esw = Ecw + (w+ − w−) ⊙ νw Hm−1 ¬
Jw

with e(w) ∈ L1(Ω)m×m the approximate symmetrized gradient, Ecw the Cantor part and
⊙ the symmetrized tensor product (a ⊙ b := ((aibj + ajbi)/2)m

i,j=1). Note that an analog of
Alberti’s rank one theorem also holds in BD, see [12].
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3 Setting and main result

Let Ω ⊂ Rm, m ≥ 1 be an open set. We consider functionals E : L1
loc(Ω)n → [0,∞] of form

E(w) = F(w − f) + R(w),

where f ∈ L1
loc(Ω)n. We assume the fidelity F : L1

loc(Ω)n → [0,∞] is given by

F(w) =
ˆ

Ω
ψ(w)

where ψ : Rn → [0,∞[ is convex. As for the regularizer R : L1
loc(Ω)n → [0,∞], in general

we only assume that it is convex, without prescribing a particular structure. The regularizer
contains prior information of the reconstructed image u, and will usually be defined as a
convex integral of the distributional gradient Dw, possibly with an additional box constraint
w(x) ∈ K a. e. for some closed convex set K ⊂ Rn, enforced by prescribing R(w) = ∞ if w
does not satisfy it.

Our aim in this paper is to provide an estimate on the jumps of minimizers of E , that is,
functions u ∈ L1

loc(Ω)n satisfying

E(u) = inf
{

E(w) : w ∈ L1
loc(Ω)n

}
. (5)

In the case that ψ is strictly convex, there is at most one u. However, without further
assumptions, u might not exist.

Let φ ∈ C∞
c (Ω)n. For w ∈ L1

loc(Ω)n and τ ∈ R with |τ | sufficiently small we put

wφ
τ (x) = w(x+ τφ(x)).

Suppose that R(w) < ∞. We say that R is differentiable along inner variations at w if the
limit

lim
τ→0

1
τ (R(wφ

τ ) − R(w)) (6)

exists for all φ ∈ C∞
c (Ω)n. In practice, we will only use directional inner variations, where φ

has the form φ̃ν for ν ∈ Sm−1 and φ̃ ∈ C∞
c (Ω).

Theorem 1. Suppose that f ∈ BVloc(Ω)n and u is minimizing in (5) with E(u) ̸= ∞. We
assume

(H1) u ∈ BVloc(Ω)n,

(H2) u, f ∈ L∞
loc(Ω)n or Dψ is bounded,

(H3) R is differentiable along inner variations at u.

If ψ is C1 and strictly convex, then Hm−1(Ju \ Jf ) = 0. If ψ is C2, then

(u+ − u−) ·A (u+ − u−) ≤ (f+ − f−) ·A (u+ − u−) Hm−1-a. e. on Ju, (7)

where
A =

ˆ 1

0
D2ψ(u− − f− + s(u+ − f+ − u− + f−))ds.

6



In (7), the selections of u± and f± are chosen in a mutually consistent manner. Technically
they are determined by a chosen orientation of the sequence of C1 graphs covering Ju (see
Section 2.3), but evidently (7) does not depend on this choice. It follows from (7) that

(u+ − u−) ·A (u+ − u−) ≤ (f+ − f−) ·A (f+ − f−),

which can be translated into a bound on the size of jumps of u in terms of f . In particular
in the strongly convex, Lipschitz-gradient case

λI ≤ D2ψ ≤ ΛI with 0 < λ ≤ Λ, (8)

we obtain
|u+ − u−| ≤

√
Λ/λ |f+ − f−|.

However, (7) also carries information about the jump direction in the value space Rn. The
proof of Theorem 1 is postponed after the proofs of the following two lemmata.

Lemma 2. Let u be the minimizer of E. Suppose that the limit (6) exists for w = u. For
ϑ ∈ [0, 1], we denote

uφ
ϑ,τ = ϑuφ

τ + (1 − ϑ)u.
Then, for ϑ ∈ [0, 1],

lim inf
τ→0+

1
τ (F(uφ

ϑ,τ − f) − F(u− f)) + lim inf
τ→0+

1
τ (F(uφ

ϑ,−τ − f) − F(u− f)) ≥ 0. (9)

Proof. By minimality,

0 ≤ lim inf
τ→0+

1
τ (E(uφ

ϑ,±τ ) − E(u)) = lim inf
τ→0+

1
τ (R(uφ

ϑ,±τ ) − R(u) + F(uφ
ϑ,±τ − f) − F(u− f)).

By our assumption, the function Rφ : ]−τ0, τ0[→ [0,∞[ defined by

Rφ(τ) = R(uφ
τ )

for τ0 small enough is differentiable at τ = 0. Thus, by convexity of R,
1
τ (R(uφ

ϑ,±τ ) − R(u)) ≤ ϑ
τ (R(uφ

±τ ) − R(u)) → ±ϑR′
φ(0) as τ → 0.

Therefore,
0 ≤ ±ϑR′

φ(0) + lim inf
τ→0+

1
τ (F(uφ

ϑ,±τ − f) − F(u− f)).

We conclude by summing together the two obtained inequalities.

We note that the Lemma 2 is the only place in the proof of Theorem 1 where we use
convexity of R (or differentiability of R for that matter). In what follows, we will work directly
with inequality (9). Thus, we could drop the convexity hypothesis altogether and instead
assume explicitly that R is differentiable along mixed variations uφ

ϑ,τ (with fixed ϑ ∈ [0, 1]),
leading directly to (9). In this way it might be possible to treat lower order perturbations of
convex regularizers or the case of quasiconvex integrands, etc. However, we do not know simple
and natural examples for which it is clear that such differentiability holds—one may check
in particular that the celebrated Mumford–Shah functional [33] is not differentiable along
mixed variations near jump points. In fact, also our proof of differentiability for concrete
regularizers (Theorem 4) uses the duality formula for convex integrands. Thus, we decided
to keep the simpler assumption of differentiability along inner variations in the statement of
our main result and leave the discussion of non-convex regularizers to a possible future work.
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Lemma 3. Assume (H1) and (H2) hold. Let Γ ⊂ Qr0(x0, ν0) ⊂ Ω be a C1 graph admitting a
graphical parametrization γ : Bm−1

r0 (x0, ν0) → Qr0(x0, ν0). Let φ ∈ C∞
c (Ω)m be such that the

support of φ is contained in Qr(x0, ν0), 0 < r ≤ r0, and φ = ν0 φ̃, φ̃ ∈ C∞
c (Ω). Moreover,

assume that 0 ≤ φ̃ ≤ 1, restrictions of φ̃ to lines parallel to ν0 attain their maxima on Γ, and

∂φ̃

∂ν0
(x) = 0 for x close to Γ. (10)

Then

lim sup
τ→0+

1
τ (F(uφ

ϑ,τ − f) − F(u− f))

≤
ˆ

Γ
φ̃

(
ψ(ϑu+ + (1 − ϑ)u− − f−) − ψ(u− − f−)

)
dγ#Lm−1 +Cϑ |ν0 ·Du| (Qr(x0, ν0)\Γ),

lim sup
τ→0+

1
τ (F(uφ

ϑ,−τ − f) − F(u− f))

≤
ˆ

Γ
φ̃

(
ψ(ϑu− + (1 − ϑ)u+ − f+) − ψ(u+ − f+)

)
dγ#Lm−1 +Cϑ |ν0 ·Du| (Qr(x0, ν0)\Γ),

where γ#Lm−1 denotes the pushforward of Lm−1 by γ and

C := sup
{

|Dψ(ξ)| : ξ ∈ Rn, |ξ| ≤ ∥u∥L∞(Qr0 (x0,ν0))n + ∥f∥L∞(Qr0 (x0,ν0))n

}
(11)

is finite by virtue of (H2).

Proof. By an isometric change of coordinates, we will assume that ν0 = em, x0 = 0 and denote
x = (x′, xm), Qr(x0, ν0) = Qr, Bm−1

r (x0, ν0) = Bm−1
r , γ(x′) = (x′, γ̃(x′)) for x′ ∈ Bm−1

r , so
that Γ = {γ(x′) : x′ ∈ Bm−1

r }. By our assumption, we have

x+ τφ(x) = (x′, xm + τφ̃(x)).

We take τ > 0 small enough so that the map x 7→ x+τφ(x) is a diffeomorphism. In particular,
xm 7→ xm + τφ̃(x′, xm) is a diffeomorphism for every x′ ∈ Bm−1

r . By (10), we can also assume

φ̃(x′, xm) = φ̃(γ(x′)) whenever − τφ̃(x′, xm) ≤ xm − γ̃(x′) ≤ τφ̃(x′, xm).

We will prove the first part of the assertion. The proof of the second one is the same. We
rewrite

F(uφ
θ,τ − f) − F(u− f) =

ˆ
Bm−1

r

ˆ γ̃(x′)

γ̃(x′)−τφ̃(γ(x′))
ψ(uφ

ϑ,τ − f) − ψ(u− f) dxm dx′

+
ˆ

Bm−1
r

ˆ
]−r,r[\[γ̃(x′)−τφ̃(γ(x′)),γ̃(x′)]

ψ(uφ
ϑ,τ − f) − ψ(u− f) dxm dx′.

Using [3, Theorem 3.108], for Lm−1-a. e. x′ ∈ Bm−1
r we have

1
τ

ˆ γ̃(x′)

γ̃(x′)−τφ̃(γ(x′))
ψ(u− f) dxm → φ̃ ψ(u− − f−)

∣∣∣∣
γ(x′)

,
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1
τ

ˆ γ̃(x′)

γ̃(x′)−τφ̃(γ(x′))
ψ(uφ

ϑ,τ − f) dxm → φ̃ ψ(ϑu+ + (1 − ϑ)u− − f−)
∣∣∣∣
γ(x′)

,

where we recall that we have chosen u−, f− (resp. u+, f+) to be the approximate limits
corresponding to traces of u, f along Γ “from below” (resp. “from above”), consistently with
the choice of u±(x0) given by ν0.

On the other hand, identifying u with its precise representative, the slicing properties of
BV functions [3, §3.11, Theorem 3.107] ensure that for Lm−1-a. e. x′ ∈ Bm−1

r the function
ux′ : xm 7→ u(x′, xm) is in BV (]− r, r[)n, and we can write for L1-a. e. xm ∈]− r, r[:

uφ
ϑ,τ (x′, xm) − u(x′, xm) = ϑDux′

(]
xm, xm + τφ̃(x′, xm)

[)
.

Therefore∣∣∣ψ(uφ
ϑ,τ − f) − ψ(u− f)

∣∣∣ (x′, xm) =
ˆ 1

0
Dψ(u+ t(uφ

ϑ,τ − u) − f)dt · (uφ
ϑ,τ − u)

≤ Cϑ |Dux′ |
(]
xm, xm + τφ̃(x′, xm)

[)
≤ Cϑ |Dux′ |

(]
xm, xm + τφ̃(γ(x′))

[)
,

where C is defined in (11) and we have used that φ̃(x′, ·) is maximal at γ̃(x′). Thus, for
Lm−1-a. e. x′ ∈ Bm−1

r and small enough τ > 0,

1
τ

ˆ
]−r,r[\[γ̃(x′)−τφ̃(γ(x′)),γ̃(x′)]

∣∣∣ψ(uφ
ϑ,τ − f) − ψ(u− f)

∣∣∣ dxm

≤ C
ϑ

τ

ˆ ˆ
χ]−r,r[\[γ̃(x′)−τφ̃(γ(x′)),γ̃(x′)](xm)χ]xm,xm+τφ̃(γ(x′))[(t) d

∣∣Dux′
∣∣(t)dxm.

The integrand is not zero only when xm < t < xm + τφ̃(γ(x′)) and either −r < xm < γ̃(x′) −
τφ̃(γ(x′)) or γ̃(x′) < xm ≤ r, in particular one has t ∈]− r, r[\{γ̃(x′)} and t − τφ̃(γ(x′)) ≤
xm ≤ t. Using Fubini’s theorem, we deduce that this expression is bounded by

Cϑφ̃(γ(x′))|Dux′ |(]−r, r[\{γ̃(x′)}).

Appealing to [3, Theorem 3.107],

1
τ

ˆ
Bm−1

r

ˆ
]−r,r[\[γ̃(x′)−τφ̃(γ(x′)),γ̃(x′)]

ψ(uφ
ϑ,τ − f) − ψ(u− f) dxm dx′ ≤ Cϑ|ν0 ·Du|(Qr \ Γ).

Proof of Theorem 1. Let (Γi)∞
i=1 be a sequence of C1 graphs that covers Ju up to a Hm−1-null

set. Let us fix an index i. By [3, eq. (2.41) on p. 79], for Hm−1-a. e. x0 in Ju ∩ Γi

Θm−1(|Du| ¬ (Ω \ Γi), x0) = 0. (12)

We choose such an x0, and assume in addition that x0 is a Lebesgue point for u± and f±

with respect to Hm−1 ¬ Γi. We take ν0 = νu(x0). For r0 > 0 small enough Qr0(x0, ν0) ⊂ Ω
and Γ := Γi ∩ Qr0(x0, ν0) has a graphical parametrization γ : Bm−1

r0 (x0, ν0) → Qr0(x0, ν0).
Moreover, since Γ is tangent to x0 + ν⊥

0 at x0, possibly decreasing r0, we can assume that
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γ(x′) ∈ x′ + [−r/2, r/2]ν0 for x′ ∈ Bm−1
r (x0, ν0), 0 < r < r0 and construct a sequence of

φ̃ satisfying the assumptions of Lemma 3 that converges to 1 on Qr(x0, ν0) ∩ Γ. Then, by
Lemmata 2 and 3,

0 ≤
ˆ

Qr(x0,ν0)∩Γ
ψ(ϑu+ + (1 − ϑ)u− − f−) − ψ(u− − f−) dγ#Lm−1

+
ˆ

Qr(x0,ν0)∩Γ
ψ(ϑu−+(1−ϑ)u+−f+)−ψ(u+−f+) dγ#Lm−1+2Cϑ |ν0 ·Du| (Qr(x0, ν0)\Γ).

Dividing by Lm−1(Bm−1
r ) ∼ rm−1 and passing to the limit r → 0+, we get

0 ≤ ψ(ϑu+ + (1 − ϑ)u− − f−) − ψ(u− − f−) + ψ(ϑu− + (1 − ϑ)u+ − f+) − ψ(u+ − f+)

at x0 by (12). By convexity of ψ,

ψ(ϑu+ + (1 − ϑ)u− − f−) − ψ(u− − f−) ≤ ϑDψ(ϑu+ + (1 − ϑ)u− − f−) · (u+ − u−),

ψ(ϑu− + (1 − ϑ)u+ − f+) − ψ(u+ − f+) ≤ ϑDψ(ϑu− + (1 − ϑ)u+ − f+) · (u− − u+).

Summing up,

0 ≤ ϑ
(
Dψ(ϑu+ + (1 − ϑ)u− − f−) −Dψ(ϑu− + (1 − ϑ)u+ − f+)

)
· (u+ − u−).

Dividing the inequality by ϑ and letting ϑ → 0+ yields

0 ≤
(
Dψ(u− − f−) −Dψ(u+ − f+)

)
· (u+ − u−). (13)

If f+ = f− and ψ is strictly convex, then Dψ is strictly monotone and we get a contradiction
unless u+ = u−: this shows that Hm−1(Ju \ Jf ) = 0. On the other hand, if ψ ∈ C2, applying
the fundamental theorem of calculus to the function

s 7→ Dψ
(
u− − f− + s(u+ − f+ − u− + f−)

)
· (u+ − u−),

and using (13) we obtain (7).

Remark 1. Assumption (H1) will hold as soon as R is coercive in BV (Ω)n; the next section 4
discusses a class of such regularizers for which (H3) holds as well. As for (H2), it is trivially
satisfied if ψ is globally Lipschitz. Otherwise, we need to ensure that u and f are locally
bounded. Assuming that f ∈ L∞(Ω)n, a minimizer of E will be bounded if n = 1 and ψ is
coercive, while if n ≥ 1 this requires various types of assumptions on ψ and R, see Section 5.
Alternatively, we can enforce it by considering a constrained minimization problem, which
amounts to replacing R with

RK := R + ι{w∈L1
loc(Ω)n : w(x)∈K for a. e. x∈Ω}

where K is bounded, closed and convex (here ιU denotes the convex-analytic characteristic
function of U ⊂ L1

loc(Ω)n, which is 0 in U and ∞ outside). We observe that if R satisfies
(H3), then RK satisfies it as well. Moreover, if R is coercive in BV (Ω)n (that is, w ∈ BV (Ω)n

whenever R(w) < ∞), then RK is as well.
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4 Differentiable regularizers

4.1 General form

In this section we give some examples of functionals R whose domain contains BV (Ω)n and
that are differentiable along inner variations, in particular assumptions (H1) and (H3) in
Theorem 1 are satisfied whenever R(u) < ∞. We assume for simplicity that Ω is bounded.
Let ϱ : Rn×m → [0,∞[ be convex and satisfy

ϱ(A) ≤ C(1 + |A|) for ξ ∈ Rn×m (14)

with C > 0. For a vector Radon measure µ on Ω we denote by µa its density with respect to
the Lebesgue measure on Ω and by µs its Lebesgue singular part, i. e.

dµ = µadLm + dµs, Lm ⊥ µs.

Moreover, for ξ ∈ Rn×m we denote

ϱ∞(ξ) = lim
t→∞

1
t ϱ(tξ).

Then
dϱ(µ) = ϱ(µa)dLm + ϱ∞

(
µs

|µs|

)
d|µs|

defines a Radon measure ϱ(µ) and

R(w) =
{
ϱ(Dw)(Ω) if w ∈ BV (Ω)n,
∞ otherwise (15)

defines a convex functional on L1
loc(Ω) [14]. At least when ϱ satisfies a lower bound ϱ(A) ≥

C ′|A| with C ′ > 0, R is lower semicontinuous and E attains its minimum at u ∈ BV (Ω).

Theorem 4. Suppose that

(D1) the function τ 7→ ϱ (A(I + τB)) is differentiable at τ = 0 for any A ∈ Rn×m and any
B ∈ Rm×m,

(D2) the function τ 7→ ϱ∞ (A(I + τB)) is differentiable at τ = 0 for any A ∈ Rn×m of rank
1 and any B ∈ Rm×m.

Then R is differentiable along inner variations at any w ∈ D.

The proof of Theorem 4 follows along the lines of [18, Chapter 10] (where the case of total
variation is considered). The main point is the following change of variables formula.

Lemma 5. Let F : Ω → Ω be a diffeomorphism (C1 up to the boundary) and let w ∈ BV (Ω)n.
Then

R(w ◦ F ) =
ˆ

Ω
| detD(F−1)| dϱ(DwDF ◦ F−1). (16)

Proof. We will use the dual representation of R as given in [14, Lemma 1.1], according to
which ˆ

Ω
φdϱ(µ) = sup

h∈Dϱ

ˆ
Ω
φh · dµ−

ˆ
Ω
φϱ∗(h)dLm, (17)

11



for µ ∈ M(Ω)n×n and φ ∈ C(Ω) with φ ≥ 0, where

Dϱ = {h ∈ Cc(Ω)n×m : ϱ∗(h) ∈ L1(Ω)}.

We recall [18, Thm. 1.17][3, Thm. 3.9] that for each w ∈ BV (Ω)n there exists a sequence
(wk) ⊂ C∞(Ω)n such that wk → w in L1(Ω)n and

ˆ
Ω

|Dwk|dLm → |Dw|(Ω),

in particular Dwk
∗
⇀ Dw in M(Ω)n×m. It is easy to check that wk ◦ F → w ◦ F in L1(Ω)n.

We also haveˆ
Ω

|D(wk ◦ F )| ≤
ˆ

Ω
|Dwk ◦ F | |DF | =

ˆ
Ω

|Dwk| |DF ◦ F−1|| detD(F−1)|,

in particular wk ◦ F is bounded in BV (Ω)n, whence w ◦ F ∈ BV (Ω)n and

D(wk ◦ F ) ∗
⇀ D(w ◦ F ) in M(Ω)n×m. (18)

For any h ∈ Cc(Ω)n×m, we can calculate
ˆ

Ω
h ◦ F ·D(wk ◦ F ) =

ˆ
Ω
h ◦ F ·Dwk ◦ F DF =

ˆ
Ω
h ·Dwk DF ◦ F−1| detD(F−1)|.

Using (18), we pass to the limit k → ∞ obtaining
ˆ

Ω
h ◦ F · dD(w ◦ F ) =

ˆ
Ω

| detD(F−1)|h · dDwDF ◦ F−1. (19)

Note that ˆ
Ω
ϱ∗(h ◦ F ) =

ˆ
Ω

| detD(F−1)|ϱ∗(h), (20)

in particular h ∈ Dϱ iff h ◦ F ∈ Dϱ. Thus, using the dual representation formula (17) in
conjunction with (19) and (20), we obtain the desired equality.

Proof of Theorem 4. We take Fτ (x) = x + τφ(x) with φ ∈ C∞
c (Ω)m, x ∈ Ω and τ small

enough. By the representation formula (16) and recalling the definition of the measure
ϱ(DwDFτ ◦ F−1

τ ),

R(w ◦ Fτ ) =
ˆ

Ω
detD(F−1

τ ) ϱ(DwaDFτ ◦ F−1
τ ) dLm

+
ˆ

Ω
detD(F−1

τ ) ϱ∞
(

Dws

|Dws| DFτ ◦ F−1
τ

)
d|Dws|. (21)

Note that DFτ ◦F−1
τ = I + τDφ ◦F−1

τ . Denoting ϱx(τ) = ϱ(Dwa(x)DFτ ◦F−1
τ (x)), we have

for τ ̸= 0

1
τ (ϱx(τ) − ϱx(0)) = 1

τ (ϱ(Dwa(x)(I + τDφ(x))) − ϱ(Dwa(x)))
+ 1

τ (ϱ(Dwa(x)(I + τDφ ◦ F−1
τ (x))) − ϱ(Dwa(x)(I + τDφ(x))))
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Using assumption (D1), the global Lipschitz continuity of ϱ and the continuity of τ 7→ F−1
τ ,

we deduce that ϱx is differentiable at τ = 0 for Lm-a. e. x ∈ Ω and there exists Cϱ,φ > 0 such
that

1
τ |ϱx(τ) − ϱx(0)| ≤ Cϱ,φ|Dwa(x)|.

Thus, by dominated convergence, the first integral in (21) is differentiable at τ = 0. Similarly,
appealing to Alberti’s rank-one theorem [3, Thm. 3.94] [1] and assumption(D2), we show that
the second integral in (21) is differentiable at τ = 0.

4.2 Examples

A simple way to ensure that conditions (D1) and (D2) of Theorem 4 are satisfied is to assume
that ϱ and ϱ∞ are differentiable everywhere except at 0. In particular, vectorial (such as
defined by the Frobenius norm) and anisotropic (vectorial) total variations given by any
norm on Rn×m that is differentiable outside 0, such as ℓp,q, p, q ∈]1,∞[, are differentiable
along inner variations. The same is not true in the limiting cases 1,∞. In fact there are
known examples where the assertion of Theorem 1 fails in these cases, see [26].

A more striking example is given by the Nuclear or Trace norm:

ϱ(A) = Trace((AAT )
1
2 ), (22)

which is the sum of the singular values. The function:

τ 7→ A(I + τB)(I + τB)TAT

is a one-parameter analytic function with values symmetric n × n matrices, so that by [35,
p. 39], the squared singular values can also be described by analytic functions (and in par-
ticular, in a neighborhood of τ = 0, the positive eigenvalues stay positive). In addition, the
kernel of (I + τB)TAT is the same as the kernel of AT for small τ , so that the number of
non-zero singular values remains constant near 0. We deduce that the sum of the singular
values is also an analytic function near 0 so that ϱ satisfies the assumptions of Theorem 4.

In addition, we also deduce that any convex and one-homogeneous, differentiable and
symmetric function of the singular values will enjoy the same properties, such as the p-
Schatten norms for p ∈]1,∞[. (The p-Schatten norm is the ℓp norm of the singular values.)

More generally for A ∈ Rn×m, letting p = min{m,n} we denote σ(A) = (σ1(A), . . . , σp(A))
the ordered singular values of A. We give a simple proof of the following standard result on
“unitary invariant” convex functions of matrices, as a corollary of von Neumann’s inequality.

Proposition 6. Let h̃ be a proper, lower semicontinuous, extended real-valued convex function
on Rp

+, non-decreasing with respect to each coordinate. Then

h(A) := h̃(σ(A)) = h̃(σ1(A), . . . , σp(A))

defines a convex function on Rn×m.

Proof. We first observe that if we extend h̃ to the whole Rp as an even function with respect
to each coordinate:

h̃(s1, . . . , sp) = h̃(|s1|, . . . , |sp|) for (s1, . . . , sp) ∈ Rp, (23)
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then h̃ is convex on Rp. For any extended-real valued function on Rp satisfying (23), the same
holds for its convex conjugate (and biconjugate). Moreover, if t ∈ Rp

+, then

h̃∗(t) = sup
s∈Rp

+

t · s− h̃(s).

It then follows from von Neumann’s inequality [34, 32] TrABT ≤
∑p

i=1 σi(A)σi(B) that

h∗(B) = sup
A∈Rn×m

TrABT − h(A) ≤ sup
s∈Rp

+

s · σ(B) − h̃(s) = h̃∗(σ(B)),

while the opposite inequality is obvious, choosing A a matrix with singular values s ∈ Rp
+ and

the same singular vectors as B. By the same reasoning and the Fenchel-Moreau theorem, we
deduce

h∗∗(A) = sup
B∈Rm×n

TrABT − h∗(B) = sup
s∈Rp

+

σ(A) · s− h̃∗(s) = h̃∗∗(σ(A)) = h̃(σ(A)) = h(A).

This shows that h is convex.

We remark that if in addition h̃ is smooth and a symmetric function of its arguments,
then the discussion above for the Nuclear norm applies and h is differentiable along inner
variations. An interesting example is the following: we consider

ϱ(A) = log
p∑

i=1
exp(σi(A)).

We claim that ϱ satisfies the assumptions of Theorem 4. Indeed, on the one hand, ϱ(A) is
smooth and satisfies (D1). On the other hand, one readily checks that

ϱ∞(A) = lim
t→+∞

1
t ϱ(tA) = max{σ1(A), . . . , σp(A)}.

Therefore ϱ∞ is the Spectral (or Operator) norm, which does not satisfy (D1), yet satisfies
(D2) since it coincides with the Frobenius (as well as Nuclear) norm on rank-one matrices.

5 Boundedness of minimizers

In this section we consider minimizers of E with R(w) =
´

Ω ϱ(Dw), ϱ satisfying the assump-
tions of Theorem 4 (whence (H3) holds), and F(w) =

´
Ω ψ(w − f) with ψ convex. In order

to show that Theorem 1 applies, we need to check that (H1) and (H2) are also satisfied. We
first assume that ϱ is coercive (ϱ(A) ≥ c(|A| − 1) for some c > 0), so that (H1) trivially
holds. As for (H2), the situation is trivial if ψ is Lipschitz. Otherwise, as already mentioned
in Remark 1, we can assume that f is bounded and ensure that the domain of R is contained
in L∞(Ω)n by imposing a box constraint.

That being said, let us now consider the case of unconstrained functional R given by (15).
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Scalar case The easiest is the scalar case n = 1.

Lemma 7. Let n = 1 and assume that ψ is coercive, that is limt→±∞ ψ(t) = ∞. Let
f ∈ L∞(Ω) and let u ∈ BV (Ω) be a minimizer of E. Then u ∈ L∞(Ω).

Proof. By assumption, there is T > 0 such that ψ is decreasing on ]−∞, T [ and increasing on
]T,∞[. Let uM := M ∧ (u ∨ −M) (the function u ∨ v is x 7→ max{u(x), v(x)}, and similarly
u ∧ v is the minimum of u and v), and let M > T + ∥f∥L∞(Ω)n . Suppose that |u| > M
on a set E ⊂ Ω of positive measure. For a. e. x ∈ E, if u(x) > M , then u(x) − f(x) >
uM (x) − f(x) > T and if u(x) < −M , then u(x) − f(x) < uM (x) − f(x) < −T , whence
ψ(u(x) − f(x)) > ψ(uM (x) − f(x)). It follows that F(uM − f) < F(u− f).

On the other hand, it is well known that R(uM ) < R(u), unless uM = u: this can be
deduced from the Chain Rule [2] which shows that:

ϱ(DuM ) = ϱ(Dau)χ{|u|≤M} + ϱ(Dcu)χ{|ũ|≤M} + ((uM )+ − (uM )−)ϱ∞(νu)Hm−1 ¬
Ju,

and is strictly below ϱ(Du) if uM ̸= u. (Here, ũ denotes the precise representative, see
Section 2.3.) It follows that E(uM ) < E(u), a contradiction.

Vectorial case The vectorial case is more complicated. A criterion for having a maximum
principle in vectorial variational problems is identified in [29, 30]. Our criterion for the
regularizer is derived from these references, and ensures that when u is projected on some
half-space in some (at least n) directions, then R will decrease. For the data term, we need
also that F(u− f) decreases along certain projections, which is ensured for instance if ψ it is
uniformly coercive in such directions, in the sense which we propose below. We assume that
there exist (e1, . . . , en) independent unit vectors of Rn such that for i = 1, . . . , n:

(i) ϱ((I − ei ⊗ ei)A) ≤ ϱ(A) for all A ∈ Rn×m (with strict inequality if AT ei ̸= 0);

(ii) Letting, for u′ ∈ e⊥
i ,

ti(u′) := sup
{

|t∗| : t∗ ∈ arg min
t∈R

ψ(u′ + tei)
}
,

one has Ti := supu′∈e⊥
i
ti(u′) < ∞.

When (ii) holds, we observe that t 7→ ψ(u′ + tei) is increasing for t > Ti and decreasing for
t < −Ti by convexity of ψ.

Thus, we can reproduce the proof of Lemma 7 in each direction ei, using

u(x) − (ei · u(x) −M)+ei − (ei · u(x) +M)−ei

in place of M ∧ (u ∨ −M). We obtain:

Lemma 8. Assume that (i) and (ii) above hold. Let f ∈ L∞(Ω)n and let u ∈ BV (Ω)n be a
minimizer of E. Then u ∈ L∞(Ω)n.

Examples For all the examples in Section 4.2, (i) is true in all directions of the canonical
basis (and in all directions for the Frobenius norm, or the Schatten norms or other symmetric
and non-decreasing function of the singular values, see [5, Prop. 6.4]). Hence Theorem 1 holds
for minimizers of E , for many data terms, such as data terms of the form ψ(w) = ψ̃(|w|) with
ψ̃ a non-negative convex function.
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A remark on the non coercive case We give an (elementary) example here of a situation
where the energy is not even coercive in BV (Ω)n and yet, Theorem 1 still applies. We consider
ω ⊂ Rm−1 and Ω = ω × S1 ⊂ Rm/({0m−1} × Z) a m-dimensional open set which is periodic
in the last variable xm. For simplicity we set n = 1. We let ϱ(p) =

√∑m−1
i=1 p2

i , for p ∈ Rm,
and to simplify ψ(t) = t2/2. Then, let f ∈ BV (Ω) × L∞(Ω) and u be the unique minimizer
of

ϱ(Du)(Ω) + 1
2

ˆ
Ω

(u− f)2.

Observe that a minimizing sequence is bounded in L2(Ω) and will converge (weakly) to some
limit. The regularizer being convex and lower semicontinuous, a minimizer exists (and is
unique by strict convexity). A priori, u is not BV , as only the first (m − 1) components of
Du are bounded measures. Yet, as the problem is also a one-parameter family of “ROF” type
problems (1), it enjoys similar properties and in particular is non-expansive in any Lp(Ω),
1 ≤ p ≤ ∞. Hence, one has for any t ∈ R, denoting em = (0, . . . , 0, 1):

ˆ
Ω

|u(x+ tem) − u(x)|dx ≤
ˆ

Ω
|f(x+ tem) − f(x)|dx ≤ |t|

ˆ
Ω

|Df |

and we deduce that em·Du is also a bounded measure. As clearly one also has ∥u∥∞ ≤ ∥f∥∞ <
∞, it follows that u satisfies the assumptions of Theorem 1 and we deduce u+ −u− ≤ f+ −f−

Hm−1-a. e. in Ω.

6 Higher order regularizers

6.1 Inf-convolution based higher order regularizers

Here we consider regularizers of form

R(w) = inf
z∈D2

R̃(w, z). (24)

where D2 is, in general, a set and R̃ : L1
loc(Ω)n × D2 → [0,∞] is convex. This includes the

following several variants of TV of inf-convolution type, introduced in literature to remedy
the phenomenon of staircasing observed in solutions to (1). For simplicity, we recall their
form in the case n = 1.

• Total generalized variation (of second order)

TGV (w) = min
z∈BD(Ω)

|Dw − zT Lm|(Ω) + |Ez|(Ω),

where Ez = 1
2(Dz +DzT ) is the symmetrized gradient and

BD(Ω) = {z ∈ L1(Ω)m : Ez ∈ M(Ω)m×m}

is the space of functions bounded deformation [37].

• Non-symmetrized variant of TGV ,

nsTGV (w) = min
z∈BV (Ω)m

|Dw − zT Lm|(Ω) + |Dz|(Ω).

16



• Infimal convolution total variation (of second order),

ICTV (w) = min
z∈BV 2(Ω)

|Dw −Dz|(Ω) + |DDz|(Ω),

where
BV 2(Ω) = {z ∈ BV (Ω): Dz ∈ BV (Ω)m}.

We will produce a version of Theorem 1 that applies to smooth variants of all these examples.
In our current setting, varying the whole functional R in the direction of variable w is not a
natural approach. Instead, we will use the formal equivalence of the minimization problem
(5) for E with the problem of finding u, v such that

Ẽ(u, v) = inf{E(w, z) : w ∈ L1
loc(Ω)n, z ∈ D2}, where Ẽ(w, z) := R̃(w, z) + F(w − f) (25)

and consider suitable variations that move both w and z. Another issue, appearing for example
in the case of TGV , is that D2 might not be closed under (directed) inner variations. On the
bright side, we do not to need to assume any particular form of variation in direction of v,
since we are not interested in obtaining bounds on the part of the minimizer corresponding
to the auxiliary variable.

Theorem 9. Suppose that R is of form (24), f ∈ BVloc(Ω)n and u is a minimizer of E with
E(u) < ∞. In addition to (H1) and (H2), we assume that

(H3’) there exists v ∈ D2 such that (u, v) is a solution to (25) and for any directed inner
variation φ there exists a map

τ 7→ vφ,τ ∈ L1
loc(Ω)n with vφ,0 = v

defined on a neighbourhood of 0 such that τ 7→ R̃(uφ
τ , vφ,τ ) is differentiable at τ = 0.

If ψ is C1 and strictly convex, then Hm−1(Ju \ Jf ) = 0. If ψ ∈ C2, then

(u+ − u−) ·A (u+ − u−) ≤ (f+ − f−) ·A (u+ − u−) Hm−1-a. e. on Ju, (26)

where
A =

ˆ 1

0
D2ψ(u− − f− + s(u+ − f+ − u− + f+))ds.

The proof of this result is identical to the proof of Theorem 1, once the following lemma
has been established.

Lemma 10. Let u be the minimizer of E and assume that condition (H3’) of Theorem 9 is
satisfied. For ϑ ∈ [0, 1], we denote

uφ
ϑ,τ = ϑuφ

τ + (1 − ϑ)u.

Then, for ϑ ∈ [0, 1],

lim inf
τ→0+

1
τ (F(uφ

ϑ,τ − f) − F(u− f)) + lim inf
τ→0+

1
τ (F(uφ

ϑ,−τ − f) − F(u− f)) ≥ 0.
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Proof. The proof is the same as the proof of Lemma 2, mutatis mutandis. For ϑ ∈ [0, 1], we
denote

vφ,ϑ,τ = ϑvφ,τ + (1 − ϑ)v.
By minimality of (u, v),

0 ≤ lim inf
τ→0+

1
τ (Ẽ(uφ

ϑ,±τ , vφ,ϑ,±τ ) − Ẽ(u, v))

≤ lim inf
τ→0+

1
τ (R̃(uφ

ϑ,±τ , vφ,ϑ,±τ ) − R̃(u, v) + F(uφ
ϑ,±τ − f) − F(u− f)).

By our assumption, the function R̃φ : ]−τ0, τ0[→ [0,∞[ defined by

R̃φ(τ) = R̃(uφ
τ , vφ,τ )

for τ0 small enough is differentiable at τ = 0. Thus, by convexity of R̃,
1
τ (R̃(uφ

ϑ,±τ , vφ,ϑ,±τ ) − R̃(u, v)) ≤ ϑ
τ (R̃(uφ

±τ , vφ,±τ ) − R̃(u, v)) → ±ϑR̃′
φ(0) as τ → 0.

Therefore,
0 ≤ ±ϑR̃′

φ(0) + lim inf
τ→0+

1
τ (F(uφ

ϑ,±τ − f) − F(u− f)).

We conclude by summing together the two obtained inequalities.

6.2 Application

Now we will discuss conditions under which regularizers of form (24) satisfy condition (H3’)
in the case that

R̃(w, z) = R1(w, z) + R2(z), where R1(w, z) = ϱ1(Dw − zT Lm)(Ω) (27)

and R2 : D2 → [0,∞] is given by one of the following

• R2(z) = TDϱ2(z) = ϱ2(Ez)(Ω), D2 = BD(Ω),

• R2(z) = TVϱ2(z) = ϱ2(Dz)(Ω), D2 = BV (Ω)m,

• R2(z) = TVϱ2(z) = ϱ2(Dz)(Ω), D2 = {z ∈ BV (Ω)m : zT = Dz̃, z̃ ∈ BV (Ω)}.

We assume that ϱ1, ϱ2 are convex. If ϱ1 = | · |, ϱ2 = | · |, R coincides with TGV , nsTGV
and ICTV respectively. However, we are unable to show that (H3’) holds in those cases.
Instead, we need to consider partially regularized versions of those functionals. As before,
we make the assumption that ϱ1 satistfies (14), while we make the assumption that ϱ2 has
growth p ≥ 1: there exist C1, C2, with:

C1(|M |p − 1) ≤ ϱ2(M) ≤ C2(|M |p + 1) (28)

for any M ∈ Rm×m.

Theorem 11. Let R̃ be given by (27). Assume that (D1) and (D2) from Theorem 4 hold with
ϱ = ϱ1 and that ϱ2, ϱ∞

2 are differentiable. For z ∈ D2, φ ∈ C∞
c (Ω)m and τ in a neighborhood

of 0 we set
zφ,τ (x) = (I + τDφ(x))T z(x+ φ(x)).

Then for any w ∈ BV (Ω), z ∈ D2 the map τ 7→ R̃(wφ
τ , zφ,τ ) is differentiable at τ = 0.
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Remark 2. In case p = 1, one may assume that ϱ∞
2 is differentiable at rank-one matrices only

(“rank-one symmetric” matrices [which may have rank 2] for the case of TDϱ2).
As in the case of Theorem 4, the proof of Theorem 11 relies on change of variables formulae

similar to (16).

Lemma 12. Let F : Ω → Ω be a diffeomorphism (C2 up to the boundary) and let w ∈ BV (Ω),
z ∈ D2. Then

R1(w ◦ F,DF T z ◦ F ) =
ˆ

Ω
| detD(F−1)| dϱ1((Dw − zT Lm)DF ◦ F−1), (29)

TVϱ2(DF T z ◦ F ) =
ˆ

Ω
| detD(F−1)| dϱ2

(
DF T ◦ F−1DzDF ◦ F−1 +D2F T ◦ F−1 zLm

)
,

(30)
TDϱ2(DF T z ◦ F ) =

ˆ
Ω

| detD(F−1)| dϱ2
(
DF T ◦ F−1EzDF ◦ F−1 +D2F T ◦ F−1 zLm

)
.

(31)

Proof. The proof follows along the lines of Lemma 5. In the case of (29), we take as before a
sequence (wk) ⊂ C∞(Ω) that converges weakly-∗ in BV (Ω) to w and show that wk◦F ∗

⇀ w◦F
in BV (Ω). We also take (zk) ⊂ C∞(Ω)m such that zk → z in L1(Ω)m; then zk ◦ F → z ◦ F
in L1(Ω)m as well. For any h ∈ Cc(Ω)m, we calculate
ˆ

Ω
h ◦ F · (D(wk ◦ F ) − (DF T zk ◦ F )T ) =

ˆ
Ω
h ◦ F · (Dwk ◦ F − zT

k ◦ F )DF

=
ˆ

Ω
h · (Dwk − zT

k )DF ◦ F−1| detD(F−1)|.

Passing to the limit k → ∞,ˆ
Ω
h ◦ F · d(D(w ◦ F ) + (DF T z ◦ F )T Lm) =

ˆ
Ω

| detD(F−1)|h · d(Dw + zT Lm)DF ◦ F−1.

Using (17) as before we deduce (29). Demonstrations of (30) and (31) again follow the same
footsteps. In the case of (31), we refer to the proof of [37, Thm. 3.2] which closely follows [18,
1.17], [4] to assert the (weak-∗) density of smooth functions in BD(Ω). In that case, the
left multiplication by DF T in the change of variable DF T z ◦ F is crucial to ensure that the
symmetrized gradient of the transported function can be estimated in terms of Ez only, and
z (which is in Lm/(m−1) thanks to Korn–Poincaré’s inequality, see [37, Sec. 1.2]), and does
not depend on the skew-symmetric part of Dz, which is not controlled.

Proof of Theorem 11. The proof follows along the lines of Theorem 4. In the case of ICTV -
type regularizer we need to note that if z = Dz̃T with z̃ ∈ BV (Ω), then DF T z◦F = D(z̃◦F )T ,
in particular DF T z◦F ∈ D2. We detail the proof in the TDρ2 case and leave the other cases to
the reader. We consider diffeomorphisms of the form Fτ (x) = x+φ(x)ν for τ ∈ R (small), ν a
unit vector and φ a smooth function with compact support. The term R1 will be differentiable
as before, so we consider R2, which decomposes as:
ˆ

Ω
detD(F−1

τ (x))ϱ2(D2F T
τ (F−1

τ (x))z(x) +DF T
τ (F−1

τ (x))e(z(x)DFτ (F−1
τ (x)))dx

+
ˆ

Ω
detD(F−1

τ (x))ϱ∞
2 (DFτ (F−1

τ )TMzDFτ (F−1
τ ))d|Esz| (32)
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where Mz is the matrix in the polar decomposition of Ez with respect to |Ez|.
In case p > 1, the second integral is not there since ϱ∞

2 ≡ ∞ and E(z) is absolutely
continuous. On the other hand if p = 1, that second integral is differentiable at τ = 0 as soon
as ϱ∞

2 is differentiable at non-zero rank-one symmetric matrices, since Mz has such structure
Esz-a. e. thanks to [12, Thm. 2.3].

Differentiating the first integral is more subtle. Indeed, now, if e(z)(x) = 0, the term in
the absolutely continuous integral does not vanish and is given by detD(F−1

τ )(x)ϱ2(τz(x) ·
νD2φ(x)) which is not differentiable if ϱ2 is not differentiable at 0, for instance in the one-
homogeneous case of the standard “TGV ”. Assuming that ϱ2 is C1, then, one can write:ˆ

Ω
detD(F−1

τ )ϱ2(D2F T
τ (F−1

τ )z +DFτ (F−1
τ )T e(z)DFτ (F−1

τ ))dx

=
ˆ

Ω
ϱ2(e(z))dx

+
ˆ

Ω
(detD(F−1

τ ) − 1)ϱ2(D2F T
τ (F−1

τ )z +DFτ (F−1
τ )T e(z)DFτ (F−1

τ ))dx

+
ˆ τ

0

ˆ
Ω
Dϱ2

(
e(z) + s(z · νD2φ+ 2(e(z)ν) ⊙ ∇φ) + s2(e(z)ν) · ν∇φ⊗ ∇φ

)
·
(
z · νD2φ+ 2(e(z)ν) ⊙ ∇φ+ 2s(e(z)ν) · ν∇φ⊗ ∇φ

)
dxds,

where the notation a⊙ b stands for the symmetric tensor product (a⊗ b+ b⊗ a)/2. For any
two matrices A,B,

ϱ2(A±B) − ϱ2(A) ≥ ±Dϱ2(A) ·B

and one deduces from the growth assumption (28) that there is C > 0 such that

|Dϱ2(A) ·B| ≤ C(|A|p + |B|p + 1).

This allows to bound the integrand in the last formula by C ′(1 + |e(z)|p + |z|p) ∈ L1(Ω)
(again, thanks to Korn or Poincaré–Korn’s inequality) for some constant C ′ > 0, and apply
Lebesgue’s dominated convergence to deduce that (32) is differentiable at τ = 0.

Remark 3. If ϱ2 is 1-homogeneous, we do now know whether the result holds. It is however
likely that the condition (H3’) is not general enough to lead to a conclusion, and that one
might need a more complicated decomposition of the functions, as suggested in [39]. On the
other hand the result in the cases p > 1 is already proved in that reference.

7 Data of unbounded variation

In this section, we discuss the case where f ̸∈ BV (Ω)m and we only address the simplest case
where the data term is strongly convex and with Lipschitz gradient, that is, verifies (8). We
introduce a weaker description of a “jump set” (which for BV functions coincides with the
standard jump set up to a negligible set), for which we are still able to deduce jump inclusion.
For f ∈ L2

loc(Ω)n, x0 ∈ Ω, ν0 ∈ Sm−1 we define

jf,ν0(x0)2 := lim sup
τ→0+

 
Q−

τ (x0,ν0)
|f(x+ τν0) − f(x)|2, jf (x0) := sup

ν0∈Sm−1
jf,ν0(x0).

(See (2) for the notation Q±
r (x, ν).) We denote by J̃f the set of x0 ∈ Ω such that jf (x0) > 0.
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Proposition 13. For f ∈ L2
loc(Ω)n, x0 ∈ Ω, ν0 ∈ Sm−1 we have

jf (x0, ν0)2 ≤ 4 lim sup
τ→0+

 
Qτ (x0,ν0)

∣∣∣∣f −
 

Qτ (x0,ν0)
f

∣∣∣∣2.
In particular, if x0 is a (2-)Lebesgue point of f , then jf (x0) = 0. If f ∈ L∞

loc(Ω)n, then

Jf ⊂ J̃f ⊂ Sf .

Moreover, for x0 ∈ Jf , jf (x0) = jf,νf (x0)(x0) = |f+ − f−|(x0).

See Section 2.2 or [3, Sec. 3] for the definition of Jf , Sf .

Proof. First of all, we indeed have

jf,ν0(x0)2 ≤ 2 lim sup
τ→0+

 
Q−

τ (x0,ν0)

∣∣∣∣f(x+ τν0) −
 

Qτ (x0,ν0)
f(x)

∣∣∣∣2 +
∣∣∣∣f(x) −

 
Qτ (x0,ν0)

f(x)
∣∣∣∣2

= 2 lim sup
τ→0+

 
Q+

τ (x0,ν0)

∣∣∣∣f(x) −
 

Qτ (x0,ν0)
f(x)

∣∣∣∣2 +
 

Q−
τ (x0,ν0)

∣∣∣∣f(x) −
 

Qτ (x0,ν0)
f(x)

∣∣∣∣2
= 4 lim sup

τ→0+

 
Qτ (x0,ν0)

∣∣∣∣f −
 

Qτ (x0,ν0)
f

∣∣∣∣2.
It is known that Lebesgue points calculated with respect to different regular families of sets
are the same. In particular in our case, observing that B√

2τ (x0) ⊇ Qτ (x0, ν0), we have for
every ν0 ∈ Sm−1

 
Qτ (x0,ν0)

∣∣∣∣f −
 

Qτ (x0,ν0)
f

∣∣∣∣2 ≤ 2
 

Qτ (x0,ν0)

∣∣∣∣f −
 

B√
2τ (x0)

f

∣∣∣∣2 + 2
∣∣∣∣  

Qτ (x0,ν0)
f −

 
B√

2τ (x0)
f

∣∣∣∣2

≤ 4
 

Qτ (x0,ν0)

∣∣∣∣f −
 

B√
2τ (x0)

f

∣∣∣∣2 ≤ 4
Lm(B√

2τ (x0))
Lm(Qτ (x0, ν0))

 
B√

2τ (x0)

∣∣∣∣f −
 

B√
2τ (x0)

f

∣∣∣∣2

Thus, if x0 is a (2-)Lebesgue point of f , then jf,ν0(x0) = 0 for every ν0 ∈ Sm−1, whence
jf (x0) = 0.

Now suppose that f ∈ L∞
loc(Ω)n. If x0 ∈ Ω \ Sf , then

 
Bτ (x0)

∣∣∣∣f −
 

Bτ (x0)
f

∣∣∣∣2 ≤ 2∥f∥L∞(Bτ (x0))

 
Bτ (x0)

∣∣∣∣f −
 

Bτ (x0)
f

∣∣∣∣ → 0 as τ → 0+,

so jf (x0) = 0, i. e. x0 ∈ Ω \ J̃f . On the other hand, if x0 ∈ Jf and ν0 is the direction of jump
of f at x0, then by the triangle inequality in L2(Q−

τ (x0, ν0))n,√ 
Q−

τ (x0,ν0)
|f(x+ τν0) − f(x)|2

≥ −
√ 

Q+
τ (x0,ν0)

|f − f+(x0)|2 + |f+(x0) − f−(x0)| −
√ 

Q−
τ (x0,ν0)

|f − f−(x0)|2.
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Since 
Q±

τ (x0,ν0)
|f − f±(x0)|2 ≤ 2∥f∥L∞(Q±

τ (x0,ν0))n

 
Q±

τ (x0,ν0)
|f − f±(x0)| → 0 as τ → 0+,

we obtain
jf (x0) ≥ jf,ν0(x0) ≥ |f+(x0) − f−(x0)|,

in particular x0 ∈ J̃f . It remains to prove the opposite inequality. Let ν ∈ Sm−1 and let
q = q(ν0, ν) ≥ 1 be the smallest number such that Qτ (x0, ν) ⊂ Qqτ (x0, ν0). We stress that q
does not depend on τ . Assume without loss of generality that ν0 · ν ≥ 0. Then Q±

τ (x0, ν) can
be divided into six parts (see Figure 1):

A0,±
τ (x0, ν) = {x ∈ Q±

τ (x0, ν) : x ∈ Q±
qτ (x0, ν0), x∓ τν ∈ Q∓

qτ (x0, ν0)},

A+,±
τ (x0, ν) = {x ∈ Q±

τ (x0, ν) : x ∈ Q±
qτ (x0, ν0), x∓ τν ∈ Q±

qτ (x0, ν0)},

A−,±
τ (x0, ν) = {x ∈ Q±

τ (x0, ν) : x ∈ Q∓
qτ (x0, ν0), x∓ τν ∈ Q∓

qτ (x0, ν0)}.

Figure 1: Sets A0,±
τ (x0, ν), A+,±

τ (x0, ν), A−,±
τ (x0, ν).

By definition, A∓,+
τ (x0, ν) ∪A±,−

τ (x0, ν) ⊂ Q∓
qτ (x0, ν0), so

ˆ
A±,−

τ (x0,ν)
|f(x+ τν0) − f(x)|2 =

ˆ
A±,−

τ (x0,ν)
|f(x+ τν0) − f∓(x0) + f∓(x0) − f(x)|2

≤ 2
ˆ

A∓,+
τ (x0,ν)

|f−f∓(x0)|2+2
ˆ

A±,−
τ (x0,ν)

|f−f∓(x0)|2 = 2
ˆ

A∓,+
τ (x0,ν)∪A±,−

τ (x0,ν)
|f−f∓(x0)|2

≤ 4∥f∥L∞(Q∓
qτ (x0,ν0))n

ˆ
Q∓

qτ (x0,ν0)
|f − f∓(x0)|
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and
1

Lm(Q−
τ (x0, ν))

ˆ
A±,−

τ (x0,ν)
|f(x+ τν0) − f(x)|2

≤ 4∥f∥L∞(Q∓
qτ (x0,ν0))nq

m

 
Q∓

qτ (x0,ν0)
|f − f∓(x0)| → 0 as τ → 0+.

Therefore,

lim sup
τ→0+

 
Q−

τ (x0,ν0)
|f(x+τν0)−f(x)|2 = lim sup

τ→0+

1
Lm(Q−

τ (x0, ν))

ˆ
A0,−

τ (x0,ν)
|f(x+τν0)−f(x)|2

≤ lim sup
τ→0+

 
A0,−

τ (x0,ν)
|f(x+ τν0) − f(x)|2.

Then, by the triangle inequality in L2(A0,−
τ (x0, ν))n,√ 

A0,−
τ (x0,ν)

|f(x+ τν0) − f(x)|2

≤
√ 

A0,+
τ (x0,ν)

|f − f+(x0)|2 + |f+(x0) − f−(x0)| +
√ 

A0,−
τ (x0,ν)

|f − f−(x0)|2.

We estimate 
A0,±

τ (x0,ν)
|f − f±(x0)|2 ≤ 2∥f∥

L∞(A0,±
τ (x0,ν))n

Lm(Q±
qτ (x0, ν0))

Lm(A0,±
τ (x0, ν))

 
Q±

qτ (x0,ν0)
|f − f±(x0)|.

Since the quotient Lm(Q±
qτ (x0, ν0))/Lm(A0,±

τ (x0, ν)) is independent of τ , the r. h. s. converges
to 0 as τ → 0+, whence

jf,ν(x0) ≤ |f+(x0) − f−(x0)|.
As ν ∈ Sm−1 is arbitrary, we conclude.

As a consequence of Proposition 13 and the Federer–Vol’pert Theorem [3, Theorem 3.78],
if f ∈ L∞

loc(Ω)n ∩BVloc(Ω)n, the three sets Sf , J̃f and Jf coincide up to Hm−1-negligible sets.

Theorem 14. Let f ∈ L∞(Ω)n, suppose that E admits a minimizer u ∈ L∞(Ω)n ∩BV (Ω)n,
ψ is C2 and (8) holds on {z ∈ Rn : |z| ≤ ∥u∥L∞(Ω)n + ∥f∥L∞(Ω)n}. Assume (H3) or that R is
of form (24) and (H3’) holds. Then Ju ⊂ J̃f up to a Hm−1-negligible set and

|u+ − u−|(x0) ≤
√

Λ/λ jf (x0) for Hm−1-a. e. x0 ∈ Ju.

Proof. By Lemma 2 (or Lemma 10 in the inf-convolution setting) we have for any (directed)
inner variation φ and ϑ ∈ [0, 1]

0 ≤ lim inf
τ→0+

1
τ (F(uφ

ϑ,τ − f) − F(u− f)) + 1
τ (F(uφ

ϑ,−τ − f) − F(u− f)). (33)

We take Γ, x0, ν0 = νu(x0) and r0 as in the beginning of the proof of Theorem 1, except now
we cannot assume that the traces f± exist on both sides of Γ. Instead we assume that x0 is
a Lebesgue point of jf with respect to Hm−1 ¬ Γ, in particular 

Qr∩Γ
jf (x)2dHm−1(x) r→0−→ jf (x0)2. (34)
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As in the proof of Lemma 3, by an isometric change of coordinates, we assume that ν0 = em,
x0 = 0 and denote x = (x′, xm), Qr(x0, ν0) = Qr, Bm−1

r (x0, ν0) = Bm−1
r ,

Γ =
{
γ(x′) : x′ ∈ Bm−1

r

}
,

γ(x′) = (x′, γ̃(x′)). We recall that we assume γ̃ is C1. For s ≤ r, we let Ls = maxBm−1
s

|∇′γ̃|
the Lipschitz constant of γ̃ on Bm−1

s , which is such that lims→0 Ls = 0.
Given 0 < s < r, we take φ ∈ C∞

c (Ω)n such that the support of φ is contained in Qr and
φ = ν0φ̃, where 0 ≤ φ̃ ≤ 1 and φ̃ = 1 on Bm−1

s × [−r/2, r/2]. We denote

S−
s,τ = {(x′, xm) : x′ ∈ Bm−1

s , γ̃(x′) − τ ≤ xm ≤ γ̃(x′)},

S+
s,τ = {(x′, xm) : x′ ∈ Bm−1

s , γ̃(x′) ≤ xm ≤ γ̃(x′) + τ},

uτ (x) = u(x′, xm + τ), fτ (x) = f(x′, xm + τ),

uϑ,τ = ϑuτ + (1 − ϑ)u, fϑ,τ = ϑfτ + (1 − ϑ)f.

We note that uτ = uφ
τ and uϑ,τ = uφ

ϑ,τ on S−
s,τ as soon as τ ≤ r/2. We decompose

F(uφ
ϑ,±τ − f) − F(u− f) =

ˆ
S∓

s,τ

ψ(uφ
ϑ,±τ − f) − ψ(u− f) +

ˆ
Qr\S∓

s,τ

ψ(uφ
ϑ,±τ − f) − ψ(u− f).

Reasoning as in the proof of Lemma 3 (where we use that ψ is Lipschitz in {z ∈ Rn : |z| ≤
∥u∥L∞(Ω)n + ∥f∥L∞(Ω)n}), we get

1
τ

ˆ
Qr\S∓

s,τ

ψ(uφ
ϑ,±τ − f) − ψ(u− f) ≤ C

τ

ˆ
Qr\S∓

s,τ

|uφ
ϑ,±τ − u| ≤ Cϑ|ν0 ·Du|(Qr \ (Qs ∩ Γ)).

On the other hand, using the convexity of ψ,
ˆ

S−
s,τ

ψ(uφ
ϑ,τ − f) − ψ(u− f) +

ˆ
S+

s,τ

ψ(uφ
ϑ,−τ − f) − ψ(u− f)

=
ˆ

S−
s,τ

ψ(uϑ,τ − f) − ψ(u− f) + ψ(u(1−ϑ),τ − fτ ) − ψ(uτ − fτ )

≤
ˆ

S−
s,τ

ϑDψ(uϑ,τ − f) · (uτ − u) + ϑDψ(u(1−ϑ),τ − fτ ) · (u− uτ )

= ϑ

ˆ
S−

s,τ

(Dψ(uϑ,τ − f) −Dψ(u(1−ϑ),τ − fτ )) · (uτ − u)

= ϑ

ˆ
S−

s,τ

(uϑ,τ − u(1−ϑ),τ − f + fτ ) ·Aϑ,τ · (uτ − u),

where the symmetric positive definite matrix Aϑ,τ is given by:

Aϑ,τ =
ˆ 1

0
D2ψ(u(1−ϑ),τ − fτ + s(uϑ,τ − u(1−ϑ),τ − f + fτ ))ds.

24



Using 2ξ ·Aϑ,τ · η ≤ ξ ·Aϑ,τ · ξ + η ·Aϑ,τ · η for any ξ, η and (8) it follows that

(uϑ,τ − u(1−ϑ),τ − f + fτ ) ·Aϑ,τ · (uτ − u)
= −(1 − 2ϑ)(uτ − u) ·Aϑ,τ · (uτ − u) + (fτ − f) ·Aϑ,τ · (uτ − u)

≤ −(1
2 − 2ϑ)(uτ − u) ·Aϑ,τ · (uτ − u) + 1

2(fτ − f) ·Aϑ,τ · (fτ − f)
≤ −(1

2 − 2ϑ)λ|uτ − u|2 + 1
2Λ|fτ − f |2

for ϑ ∈ [0, 1
4 ]. Using [3, Theorem 3.108], recalling (33) and combining the estimates above,

ϑ(1 − 4ϑ)λ
ˆ

Qs∩Γ
|u+ − u−|2 dγ#Lm−1 = ϑ(1 − 4ϑ)λ lim

τ→0+

1
τ

ˆ
S−

s,τ

|uτ − u|2

≤ ϑΛ lim inf
τ→0+

1
τ

ˆ
S−

s,τ

|fτ − f |2 + 2Cϑ|ν0 ·Du|(Qr \ (Qs ∩ Γ)). (35)

We recall that here, u± coincide with the traces of u on both side of Γ. We estimate the
pushforward measure γ#Lm−1 by

γ#Lm−1 ¬ (Qs ∩ Γ) = Hm−1 ¬ (Qs ∩ Γ)√
1 + |∇′γ(x′)|2

≥ 1√
1 + L2

s

Hm−1 ¬ (Qs ∩ Γ).

Now, for x′ ∈ Bm−1
s , τ < r − s, let us denote

Q̃−
τ (x′) = {(y′, ym) ∈ Qr : |y′ − x′| < τ, γ̃(y′) − τ < ym < γ̃(y′)}.

We observe that Lm(Q̃−
τ (x′)) = τ Lm−1(Bm−1

τ ). Then

1
τ

ˆ
S−

s,τ

|fτ − f |2 ≤
ˆ

Bm−1
s

 
Q̃−

τ (x′)
|fτ − f |2.

Note that
ffl

Q̃−
τ (x′) |fτ − f |2 is uniformly bounded by 4∥f∥2

L∞(Qr)n . Thus, by Fatou’s Lemma

lim inf
τ→0+

1
τ

ˆ
S−

s,τ

|fτ − f |2 ≤
ˆ

Bm−1
s

lim sup
τ→0+

 
Q̃−

τ (x′)
|fτ − f |2.

Dividing (35) by ϑ and passing to the limits ϑ → 0+, s → r−

λ

ˆ
Qr∩Γ

|u+ − u−|2 dγ#Lm−1 ≤ Λ
ˆ

Bm−1
r

lim sup
τ→0+

 
Q̃−

τ (x′)
|fτ − f |2 + 2C|ν0 ·Du|(Qr \ Γ). (36)

We estimate

Lm(Q̃−
τ (x′) \Q−

τ ((x′, γ(x′)), ν0)) ≤ Lm−1(Bm−1
τ ) τ max

Bm−1
r

|∇′γ| = LrLm(Q̃−
τ (x′)) τ.

Therefore,  
Q̃−

τ (x′)
|fτ − f |2 ≤

 
Q−

τ ((x′,γ(x′)),ν0)
|fτ − f |2 + 4Lr∥f∥2

L∞(Qr)n

and
lim sup

τ→0+

 
Q̃−

τ (x′)
|fτ − f |2 ≤ jf (x′, γ(x′))2 + 4Lr∥f∥2

L∞(Qr)n .
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Hence, we can estimate
ˆ

Bm−1
r

lim sup
τ→0+

 
Q̃−

τ (x′)
|fτ − f |2

≤
ˆ

Bm−1
r

jf (x′, γ(x′))2dLm−1(x′) + 4Lm−1(Bm−1
r )Lr∥f∥2

L∞(Qr)n

=
ˆ

Qr∩Γ

jf (x)2√
1 + |∇′γ̃(x′)|2

dHm−1(x) + 4Lm−1(Bm−1
r )Lr∥f∥2

L∞(Qr)n

≤
ˆ

Qr∩Γ
j2

f dHm−1 + 4Lm−1(Bm−1
r )Lr∥f∥2

L∞(Qr)n

Recalling (36), we deduce

λ

ˆ
Qr∩Γ

|u+ − u−|2 dγ#Lm−1 ≤ Λ
ˆ

Qr∩Γ
j2

f dHm−1

+ 4Lm−1(Bm−1
r )Lr∥f∥2

L∞(Qr)n + 2C|ν0 ·Du|(Qr \ Γ). (37)

Finally, we divide both sides of (37) by Lm−1(Bm−1
r ) = γ#Lm−1(Qr ∩Γ) and keeping in mind

that Hm−1(Qr ∩ Γ)/Lm−1(Bm−1
r ) → 1 and Lr → 0 as r → 0+, we pass to the limit obtaining

the asserted inequality owing to (34).

8 Experiment

Figure 2: A noisy image and the denoised versions with, respectively, the Frobenius ROF,
Nuclear ROF, Spectral ROF problems.

We solved here the “ROF” problem (1) for a data term given by a noisy color image, and
the Frobenius, Nuclear and Spectral total variations. Figure 2 shows the results, which look
almost identical. The close-up in Figure 3 seems to show that the edges are better recovered
with the Nuclear total variation, and quite jagged in the case of the Spectral total variation,
for which the jump inclusion might not hold. Of course, this is a discrete experiment at a fixed
scale and therefore a relatively poor illustration of our main results. Observe that in these
experiments, one cannot expect that the original datum (left image) represents a function
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Figure 3: Detail of Figure 2

f ∈ BV (Ω, [0, 1]3). However, being obtained by adding a small amplitude noise to a bounded
variation function, we may expect that the set J̃f of Section 7 corresponds to the set of (large
enough) edges in the original image.

9 Conclusion and comments

We have introduced an approach for the study of the jump set of minimizers of “Rudin-Osher-
Fatemi” type problems which is more versatile than the original approach in [8], and easier
to handle than [38] (even if equivalent in spirit, and much inspired by it). We recover many
cases (and more) from the previous works [38, 39], including jump inclusion in the “TGV”
case (up to some smoothing). The full nonsmooth case remains open. Also, our approach does
not seem to allow to derive further regularity, such as the continuity results of [31, 9]. It is
also unclear what exactly happens for non-differentiable norms, since at jumps the gradients
have rank one, and locally many nonsmooth norms remain differentiable—yet experimental
observations seem to show a much worse control on the oscillations parallel to the jumps in
such cases, as in Figure 3 (right).

Our results can be rephrased in terms of the measure Dju. In particular, in the case of
ψ strongly convex with Lipschitz-gradient (8), Theorems 1 and 9 imply estimate |Dju| ≤√
λ/Λ|Djf |. Similar bounds have been recently obtained for the whole singular part Dsu in

the 1D vectorial case (m = 1, n > 1) in [20]. To our knowledge, it remains an open question
whether such estimates hold for the Cantor part Dcu in m > 1, even in the case of scalar
TV , although in n = 1 it is known that Dsf = 0 =⇒ Dsu = 0 for general regularizers of
form (15) if Ω is convex [27], and that regularity away from the jump set is transferred to the
solution (for R nice enough) [9, 31].

Finally, a natural question is whether the results shown in this work also hold for the
gradient flow of the total variation or similar functionals. In [8, 10], this is deduced from
Crandall–Liggett’s theorem in L∞(Ω), which can be applied because minimizing the ROF
problem (1) is contractive in the sup norm. Yet, this is unknown (and possibly not true) in
the vectorial case and no easy conclusion may be drawn. In relation to this, we mention a
recent paper [25], where an interesting continuity property of the map w 7→ Djw is obtained.
However, its applicability in our context remains a matter of further investigation.
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