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We study in this note the stability and inclusion of the jump set of minimizers of convex denoising functionals, such as the celebrated "Rudin-Osher-Fatemi" functional, for scalar or vectorial signals. We show that under mild regularity assumptions on the data fidelity term and the regularizer, the jump set of the minimizer is essentially a subset of the original jump set. Moreover, we give an estimate on the magnitude of jumps in terms of the data. This extends old results, in particular of the first author (with V. Caselles and M. Novaga) and of T. Valkonen, to much more general cases. We also consider the case where the original datum has unbounded variation, and define a notion of its jump set which, again, must contain the jump set of the solution.

Introduction

The Total Variation regularizer was proposed for image denoising in [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] and has become popular for its simplicity and its ability to recover edges and discontinuities in the restored images. Even if it is largely outdated and has much lower performances than non-local [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF][START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF][START_REF] Lebrun | Secrets of image denoising cuisine[END_REF], (learned) patches and dictionary-based [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF][START_REF] Daniel Zoran | From learning models of natural image patches to whole image restoration[END_REF] or neural network based [START_REF] Jain | Natural image denoising with convolutional networks[END_REF] techniques, it remains useful as a regularizer for large scale inverse problems (sometimes combined with machine learning and plug-n-play type [START_REF] Singanallur | Plug-and-play priors for model based reconstruction[END_REF] methods, see for instance [START_REF] Wang | Snapshot temporal compressive light-sheet fluorescence microscopy via deep denoising and total variation priors[END_REF]), as it is convex and relatively simple to optimize, in particular in combination with other (ideally also convex) terms.

An interesting question, answered first in [START_REF] Caselles | The discontinuity set of solutions of the TV denoising problem and some extensions[END_REF], is whether a total variation-denoising method can create spurious structures and discontinuities, or if the edge set of the original image is preserved. Precisely, given f ∈ BV (Ω) a (scalar) function with bounded variation, representing the grey-level values of an image defined in a domain Ω ⊂ R m (m an integer, 2 or 3 in most applications), and with jump J f , one considers u which solves:

min u ˆΩ |Du| + 1 2 ˆΩ |u -f | 2 dx. (1) 
The main result of [START_REF] Caselles | The discontinuity set of solutions of the TV denoising problem and some extensions[END_REF] asserts that J u ⊂ J f (up to a negligible set for the surface measure); in addition, u + -u -≤ f + -f -a. e. on the jump set of u. It is also deduced that the L 2 -gradient flow of the total variation, starting from an initial function u(0) ∈ L m/(m-1) (Ω), has a diminishing jump set: s > t > 0 ⇒ J u(s) ⊂ J u(t) (more precise results are found in [START_REF] Caselles | On the jump set of solutions of the total variation flow[END_REF]). This is generalized to some integrands (such as the graph area, anisotropic total variations) already in [START_REF] Caselles | The discontinuity set of solutions of the TV denoising problem and some extensions[END_REF], and further variants (including strictly convex data terms) in [START_REF] Jalalzai | Discontinuities of the minimizers of the weighted or anisotropic total variation for image reconstruction[END_REF][START_REF] Jalalzai | Properties of minimizers of the total variation and of the solutions of the total variation flow[END_REF]; see also [START_REF] Jalalzai | Regularization of inverse problems in image processing[END_REF]. The approach in the above mentioned papers consists in comparing the curvatures of the level sets of minimizers. One shows that at (approximate) continuity points of f , these curvatures are determined by the level, and ordered in a way which excludes the possibility that the boundaries of two different level sets coincide. The technique is relatively simple and elegant, and even allows to derive basic regularity results away from the jumps [START_REF] Mercier | Continuity results for TV-minimizers[END_REF][START_REF] Caselles | Regularity for solutions of the total variation denoising problem[END_REF], but it is restricted to the scalar case.

An alternative approach was proposed by T. Valkonen in [START_REF] Valkonen | The jump set under geometric regularization. Part 1: basic technique and first-order denoising[END_REF]. It relies only on regularity properties of the regularizer, and therefore is not limited to the scalar case. In particular, the case where u, f are vector valued and the total variation is defined by means of the Frobenius norm of the matrix Du should enter the framework of [START_REF] Valkonen | The jump set under geometric regularization. Part 1: basic technique and first-order denoising[END_REF], even if this does not seem to be explicit in the literature. One reason for this is the relative complexity of the criterion in [START_REF] Valkonen | The jump set under geometric regularization. Part 1: basic technique and first-order denoising[END_REF] (the double-Lipschitz comparability condition), which is not always straightforward to check in practice, and the technicality of the proofs which most probably limited the audience of the papers [START_REF] Valkonen | The jump set under geometric regularization. Part 1: basic technique and first-order denoising[END_REF][START_REF] Valkonen | The jump set under geometric regularisation. Part 2: Higher-order approaches[END_REF], despite their interest and originality.

In this new study, we introduce a general approach for addressing the issue of jump inclusion and control in total variation denoising and similar variational problems. Essentially, we show that jump inclusion occurs when the regularizer is differentiable with respect to an elementary class of inner variations of the solution. We also derive an estimate on the size of the jump (see for instance [START_REF] Caselles | On the jump set of solutions of the total variation flow[END_REF]). The approach applies to many regularizers, such as the Frobenius or (more surprisingly) the Nuclear (or Trace) Norm-based total variation in a vectorial setting 1 (see for instance [START_REF] Goldluecke | The natural vectorial total variation which arises from geometric measure theory[END_REF][START_REF] Duran | Collaborative total variation: a general framework for vectorial TV models[END_REF]). More interestingly, while the extension of Valkonen's approach to higher order regularizers, addressed in [START_REF] Valkonen | The jump set under geometric regularisation. Part 2: Higher-order approaches[END_REF], excludes the "Total Generalized Variation" (TGV) of [START_REF] Bredies | Total generalized variation[END_REF], a relatively simple modification of our proof allows to show jump inclusion in a slightly regularized version of that case, at least whenever the solution u is bounded (which can be enforced by a box type constraint in the minimization). The result for the exact "TGV" case remains open and, if true, probably requires a mix of our techniques and the ideas in [START_REF] Valkonen | The jump set under geometric regularisation. Part 2: Higher-order approaches[END_REF], which address successfully other types of inf-convolution based regularizers.

Our approach is based on a very simple observation: at a jump point, the data term (such as the squared norm in (1)) will have different left and right derivatives along inner variations orthogonal to the jump, so that, if the regularizer is differentiable, some inequality is derived which involves only the data term. The idea can be illustrated by an elementary 1D example: consider Ω =]-1, 1[⊂ R, f ∈ BV (Ω), and let u minimize [START_REF] Alberti | Rank one property for derivatives of functions with bounded variation[END_REF]. Consider then x ∈ J u , with u + (x) > u -(x). Without loss of generality we assume u + (x) is the right-sided limit of u at x. Denote f + (x) the right-sided limit of f , and f -(x) the left-sided limit (with possibly f + (x) ≤ f -(x)). Then, if φ is a smooth approximation of χ [x-δ,x+δ] , for δ > 0 small, for τ ∈]0, δ[ one has:

ˆΩ(u(x + τ φ(x)) -f (x)) 2 -(u(x) -f (x)) 2 dx ≈ τ [(u + (x) -f -(x)) 2 -(u -(x) -f -(x)) 2 ], ˆΩ(u(x -τ φ(x)) -f (x)) 2 -(u(x) -f (x)) 2 dx ≈ τ [(u -(x) -f + (x)) 2 -(u + (x) -f + (x)) 2 ]
as τ → 0. On the other hand, since the total variation of u(x ± τ φ(x)) is the same as the total variation of u, thanks to minimality of u in (1) we deduce, sending τ → 0:

(u + (x) -f -(x)) 2 -(u -(x) -f -(x)) 2 ≥ 0, (u -(x) -f + (x)) 2 -(u + (x) -f + (x)) 2 ≥ 0, that is: (u + (x) -u -(x))(u + (x) + u -(x) -2f -(x)) ≥ 0 and (u + (x) -u -(x))(u + (x) + u -(x) - 2f + (x)) ≤ 0. We deduce that f -(x) ≤ u + (x) + u -(x) 2 ≤ f + (x)
(and in particular f -(x) ≤ f + (x)), so that either x ∈ J f , or (u + + u -)/2 = f at x. This is elementary, and almost the conclusion we would like to reach. Actually proving the jump set inclusion (and an estimate on the jump) in any dimension, following the same idea, is not much harder but requires a more subtle choice of the variation. The solution is found in Valkonen's work [START_REF] Valkonen | The jump set under geometric regularization. Part 1: basic technique and first-order denoising[END_REF]Sec. 6], which uses a competitor for the minimization problem given by a convex combination of the minimizer itself and its inner variation, see Lemma 2 below. We show here (by a much simpler argument/calculation than in [START_REF] Valkonen | The jump set under geometric regularization. Part 1: basic technique and first-order denoising[END_REF]) that together with the differentiability of the regularizer, it is enough to get a general estimate on the jump of u. This is done in Section 3 (Theorem 1).

Further (Sec. 4), we discuss general regularizers which satisfy the assumptions for our main result to hold. In particular, we find that the Frobenius or Nuclear-norm based Total Variations for vectorial-valued images meet our differentiability criterion (Section 4.2). In Section 5 we discuss conditions which ensure that the solution u to our variational problems, in the unconstrained case, are locally bounded. In Section 6 we show how a small adjustment of the proof extends the result to the inf-convolution type regularizers such as smoothed variants of the Total Generalized Variation (TGV) [START_REF] Bredies | Total generalized variation[END_REF], studied in [START_REF] Valkonen | The jump set under geometric regularisation. Part 2: Higher-order approaches[END_REF] again with a more complicated approach, and only partial conclusions.

Section 7 is devoted to the case where the data term is not necessarily of bounded variation: in that case, we introduce a notion of jump (as the set of points where the function differs significantly on both sides of a hyperplane) for which we still can show that it must contain the jump set of the solution. Interestingly, this should apply to data term consisting of the sum of a BV function and a bounded oscillating noise, such as many examples of noisy images. We provide, as an illustration, such an example in Section 8 and show the reconstruction with various types of color total variations.

Preliminaries

General notation

We will consider R n -valued functions, n ≥ 1, defined on some open subset of R m , m ≥ 1 (most of the proofs are written for m ≥ 2, yet the case m = 1 follows by trivial simplification). Given

x ∈ R m , r > 0, ν ∈ S m-1 a unit vector, one denotes:

B r (x) = {y ∈ R m : |y -x| < r}, B ± r (x, ν) = {y ∈ B r (x) : ± ν • (y -x) ≥ 0}, B m-1 r (x, ν) = B r (x) ∩ (x + ν ⊥ ), Q r (x, ν) = B m-1 r (x, ν)+]-r, r[ν, Q + r (x, ν) = B m-1 r (x, ν) + [0, r[ν, Q - r (x, ν) = B m-1 r (x, ν)+]-r, 0]ν. ( 2 
)
where | • | is the standard Euclidean norm.

For µ a Radon measure and k ≤ m, we define for any x ∈ Ω the k-dimensional density of µ at x as the limit:

Θ k (µ, x) = lim r→0 µ(B r (x))
ω k r k , when it exists. Here, ω k is the volume of the unit ball of dimension k.

The approximate discontinuity set and the jump set

Let w ∈ L 1 loc (Ω) n .
Following [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Definition 3.63], we say that w has an approximate limit at x ∈ Ω if there exists z ∈ R n such that lim r→0 + Br(x) |w(y) -z|dy = 0.

(
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If no such z exists, x is called an approximate discontinuity point of w. The set of all approximate discontinuity points of w is denoted

S w . It is well known that L m (S w ) = 0 [3, Proposition 3.64].
On the other hand, if there exist

ν w ∈ S m-1 , w ± ∈ R n , w -̸ = w + , such that lim r→0 + B ± r (x,νw) |w(y) -w ± |dy = 0, (4) 
x is called an (approximate) jump point of w. The set of all jump points of w is called the (approximate) jump set of w and is denoted by J w . Clearly J w ⊂ S w . However, the condition defining jump points is rather rigid: even for a general locally integrable function, the jump set is countably H m-1 -rectifiable [START_REF] Del | Rectifiability of the jump set of locally integrable functions[END_REF]-that is, it can be covered up to a H m-1 -negligible set by a countable union of Lipschitz or, equivalently, C 1 graphs [3, p. 80]. We observe that B ± r (x, ν w ) may be replaced with Q ± r (x, ν w ) in (4) without changing the definition. Moreover, if x ∈ Ω \ S w , then (4) holds with w + = w -= z and any ν w ∈ S m-1 . Thus, (4) defines a (multi)function x → {w + (x), w -(x)} on J w ∪ (Ω \ S w ). For x ∈ J w , the triple (w + (x), w -(x), ν w (x)) is defined uniquely up to a permutation of (w + , w -) and a change of sign of ν w . In particular, the tensor product (w + (x) -w -(x)) ⊗ ν w (x) is uniquely defined for x ∈ J w (and for x ∈ Ω \ S w , where it vanishes).

We recall the notion of Lebesgue points closely related to approximate continuity. If µ is a Radon measure on Ω and

w ∈ L p loc (Ω, µ) n , p ∈ [1, ∞[, we say that x ∈ Ω is a (p-)Lebesgue point of w (with respect to µ), if lim r→0 + Br(x) |w(y) -w(x)| p dµ(y) = 0.
It is known that µ-almost every x ∈ Ω is a Lebesgue point for any given w [START_REF] Evans | Measure theory and fine properties of functions[END_REF]Section 1.7]. We observe that every p-Lebesgue point is a q-Lebesgue point if 1 ≤ q ≤ p; if w ∈ L ∞ loc (Ω, µ) n , the notion does not depend on p. We will use the notion of Lebesgue points in particular for functions in the space L p (Γ) n , with Γ a C 1 graph contained in Ω-we note that this space coincides with L p (Ω, H m-1 ¬ Γ) n .

Functions of bounded variation

Throughout the paper, we will consider convex functionals E defined in L 1 loc (Ω) n , n ≥ 1, for Ω ⊂ R m an open set. We will work with minimizers of E, which will be assumed to belong to BV loc (Ω) n . We recall that

BV (Ω) n = w ∈ L 1 (Ω) n : T V (w) < ∞
where the total variation T V is defined by

T V (w) = sup -ˆw div φ dx : φ ∈ C ∞ c (Ω; R m ), |φ(x)| ≤ 1 for x ∈ Ω .
It is easily checked (from Riesz's theorem) that T V (w) is finite if and only if the distributional derivative Dw is a bounded Radon measure in Ω, in which case

T V (w) = ˆΩ |Dw| = |Dw|(Ω).
Then, one defines BV loc (Ω) n = A⊂⊂Ω BV (A) n , where the intersection is on all open sets whose closure lies in Ω. By the Federer-Vol'pert theorem [3, Theorem 3.78], if w ∈ BV loc (Ω) n , the set S w is countably H m-1 -rectifiable and H m-1 (S w \ J w ) = 0. In particular, the (multi)function {w + , w -} is defined H m-1 -a. e. in Ω. Thus also the precise representative w of w given by w = (w + + w -)/2 is defined up to H m-1 -null sets. In general, w ∈ BV loc (Ω) n admits one-sided traces on any oriented, countably H m-1 -rectifiable subset of Ω, see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 3.77]. Those traces coincide with w ± H m-1 -a. e. (up to permutation) [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Remark 3.79].

The Radon measure Dw can be decomposed as:

Dw = D a w + D s w , D a w = ∇w L m , D s w = D c w + (w + -w -) ⊗ ν w H m-1 ¬ J w
where • D a w is the absolutely continuous part of Dw, D s w the singular part, and ∇w ∈ L 1 (Ω) n×m is the Radon-Nikodym derivative of Dw with respect to the Lebesgue measure L m ;

• D c w is the "Cantor part" of Dw, which is singular with respect to the Lebesgue measure and vanishes on sets of finite (m -1)-dimensional Hausdorff measure H m-1 ;

• the last term (w

+ -w -) ⊗ ν w H m-1 ¬ J w is called the "jump part" of Dw.
The matrix (D c w/|D c w|)(x) appearing in the polar decomposition of the Cantor part D c w = (D c w/|D c w|)|D c w| is known to have rank one for |D c w|-a. e. x ∈ Ω [START_REF] Alberti | Rank one property for derivatives of functions with bounded variation[END_REF], analogously to the jump part. We refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] for more details. Similarly [START_REF] Temam | Problèmes mathématiques en plasticité[END_REF], BD(Ω) is defined as the space of displacements u ∈ L 1 (Ω) m such that the symmetrized gradient Eu := (Du + Du T )/2 is a bounded Radon measure, and one has:

Eu = E a w + E s w , E a w = e(w) L m , E s w = E c w + (w + -w -) ⊙ ν w H m-1 ¬ J w
with e(w) ∈ L 1 (Ω) m×m the approximate symmetrized gradient, E c w the Cantor part and ⊙ the symmetrized tensor product (a ⊙ b := ((a i b j + a j b i )/2) m i,j=1 ). Note that an analog of Alberti's rank one theorem also holds in BD, see [START_REF] De Philippis | On the structure of measures constrained by linear PDEs[END_REF].

Setting and main result

Let Ω ⊂ R m , m ≥ 1 be an open set. We consider functionals E :

L 1 loc (Ω) n → [0, ∞] of form E(w) = F(w -f ) + R(w),
where f ∈ L 1 loc (Ω) n . We assume the fidelity F :

L 1 loc (Ω) n → [0, ∞] is given by F(w) = ˆΩ ψ(w)
where ψ : R n → [0, ∞[ is convex. As for the regularizer R :

L 1 loc (Ω) n → [0, ∞],
in general we only assume that it is convex, without prescribing a particular structure. The regularizer contains prior information of the reconstructed image u, and will usually be defined as a convex integral of the distributional gradient Dw, possibly with an additional box constraint w(x) ∈ K a. e. for some closed convex set K ⊂ R n , enforced by prescribing R(w) = ∞ if w does not satisfy it.

Our aim in this paper is to provide an estimate on the jumps of minimizers of E, that is,

functions u ∈ L 1 loc (Ω) n satisfying E(u) = inf E(w) : w ∈ L 1 loc (Ω) n . ( 5 
)
In the case that ψ is strictly convex, there is at most one u. However, without further assumptions, u might not exist. Let φ ∈ C ∞ c (Ω) n . For w ∈ L 1 loc (Ω) n and τ ∈ R with |τ | sufficiently small we put

w φ τ (x) = w(x + τ φ(x)).
Suppose that R(w) < ∞. We say that R is differentiable along inner variations at w if the limit lim

τ →0 1 τ (R(w φ τ ) -R(w)) (6) 
exists for all φ ∈ C ∞ c (Ω) n . In practice, we will only use directional inner variations, where φ has the form φν for ν ∈ S m-1 and φ ∈ C ∞ c (Ω).

Theorem 1. Suppose that f ∈ BV loc (Ω) n and u is minimizing in [START_REF] Bhatia | Perturbation bounds for matrix eigenvalues[END_REF] with E(u) ̸ = ∞. We assume

(H1) u ∈ BV loc (Ω) n , (H2) u, f ∈ L ∞ loc (Ω) n or Dψ is bounded, (H3) R is differentiable along inner variations at u. If ψ is C 1 and strictly convex, then H m-1 (J u \ J f ) = 0. If ψ is C 2 , then (u + -u -) • A (u + -u -) ≤ (f + -f -) • A (u + -u -) H m-1 -a. e. on J u , ( 7 
)
where

A = ˆ1 0 D 2 ψ(u --f -+ s(u + -f + -u -+ f -))ds.
In [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF], the selections of u ± and f ± are chosen in a mutually consistent manner. Technically they are determined by a chosen orientation of the sequence of C 1 graphs covering J u (see Section 2.3), but evidently [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF] does not depend on this choice. It follows from ( 7) that

(u + -u -) • A (u + -u -) ≤ (f + -f -) • A (f + -f -),
which can be translated into a bound on the size of jumps of u in terms of f . In particular in the strongly convex, Lipschitz-gradient case

λI ≤ D 2 ψ ≤ ΛI with 0 < λ ≤ Λ, (8) 
we obtain

|u + -u -| ≤ Λ/λ |f + -f -|.
However, ( 7) also carries information about the jump direction in the value space R n . The proof of Theorem 1 is postponed after the proofs of the following two lemmata.

Lemma 2. Let u be the minimizer of E. Suppose that the limit [START_REF] Bredies | Total generalized variation[END_REF] 

exists for w = u. For ϑ ∈ [0, 1], we denote u φ ϑ,τ = ϑu φ τ + (1 -ϑ)u. Then, for ϑ ∈ [0, 1], lim inf τ →0 + 1 τ (F(u φ ϑ,τ -f ) -F(u -f )) + lim inf τ →0 + 1 τ (F(u φ ϑ,-τ -f ) -F(u -f )) ≥ 0. (9) 
Proof. By minimality,

0 ≤ lim inf τ →0 + 1 τ (E(u φ ϑ,±τ ) -E(u)) = lim inf τ →0 + 1 τ (R(u φ ϑ,±τ ) -R(u) + F(u φ ϑ,±τ -f ) -F(u -f )).
By our assumption, the function

R φ : ]-τ 0 , τ 0 [→ [0, ∞[ defined by R φ (τ ) = R(u φ τ ) for τ 0 small enough is differentiable at τ = 0. Thus, by convexity of R, 1 τ (R(u φ ϑ,±τ ) -R(u)) ≤ ϑ τ (R(u φ ±τ ) -R(u)) → ±ϑR ′ φ (0) as τ → 0. Therefore, 0 ≤ ±ϑR ′ φ (0) + lim inf τ →0 + 1 τ (F(u φ ϑ,±τ -f ) -F(u -f ))
. We conclude by summing together the two obtained inequalities.

We note that the Lemma 2 is the only place in the proof of Theorem 1 where we use convexity of R (or differentiability of R for that matter). In what follows, we will work directly with inequality [START_REF] Caselles | Regularity for solutions of the total variation denoising problem[END_REF]. Thus, we could drop the convexity hypothesis altogether and instead assume explicitly that R is differentiable along mixed variations u φ ϑ,τ (with fixed ϑ ∈ [0, 1]), leading directly to [START_REF] Caselles | Regularity for solutions of the total variation denoising problem[END_REF]. In this way it might be possible to treat lower order perturbations of convex regularizers or the case of quasiconvex integrands, etc. However, we do not know simple and natural examples for which it is clear that such differentiability holds-one may check in particular that the celebrated Mumford-Shah functional [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] is not differentiable along mixed variations near jump points. In fact, also our proof of differentiability for concrete regularizers (Theorem 4) uses the duality formula for convex integrands. Thus, we decided to keep the simpler assumption of differentiability along inner variations in the statement of our main result and leave the discussion of non-convex regularizers to a possible future work.

Lemma 3. Assume (H1) and (H2) hold. Let

Γ ⊂ Q r 0 (x 0 , ν 0 ) ⊂ Ω be a C 1 graph admitting a graphical parametrization γ : B m-1 r 0 (x 0 , ν 0 ) → Q r 0 (x 0 , ν 0 ). Let φ ∈ C ∞ c (Ω) m be such that the support of φ is contained in Q r (x 0 , ν 0 ), 0 < r ≤ r 0 , and φ = ν 0 φ, φ ∈ C ∞ c (Ω).
Moreover, assume that 0 ≤ φ ≤ 1, restrictions of φ to lines parallel to ν 0 attain their maxima on Γ, and

∂ φ ∂ν 0 (x) = 0 for x close to Γ. ( 10 
)
Then

lim sup τ →0 + 1 τ (F(u φ ϑ,τ -f ) -F(u -f )) ≤ ˆΓ φ ψ(ϑu + + (1 -ϑ)u --f -) -ψ(u --f -) dγ # L m-1 +Cϑ |ν 0 • Du| (Q r (x 0 , ν 0 )\Γ), lim sup τ →0 + 1 τ (F(u φ ϑ,-τ -f ) -F(u -f )) ≤ ˆΓ φ ψ(ϑu -+ (1 -ϑ)u + -f + ) -ψ(u + -f + ) dγ # L m-1 +Cϑ |ν 0 • Du| (Q r (x 0 , ν 0 )\Γ),
where γ # L m-1 denotes the pushforward of L m-1 by γ and

C := sup |Dψ(ξ)| : ξ ∈ R n , |ξ| ≤ ∥u∥ L ∞ (Qr 0 (x 0 ,ν 0 )) n + ∥f ∥ L ∞ (Qr 0 (x 0 ,ν 0 )) n (11)
is finite by virtue of (H2).

Proof. By an isometric change of coordinates, we will assume that ν 0 = e m , x 0 = 0 and denote

x = (x ′ , x m ), Q r (x 0 , ν 0 ) = Q r , B m-1 r (x 0 , ν 0 ) = B m-1 r , γ(x ′ ) = (x ′ , γ(x ′ )) for x ′ ∈ B m-1 r , so that Γ = {γ(x ′ ) : x ′ ∈ B m-1 r }.
By our assumption, we have

x + τ φ(x) = (x ′ , x m + τ φ(x)).
We take τ > 0 small enough so that the map x → x+τ φ(x) is a diffeomorphism. In particular,

x m → x m + τ φ(x ′ , x m ) is a diffeomorphism for every x ′ ∈ B m-1 r
. By [START_REF] Caselles | On the jump set of solutions of the total variation flow[END_REF], we can also assume

φ(x ′ , x m ) = φ(γ(x ′ )) whenever -τ φ(x ′ , x m ) ≤ x m -γ(x ′ ) ≤ τ φ(x ′ , x m ).
We will prove the first part of the assertion. The proof of the second one is the same. We rewrite

F(u φ θ,τ -f ) -F(u -f ) = ˆBm-1 r ˆ γ(x ′ ) γ(x ′ )-τ φ(γ(x ′ )) ψ(u φ ϑ,τ -f ) -ψ(u -f ) dx m dx ′ + ˆBm-1 r ˆ] -r,r[\[ γ(x ′ )-τ φ(γ(x ′ )), γ(x ′ )] ψ(u φ ϑ,τ -f ) -ψ(u -f ) dx m dx ′ . Using [3, Theorem 3.108], for L m-1 -a. e. x ′ ∈ B m-1 r we have 1 τ ˆ γ(x ′ ) γ(x ′ )-τ φ(γ(x ′ )) ψ(u -f ) dx m → φ ψ(u --f -) γ(x ′ ) , 1 τ ˆ γ(x ′ ) γ(x ′ )-τ φ(γ(x ′ )) ψ(u φ ϑ,τ -f ) dx m → φ ψ(ϑu + + (1 -ϑ)u --f -) γ(x ′ )
, where we recall that we have chosen u -, f -(resp. u + , f + ) to be the approximate limits corresponding to traces of u, f along Γ "from below" (resp. "from above"), consistently with the choice of u ± (x 0 ) given by ν 0 . On the other hand, identifying u with its precise representative, the slicing properties of BV functions [3, §3.11, Theorem 3.107] ensure that for L m-1 -a. e.

x ′ ∈ B m-1 r the function u x ′ : x m → u(x ′ , x m ) is in BV (]-r, r[) n
, and we can write for L 1 -a. e. x m ∈]-r, r[:

u φ ϑ,τ (x ′ , x m ) -u(x ′ , x m ) = ϑ Du x ′ x m , x m + τ φ(x ′ , x m ) .
Therefore

ψ(u φ ϑ,τ -f ) -ψ(u -f ) (x ′ , x m ) = ˆ1 0 Dψ(u + t(u φ ϑ,τ -u) -f )dt • (u φ ϑ,τ -u) ≤ Cϑ |Du x ′ | x m , x m + τ φ(x ′ , x m ) ≤ Cϑ |Du x ′ | x m , x m + τ φ(γ(x ′ )) ,
where C is defined in [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF] and we have used that φ(x ′ , •) is maximal at γ(x ′ ). Thus, for

L m-1 -a. e. x ′ ∈ B m-1 r
and small enough τ > 0,

1 τ ˆ] -r,r[\[ γ(x ′ )-τ φ(γ(x ′ )), γ(x ′ )] ψ(u φ ϑ,τ -f ) -ψ(u -f ) dx m ≤ C ϑ τ ˆˆχ ]-r,r[\[ γ(x ′ )-τ φ(γ(x ′ )), γ(x ′ )] (x m )χ ]xm,xm+τ φ(γ(x ′ ))[ (t) d Du x ′ (t)dx m .
The integrand is not zero only when x m < t < x m + τ φ(γ(x ′ )) and either -r

< x m < γ(x ′ ) - τ φ(γ(x ′ )) or γ(x ′ ) < x m ≤ r, in particular one has t ∈]-r, r[\{ γ(x ′ )} and t -τ φ(γ(x ′ )) ≤
x m ≤ t. Using Fubini's theorem, we deduce that this expression is bounded by

Cϑ φ(γ(x ′ ))|Du x ′ |(]-r, r[\{ γ(x ′ )}).
Appealing to [3, Theorem 3.107],

1 τ ˆBm-1 r ˆ] -r,r[\[ γ(x ′ )-τ φ(γ(x ′ )), γ(x ′ )] ψ(u φ ϑ,τ -f ) -ψ(u -f ) dx m dx ′ ≤ Cϑ|ν 0 • Du|(Q r \ Γ). Proof of Theorem 1. Let (Γ i ) ∞ i=1 be a sequence of C 1 graphs that covers J u up to a H m-1 -null set. Let us fix an index i. By [3, eq. (2.41) on p. 79], for H m-1 -a. e. x 0 in J u ∩ Γ i Θ m-1 (|Du| ¬ (Ω \ Γ i ), x 0 ) = 0. ( 12 
)
We choose such an x 0 , and assume in addition that x 0 is a Lebesgue point for u ± and f ± with respect to H m-1 ¬ Γ i . We take ν 0 = ν u (x 0 ). For r 0 > 0 small enough Q r 0 (x 0 , ν 0 ) ⊂ Ω and Γ := Γ i ∩ Q r 0 (x 0 , ν 0 ) has a graphical parametrization γ : B m-1 r 0 (x 0 , ν 0 ) → Q r 0 (x 0 , ν 0 ). Moreover, since Γ is tangent to x 0 + ν ⊥ 0 at x 0 , possibly decreasing r 0 , we can assume that

γ(x ′ ) ∈ x ′ + [-r/2, r/2]ν 0 for x ′ ∈ B m-1 r
(x 0 , ν 0 ), 0 < r < r 0 and construct a sequence of φ satisfying the assumptions of Lemma 3 that converges to 1 on Q r (x 0 , ν 0 ) ∩ Γ. Then, by Lemmata 2 and 3,

0 ≤ ˆQr(x0,ν0)∩Γ ψ(ϑu + + (1 -ϑ)u --f -) -ψ(u --f -) dγ # L m-1 + ˆQr(x0,ν0)∩Γ ψ(ϑu -+(1-ϑ)u + -f + )-ψ(u + -f + ) dγ # L m-1 +2Cϑ |ν 0 • Du| (Q r (x 0 , ν 0 )\Γ).
Dividing by

L m-1 (B m-1 r
) ∼ r m-1 and passing to the limit r → 0 + , we get

0 ≤ ψ(ϑu + + (1 -ϑ)u --f -) -ψ(u --f -) + ψ(ϑu -+ (1 -ϑ)u + -f + ) -ψ(u + -f + )
at x 0 by [START_REF] De Philippis | On the structure of measures constrained by linear PDEs[END_REF]. By convexity of ψ,

ψ(ϑu + + (1 -ϑ)u --f -) -ψ(u --f -) ≤ ϑDψ(ϑu + + (1 -ϑ)u --f -) • (u + -u -), ψ(ϑu -+ (1 -ϑ)u + -f + ) -ψ(u + -f + ) ≤ ϑDψ(ϑu -+ (1 -ϑ)u + -f + ) • (u --u + ). Summing up, 0 ≤ ϑ Dψ(ϑu + + (1 -ϑ)u --f -) -Dψ(ϑu -+ (1 -ϑ)u + -f + ) • (u + -u -).
Dividing the inequality by ϑ and letting ϑ → 0

+ yields 0 ≤ Dψ(u --f -) -Dψ(u + -f + ) • (u + -u -). ( 13 
)
If f + = f -and ψ is strictly convex, then Dψ is strictly monotone and we get a contradiction unless u + = u -: this shows that H m-1 (J u \ J f ) = 0. On the other hand, if ψ ∈ C 2 , applying the fundamental theorem of calculus to the function

s → Dψ u --f -+ s(u + -f + -u -+ f -) • (u + -u -),
and using [START_REF] Del | Rectifiability of the jump set of locally integrable functions[END_REF] we obtain [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF].

Remark 1. Assumption (H1) will hold as soon as R is coercive in BV (Ω) n ; the next section 4 discusses a class of such regularizers for which (H3) holds as well. As for (H2), it is trivially satisfied if ψ is globally Lipschitz. Otherwise, we need to ensure that u and f are locally bounded. Assuming that f ∈ L ∞ (Ω) n , a minimizer of E will be bounded if n = 1 and ψ is coercive, while if n ≥ 1 this requires various types of assumptions on ψ and R, see Section 5. Alternatively, we can enforce it by considering a constrained minimization problem, which amounts to replacing R with

R K := R + ι {w∈L 1 loc (Ω) n : w(x)∈K for a. e. x∈Ω}
where K is bounded, closed and convex (here ι U denotes the convex-analytic characteristic function of U ⊂ L 1 loc (Ω) n , which is 0 in U and ∞ outside). We observe that if R satisfies (H3), then R K satisfies it as well. Moreover, if R is coercive in BV (Ω) n (that is, w ∈ BV (Ω) n whenever R(w) < ∞), then R K is as well.

Differentiable regularizers 4.1 General form

In this section we give some examples of functionals R whose domain contains BV (Ω) n and that are differentiable along inner variations, in particular assumptions (H1) and (H3) in Theorem 1 are satisfied whenever R(u) < ∞. We assume for simplicity that Ω is bounded. Let ϱ : R n×m → [0, ∞[ be convex and satisfy

ϱ(A) ≤ C(1 + |A|) for ξ ∈ R n×m ( 14 
)
with C > 0. For a vector Radon measure µ on Ω we denote by µ a its density with respect to the Lebesgue measure on Ω and by µ s its Lebesgue singular part, i. e.

dµ = µ a dL m + dµ s , L m ⊥ µ s . Moreover, for ξ ∈ R n×m we denote ϱ ∞ (ξ) = lim t→∞ 1 t ϱ(tξ). Then dϱ(µ) = ϱ(µ a )dL m + ϱ ∞ µ s |µ s | d|µ s | defines a Radon measure ϱ(µ) and R(w) = ϱ(Dw)(Ω) if w ∈ BV (Ω) n , ∞ otherwise (15) 
defines a convex functional on L 1 loc (Ω) [START_REF] Demengel | Convex functions of a measure and applications[END_REF]. At least when ϱ satisfies a lower bound ϱ(A) ≥ C ′ |A| with C ′ > 0, R is lower semicontinuous and E attains its minimum at u ∈ BV (Ω). 

∈ BV (Ω) n . Then R(w • F ) = ˆΩ | det D(F -1 )| dϱ(Dw DF • F -1 ). ( 16 
)
Proof. We will use the dual representation of R as given in [14, Lemma 1.1], according to which

ˆΩ φ dϱ(µ) = sup h∈Dϱ ˆΩ φh • dµ -ˆΩ φϱ * (h)dL m , ( 17 
)
for µ ∈ M (Ω) n×n and φ ∈ C(Ω) with φ ≥ 0, where

D ϱ = {h ∈ C c (Ω) n×m : ϱ * (h) ∈ L 1 (Ω)}.
We recall [18, Thm. 1.17][3, Thm. 3.9] that for each w ∈ BV (Ω) n there exists a sequence

(w k ) ⊂ C ∞ (Ω) n such that w k → w in L 1 (Ω) n and ˆΩ |Dw k |dL m → |Dw|(Ω), in particular Dw k * ⇀ Dw in M (Ω) n×m . It is easy to check that w k • F → w • F in L 1 (Ω) n . We also have ˆΩ |D(w k • F )| ≤ ˆΩ |Dw k • F | |DF | = ˆΩ |Dw k | |DF • F -1 || det D(F -1 )|, in particular w k • F is bounded in BV (Ω) n , whence w • F ∈ BV (Ω) n and D(w k • F ) * ⇀ D(w • F ) in M (Ω) n×m . ( 18 
)
For any h ∈ C c (Ω) n×m , we can calculate

ˆΩ h • F • D(w k • F ) = ˆΩ h • F • Dw k • F DF = ˆΩ h • Dw k DF • F -1 | det D(F -1 )|.
Using [START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF], we pass to the limit k → ∞ obtaining

ˆΩ h • F • dD(w • F ) = ˆΩ | det D(F -1 )|h • dDw DF • F -1 . ( 19 
)
Note that

ˆΩ ϱ * (h • F ) = ˆΩ | det D(F -1 )|ϱ * (h), (20) 
in particular h ∈ D ϱ iff h • F ∈ D ϱ . Thus, using the dual representation formula [START_REF] Evans | Measure theory and fine properties of functions[END_REF] in conjunction with [START_REF] Goldluecke | The natural vectorial total variation which arises from geometric measure theory[END_REF] and [START_REF] Grochulska | Local estimates for vectorial Rudin-Osher-Fatemi type problems in one dimension[END_REF], we obtain the desired equality.

Proof of Theorem 4. We take

F τ (x) = x + τ φ(x) with φ ∈ C ∞ c (Ω) m ,
x ∈ Ω and τ small enough. By the representation formula [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF] and recalling the definition of the measure

ϱ(Dw DF τ • F -1 τ ), R(w • F τ ) = ˆΩ det D(F -1 τ ) ϱ(Dw a DF τ • F -1 τ ) dL m + ˆΩ det D(F -1 τ ) ϱ ∞ Dw s |Dw s | DF τ • F -1 τ d|Dw s |. ( 21 
) Note that DF τ • F -1 τ = I + τ Dφ • F -1 τ . Denoting ϱ x (τ ) = ϱ(Dw a (x) DF τ • F -1 τ (x)), we have for τ ̸ = 0 1 τ (ϱ x (τ ) -ϱ x (0)) = 1 τ (ϱ(Dw a (x)(I + τ Dφ(x))) -ϱ(Dw a (x))) + 1 τ (ϱ(Dw a (x)(I + τ Dφ • F -1 τ (x))) -ϱ(Dw a (x)(I + τ Dφ(x))))
Using assumption (D1), the global Lipschitz continuity of ϱ and the continuity of τ → F -1 τ , we deduce that ϱ x is differentiable at τ = 0 for L m -a. e. x ∈ Ω and there exists C ϱ,φ > 0 such that

1 τ |ϱ x (τ ) -ϱ x (0)| ≤ C ϱ,φ |Dw a (x)|.
Thus, by dominated convergence, the first integral in ( 21) is differentiable at τ = 0. Similarly, appealing to Alberti's rank-one theorem [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Thm. 3.94] [START_REF] Alberti | Rank one property for derivatives of functions with bounded variation[END_REF] and assumption(D2), we show that the second integral in ( 21) is differentiable at τ = 0.

Examples

A simple way to ensure that conditions (D1) and (D2) of Theorem 4 are satisfied is to assume that ϱ and ϱ ∞ are differentiable everywhere except at 0. In particular, vectorial (such as defined by the Frobenius norm) and anisotropic (vectorial) total variations given by any norm on R n×m that is differentiable outside 0, such as ℓ p,q , p, q ∈]1, ∞[, are differentiable along inner variations. The same is not true in the limiting cases 1, ∞. In fact there are known examples where the assertion of Theorem 1 fails in these cases, see [START_REF] Micha L Lasica | Total variation denoising in l 1 anisotropy[END_REF].

A more striking example is given by the Nuclear or Trace norm:

ϱ(A) = Trace((AA T ) 1 2 ), (22) 
which is the sum of the singular values. The function:

τ → A(I + τ B)(I + τ B) T A T
is a one-parameter analytic function with values symmetric n × n matrices, so that by [35, p. 39], the squared singular values can also be described by analytic functions (and in particular, in a neighborhood of τ = 0, the positive eigenvalues stay positive). In addition, the kernel of (I + τ B) T A T is the same as the kernel of A T for small τ , so that the number of non-zero singular values remains constant near 0. We deduce that the sum of the singular values is also an analytic function near 0 so that ϱ satisfies the assumptions of Theorem 4.

In addition, we also deduce that any convex and one-homogeneous, differentiable and symmetric function of the singular values will enjoy the same properties, such as the p-Schatten norms for p ∈]1, ∞[. (The p-Schatten norm is the ℓ p norm of the singular values.)

More generally for A ∈ R n×m , letting p = min{m, n} we denote σ(A) = (σ 1 (A), . . . , σ p (A)) the ordered singular values of A. We give a simple proof of the following standard result on "unitary invariant" convex functions of matrices, as a corollary of von Neumann's inequality.

Proposition 6. Let h be a proper, lower semicontinuous, extended real-valued convex function on R p

+ , non-decreasing with respect to each coordinate. Then

h(A) := h(σ(A)) = h(σ 1 (A), . . . , σ p (A))
defines a convex function on R n×m .

Proof. We first observe that if we extend h to the whole R p as an even function with respect to each coordinate:

h(s 1 , . . . , s p ) = h(|s 1 |, . . . , |s p |) for (s 1 , . . . , s p ) ∈ R p , ( 23 
)
then h is convex on R p . For any extended-real valued function on R p satisfying (23), the same holds for its convex conjugate (and biconjugate). Moreover, if t ∈ R p + , then

h * (t) = sup s∈R p + t • s -h(s).
It then follows from von Neumann's inequality [START_REF] John Von Neumann | Collected works. Vol. IV: Continuous geometry and other topics[END_REF][START_REF] Mirsky | A trace inequality of John von Neumann[END_REF] Tr

AB T ≤ p i=1 σ i (A)σ i (B) that h * (B) = sup A∈R n×m Tr AB T -h(A) ≤ sup s∈R p + s • σ(B) -h(s) = h * (σ(B)),
while the opposite inequality is obvious, choosing A a matrix with singular values s ∈ R p + and the same singular vectors as B. By the same reasoning and the Fenchel-Moreau theorem, we deduce

h * * (A) = sup B∈R m×n Tr AB T -h * (B) = sup s∈R p + σ(A) • s -h * (s) = h * * (σ(A)) = h(σ(A)) = h(A).
This shows that h is convex.

We remark that if in addition h is smooth and a symmetric function of its arguments, then the discussion above for the Nuclear norm applies and h is differentiable along inner variations. An interesting example is the following: we consider

ϱ(A) = log p i=1 exp(σ i (A)).
We claim that ϱ satisfies the assumptions of Theorem 4. Indeed, on the one hand, ϱ(A) is smooth and satisfies (D1). On the other hand, one readily checks that

ϱ ∞ (A) = lim t→+∞ 1 t ϱ(tA) = max{σ 1 (A), . . . , σ p (A)}.
Therefore ϱ ∞ is the Spectral (or Operator) norm, which does not satisfy (D1), yet satisfies (D2) since it coincides with the Frobenius (as well as Nuclear) norm on rank-one matrices.

Boundedness of minimizers

In this section we consider minimizers of E with R(w) = ´Ω ϱ(Dw), ϱ satisfying the assumptions of Theorem 4 (whence (H3) holds), and F(w) = ´Ω ψ(w -f ) with ψ convex. In order to show that Theorem 1 applies, we need to check that (H1) and (H2) are also satisfied. We first assume that ϱ is coercive (ϱ(A) ≥ c(|A| -1) for some c > 0), so that (H1) trivially holds. As for (H2), the situation is trivial if ψ is Lipschitz. Otherwise, as already mentioned in Remark 1, we can assume that f is bounded and ensure that the domain of R is contained in L ∞ (Ω) n by imposing a box constraint.

That being said, let us now consider the case of unconstrained functional R given by [START_REF] Duran | Collaborative total variation: a general framework for vectorial TV models[END_REF].

Scalar case

The easiest is the scalar case n = 1.

Lemma 7.

Let n = 1 and assume that ψ is coercive, that is lim t→±∞ ψ(t) = ∞. Let f ∈ L ∞ (Ω) and let u ∈ BV (Ω) be a minimizer of E. Then u ∈ L ∞ (Ω).

Proof. By assumption, there is T > 0 such that ψ is decreasing on ] -∞, T [ and increasing on ]T, ∞[. Let u M := M ∧ (u ∨ -M ) (the function u ∨ v is x → max{u(x), v(x)}, and similarly u ∧ v is the minimum of u and v), and let

M > T + ∥f ∥ L ∞ (Ω) n . Suppose that |u| > M on a set E ⊂ Ω of positive measure. For a. e. x ∈ E, if u(x) > M , then u(x) -f (x) > u M (x) -f (x) > T and if u(x) < -M , then u(x) -f (x) < u M (x) -f (x) < -T , whence ψ(u(x) -f (x)) > ψ(u M (x) -f (x)). It follows that F(u M -f ) < F(u -f ).
On the other hand, it is well known that R(u M ) < R(u), unless u M = u: this can be deduced from the Chain Rule [START_REF] Ambrosio | A general chain rule for distributional derivatives[END_REF] which shows that:

ϱ(Du M ) = ϱ(D a u)χ {|u|≤M } + ϱ(D c u)χ {| u|≤M } + ((u M ) + -(u M ) -)ϱ ∞ (ν u )H m-1 ¬ J u ,
and is strictly below ϱ(Du) if u M ̸ = u. (Here, u denotes the precise representative, see Section 2.3.) It follows that E(u M ) < E(u), a contradiction.

Vectorial case

The vectorial case is more complicated. A criterion for having a maximum principle in vectorial variational problems is identified in [START_REF] Leonetti | Bounds for vector valued minimizers of some integral functionals[END_REF][START_REF] Leonetti | Maximum principle for vector valued minimizers[END_REF]. Our criterion for the regularizer is derived from these references, and ensures that when u is projected on some half-space in some (at least n) directions, then R will decrease. For the data term, we need also that F(u -f ) decreases along certain projections, which is ensured for instance if ψ it is uniformly coercive in such directions, in the sense which we propose below. We assume that there exist (e 1 , . . . , e n ) independent unit vectors of R n such that for i = 1, . . . , n:

(i) ϱ((I -e i ⊗ e i )A) ≤ ϱ(A) for all A ∈ R n×m (with strict inequality if A T e i ̸ = 0);

(ii) Letting, for u ′ ∈ e ⊥ i ,

t i (u ′ ) := sup |t * | : t * ∈ arg min t∈R ψ(u ′ + te i ) , one has T i := sup u ′ ∈e ⊥ i t i (u ′ ) < ∞.
When (ii) holds, we observe that t → ψ(u ′ + te i ) is increasing for t > T i and decreasing for t < -T i by convexity of ψ. Thus, we can reproduce the proof of Lemma 7 in each direction e i , using

u(x) -(e i • u(x) -M ) + e i -(e i • u(x) + M ) -e i
in place of M ∧ (u ∨ -M ). We obtain:

Lemma 8. Assume that (i) and (ii) above hold. Let f ∈ L ∞ (Ω) n and let u ∈ BV (Ω) n be a minimizer of E. Then u ∈ L ∞ (Ω) n .
Examples For all the examples in Section 4.2, (i) is true in all directions of the canonical basis (and in all directions for the Frobenius norm, or the Schatten norms or other symmetric and non-decreasing function of the singular values, see [START_REF] Bhatia | Perturbation bounds for matrix eigenvalues[END_REF]Prop. 6.4]). Hence Theorem 1 holds for minimizers of E, for many data terms, such as data terms of the form ψ(w) = ψ(|w|) with ψ a non-negative convex function.

A remark on the non coercive case

We give an (elementary) example here of a situation where the energy is not even coercive in BV (Ω) n and yet, Theorem 1 still applies. We consider

ω ⊂ R m-1 and Ω = ω × S 1 ⊂ R m /({0 m-1 } × Z) a m-
dimensional open set which is periodic in the last variable x m . For simplicity we set n = 1. We let ϱ(p) = m-1 i=1 p 2 i , for p ∈ R m , and to simplify ψ(t) = t 2 /2. Then, let f ∈ BV (Ω) × L ∞ (Ω) and u be the unique minimizer of

ϱ(Du)(Ω) + 1 2 ˆΩ(u -f ) 2 .
Observe that a minimizing sequence is bounded in L 2 (Ω) and will converge (weakly) to some limit. The regularizer being convex and lower semicontinuous, a minimizer exists (and is unique by strict convexity). A priori, u is not BV , as only the first (m -1) components of Du are bounded measures. Yet, as the problem is also a one-parameter family of "ROF" type problems (1), it enjoys similar properties and in particular is non-expansive in any L p (Ω), 1 ≤ p ≤ ∞. Hence, one has for any t ∈ R, denoting e m = (0, . . . , 0, 1):

ˆΩ |u(x + te m ) -u(x)|dx ≤ ˆΩ |f (x + te m ) -f (x)|dx ≤ |t| ˆΩ |Df |
and we deduce that e m •Du is also a bounded measure. As clearly one also has ∥u∥ ∞ ≤ ∥f ∥ ∞ < ∞, it follows that u satisfies the assumptions of Theorem 1 and we deduce u

+ -u -≤ f + -f - H m-1 -a. e. in Ω.
6 Higher order regularizers

Inf-convolution based higher order regularizers

Here we consider regularizers of form

R(w) = inf z∈D 2 R(w, z). ( 24 
)
where D 2 is, in general, a set and R :

L 1 loc (Ω) n × D 2 → [0, ∞] is convex.
This includes the following several variants of T V of inf-convolution type, introduced in literature to remedy the phenomenon of staircasing observed in solutions to [START_REF] Alberti | Rank one property for derivatives of functions with bounded variation[END_REF]. For simplicity, we recall their form in the case n = 1.

• Total generalized variation (of second order)

T GV (w) = min z∈BD(Ω) |Dw -z T L m |(Ω) + |Ez|(Ω),
where Ez = 1 2 (Dz + Dz T ) is the symmetrized gradient and

BD(Ω) = {z ∈ L 1 (Ω) m : Ez ∈ M (Ω) m×m }
is the space of functions bounded deformation [START_REF] Temam | Problèmes mathématiques en plasticité[END_REF].

• Non-symmetrized variant of T GV ,

nsT GV (w) = min z∈BV (Ω) m |Dw -z T L m |(Ω) + |Dz|(Ω).
• Infimal convolution total variation (of second order),

ICT V (w) = min z∈BV 2 (Ω) |Dw -Dz|(Ω) + |DDz|(Ω),
where

BV 2 (Ω) = {z ∈ BV (Ω) : Dz ∈ BV (Ω) m }.
We will produce a version of Theorem 1 that applies to smooth variants of all these examples. In our current setting, varying the whole functional R in the direction of variable w is not a natural approach. Instead, we will use the formal equivalence of the minimization problem ( 5) for E with the problem of finding u, v such that

E(u, v) = inf{E(w, z) : w ∈ L 1 loc (Ω) n , z ∈ D 2 }, where E(w, z) := R(w, z) + F(w -f ) (25)
and consider suitable variations that move both w and z. Another issue, appearing for example in the case of T GV , is that D 2 might not be closed under (directed) inner variations. On the bright side, we do not to need to assume any particular form of variation in direction of v, since we are not interested in obtaining bounds on the part of the minimizer corresponding to the auxiliary variable.

Theorem 9. Suppose that R is of form [START_REF] Jalalzai | Properties of minimizers of the total variation and of the solutions of the total variation flow[END_REF], f ∈ BV loc (Ω) n and u is a minimizer of E with E(u) < ∞. In addition to (H1) and (H2), we assume that (H3') there exists v ∈ D 2 such that (u, v) is a solution to [START_REF] Kazaniecki | Schur property for jump parts of gradient measures[END_REF] and for any directed inner variation φ there exists a map

τ → v φ,τ ∈ L 1 loc (Ω) n with v φ,0 = v defined on a neighbourhood of 0 such that τ → R(u φ τ , v φ,τ ) is differentiable at τ = 0. If ψ is C 1 and strictly convex, then H m-1 (J u \ J f ) = 0. If ψ ∈ C 2 , then (u + -u -) • A (u + -u -) ≤ (f + -f -) • A (u + -u -) H m-1 -a. e. on J u , ( 26 
)
where

A = ˆ1 0 D 2 ψ(u --f -+ s(u + -f + -u -+ f + ))ds.
The proof of this result is identical to the proof of Theorem 1, once the following lemma has been established.

Lemma 10. Let u be the minimizer of E and assume that condition (H3') of Theorem 9 is satisfied. For

ϑ ∈ [0, 1], we denote u φ ϑ,τ = ϑu φ τ + (1 -ϑ)u.
Then, for ϑ ∈ [0, 1], lim inf

τ →0 + 1 τ (F(u φ ϑ,τ -f ) -F(u -f )) + lim inf τ →0 + 1 τ (F(u φ ϑ,-τ -f ) -F(u -f )) ≥ 0.
Proof. The proof is the same as the proof of Lemma 2, mutatis mutandis. For ϑ ∈ [0, 1], we denote v φ,ϑ,τ = ϑv φ,τ + (1 -ϑ)v.

By minimality of (u, v),

0 ≤ lim inf τ →0 + 1 τ ( E(u φ ϑ,±τ , v φ,ϑ,±τ ) -E(u, v)) ≤ lim inf τ →0 + 1 τ ( R(u φ ϑ,±τ , v φ,ϑ,±τ ) -R(u, v) + F(u φ ϑ,±τ -f ) -F(u -f )).
By our assumption, the function

R φ : ]-τ 0 , τ 0 [→ [0, ∞[ defined by R φ (τ ) = R(u φ τ , v φ,τ )
for τ 0 small enough is differentiable at τ = 0. Thus, by convexity of R,

1 τ ( R(u φ ϑ,±τ , v φ,ϑ,±τ ) -R(u, v)) ≤ ϑ τ ( R(u φ ±τ , v φ,±τ ) -R(u, v)) → ±ϑ R ′ φ (0) as τ → 0. Therefore, 0 ≤ ±ϑ R ′ φ (0) + lim inf τ →0 + 1 τ (F(u φ ϑ,±τ -f ) -F(u -f )).
We conclude by summing together the two obtained inequalities.

Application

Now we will discuss conditions under which regularizers of form [START_REF] Jalalzai | Properties of minimizers of the total variation and of the solutions of the total variation flow[END_REF] satisfy condition (H3') in the case that

R(w, z) = R 1 (w, z) + R 2 (z), where R 1 (w, z) = ϱ 1 (Dw -z T L m )(Ω) (27) 
and R 2 : D 2 → [0, ∞] is given by one of the following

• R 2 (z) = T D ϱ 2 (z) = ϱ 2 (Ez)(Ω), D 2 = BD(Ω), • R 2 (z) = T V ϱ 2 (z) = ϱ 2 (Dz)(Ω), D 2 = BV (Ω) m , • R 2 (z) = T V ϱ 2 (z) = ϱ 2 (Dz)(Ω), D 2 = {z ∈ BV (Ω) m : z T = D z, z ∈ BV (Ω)}.
We assume that ϱ 1 , ϱ 2 are convex. If

ϱ 1 = | • |, ϱ 2 = | • |, R coincides with T GV , nsT GV
and ICT V respectively. However, we are unable to show that (H3') holds in those cases. Instead, we need to consider partially regularized versions of those functionals. As before, we make the assumption that ϱ 1 satistfies ( 14), while we make the assumption that ϱ 2 has growth p ≥ 1: there exist C 1 , C 2 , with:

C 1 (|M | p -1) ≤ ϱ 2 (M ) ≤ C 2 (|M | p + 1) (28) 
for any M ∈ R m×m .

Theorem 11. Let R be given by [START_REF] Micha L Lasica | Existence of W 1,1 solutions to a class of variational problems with linear growth on convex domains[END_REF]. Assume that (D1) and (D2) from Theorem 4 hold with

ϱ = ϱ 1 and that ϱ 2 , ϱ ∞ 2 are differentiable. For z ∈ D 2 , φ ∈ C ∞ c (Ω) m and τ in a neighborhood of 0 we set z φ,τ (x) = (I + τ Dφ(x)) T z(x + φ(x)).
Then for any w ∈ BV (Ω), z ∈ D 2 the map τ → R(w φ τ , z φ,τ ) is differentiable at τ = 0.

Remark 2. In case p = 1, one may assume that ϱ ∞ 2 is differentiable at rank-one matrices only ("rank-one symmetric" matrices [which may have rank 2] for the case of T D ϱ 2 ).

As in the case of Theorem 4, the proof of Theorem 11 relies on change of variables formulae similar to [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF].

Lemma 12. Let F : Ω → Ω be a diffeomorphism (C 2 up to the boundary) and let w ∈ BV (Ω), z ∈ D 2 . Then R 1 (w • F, DF T z • F ) = ˆΩ | det D(F -1 )| dϱ 1 ((Dw -z T L m ) DF • F -1 ), ( 29 
)
T V ϱ 2 (DF T z • F ) = ˆΩ | det D(F -1 )| dϱ 2 DF T • F -1 Dz DF • F -1 + D 2 F T • F -1 zL m , ( 30 
)
T D ϱ 2 (DF T z • F ) = ˆΩ | det D(F -1 )| dϱ 2 DF T • F -1 Ez DF • F -1 + D 2 F T • F -1 zL m . ( 31 
)
Proof. The proof follows along the lines of Lemma 5. In the case of ( 29), we take as before a sequence (w k ) ⊂ C ∞ (Ω) that converges weakly- * in BV (Ω) to w and show that

w k •F * ⇀ w•F in BV (Ω). We also take (z k ) ⊂ C ∞ (Ω) m such that z k → z in L 1 (Ω) m ; then z k • F → z • F in L 1 (Ω) m as well. For any h ∈ C c (Ω) m , we calculate ˆΩ h • F • (D(w k • F ) -(DF T z k • F ) T ) = ˆΩ h • F • (Dw k • F -z T k • F )DF = ˆΩ h • (Dw k -z T k )DF • F -1 | det D(F -1 )|. Passing to the limit k → ∞, ˆΩ h • F • d(D(w • F ) + (DF T z • F ) T L m ) = ˆΩ | det D(F -1 )|h • d(Dw + z T L m ) DF • F -1 .
Using (17) as before we deduce [START_REF] Leonetti | Bounds for vector valued minimizers of some integral functionals[END_REF]. Demonstrations of ( 30) and ( 31) again follow the same footsteps. In the case of (31), we refer to the proof of [START_REF] Temam | Problèmes mathématiques en plasticité[END_REF]Thm. 3.2] which closely follows [18, 1.17], [START_REF] Anzellotti | Funzioni BV e tracce[END_REF] to assert the (weak- * ) density of smooth functions in BD(Ω). In that case, the left multiplication by DF T in the change of variable DF T z • F is crucial to ensure that the symmetrized gradient of the transported function can be estimated in terms of Ez only, and z (which is in L m/(m-1) thanks to Korn-Poincaré's inequality, see [37, Sec. 1.2]), and does not depend on the skew-symmetric part of Dz, which is not controlled.

Proof of Theorem 11. The proof follows along the lines of Theorem 4. In the case of ICT Vtype regularizer we need to note that if

z = D z T with z ∈ BV (Ω), then DF T z•F = D( z•F ) T , in particular DF T z•F ∈ D 2 .
We detail the proof in the T D ρ 2 case and leave the other cases to the reader. We consider diffeomorphisms of the form F τ (x) = x + φ(x)ν for τ ∈ R (small), ν a unit vector and φ a smooth function with compact support. The term R 1 will be differentiable as before, so we consider R 2 , which decomposes as:

ˆΩ det D(F -1 τ (x))ϱ 2 (D 2 F T τ (F -1 τ (x))z(x) + DF T τ (F -1 τ (x))e(z(x)DF τ (F -1 τ (x)))dx + ˆΩ det D(F -1 τ (x))ϱ ∞ 2 (DF τ (F -1 τ ) T M z DF τ (F -1 τ ))d|E s z| (32)
where M z is the matrix in the polar decomposition of Ez with respect to |Ez|.

In case p > 1, the second integral is not there since ϱ ∞ 2 ≡ ∞ and E(z) is absolutely continuous. On the other hand if p = 1, that second integral is differentiable at τ = 0 as soon as ϱ ∞

2 is differentiable at non-zero rank-one symmetric matrices, since M z has such structure E s z-a. e. thanks to [START_REF] De Philippis | On the structure of measures constrained by linear PDEs[END_REF]Thm. 2.3].

Differentiating the first integral is more subtle. Indeed, now, if e(z)(x) = 0, the term in the absolutely continuous integral does not vanish and is given by det D(F -1 τ )(x)ϱ 2 (τ z(x) • νD 2 φ(x)) which is not differentiable if ϱ 2 is not differentiable at 0, for instance in the onehomogeneous case of the standard "T GV ". Assuming that ϱ 2 is C 1 , then, one can write: This allows to bound the integrand in the last formula by C ′ (1 + |e(z)| p + |z| p ) ∈ L 1 (Ω) (again, thanks to Korn or Poincaré-Korn's inequality) for some constant C ′ > 0, and apply Lebesgue's dominated convergence to deduce that ( 32) is differentiable at τ = 0.

ˆΩ det D(F -1 τ )ϱ 2 (D 2 F T τ (F -1 τ )z + DF τ (F -1 τ ) T e(z)DF τ (F -1 τ ))dx = ˆΩ ϱ 2 (e(z))dx + ˆΩ(det D(F -1 τ ) -1)ϱ 2 (D 2 F T τ (F -1 τ )z + DF τ (F -1 τ ) T e(z)DF τ (F -1 τ ))dx + ˆτ 0 ˆΩ Dϱ 2 e(z) + s(z • νD 2 φ + 2(e(z)ν) ⊙ ∇φ) + s 2 (e(z)ν) • ν∇φ ⊗ ∇φ • z • νD 2 φ + 2(e ( 
Remark 3. If ϱ 2 is 1-homogeneous, we do now know whether the result holds. It is however likely that the condition (H3') is not general enough to lead to a conclusion, and that one might need a more complicated decomposition of the functions, as suggested in [START_REF] Valkonen | The jump set under geometric regularisation. Part 2: Higher-order approaches[END_REF]. On the other hand the result in the cases p > 1 is already proved in that reference.

Data of unbounded variation

In this section, we discuss the case where f ̸ ∈ BV (Ω) m and we only address the simplest case where the data term is strongly convex and with Lipschitz gradient, that is, verifies [START_REF] Caselles | The discontinuity set of solutions of the TV denoising problem and some extensions[END_REF]. We introduce a weaker description of a "jump set" (which for BV functions coincides with the standard jump set up to a negligible set), for which we are still able to deduce jump inclusion.

For f ∈ L 2 loc (Ω) n , x 0 ∈ Ω, ν 0 ∈ S m-1 we define j f,ν 0 (x 0 ) 2 := lim sup τ →0 + Q - τ (x 0 ,ν 0 ) |f (x + τ ν 0 ) -f (x)| 2 , j f (x 0 ) := sup ν 0 ∈S m-1 j f,ν 0 (x 0 ).
(See (2) for the notation Q ± r (x, ν).) We denote by J f the set of x 0 ∈ Ω such that j f (x 0 ) > 0.

Proposition 13. For f ∈ L 2 loc (Ω) n , x 0 ∈ Ω, ν 0 ∈ S m-1 we have

j f (x 0 , ν 0 ) 2 ≤ 4 lim sup τ →0 + Qτ (x 0 ,ν 0 ) f - Qτ (x 0 ,ν 0 ) f 2 . In particular, if x 0 is a (2-)Lebesgue point of f , then j f (x 0 ) = 0. If f ∈ L ∞ loc (Ω) n , then J f ⊂ J f ⊂ S f . Moreover, for x 0 ∈ J f , j f (x 0 ) = j f,ν f (x 0 ) (x 0 ) = |f + -f -|(x 0 ).
See Section 2.2 or [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Sec. 3] for the definition of J f , S f .

Proof. First of all, we indeed have

j f,ν 0 (x 0 ) 2 ≤ 2 lim sup τ →0 + Q - τ (x 0 ,ν 0 ) f (x + τ ν 0 ) - Qτ (x 0 ,ν 0 ) f (x) 2 + f (x) - Qτ (x 0 ,ν 0 ) f (x) 2 = 2 lim sup τ →0 + Q + τ (x 0 ,ν 0 ) f (x) - Qτ (x 0 ,ν 0 ) f (x) 2 + Q - τ (x 0 ,ν 0 ) f (x) - Qτ (x 0 ,ν 0 ) f (x) 2 = 4 lim sup τ →0 + Qτ (x 0 ,ν 0 ) f - Qτ (x 0 ,ν 0 ) f 2 .
It is known that Lebesgue points calculated with respect to different regular families of sets are the same. In particular in our case, observing that B √ 2τ (x 0 ) ⊇ Q τ (x 0 , ν 0 ), we have for every ν 0 ∈ S m-1 Qτ (x 0 ,ν 0 ) f -

Qτ (x 0 ,ν 0 ) f 2 ≤ 2 Qτ (x 0 ,ν 0 ) f - B √ 2τ (x 0 ) f 2 + 2 Qτ (x 0 ,ν 0 ) f - B √ 2τ (x 0 ) f 2 ≤ 4 Qτ (x 0 ,ν 0 ) f - B √ 2τ (x 0 ) f 2 ≤ 4 L m (B √ 2τ (x 0 )) L m (Q τ (x 0 , ν 0 )) B √ 2τ (x 0 ) f - B √ 2τ (x 0 ) f 2 Thus, if x 0 is a (2-)Lebesgue point of f , then j f,ν 0 (x 0 ) = 0 for every ν 0 ∈ S m-1 , whence j f (x 0 ) = 0. Now suppose that f ∈ L ∞ loc (Ω) n . If x 0 ∈ Ω \ S f , then Bτ (x 0 ) f - Bτ (x 0 ) f 2 ≤ 2∥f ∥ L ∞ (Bτ (x 0 )) Bτ (x 0 ) f - Bτ (x 0 )
f → 0 as τ → 0 + , so j f (x 0 ) = 0, i. e. x 0 ∈ Ω \ J f . On the other hand, if x 0 ∈ J f and ν 0 is the direction of jump of f at x 0 , then by the triangle inequality in

L 2 (Q - τ (x 0 , ν 0 )) n , Q - τ (x 0 ,ν 0 ) |f (x + τ ν 0 ) -f (x)| 2 ≥ - Q + τ (x 0 ,ν 0 ) |f -f + (x 0 )| 2 + |f + (x 0 ) -f -(x 0 )| - Q - τ (x 0 ,ν 0 ) |f -f -(x 0 )| 2 . Since Q ± τ (x 0 ,ν 0 ) |f -f ± (x 0 )| 2 ≤ 2∥f ∥ L ∞ (Q ± τ (x 0 ,ν 0 )) n Q ± τ (x 0 ,ν 0 ) |f -f ± (x 0 )| → 0 as τ → 0 + , we obtain j f (x 0 ) ≥ j f,ν 0 (x 0 ) ≥ |f + (x 0 ) -f -(x 0 )|,
in particular x 0 ∈ J f . It remains to prove the opposite inequality. Let ν ∈ S m-1 and let q = q(ν 0 , ν) ≥ 1 be the smallest number such that Q τ (x 0 , ν) ⊂ Q qτ (x 0 , ν 0 ). We stress that q does not depend on τ . Assume without loss of generality that ν 0 • ν ≥ 0. Then Q ± τ (x 0 , ν) can be divided into six parts (see Figure 1):

A 0,± τ (x 0 , ν) = {x ∈ Q ± τ (x 0 , ν) : x ∈ Q ± qτ (x 0 , ν 0 ), x ∓ τ ν ∈ Q ∓ qτ (x 0 , ν 0 )}, A +,± τ (x 0 , ν) = {x ∈ Q ± τ (x 0 , ν) : x ∈ Q ± qτ (x 0 , ν 0 ), x ∓ τ ν ∈ Q ± qτ (x 0 , ν 0 )}, A -,± τ (x 0 , ν) = {x ∈ Q ± τ (x 0 , ν) : x ∈ Q ∓ qτ (x 0 , ν 0 ), x ∓ τ ν ∈ Q ∓ qτ (x 0 , ν 0 )}. Figure 1: Sets A 0,± τ (x 0 , ν), A +,± τ (x 0 , ν), A -,± τ (x 0 , ν). By definition, A ∓,+ τ (x 0 , ν) ∪ A ±,- τ (x 0 , ν) ⊂ Q ∓ qτ (x 0 , ν 0 ), so ˆA±,- τ (x 0 ,ν) |f (x + τ ν 0 ) -f (x)| 2 = ˆA±,- τ (x 0 ,ν) |f (x + τ ν 0 ) -f ∓ (x 0 ) + f ∓ (x 0 ) -f (x)| 2 ≤ 2 ˆA∓,+ τ (x 0 ,ν) |f -f ∓ (x 0 )| 2 +2 ˆA±,- τ (x 0 ,ν) |f -f ∓ (x 0 )| 2 = 2 ˆA∓,+ τ (x 0 ,ν)∪A ±,- τ (x 0 ,ν) |f -f ∓ (x 0 )| 2 ≤ 4∥f ∥ L ∞ (Q ∓ qτ (x 0 ,ν 0 )) n ˆQ∓ qτ (x 0 ,ν 0 ) |f -f ∓ (x 0 )| and 1 L m (Q - τ (x 0 , ν)) ˆA±,- τ (x 0 ,ν) |f (x + τ ν 0 ) -f (x)| 2 ≤ 4∥f ∥ L ∞ (Q ∓ qτ (x 0 ,ν 0 )) n q m Q ∓ qτ (x 0 ,ν 0 ) |f -f ∓ (x 0 )| → 0 as τ → 0 + . Therefore, lim sup τ →0 + Q - τ (x 0 ,ν 0 ) |f (x+τ ν 0 )-f (x)| 2 = lim sup τ →0 + 1 L m (Q - τ (x 0 , ν)) ˆA0,- τ (x 0 ,ν) |f (x+τ ν 0 )-f (x)| 2 ≤ lim sup τ →0 + A 0,- τ (x 0 ,ν) |f (x + τ ν 0 ) -f (x)| 2 .
Then, by the triangle inequality in L

2 (A 0,- τ (x 0 , ν)) n , A 0,- τ (x 0 ,ν) |f (x + τ ν 0 ) -f (x)| 2 ≤ A 0,+ τ (x 0 ,ν) |f -f + (x 0 )| 2 + |f + (x 0 ) -f -(x 0 )| + A 0,- τ (x 0 ,ν) |f -f -(x 0 )| 2 .
We estimate

A 0,± τ (x 0 ,ν) |f -f ± (x 0 )| 2 ≤ 2∥f ∥ L ∞ (A 0,± τ (x 0 ,ν)) n L m (Q ± qτ (x 0 , ν 0 )) L m (A 0,± τ (x 0 , ν)) Q ± qτ (x 0 ,ν 0 ) |f -f ± (x 0 )|.
Since the quotient L m (Q ± qτ (x 0 , ν 0 ))/L m (A 0,± τ (x 0 , ν)) is independent of τ , the r. h. s. converges to 0 as τ → 0 + , whence

j f,ν (x 0 ) ≤ |f + (x 0 ) -f -(x 0 )|.
As ν ∈ S m-1 is arbitrary, we conclude.

As a consequence of Proposition 13 and the Federer-Vol'pert Theorem [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 3.78 [START_REF] Jalalzai | Properties of minimizers of the total variation and of the solutions of the total variation flow[END_REF] and (H3') holds. Then J u ⊂ J f up to a H m-1 -negligible set and

], if f ∈ L ∞ loc (Ω) n ∩ BV loc (Ω) n , the three sets S f , J f and J f coincide up to H m-1 -negligible sets. Theorem 14. Let f ∈ L ∞ (Ω) n , suppose that E admits a minimizer u ∈ L ∞ (Ω) n ∩ BV (Ω) n , ψ is C 2 and (8) holds on {z ∈ R n : |z| ≤ ∥u∥ L ∞ (Ω) n + ∥f ∥ L ∞ (Ω) n }. Assume (H3) or that R is of form
|u + -u -|(x 0 ) ≤ Λ/λ j f (x 0 ) for H m-1 -a. e. x 0 ∈ J u .
Proof. By Lemma 2 (or Lemma 10 in the inf-convolution setting) we have for any (directed) inner variation φ and ϑ ∈

[0, 1] 0 ≤ lim inf τ →0 + 1 τ (F(u φ ϑ,τ -f ) -F(u -f )) + 1 τ (F(u φ ϑ,-τ -f ) -F(u -f )). ( 33 
)
We take Γ, x 0 , ν 0 = ν u (x 0 ) and r 0 as in the beginning of the proof of Theorem 1, except now we cannot assume that the traces f ± exist on both sides of Γ. Instead we assume that x 0 is a Lebesgue point of j f with respect to

H m-1 ¬ Γ, in particular Qr∩Γ j f (x) 2 dH m-1 (x) r→0 -→ j f (x 0 ) 2 . ( 34 
)
As in the proof of Lemma 3, by an isometric change of coordinates, we assume that ν 0 = e m , x 0 = 0 and denote

x = (x ′ , x m ), Q r (x 0 , ν 0 ) = Q r , B m-1 r (x 0 , ν 0 ) = B m-1 r , Γ = γ(x ′ ) : x ′ ∈ B m-1 r , γ(x ′ ) = (x ′ , γ(x ′ ))
. We recall that we assume γ is C 1 . For s ≤ r, we let

L s = max B m-1 s |∇ ′ γ| the Lipschitz constant of γ on B m-1 s , which is such that lim s→0 L s = 0. Given 0 < s < r, we take φ ∈ C ∞ c (Ω) n such that the support of φ is contained in Q r and φ = ν 0 φ, where 0 ≤ φ ≤ 1 and φ = 1 on B m-1 s × [-r/2, r/2]. We denote S - s,τ = {(x ′ , x m ) : x ′ ∈ B m-1 s , γ(x ′ ) -τ ≤ x m ≤ γ(x ′ )}, S + s,τ = {(x ′ , x m ) : x ′ ∈ B m-1 s , γ(x ′ ) ≤ x m ≤ γ(x ′ ) + τ }, u τ (x) = u(x ′ , x m + τ ), f τ (x) = f (x ′ , x m + τ ), u ϑ,τ = ϑu τ + (1 -ϑ)u, f ϑ,τ = ϑf τ + (1 -ϑ)f.
We note that u τ = u φ τ and u ϑ,τ = u φ ϑ,τ on S - s,τ as soon as τ ≤ r/2. We decompose

F(u φ ϑ,±τ -f ) -F(u -f ) = ˆS∓ s,τ ψ(u φ ϑ,±τ -f ) -ψ(u -f ) + ˆQr\S ∓ s,τ ψ(u φ ϑ,±τ -f ) -ψ(u -f ).
Reasoning as in the proof of Lemma 3 (where we use that

ψ is Lipschitz in {z ∈ R n : |z| ≤ ∥u∥ L ∞ (Ω) n + ∥f ∥ L ∞ (Ω) n }), we get 1 τ ˆQr\S ∓ s,τ ψ(u φ ϑ,±τ -f ) -ψ(u -f ) ≤ C τ ˆQr\S ∓ s,τ |u φ ϑ,±τ -u| ≤ Cϑ|ν 0 • Du|(Q r \ (Q s ∩ Γ)).
On the other hand, using the convexity of ψ,

ˆS- s,τ ψ(u φ ϑ,τ -f ) -ψ(u -f ) + ˆS+ s,τ ψ(u φ ϑ,-τ -f ) -ψ(u -f ) = ˆS- s,τ ψ(u ϑ,τ -f ) -ψ(u -f ) + ψ(u (1-ϑ),τ -f τ ) -ψ(u τ -f τ ) ≤ ˆS- s,τ ϑDψ(u ϑ,τ -f ) • (u τ -u) + ϑDψ(u (1-ϑ),τ -f τ ) • (u -u τ ) = ϑ ˆS- s,τ (Dψ(u ϑ,τ -f ) -Dψ(u (1-ϑ),τ -f τ )) • (u τ -u) = ϑ ˆS- s,τ (u ϑ,τ -u (1-ϑ),τ -f + f τ ) • A ϑ,τ • (u τ -u),
where the symmetric positive definite matrix A ϑ,τ is given by:

A ϑ,τ = ˆ1 0 D 2 ψ(u (1-ϑ),τ -f τ + s(u ϑ,τ -u (1-ϑ),τ -f + f τ ))ds. Using 2ξ • A ϑ,τ • η ≤ ξ • A ϑ,τ • ξ + η • A ϑ,τ • η for any ξ, η and (8) it follows that (u ϑ,τ -u (1-ϑ),τ -f + f τ ) • A ϑ,τ • (u τ -u) = -(1 -2ϑ)(u τ -u) • A ϑ,τ • (u τ -u) + (f τ -f ) • A ϑ,τ • (u τ -u) ≤ -( 1 2 -2ϑ)(u τ -u) • A ϑ,τ • (u τ -u) + 1 2 (f τ -f ) • A ϑ,τ • (f τ -f ) ≤ -( 1 2 -2ϑ)λ|u τ -u| 2 + 1 2 Λ|f τ -f | 2
for ϑ ∈ [0, 1 4 ]. Using [3, Theorem 3.108], recalling [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] and combining the estimates above,

ϑ(1 -4ϑ)λ ˆQs∩Γ |u + -u -| 2 dγ # L m-1 = ϑ(1 -4ϑ)λ lim τ →0 + 1 τ ˆS- s,τ |u τ -u| 2 ≤ ϑΛ lim inf τ →0 + 1 τ ˆS- s,τ |f τ -f | 2 + 2Cϑ|ν 0 • Du|(Q r \ (Q s ∩ Γ)). ( 35 
)
We recall that here, u ± coincide with the traces of u on both side of Γ. We estimate the pushforward measure γ # L m-1 by

γ # L m-1 ¬ (Q s ∩ Γ) = H m-1 ¬ (Q s ∩ Γ) 1 + |∇ ′ γ(x ′ )| 2 ≥ 1 1 + L 2 s H m-1 ¬ (Q s ∩ Γ). Now, for x ′ ∈ B m-1 s
, τ < r -s, let us denote

Q - τ (x ′ ) = {(y ′ , y m ) ∈ Q r : |y ′ -x ′ | < τ, γ(y ′ ) -τ < y m < γ(y ′ )}.
We observe that L m ( Q - τ (x ′ )) = τ L m-1 (B m-1 τ

). Then

1 τ ˆS- s,τ |f τ -f | 2 ≤ ˆBm-1 s Q - τ (x ′ ) |f τ -f | 2 .
Note that ffl 

Q - τ (x ′ ) |f τ -f | 2 is
τ →0 + Q - τ (x ′ ) |f τ -f | 2 .
Dividing [START_REF] Rellich | Perturbation theory of eigenvalue problems[END_REF] by ϑ and passing to the limits ϑ → 0 + , s → r -

λ ˆQr∩Γ |u + -u -| 2 dγ # L m-1 ≤ Λ ˆBm-1 r lim sup τ →0 + Q - τ (x ′ ) |f τ -f | 2 + 2C|ν 0 • Du|(Q r \ Γ). ( 36 
)
We estimate

L m ( Q - τ (x ′ ) \ Q - τ ((x ′ , γ(x ′ )), ν 0 )) ≤ L m-1 (B m-1 τ ) τ max B m-1 r |∇ ′ γ| = L r L m ( Q- τ (x ′ )) τ.
Therefore,

Q - τ (x ′ ) |f τ -f | 2 ≤ Q - τ ((x ′ ,γ(x ′ )),ν 0 ) |f τ -f | 2 + 4L r ∥f ∥ 2 L ∞ (Qr) n
and lim sup

τ →0 + Q - τ (x ′ ) |f τ -f | 2 ≤ j f (x ′ , γ(x ′ )) 2 + 4L r ∥f ∥ 2 L ∞ (Qr) n .
Hence, we can estimate ˆBm-1

r lim sup τ →0 + Q - τ (x ′ ) |f τ -f | 2 ≤ ˆBm-1 r j f (x ′ , γ(x ′ )) 2 dL m-1 (x ′ ) + 4L m-1 (B m-1 r )L r ∥f ∥ 2 L ∞ (Qr) n = ˆQr∩Γ j f (x) 2 1 + |∇ ′ γ(x ′ )| 2 dH m-1 (x) + 4L m-1 (B m-1 r )L r ∥f ∥ 2 L ∞ (Qr) n ≤ ˆQr∩Γ j 2 f dH m-1 + 4L m-1 (B m-1 r )L r ∥f ∥ 2 L ∞ (Qr) n
Recalling (36), we deduce

λ ˆQr∩Γ |u + -u -| 2 dγ # L m-1 ≤ Λ ˆQr∩Γ j 2 f dH m-1 + 4L m-1 (B m-1 r )L r ∥f ∥ 2 L ∞ (Qr) n + 2C|ν 0 • Du|(Q r \ Γ). ( 37 
)
Finally, we divide both sides of (37) by L m-1 (B m-1 r ) = γ # L m-1 (Q r ∩ Γ) and keeping in mind that H m-1 (Q r ∩ Γ)/L m-1 (B m-1 r ) → 1 and L r → 0 as r → 0 + , we pass to the limit obtaining the asserted inequality owing to [START_REF] John Von Neumann | Collected works. Vol. IV: Continuous geometry and other topics[END_REF]. We solved here the "ROF" problem (1) for a data term given by a noisy color image, and the Frobenius, Nuclear and Spectral total variations. Figure 2 shows the results, which look almost identical. The close-up in Figure 3 seems to show that the edges are better recovered with the Nuclear total variation, and quite jagged in the case of the Spectral total variation, for which the jump inclusion might not hold. Of course, this is a discrete experiment at a fixed scale and therefore a relatively poor illustration of our main results. Observe that in these experiments, one cannot expect that the original datum (left image) represents a function f ∈ BV (Ω, [0, 1] 3 ). However, being obtained by adding a small amplitude noise to a bounded variation function, we may expect that the set J f of Section 7 corresponds to the set of (large enough) edges in the original image.

Experiment

Conclusion and comments

We have introduced an approach for the study of the jump set of minimizers of "Rudin-Osher-Fatemi" type problems which is more versatile than the original approach in [START_REF] Caselles | The discontinuity set of solutions of the TV denoising problem and some extensions[END_REF], and easier to handle than [START_REF] Valkonen | The jump set under geometric regularization. Part 1: basic technique and first-order denoising[END_REF] (even if equivalent in spirit, and much inspired by it). We recover many cases (and more) from the previous works [38, including jump inclusion in the "TGV" case (up to some smoothing). The full nonsmooth case remains open. Also, our approach does not seem to allow to derive further regularity, such as the continuity results of [START_REF] Mercier | Continuity results for TV-minimizers[END_REF][START_REF] Caselles | Regularity for solutions of the total variation denoising problem[END_REF]. It is also unclear what exactly happens for non-differentiable norms, since at jumps the gradients have rank one, and locally many nonsmooth norms remain differentiable-yet experimental observations seem to show a much worse control on the oscillations parallel to the jumps in such cases, as in Figure 3 (right).

Our results can be rephrased in terms of the measure D j u. In particular, in the case of ψ strongly convex with Lipschitz-gradient (8), Theorems 1 and 9 imply estimate |D j u| ≤ λ/Λ|D j f |. Similar bounds have been recently obtained for the whole singular part D s u in the 1D vectorial case (m = 1, n > 1) in [START_REF] Grochulska | Local estimates for vectorial Rudin-Osher-Fatemi type problems in one dimension[END_REF]. To our knowledge, it remains an open question whether such estimates hold for the Cantor part D c u in m > 1, even in the case of scalar T V , although in n = 1 it is known that D s f = 0 =⇒ D s u = 0 for general regularizers of form [START_REF] Duran | Collaborative total variation: a general framework for vectorial TV models[END_REF] if Ω is convex [START_REF] Micha L Lasica | Existence of W 1,1 solutions to a class of variational problems with linear growth on convex domains[END_REF], and that regularity away from the jump set is transferred to the solution (for R nice enough) [START_REF] Caselles | Regularity for solutions of the total variation denoising problem[END_REF][START_REF] Mercier | Continuity results for TV-minimizers[END_REF].

Finally, a natural question is whether the results shown in this work also hold for the gradient flow of the total variation or similar functionals. In [START_REF] Caselles | The discontinuity set of solutions of the TV denoising problem and some extensions[END_REF][START_REF] Caselles | On the jump set of solutions of the total variation flow[END_REF], this is deduced from Crandall-Liggett's theorem in L ∞ (Ω), which can be applied because minimizing the ROF problem (1) is contractive in the sup norm. Yet, this is unknown (and possibly not true) in the vectorial case and no easy conclusion may be drawn. In relation to this, we mention a recent paper [START_REF] Kazaniecki | Schur property for jump parts of gradient measures[END_REF], where an interesting continuity property of the map w → D j w is obtained. However, its applicability in our context remains a matter of further investigation.

Theorem 4 .Lemma 5 .

 45 Suppose that (D1) the function τ → ϱ (A(I + τ B)) is differentiable at τ = 0 for any A ∈ R n×m and anyB ∈ R m×m , (D2) the function τ → ϱ ∞ (A(I + τ B)) is differentiable at τ = 0 for any A ∈ R n×m of rank 1 and any B ∈ R m×m .Then R is differentiable along inner variations at any w ∈ D.The proof of Theorem 4 follows along the lines of[START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF] Chapter 10] (where the case of total variation is considered). The main point is the following change of variables formula. Let F : Ω → Ω be a diffeomorphism (C 1 up to the boundary) and let w

  z)ν) ⊙ ∇φ + 2s(e(z)ν) • ν∇φ ⊗ ∇φ dxds, where the notation a ⊙ b stands for the symmetric tensor product (a ⊗ b + b ⊗ a)/2. For any two matrices A, B, ϱ 2 (A ± B) -ϱ 2 (A) ≥ ±Dϱ 2 (A) • B and one deduces from the growth assumption (28) that there is C > 0 such that |Dϱ 2 (A) • B| ≤ C(|A| p + |B| p + 1).

Figure 2 :

 2 Figure 2: A noisy image and the denoised versions with, respectively, the Frobenius ROF, Nuclear ROF, Spectral ROF problems.

Figure 3 :

 3 Figure 3: Detail of Figure 2

  uniformly bounded by 4∥f ∥ 2 L ∞ (Qr) n . Thus, by Fatou's Lemma

	lim inf τ →0 +	1 τ ˆS-

s,τ |f τ -f | 2 ≤ ˆBm-1 s lim sup

Precisely, our results hold for Schatten-type norms, but not Ky-Fan type norms such as the Spectral Norm.
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