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ABSTRACT

In this paper, we introduce DeepPrism, a novel network architec-
ture for generative models, which addresses the redundancy issue
of convolutional filters. DeepPrism reaches an unprecedented pa-
rameter efficiency improvement of up to 1000 times on generative
models. The number of parameters is reduced over conventional
CNN s from quadratic to constant dependency with respect to the
network’s width. The training / inference time and space are also
reduced. The main novelty lies in the geometric property namely
the translation equivariance on channels, which gives rise to the
convolution structure along the channels, and trivially general-
izes to the attention mechanism. Compared with Latent Diffusion
Model, DeepPrism produces similar qualitative and quantitative re-
sults, but the number of parameters can be reduced at a great scale.
Other generative models including autoencoders and single-image
diffusion models are also experimented to exhibit the generality of
this method on generative models.
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1 INTRODUCTION

Recent years have witnessed great developments of generative mod-
els in computer vision, where the output image is generated under
multiple constraints as inputs. Many classical problems can be
formulated into this framework. In image processing, examples are
denoising, super-resolution, colorization, inpainting, etc., where the
input constraint is a corrupted image. In computer vision, examples
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involve generation under label constraints (classes), spatial con-
straints (sketches, strokes), style constraints (of reference images),
text constraints, etc. However, important issues remain unsolved
along the way.

Efficient Generative Models. On one hand, digging out the
power of small models is crucial and beneficial to boost the effi-
ciency of large generative models. Modern learning systems are
costly, since larger models tend to perform better. The training and
inference burdens are both economically expensive and environ-
mentally unsustainable. Even though large models can produce
high-quality results, they are computationally inefficient since their
marginal performance per parameter drops at scale. Recent works
on efficient models like [15, 20, 27, 34, 45] have reduced the size
of a classification network to several millions of parameters, but
there are few similar work on generative models which achieve
this level of efficiency within our scope. Our method even reaches
an unprecedented parameter scale even compared to most small
recognition models and keeps tremendous performance.

Geometric Deep Learning. On the other hand, new mathemat-
ical considerations of the convolution structure have always been
a vital issue. Recent works in exploiting symmetry [3, 7, 14, 41]
design more efficient network structures from a geometrical per-
spective. The term group equivariance of a layer means that layer
and the group action (such as the translation operation) commutes,
and the equivariance property leads to invariant quantities across
hidden layers computed by Noether’s theorem. Understanding it
to find new forms of invariance remedies the redundancy problem
as a benefit. Most existing approaches only consider the convolu-
tional shift-invariance along the spatial dimensions, whereas our
method study the shift-invariance of the channel domain of the
hidden signal, which leads to explainable channel space in the light
of this new type of convolution. Since the output depends on ad-
jacent color channels, the proposed convolution can naturally be
compared with chromatic dispersion.

Contribution. In this paper, we combine both above perspec-
tives. In summary, we seek better parameter efficiency and more
desirable geometrical property while largely preserving model per-
formance. Our approach reduces the number of parameters of con-
volutional neural networks (CNNs), which results from an enforced
weight-sharing technique. We find the usefulness of weight-sharing
in 3 dimensions (width, height, channel), compared to conventional
convolution in 2 dimensions (width and height only). Therefore we
propose a convolution filter with parameters of as few as 3x3x3 =
27 parameters each layer, and it works unreasonably well in gener-
ative models. Empirical result on reduction on parameter size with
maintained generation performance is shown in figure 1.
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Figure 1: Generation quality of an Autoencoder versus num-
ber of parameters tested on CIFAR10 dataset.

2 RELATED WORKS

Generative models. Generative models have been developing at a
great speed in the past few years, in terms of higher quality, wider
diversity and more flexible controllability. For the quality aspect,
both Generative Adversarial Networks (GAN) [13] and Diffusion
Models (DM) [18, 37] can produce images of high resolution. In
zero-shot settings with no training data (training only on the input),
high quality images can also be generated using a CNN [35, 38].
For the diversity aspect, both GAN-based and DM-based models
have the capacity to cover the patterns of the whole dataset out of
a shared model. For the controllability side, input constraints can
be fed into the model in the form of the concatenated feature maps
[11, 28], learnable weights in the Adaptive Instance Normalization
(AdaIN) [21] or weights in the cross-attention function [31].

Convolution and Attention-based Networks. The main-
stream architecture for generative models is the CNN [25]. A basic
network is composed of normalization, activation, convolution,
spatial resampling (such as pooling and upscaling) layers, and so
forth. Through this multi-layer process, the network might contain
skip connections, such like residual networks [16]. The full convo-
lution could be replaced by convolution with its variants such as
group convolution [23]. Group convolution is one way to sparsify
the convolution, which uses a block-diagonal matrix of G blocks
instead of a full matrix along the channel dimensions. It reduces
the network’s parameter size by G folds. The dimensionality of
a convolution filter is C?K? where C is the network width and K
is a small integer which implies the convolution kernel size. The
attention layer, introduced in the Transformer architecture [39], is
another successful network structures parallel to the convolution-
activation layers, which has variants like multi-head attention [9],
sparse attention [5], etc. The multi-head variant reduces the param-
eter sizes by considering a smaller spatial structure. The parameter
sizes of attention layers are C2. Practical choices of network width
C is up to several hundred. Therefore the redundancy lies mostly in
the channel dimensions in both cases, which motivates the design
of lightweight structures.

Changging Fu and Laurent Cohen

Convolution Decompositions. The decomposition of convo-
lution kernels leads to simplifications and reduction of redundancy.
Understanding the spectral representation of convolution filters on
a graph is the general case of this perspective [1, 4, 8]. Orthogonal
convolution [40] can resolve redundancy and improve the perfor-
mance of inference and generative models, but it neither changes
the number of parameters nor reduces the computation overhead.
Low-rank decomposition [43] is a way to compress the filter of chan-
nel dimensions C1C; into the product of two matrices of dimension
Cir and rCy where r is a small integer. Practically speaking, it can
achieve a compression rate of one order of magnitude while not
losing too much performance for inference models.

Model Compression. Besides low-rank compression, there
exists other ad-hoc methods to compress trained models. Pruning
[2] is a way to wipe out parameters, which can also compress the
model by an order of magnitude for inference models. There exist
also other methods to reduce the computation of generative models.
Distillation [29] is another method to use a trained model as the
teacher (source of training data) for a (usually smaller) student
model. Applying to diffusion models, it could accelerate the genera-
tion speed by one order of magnitude. What’s more, quantization of
floating-point numbers in the weights [30] and Neural Architecture
Search [32] could also compress the parameters by one order of
magnitude. Our method produces a much better parameter-efficient
result.

3 METHOD: DEEPPRISM

3.1 Motivation

Our interpretation of the channel space is motivated by the optic
dispersion phenomenon. A natural light is composed of “lasers”
(pure-color rays) of different frequencies. When a beam of white
light passes through a prism, the resulting light is split into a “rain-
bow”, since different color has different refraction angles. The
arrangement of pure colors on the rainbow is monotone according
to the light frequency. In this way, the mixed color beam is dis-
entangled by the prism, and we propose a physical interpretation
of the channel dimension as an analogy of the light spectrum, il-
lustrated in figure 2. The frequency values form the space of light
spectrum, which is a real line or 1D Euclidian space. Besides the
light frequency, other color spaces also motivate this understanding.
Under the scenario of biological vision, the visible spectrum is a
finite interval with minimum and maximum frequencies. Under
the scenario of digital representation of colors using HSV space, the
hue takes the role of the light frequency, taking value on a circle [0,
27], as is summarized in table 1.

3.2 Topology on Channel

Our geometrical understanding of the channel dimension originates
from a signal processing perspective. We regard the channel index
as a discrete sampling from a continuous space. On this space we
endow a topological structure. Note that the term topology in our
context refer to the mathematical tool of a standard classification of
spaces. The core idea is the continuity concept: two spaces are the
same class if they are continuously mapped to each other with an
invertible function. To characterize continuity, the basic building
block is the definition of “neighborhoods”, or open sets. In short,
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Figure 2: Top Left: “black-box” fully connected layer. Bottom Left: light dispersion through a prism. Right: Different types of
topologies to model the light spectrum. From top to bottom: interval, line, circle.

Table 1: Topology of different padding mode of channel convolutions, with relations to the the boundary types of the filtering

process, and their motivation.

Padding Zero Replicate Circular
Parameter Interval Line Circle
Training Direchlet Neumann Periodic

neighborhoods are continuously mapped from neighborhoods. On
the spatial dimensions of an image, this motivates convolution. The
neighborhoods correspond to image patches, defined by adjacent
pixels. The discrete counterpart of a topological space is a discrete
graph, where the neighborhood of a node is defined by those nodes
connected by edges. Under the perspective of graph neural net-
works, we can define the topology of a convolution layer. Take a
3-by-3 convolution layer as an example. The pixel grid is a graph
whose nodes are the homogeneous 2D lattice, and the edge is the
adjacency of pixels.

Our key insight is that in the channel dimension, neighborhoods
can also be characterized by the adjacency of channel indices. As
a result, the channel indices now obtain their unique topological
structure (in the circular case, the uniqueness is valid modulo chan-
nel rotation). Learning this type of convolution on the database
automatically grasp features which are shift-invariant along the
channel dimension.

3.3 Channel Convolution

Given the input feature maps u with shape [B, C, H, W], with
batch size B, channel size C, spatial resolution H X W, and the
convolutional filter with shape [K], where K is the kernel size, The
channel convolution on an image is defined as

Prism (u; w) = Conv1D(w, u-'—)T (1)

where Conv1D stands for the 1D per-channel convolution on the
last dimension (or number of groups equals channel size), T is the
transpose operator between spatial dimensions and the channel
dimension. We only show the astonishing efficiency of the case
when K is as small as 3.

Different padding modes of the 1D convolution corresponds to
different channel topology, as is illustrated in table 1. Zero padding
corresponds to the image signal with channel values fixed to zero
at both ends, or at minimum and maximum light frequency. The
fixed terminal value of a continuous signal is referred to as the

Dirichlet boundary. Correspondingly, the replicative padding mode
characterizes the free boundary or Neumann boundary, whereas
the circular padding mode corresponds to the periodic boundary.
These three cases correspond to the three cases discussed section
3.1.

3.4 Separable Convolution

Separable convolutions [6] is a combination of channel-wise and
space-wise convolutions. It gives rise to an alternating convolution
on both the space and channel directions. For a channel filter w,
with shape [K], with K being the kernel size, and a spatial filter of
shape ws = [K, K], the filter w = {w,, ws} parameterizes a separable
convolution:

PrismConv (u; w) = Conv1D(w,, Conv2D(ws, u)T)T (2)

This pseudo-3D convolution is successfully applied in video gen-
eration architectures [12, 19, 36]. The difference is that in our case,
Conv2D is also a per-channel convolution, to produce an even more
lightweight design for image generation. That is, taking K as 3, the
ws takes the form of a 3 X 3 matrix, and the whole convolution w
is a tensor direct sum of the spatial filter ws and channel filter w,,

or (wijj + w;l) Denoting this 3D filter as w, we obtain an

i,j=1,23"
alternative form of the convolutionn, the extension is deduced as
PrismAttn(u; wg, Wi, Wo, Wo) = Prism(Attn(q, k,v); wo)

This structure is not capable of representing the correlation be-
tween the space and channel dimensions.

3.5 DeepPrism

We propose to use instead a relaxed full 3D tensor as the convolution
kernel (wp; j) where h,i,j=1,2,3, h is the channel dimension and i,
j are the spatial dimensions. Therefore, the proposed DeepPrism
convolution is defined as

DeepPrism (u;w) = Conv3D (w, u) (3)
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Figure 3: Illustration of Single-Channel, Multi-Channel Convolution and DeepPrism. The green cube is the convolution kernel
whereas the blue cube is the neuron signal or the hidden layers of the neural network. The dimensionality of DeepPrism’s
convolution kernel greatly reduces from C'CK HCw of a common convolution kernel to Kc Ky Ky, where K¢ < C and we take

Kc =Ky = Kw =3.

The whole architecture of the DeepPrism backbone is therefore
replacing every convolution layer except the input and output
convolution layers. Regarding the two layers as demodulation and
modulation between RGB colors and C-channel features, the rest
of the network is a channel-dependent convolution on the feature
signal over a fixed 3D field. A DeepPrism convolution is defined as
single-channel 3D convolution, by regarding the input layer as a
3D signal with dimensions of height, width and channel size, as is
illustrated in figure 3.

A concise pytorch implementation of the 3x3x3 DeepPrism func-
tion is the following.

#x, y: Layer input and output
#x and y’s size: (B,C,H,W)
class DeepPrism(torch.nn.Conv3d):
def __init__(self;"*kwargs):
super(DeepPrism, self).__init__(in_channels=1,out_chan-
nels
=1, “"kwargs)
def forward(self,input):
return super(DeepPrism, self).forward(input.unsqueeze(1)).
squeeze(1)
layer = DeepPrism(kernel_size=(3,3,3),padding=1)
y = layer(x)

Extension: PrismAttn. Especially for the attention layer, sup-
pose q, k, v stand for the query, key and value, which are the output
of the C-channel convolution with kernel size 1 X 1, the attention
function is defined as

CHW ks
Attn(q k,0)p;;= X Softmax e |y )
h/ ’i/’j/ :1

The attention block is a ResNet layer whose residual is the atten-
tion function convolved by a 1x1 convolution filter, Conv2D(wo,
Attn(q, k, v)). Suppose the convolution kernels are Wgq» Wk, Wy, Wo
with size [K], the Prism Attention is therefore defined as

PrismAttn (u; wq, Wk, Wo, Wo) = Prism (Attn (q,k,0) ;wo)  (5)

with the query, value and key being q = Prism(u; wq), k = Prism(u;
wg) and v = Prism(u; wy)).

4 EXPERIMENTS

DeepPrism replaces all the hidden 3D convolution layers of width
C with DeepPrism in the baseline model, and saves the number
of parameters by at least two to three orders of magnitude. The
complexity of the proposed method improved over conventional
convolutions is analyzed in table 2, whereas the practical number
of parameters is compared in table 3.

4.1 Autoencoder

The first task we experiment on is the autoencoder. Its goal is to
compress an image into a latent code of smaller dimensions.

Results. The compression rates compared with the baseline
is summarized in table 3. The quantitative result of the image
reconstruction evaluated by Inception Score was shown in figure
1. It indicates that our model surpasses state-of-the-art generative
models by a large margin in terms of parameter size. Detailed
quantitative evaluations are detailed in table 4. Visualizations of
the reconstructions are illustrated in figure 4. Note that other
lightweight convolution methods never reach such a small scale on
parameter sizes as is mentioned in the related work section, and
thus they are not comparable to our approach.

Baseline. The baseline model follows the configurations in [33].
The network is composed of four parts: the encoder E, the decoder
G, the discriminator D and a pre-trained classification network V.
Given an input x, the latent code is encoded with the encoder E,
and we assume that the latent code follows a Gaussian distribution
z ~ N (pz, 0z). The mean and variance of z are predicted by the
encoder pz = E(x), 0z = E’(x), where E, E’ share the same network
except for the output convolution layer. The output is then decoded
asy = G(z).

Loss Function. The training objective contains four parts: the
reconstruction term, the perceptual term, the entropy term and the
adversarial term. The loss and regularization terms are explained
as follows.

The reconstruction term is the per-pixel loss for rough recon-
struction.

1 CHW
lx =yl = e D Foniy = visl? ©)
hi,j=1
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Table 2: Complexity of different types of convolution

Operator Conv?  Group Prism  Attention FlashAttn P MultiHeadAttn ~ SparseAttn PrismAttn
Parameter c? Cc%/G 1 c? c? c? c? 1

Training BC2N  BC2N/G BCN  B(CN?+C2N) B(CN?+C2N) B(CN?/P+C2N) B(CN3?2+C2N) B(N?+CN)
Space BCN  BCN BCN  B(N?’+CN) BCN B(N?/P+CN) B(CN32+CN) B(N%+CN)
Inference C:N C’N/G CN CN? + C?N CN? + C2N CN%/P+C:N  CN324+(C2N CN?

2 The time complexity of the convolution function could be further optimized through Fast Fourier Transform [17].

b The improvement of space complexity of FlashAttention [46] or other methods over vanilla Attention could be combined.

Table 3: Number of parameters of DeepPrism network vs baseline models for image compression with variational autoencoder.
Our method gives similar results but is up to thousands of times smaller.

Width C  VAE (LDM) VAE (DeepPrism) Boost
128 6.36M 29.5K 216 X
256 25.3M 57.8K 438 X
512 101M 114K 886 X
1024 405M 227K 1784 X

Input Bicubic Resample 2D Convolution DeepPrism

Figure 4: Result on the Imagenet dataset.

Table 4: Quantitative results of the DeepPrism autoencoder on CIFAR10 dataset.

Method PSNR IS KID PS SSIM Parameter
Baseline 18.8 £ 2.4 5.99 +0.12 0.0146 + 0.0011 2.07 + 0.49 0.609 + 0.106 25.3M
DeepPrism 24.1+25 6.08 £ 0.15 0.0179 + 0.0011 1.03 + 0.27 0.850 + 0.053 57.8K
Using this loss alone is desired when one wishes the network that the coeflicients of the weighted layer-wise sum wy for
to match the target only. Otherwise, regularization terms help to layer ¢ are learnable. This distance matches well the simi-
avoid over-fitting. larity of two sets of images according to human perception.

o The perceptual term [44] is to take the hidden layers along Let ¢ be the first few layers, the perceptual loss is written as

the forward pass of V , with both the generation and the

ground truth as inputs, and then compute a weighted sum of

the Euclidian distance between them across layers. The pre 1 Z we || Ve (x) = Vi () ”2 )
trained V ’s weights are frozen during the training, except 24
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Figure 5: Results on SinDDM

o The entropy term [22] is to encourage the code z to be close to
a white noise by minimizing the relative entropy (Kullback-
Leibler divergence) of z’s distribution from a standard Gauss-
ian distribution. Given two distributions p1, 2 and o1, 02
which takes shape of [C, H, W], the KL divergence is given

by
H (N (m, 0t1) IN (2, 031))
CHW
=1 \ ) 1 ((/11;52—)2 + g—; — logay + logoy — 1) ®)
A j=

e The GAN term [26] maximizes the distance from an optimal
SVM separating hyperplane estimated by the discriminator
D. Since the GAN convergence is not stable, we follow [33]
to postpone the introduction of this regularization term after
the training stabilizes.

The overall optimization goal is therefore

L(E,G,D,w)

Hlu - G (E (w) 1%+

25 wellVe (u) = Ve (G (E () 1%+
= min maxEy 4

EGZ D | 1,H(N(E (u),E (u)21> IN (0, 1))+
A3(1+D (u)); + (1 =D (G (E (u))))4

Network Structure. For simplicity and to avoid channel space
re-sampling for our DeepPrism function, we fix the channel size C
= 256. Note that channel-resampling for DeepPrism is feasible, but
we hold the channel size as constant for the sake of simplicity and
to control variable for the ablation. The architecture of the Encoder
and Decoder are as follows:

E : Conv-3*(2*"Res-Down)-Res-Attn-Res-Conv
G : Conv-Res-Attn-Res-3*(2*Res-Up)-Conv

In the above network specification, * denotes repetitive layers of
the same form (with different parameters), Conv is the 2D convo-
lution with C-channel input and output, 3 X 3 convolution kernel
and zero padding, Down and Up are 2x spatial downscaling and
upscaling, Attn denotes the attention block, Res denotes a ResNet
block
Res(x) = x +2*(Norm-Act-Conv) (x)

For normalization Norm, we use adaptive group normalization
[42] with 32 groups, for the activation function, we adapt to the
baseline method with Sigmoid-weighted Linear Unit (SiLU) [10].

Training Details. We first validate DeepPrism on the CIFAR10
dataset. The dataset is composed of 50K training images and 10K
validation images of resolution 32 X 32. We use the Adam opti-
mizer and tune the base learning rate to 10—7, then we scale up the
learning rate by the batch size. We take a batch size of B = 2048
(distributed on multiple GPUs, and separated into 2 steps by gradi-
ent accumulation), set the perceptual loss weight A1 = 1, entropy
loss weight A2 = 1e—6, and adversarial loss weight A3 =1/2. We
used neither learning rate scheduler nor dropout since the learn-
ing converges without overfitting. We train the autoencoder on 8
NVIDIA A100 GPUs for 150 epochs or until the loss does not drop
anymore.

Then we explore the performance of our DeepPrism network
on high-resolution Imagenet dataset. The dataset contains 1281K
training images and 50K validation images resized to 256 x 256. We
keep the same network structure as above, and tune the learning
rate to 4.5e—6 for standard convolution and 2e—5 for DeepPrism.

4.2 Single-Image Denoising Diffusion

Next, we experiment our DeepPrism network on diffusion model
trained on a single image. The network architecture is G = 4*(Conv-
DeepPrism-GeLU-DeepPrism)

All the network structure and training settings follow [24]. We
only replace the 2D convolution with the proposed DeepPrism
convolution. The qualitative results of our method in figure 5 is
comparable with the baseline but is 93 times lighter in parameter
size.

4.3 Diffusion Models

Finally, we explore the capacity of our model in the high-fidelity
diverse generation task, using the Latent Diffusion Model (LDM)
[33]. The training details are the same in the baseline model, and
we trained both models for ~200 epochs. For the network structure,
we keep all the settings in the baseline except that we fix the net-
work width to C = 256. The result is shown in figure 6. Our model
achieves high performance, visually comparable to the baseline
model, and the parameter size shrinks to ~500 times smaller com-
pared to the baseline model of 37.9M parameters, without counting
the time embedding layers nor replacing the 2D convolution since
it’s a minor structure.
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Figure 6: Results on LDM, where DeepPrism achieves similar
results with a ~500x smaller model.

5 CONCLUSION

In this work, we have proposed a lightweight convolution structure
for neural generative models. It’s the very first successful generative
architecture reaching such a small parameter size. The implications
of DeepPrism also include a geometrically explainable channel
space, originating from translation equivariance, to enlarge the
convolutional weight sharing to the channel dimension.
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