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MATHEMATICAL MODELLING AND OPTIMAL CONTROL

OF PRODUCTION LOSSES CAUSED BY MIRIDAE

Myriam Djoukwe Tapi1,2 , André Nana Yakam3,
Roger Tagne Wafo1 and Samuel Bowong1,2*

Abstract. Cocoa mirid, Sahlbergella singularis, is the major pest of cocoa (Theobroma cacao) respon-
sible of several damage in plots in West Africa and particularly in Cameroon. Occasional damage
accounts for 30–40% of pod losses. However, when miridae affect the foliage, gradual wilting occurs
and eventually, tree death. A few studies have focused on describing the time evolution of Miridae
in the plot in Cameroon, yet numerous questions remain. The aim of this paper is to estimate and
control the losses of production caused by the bites of miridea. To do this, we will formulate and study
a mathematical model for the dynamics of pods that takes into account the feeding and egg-laying of
adults miridae on pods. We present the theoretical analysis of the model. More precisely, we compute
equilibria and derive a threshold parameter that determines the presence or not of miridae in the
plot. Throughout numerical simulations, we found that miridae can cause approximately 39.21% of
production losses (which represents approximatively USD 1276.8 revenue losses) when initially, one has
1200 plants in the plot. After, we aim to increase cocoa production through optimal control. Optimal
control consists in reducing density the number of nymphs and adults miridae in the plot. We studied
the controlled model and we found that losses with control shrink to 20.58% which corresponds to
USD 670.32 income revenue.
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1. Introduction

Originally from Latin America, cocoa (Theobroma cacao) is one of the most important perennial crops world-
wide [ICCO, 2016]. It is essential for the livelihood of millions of small producers in Africa especially in Cameroon
and has a worldwide consumption. African countries supply over 75% of world cocoa [17]. Cocoa production
was introduced in the coastal zones of Cameroon in the late 19th century from Latin America ([17], [22]). Cacao
plays an important role in Cameroon’s economic development [3]. With its production, Cameroon is the world’s
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fourth largest cocoa producer after Côte d’Ivoire, Ghana, and Indonesia [ICCO, 2014]. The cocoa sector is a
source of employment for about four million individuals and it is the Cameroon’s major agricultural export
crop. The revenue generated from cocoa exports accounts for about 14% of non-oil exports in 2012, particu-
larly to Europe [ICCO, 2014]. Compared to other agricultural activities, cocoa has been a leading sub-sector
in Cameroon’s economic growth and development and it remains the main cash crop to more than 75% of the
population [28]. Cacao sector is very important for the economics of rural communities and consequently for
that of their countries respectively.

Despite its real importance, cacao production faced many problems and damages. Wastes in cocoa production
accounts for over 30% in annual losses and insect pests like capsids bugs (Miridae spp.) cause ripening of
immature cocoa pods [26]. Other damages arise from parasites such as mistletoe (Loranthus parasiticus) which
cause death of cocoa trees and tillage from cassava cultivators who cut the roots of cocoa trees. Damages are
also known to result from overheating and stress when trees are exposed to direct sunlight. Cacao miridae feed
on cacao by inserting their mouth parts into the plant tissues, injecting saliva into the lesion, and sucking the
digestion products. This saliva has a marked histolytic effect probably due to the activity of the esterase [31].
Damages caused by bites and saliva action lead to the death of young shoots. In contrast, damage is usually
less important on lignified tissues of hardened twigs and stems. Miridae and fungi attacks result in cankering
or bark roughening, destruction of the flower cushions, severe dieback of twigs and branches, and sometimes
partial degradation of cacao farms. High numbers of feeding punctures may cause a distortion of young pods
during growth, or even death of severely damaged fruits [32]. Feeding lesions on shoots usually induce the drying
up of buds and leaves of the terminal part of branches. Dry leaves stay on trees and they are easy to detect
for several weeks. After a few months, feeding lesions on shoots develop into typical cankers, accumulating on
branches and roughening the bark [15]. Yield losses attributed to miridae alone have not been precisely assessed
in Cameroon. However, it is thought that cacao miridae may be responsible for yield losses that are higher
than 25% in West Africa [2]. To better control miridae damage, development of pest management strategies
is essential to prevent devastating impact on economy, food security, and biodiversity. Actually, in Cameroon,
cacao miridae are generally controlled by chemical spraying. A wide range of spraying practices, sometimes very
different from those recommended by agricultural extension has been reported ([4, 25]).

The interaction between miridae and cacao is essentially due to the action of miridae on cacao. Miridae
use cacao for their feeding and their development. Miridae feed and lay on cacao: this action lead to damage
observed on the tree: anecdotal damage on a pod and cumulated damage on the other parts of the tree. It
is difficult to establish the link between Miridae and production losses because control is based on reducing
miridae population. Moreover, the presence of miridae is often detected by observing damage in the plot. Bites
on pods are check off on peduncle and according to the cortex size, damage on pods remain anecdotal. When
the pod is already of considerable size, the harvest is not affected by miridae bites. The most harmful damages
(damages which appear on the other parts of cacao) are cumulated over time and can lead to the destruction
of the tree. Feeding and egg-laying of S. singularis lead to enormous damages which in turn lead to losses in
production. The death on pods due to S. singularis occurs only in “cherelle” stage: this damage leads to the
deformation of growing fruits or their drying in the case the peduncle is affected. The bites of S. singularis on
mature pods don’t affect harvesting but damages on the tree can lead to its destruction. In fact, the lesions on
the tree due to miridae feeding are infected by a parasitical toadstool named Calonectria rigidiuscula. These
lesions evolve into cankers which accumulate and weaken the branches and the trunk of the tree; this lead to the
death of the entire branches, all the coronet and even the tree. This phenomenon is currently called “die-back”.
Miridae are very harmful pests for cocoa. Losses due to miridae are difficult to be estimated and can reach up
to 30–40% of the potential production and their presence in the plot can lead to the destruction of cacao over
time [1].

Mathematical approach appears as the most relevant tool to better estimate production losses due to miridae
and also to find the way to increase production. Mathematical modelling has proven to be valuable in under-
standing the dynamics of many plant diseases and interaction between plants and bio-aggressors. In the special
case of cacao, few models exist in the literature. In [12], the first authors and collaborators formulated several
mathematical models to describe the time dynamics of the cocoa miridae. They also consider in a mathematical
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model a biological control method based on mating-disrupting using artificial sex pheromone and trapping to
limit the impact of miridae in the plot [13]. However, these two works do not take into account the interaction
between the pods in several stages and miridae.

The aim of this paper is to estimate and control the production losses caused by miridae. We first formu-
late a coupled model between miridae and pods in order to evaluate the percentage of production losses. We
consider several stages of development of the pods and we suppose that only adults miridae bit a pod. After
the formulation of the model, we present the sensitivity analysis of the model in order to know the relative
importance of some parameters that increase the production. We determine equilibria and their stability, the
basic offspring number R0 and its sensitivity analysis and estimate the production losses due to miridae. Next,
optimal control is used to show the impact of miridae on pods production: optimal control consists in reducing
the density number of nymphs and adults in the plot.

The paper is organized as follows. In Section 1, we formulate a mathematical model for the interaction
between miridae population and pods development. Section 2 is devoted to the mathematical analysis of the
mode. In the last section, we study the controlled model.

2. Mathematical modelling of miridae and pods interaction

In this section, we formulate a mathematical model for the interaction between miridae and pods population
in the plot.

2.1. Biological backgrounds

Herein, we present biological backgrounds on the growth of pods and miridae which help us to formulate our
mathematical model. The growth of pods and miridae need several stages. The life cycle of pods is made of
three main stages: cherelle, young and mature pods and ripped pods. Cherelle is the first developmental stage of
cocoa pods and pods less than 10 cm size enter this stage. After this stage, we have young and mature pods and
the last stage is made of ripped pods which can be harvested and provide beans for commercialization. Pods are
supported by a peduncle which proceeds from the development of thickness of the peduncle of flowers. Pods need
from three to six months for their total development. This duration of time depends on the variety of cacao and
it is necessary for the full development of fruits. After this, pod will ripe during one or two months, to undergo
interior transformations and to change colours [18]. Sigmoid growth curve of fruits and their development stages
is represented in Figure 1.

As cacao, the life cycle of S. singularis is date of three stages: egg stage, nymph stage, and adult stage.
These stage develop mainly either on pods either on shoots. The biological life cycle of S. singularis is given
in Figure 2. Indeed, each individual needs to stay a certain time in each compartment to complete its stage
development. The eggs are individually inserted into the host plant tissues [23] principally in the cortex of pods
and sometimes under the bark of young shoots [14]. The incubation period of eggs is on average 15 days with
a minimum of 9 days and a maximum of 21 days [19] before reaching nymph stage. Miridae S. singularis has a
very long life cycle (eggs to adults). It is on average 40 days with a minimum of 36 days [7] and a maximum of
50 days [5].

2.2. Model formulation

Herein, we formulate a deterministic model for the interaction between the population dynamics of miridae
and pods in the plot.

The pods population under consideration is grouped into different compartments according to their stage of
development. We divide this population into two main classes or compartments representing their epidemiolog-
ical status: Susceptible which are classified into three subclasses according to their development. At any time t,
one has the following state:

(i) Cherelle pods S1: Cherelles are the very first growth stage of pods. They are the pods resulting from
flowering and having no more than 10 centimetres size.
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Figure 1. Sigmoid growth curve of fruits and their development stages [29].

Figure 2. Life cycle of S. singularis [12].

(ii) Young and mature pods S2: Young pods are the growing pods. After the cherelle stage, the pods will
continue their development until the harvest.

(iii) Ripped pods S3: This class contains pods that have completed their development, are ready to be harvested
and whose seeds after fermentation and drying are commercialized.

(vi) Infected pods I: Infected pods are pods that have been impacted by miridae either through feeding or egg
laying by females. We assume that an infected pod cannot be harvested. They are the pods for which the
action of miridae is so strong that it prevents their development until harvest.

Thus, the total pod population at time t is

N(t) := S1(t) + S2(t) + S3(t) + I(t). (2.1)

Based on its life cycle, miridae population is subdivided into three classes or compartments

(a) Eggs E: The eggs are individually inserted into the host plant tissues principally in the cortex of pods
and sometimes under the bark of young shoots.
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(b) Nymphs L: Nymphs come from the eggs. After on average 15 days, the eggs become nymphs.
(c) Adults A: Adults arise from nymphs that have completed their nymph development after on average of

25 days.

Cherelle pods are recruited at constant rate Λ, which corresponds to the regular production along the year.
Denote by σS and σA respectively, the maximum number of miridae’s bites a pod can have per unit of time and
the maximum number of times one miridae want to bite pods per unit time. Pods (cherelle, young and mature
pods) become infected due to the feeding and egg-laying. We assumed that a fraction r of the population
of adults are females. We also assumed that that the number of males adults is enough and can ensure the
fertilization of all available females adultes. Following [11], we assume that the infection rate from miridae to
cherelle and miridae to young and mature pods are respectively modelled as follows:

λ1(A,N) = f(A,N)β1
S1

N
and λ2(A,N) = f(A,N)β2

S2

N
, (2.2)

where

f(A,N) =
σS σAA

σS + σA (A/N)
, (2.3)

represents the total number of miridae’s bites on pods. Indeed, the force of infection from miridae to cherelle
is defined, as the product of the maximum number of miridae’s bites one pods has per unit of time f(A,N),
the probability that a bite leads to infectious cherelle β1 and and the probability that the pod is a cherelle
S1/N . The force of infection from miridae to young and mature pods is defined, as the product of the maximum
number of miridae’s bites on pods per unit of time f(A,N), the probability that a bite leads to infectious young
and mature pods β2 and the probability that the pod is a young or mature S2/N

Since pods become infected through contacts with miridae (adult), the appearing of new infected pods per
unit time is given by

λ(N,A) (β1 S1 + β2 S2)A =
β1 σS σAAS1

σS N + σAA
+
β2 σS σAAS2

σS N + σAA
, (2.4)

where

λ(N,A) =
σS σA

σS N + σAA
. (2.5)

The biological parameters µ1, µ2, µ3 and µI represent respectively the natural daily death rate of cherelle,
young and mature, ripped and infected pods. αS1 is the additional death of cherelle due to wilt. γ1 and γ2
represent respectively the maturation rate of cherelle and young or mature pods.

Following [12], we denote by µE , µL and µA the daily death rate of eggs, nymphs and adults, respectively.
1/νE and 1/νL represent, respectively the needed time for an egg to become nymph and for a nymph to become
an adult. We suppose that, in the presence of pods, adult mortality is regulated by the consumption so that,

adult mortality is modeled by
µA

1 + θ1 S1 + θ2 S2
where µA, θ1 and θ2 are respectively the natural mortality of

adults, the regulation death rate of adults by consumption on cherelle and young pods.
We now formulate a model based on the interaction between pods and miridae that is summarized in Figure 3.

From the flowchart diagram in Figure 3, the dynamics of the interaction between miridae and pods is given by
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Figure 3. Structure of the model.

the following system of ordinary differential equations:



Ṡ1 = Λ− β1 σS σAAS1

σS N + σAA
− (γ1 + µ1 + αS1)S1,

Ṡ2 = γ1 S1 −
β2 σS σAAS2

σS N + σAA
− (γ2 + µ2)S2,

Ṡ3 = γ2 S2 − µ3 S3,

İ =
σS σAA

σS N + σAA
(β1 S1 + β2 S2)− µI I,

Ė = r bA

(
1− E

K

)
− (νE + µE)E,

L̇ = νE E − (νL + µL)L,

Ȧ = νL L−
µA

1 + θ1 S1 + θ2 S2
A,

(2.6)
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Table 1. Variables of system (2.6).

Symbols Biological meaning Units
S1 Cherelle pods Number
S2 Young pods Number
S3 Ripped pods Number
I Infected pods Number
E Eggs Number
L Nymphs Number
A Adults miridae Number
N Total number of pods population Number

Table 2. Parameter description of system (2.6).

Parameters Description Unit

Λ Cherelle “recruitment” rate Number×Days−1

γ1 Progression rate from cherelle to young pod Days−1

γ2 Progression rate from young pod to ripe pod Days−1

α Additional death rate due to wilt Days−1

σS Number of bites supported by a pod per unit of time
σA Number of bites done by Miridae per unit of time
β1 Infection rate of cherelles stage Days−1

β2 Infection rate of young pods stage Days−1

r Proportion of female adultes
b Mean number of eggs laid by a mature female Days−1

1/νE Time necessary for which an egg to become a nymph Days
1/νL Duration of the development of nymphs Days
µ1 Mortality rate of cherelles Days−1

µ2 Mortality rate of young pods Days−1

µ3 Mortality rate of ripped pods Days−1

µI Mortality rate of infected pods Days−1

µE Mortality of eggs Days−1

µL Mortality of nymphs Days−1

µA Mortality of adults Days−1

θ1 Regulation death rate of adults by consumption cherelles Days−1

θ2 Regulation death rate of adults by consumption young pods Days−1

with the following nonnegative initial conditions: S1(0) = S0
1 , S2(0) = S0

2 , S3(0) = S0
3 , I(0) = I0,

E(0) = E0, L(0) = L0 and A(0) = A0.
(2.7)

A complete list and description of all variables and parameters of system (2.6) is summarized in Tables 1
and 2, respectively. For biological reasons, all the parameters are nonnegative.

2.3. Sensitivity analysis

Sensitivity analysis aims to determine the optimal values of the model parameters than can increase the
cocoa production. We consider the range of parameters values given in Table 3. For some parameters, we have
a relatively good idea about the range of values, for others, this is more vague, but we choose values that,
according to field experts, are the most reasonable. In any case, and whatever the methods used to make the
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Table 3. Parameters values used for the sensitivity analysis of system (2.6).

Parameters Values for sensitivity analysis Source
Λ [1000, 3000] Estimated
γ1 [0.0001, 0, 9] [29] and [27]
γ2 [0.0001, 0, 9] Estimated
α [0.0005, 0.5] Estimated
σS [1, 30] Estimated
σA [1, 30] Estimated
β1 [0.0001, 0.9] Estimated
β2 [0.0001, 0.9] Estimated
r [0.1, 0.8] [5]
b [1, 4] Estimated

1/νE [1, 100] Estimated
1/νL [1, 100] Estimated
µ1 [0.001, 0.8] [27]
µ2 [0.0001, 0.8] [27]
µ3 [0.0001, 0.8] Estimated
µI [0.0001, 0.8] Estimated
µE [0.005, 0.8] Estimated
µL [0.005, 0.8] Estimated
µA [0.005, 0.9] Estimated
θ1 [0.00001, 0.5] Estimated
θ2 [0.00001, 0.5] Estimated

full sensitivity analysis, the results are discussed and valid only under the chosen intervals. We will use e-fast
method which indicates which parameter uncertainty has the greatest impact on the output variability (see, for
instance, Marino et al. [21] for further explanations). E-fast sensitivity method highlights the effects of the first
order called main effects and the total effects that combine the main effects and all the interaction effects of the
parameters on the outputs of system (2.6). It is a global sensitivity technique based on the decomposition or
partitioning of the variance. The variance of the model output is decomposed into components resulting from
the individual effects of parameters as well as their interactions.

Figure 4 presents the sensitivity analysis (e-fast method) of all variables of system (2.6). The white part in
Figure 4 shows the first-order sensitivity index (main index), while the sum of two parts (white and gray) shows
the total sensitivity index. It illustrates the sensitivity of twenty (20) parameters on the output variables S1,
S2, S3, I, E, L and A. This method provides that parameters µ3 and γ1 are the most sensitive parameters
for ripped pods (S3) and µL are the most sensitive parameters for adults population (A). For infected pods,
all parameter have approximately the same sensitivity but µI is the most sensitive parameter. For miridae
population, carrying capacity K has a strong impact on all variables E, L and A. νL and µL are the most
sensitive parameters for nymph’s population and νL is the most sensitive parameter for adults.

3. Model analysis

In this section, we study the long term dynamics of system (2.6).

3.1. Basic properties

It is important to show that our problem is well-posed so that solutions are always positive and bounded.
Herein, we study the basics properties of system (2.6) which are essential in the proof of the stability results.
We have the following result about the existence and positivity of solutions of system (2.6).

Theorem 3.1. For any nonnegative initial conditions, there exists a unique solutions of system (2.6) which is
non-negative.
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Figure 4. Efast sensitivity analysis of system (2.6).
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Proof. Since the right-hand side of system (2.6) is Lipschitz continuous, for any initial condition, there exists a
unique maximal solution.

System (2.6) can be rewritten in the following compact form:
dX

dt
= A(X)X + F,

X(0) = X0 ≥ 0,

(3.1)

where X(t) = (S1, S2, S3, I, E, L,A)T ,

A(X) =



−B1 0 0 0 0 0 0

γ1 −B2 0 0 0 0 0

0 γ2 −µ3 0 0 0 0

C1 C2 0 −µI 0 0 0

0 0 0 0 −B3 0 r b

0 0 0 0 νE −(νL + µL) 0

0 0 0 0 0 νL −C3



and F =



Λ

0

0

0

0

0

0



,

with

B1 = γ1 + µ1 + αS1 +
σS σA β1A

σS N + σAA
, B2 = γ2 + µ2 +

σS σA β2A

σS N + σAA
, B3 = (νE + µE) +

r bA

K
,

C1 =
σS σA β1A

σS N + σAA
, C2 =

σS σA β2A

σS N + σAA
and C3 =

µA
1 + θ1 S1 + θ2 S2

.

Since A(X) is a Metzler matrix and F ≥ 0, system (2.6) is positively invariant in R7
+ [8]. This means that any

trajectory of the system starting from an initial state in the positive orthant R7
+ remains forever in R7

+. This
achieves the proof.

Now, let us prove that the state variables of system (2.6) are bounded. We have the following result.

Theorem 3.2. The set

Ω =
{

(S1, S2, S3, I, E, L,A) ∈ R7
+;S1 ≤ S0

1 , S2 ≤ S0
2 , S3 ≤ S0

3 , I ≤ I0, E ≤ K,

L ≤ νE K

µL + νL
and A ≤ νE νLK(1 + θ1 S

0
1 + θ2 S

0
2)

µA(νL + µL)

}
, (3.2)

is positively invariant by system (2.6) where

S0
1 =

√
(γ1 + µ1)2 + 4αΛ− (γ1 + µ1)

2α
, S0

2 =
γ1 S

0
1

γ2 + µ2
, S0

3 =
γ2 S

0
2

µ3
and I0 =

β1A
0 S0

1 + β2A
0 S0

2

µI
.
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Proof. From the first equation of system (2.6), one has that

Ṡ1(t) ≤ Λ− (γ1 + µ1 + αS1(t))S1(t).

Using Gronwall’s lemma yields

S1(t) ≤ S0
1 +

1

exp ((γ1 + µ1 + 2αS0
1)t)

(
γ1 + µ1 + 2αS0

1

S1(0)− S0
1

+ α

)
− α

γ1 + µ1 + 2αS0
1

.

Thus, if S1(0) ≤ S0
1 , one has

0 ≤ S1(t) ≤ S0
1 for all t ≥ 0.

From the second equation of system (2.6), one has

Ṡ2(t) ≤ γ1 S1(t)− (γ2 + µ2)S2(t)

which leads to

S2(t) ≤ S0
2 + (S2(0)− S0

2)e−(γ2+µ2)t.

Then, if S2(0) ≤ S0
2 , one can deduce that

0 ≤ S2(t) ≤ S0
2 for all t ≥ 0.

Similarly, one proves that S3(t) ≤ S0
3 and I(t) ≤ I0 for all t ≥ 0.

From the fifth equation of system (2.6), one has

Ė(t) = r bA(t)

(
1− E(t)

K

)
− (νE + µE)E(t).

Assume that there exists ε > 0 such that

t1 ≤ t1 + ε < T and E(t1 + ε) > K.

Now define

t∗1 = inf{t ≥ t1, L(t) ≥ K}

It then comes that

E(t∗1) = K.

Thus,

E(t) = E(t∗1) + Ė(t∗1)(t− t∗1) + o(t− t∗1) and Ė(t∗1) = −(νE + µE)E(t∗1) < 0.
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So, there exists ε1 > 0 such that

t∗1 ≤ t < t∗1 + ε1 and E(t∗1) < K.

This is absurd because t∗1 = inf{t ≥ t1, E(t) ≥ K}. Consequently, E(t) ≤ KC for all t ≥ t0. By integrating
equations in L and A separately in system (2.6) and according to Gronwall’s lemma, one proves that

L(t) ≤ νE K

νL + µL
and A(t) ≤ νE νLK(1 + θ1 S̃1 + θ2 S̃2)

µA
for all t ≥ 0.

This concludes the proof.

3.2. Asymptotic behavior

Herein, we determine equilibria of system (2.6) and study their stabilities.

3.2.1. The pest free equilibrium (PFE) and its stability

The pest-free equilibrium point is obtained by solving all equations of system (2.6) equal to zero with A = 0.
Note that A = 0 implies E = L = I = 0. With this in mind, we obtain the following system of equations:


(γ1 + µ1 + αS1)S1 = Λ,

(γ2 + µ2)S2 = γ1 S1,

γ2 S2 = µ3 S3.

(3.3)

Solving Eq.(3.3) gives

S0
1 =

(γ1 + µ1) +
√

(γ1 + µ1)2 + 4αΛ

2α
, S0

2 =
γ1 S

0
1

(γ2 + µ2)
and S0

3 =
γ2 S

0
2

µ3
. (3.4)

Then, the PFE of system (2.6) is

Q0 = (S0
1 , S

0
2 , S

0
3 , 0, 0, 0, 0)T . (3.5)

where S0
1 , S0

2 and S0
3 are defined as in equation (3.4).

Now, let us study the stability of the PFE. To do this, we need to compute the basic offspring number.
The basic offspring number R0 is one of the most important threshold for disease control. In this special

case, it is defined as mean number of adults female produced by one adult female over its life span. We use the
method of Van den Driessche and Watmough [30] to compute the basic offspring number of system (2.6).

Infected pods and the miridae population of system (2.6) can be rewritten in the following compact form:

dX

dt
= F(X)− V(X),
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whereX = (I, E, L,A)T , F(X) is the incidence rate of new infections, and V(X) is the transfer rate of individuals
into, and out of, each sub-population defined as follows:

F =



λ(N,A)A(β1 S1 + β2 S2)

r bA

(
1− E

K

)
0

0


and V =



µI I

(νE + µE)E

−νE E + (νL + µL)L

−νL L+
µAA

1 + θ1 S1 + θ2 S2


.

The Jacobian matrices of F and V at the pest-free equilibrium Q0 are, respectively,

F =



0 0 0
σA σS

σS (S0
1 + S0

2 + S0
3)

(β1 S
0
1 + β2 S

0
2)

0 0 0 r b

0 0 0 0

0 0 0 0


,

and

V =



µI 0 0 0

0 νE + µE 0 0

0 −νE νL + µL 0

0 0 −νL
µA

1 + θ1 S0
1 + θ2 S0

2


Then, the basic offspring number is the spectral radius of the next generation matrix, F V −1 given by

R0 = ρ(F V −1) =
r b νL νE (1 + θ1 S

0
1 + θ2 S

0
2)

µA (νE + µE) (νL + µL)
. (3.6)

Following Van den Driessche and Watmough [30], we have the following result about the local stability of the
pest free equilibrium Q0.

Proposition 3.3. The pest free equilibrium Q0 is locally asymptotically stable when R0 ≤ 1 and unstable when
R0 > 1.

We point out that, it is important to always have R0 ≤ 1 so that the production of cocoa in the plot is
not affected by the pest. To do so, it is important to determine the parameters that impact negatively and
positively the basic offspring number R0 by performing the sensitivity analysis of R0. We stress that, the
sensitivity analysis performed here is not to be confused with the sensitivity analysis presented in Section 2.3
where the analysis is performed to determine which parameters can be used to decrease the values of the state
variables. Indeed, the sensitivity Analysis presented in Section 2.3 used the eFast method in order to detect the
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Figure 5. PRCC sensitivity analysis of the basic offspring number R0.

most sensitive parameters, that is the parameters that most influence the output variable of the model. This
can help to predict the effect of each parameter on the model results and classify them according to their degree
of sensitivity. Here, we are interested to determine the model parameters that significantly affect the basic
reproduction number R0 since they are parameters that should be taken into consideration when considering
an intervention strategy. To do so, we use the LHS-PRCC analysis. These two sensitivity analysis can help to
identify the model parameters that are most influential in determining disease dynamics and have the advantage
that the entire parameter is explored.

Figure 5 shows the LHS-PRCC analysis of the basic offspring number R0. One can observe that R0 is more
impacted specifically by parameters r, b, Λ, θ1, νE , νL, α which have a positive effect on R0 and γ2 and µA
which have a negative effect.

The local asymptotic stability of the pest free equilibrium Q0 does not guarantee the complete elimination
of the pest in the plot. Only the global asymptotic stability of the pest-free equilibrium Q0 ensures that the
pest either dies out or persists within a cocoa plot. We are now going to study the global asymptotic stability
of the pest-free equilibrium Q0.

System (2.6) can be written in the following compact form:{
ẋ = h(x, y),

ẏ = (F̃ − Ṽ ) y,
(3.7)

where x = (S1, S2, S3)T represents the class of the non-infected pods, y = (I, E, L,A)T represents the class of
infected pods and Miridae population,

F̃ =



0 0 0 λ(N,A)(β1 S1 + β2 S2)

0 0 0 r b

0 0 0 0

0 0 0 0


, Ṽ =



µI 0 0 0

0 νE + µE 0 0

0 −νE νL + µL 0

0 0 −νL
µA

1 + θ1 S1 + θ2 S2


,
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and

h(x, y) =


Λ− λ(N,A)β1AS1 − (γ1 + µ1 + αS1)S1

γ1 S1 − λ(N,A)β2AS2 − (γ2 + µ2)S2

γ2 S2 − µ3 S3

 .

Since

λ(N,A) (β1 S1 + β2 S2) =
β1 σS σA S1

σS N + σAA
+

β2 σS σA S2

σS N + σAA
≤ σA

(
β1 S1

N
+
β2 S2

N

)
≤ σA (β1 + β2),

system (3.7) can be bounded by the following system of equations:
˙̄x = h(x̄, ȳ),

˙̄y = (F̄ − V ) x̄.
(3.8)

where

F̄ =



0 0 0 σA (β1 + β2)

0 0 0 r b

0 0 0 0

0 0 0 0


.

Then, the dynamics of system (3.7) is deduced by the dynamics of system (3.8). Moreover, system (3.8) is
globally asymptotically stable if the spectral radius of matrix F̄ V −1 is less than one, i.e ρ(F̄ V −1) ≤ 1. A single
computation shows that ρ(F̄ V −1) ≤ 1 implies ρ(F V −1) ≤ 1 that is R0 ≤ 1. This means that the pest free
equilibrium Q0 is globally asymptotically stable when R0 ≤ 1. We have proved the following result.

Theorem 3.4. The pest free equilibrium Q0 is globally asymptotically stable in Ω when R0 ≤ 1.

For numerical simulations, we use parameters values consigned in Table 3. Initial conditions are S1(0) = 1200,
S2(0) = S3(0) = I(0) = E(0) = 400, L(0) = 360 and A(0) = 600. Indeed, according to [6], the mean number of
miridae in the plot is evaluated as 960. We consider for our numerical simulation 360 nymphs and 600 adults for
initial conditions. The initial number of eggs and cherelle is chosen arbitrarily. Figure 6, next page presents the
trajectories of system (2.6) when Λ = 14, 400; γ1 = 0.05; γ2 = 0.027; α = 0.001; σS = 20; σA = 26; β1 = 0.09;
β2 = 0.02; r = 0.58; b = 3.28; νE = 1/15; νL = 1/25; µ1 = µI = 0.05; µ2 = µ3 = 0.00469; µE = 0.09; µL = 0.19;
µA = 0.27; θ1 = θ2 = 0.00001 (so thatR0 = 0.6896 ≤ 1). From this figure, it clearly appears that the trajectories
of system (2.6) converge to the pest free equilibrium Q0 as shown in Theorem 3.4. This means that the pest
disappears within a cocoa plot and we have an optimal production in the plot.

3.2.2. The pest equilibrium point (PEP) and its stability

Herein, we prove numerically the existence of a pest equilibrium point of system (2.6) and we study its
stability.
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Figure 6. Numerical simulations for system (2.6) when Λ = 14, 400; γ1 = 0.05; γ2 = 0.027;
α = 0.001; σS = 20; σA = 26; β1 = 0.09; β2 = 0.02; r = 0.58; b = 3.28; νE = 1/15; νL = 1/25;
µ1 = µI = 0.05; µ2 = µ3 = 0.00469; µE = 0.09; µL = 0.19; µA = 0.27; θ1 = θ2 = 0.00001 (so
that R0 = 0.6896 ≤ 1). (a) Cherelle S1; (b) Young pods S2; (c) Ripped pods S3; (d) Inefcted
pods I; (e) Eggs Miridae E; (f) Nymphs Miridae L and (g) Adults Miridae A.
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Let Q = (S̄1, S̄2, S̄3, Ī, Ē, L̄, Ā) be a pest equilibrium point (equilibrium with infested pods), with S̄1, S̄2, S̄3,
Ī , Ē, L̄, and Ā satisfy the following system of equations:



λ̄(Ā, N̄)β1 Ā S̄1 + (µ1 + γ1 + α S̄1) S̄1 = Λ,

λ̄(Ā, N̄)β2 Ā S̄2 + γ2 S̄2 + µ2 S̄2 = γ1 S̄1,

γ2 S̄2 = µ3 S̄3,

λ̄(Ā, N̄) Ā (β1 S̄1 + β2 S̄2) = µI Ī ,

r b Ā

(
1− Ē

K

)
= (νE + µE) Ē,

νE Ē = (νL + µL) L̄,

νL L̄ =
µA Ā

1 + θ1 S̄1 + θ2 S̄2
.

(3.9)

Solving system (3.9) in terms of S̄1 and S̄2 gives

Ē = K

(
1− 1

R0

)
, L̄ =

νE K (R0 − 1)

R0(νL + µL)
, Ā =

K (νE + µE)(R0 − 1)

rb
(3.10)

and Ī =
Λ + (µ1 + α S̄1)S̄1 + (γ2 + µ2)S̄2

µI
,

where

R0 =
r b νL νE(1 + θ1 S̄1 + θ2 S̄2)

µA(νE + µE)(νL + µL)
. (3.11)

Now, plugging equation (3.10) into the first and second equations of (3.9) gives

S̄1 = S̄1

[
f(S̄1, S̄2)

]
and S̄2 = S̄2

[
g(S̄1, S̄2)

]
(3.12)

where

f(S̄1, S̄2) =
σSσAµ3µI K(νE + µE)(R0 − 1)β1 S̄1 + ∆(µ1 + γ1 + αS̄1)S̄1

Λ ∆
,

and

g(S̄1, S̄2) =
σSσAµ3µI K(νE + µE)(R0 − 1)β2 S̄2 + ∆ (µ2 + γ2)S̄2

∆ γ1S̄
,

(3.13)

with

∆ = σS r b[S̄1(µI + µ1 + αS̄1)µ3 + S̄2(µI(γ2 + µ3) + µ3(γ2 + µ2)) + Λµ3] + σAµ3µI K(νE + µE)(R0 − 1),
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Figure 7. Existence of a pest equilibrium point for system (2.6). In (a) and (b), one can see
there is a curve in the (S̄1, S̄2) which plane along f(S̄1, S̄2) = 1 and g(S̄1, S̄2) = 1 respectively.
(c) There is a unique point at which f(S̄1, S̄2) = g(S̄1, S̄2) = 1. This point determines a pest
equilibrium point Q. (d) The contour curves f(S̄1, S̄2) = 1 and g(S̄1, S̄2) = 1, and there is a
unique intersection point. We choose for numerical simulations Λ = 14, 400; γ1 = 0.05; γ2 =
0.027; α = 0.001; σS = 20; σA = 26; β1 = 0.09; β2 = 0.02; r = 0.58; b = 3.28; νE = 1/15; νL =
1/25; µ1 = µI = 0.05; µ2 = µ3 = 0.00469; µE = 0.001; µL = 0.03; µA = 0.07; θ1 = θ2 = 0.00001
(so that R0 = 20.2345 > 1).

Since we are looking for a pest equilibrium point Q such that S̄1 6= 0 and S̄2 6= 0, equation (3.12) can be
simplified as

f(S̄1, S̄2) = 1 and g(S̄1, S̄2) = 1. (3.14)

From equations (3.13) and (3.14), the interior pest equilibrium point corresponds to the intersection point
(S̄1, S̄2) of the two curves f(S̄1, S̄2) = 1 and g(S̄1, S̄2) = 1 with S̄1 > 0 and S̄2 > 0. Since equation (3.14) is very
difficult to solve analytically due to the high non linearity of f and g, we can numerically plot these two curves
and examine how the intersection points change with system.

Remark 3.5. It is straightforward to show that R0 is less than R0, so that R0 > 1 implies R0 > 1.
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Table 4. Estimation of production losses.

Prod. without Mirids Prod. with Mirids Losses
Ripe pods 51 000 31 000 39.21%

Adults miridae 0 3150

Figure 7 illustrates the existence of an interior pest equilibrium point Q when R0 > 1. From this figure,
the surfaces f(S̄1, S̄2) and g(S̄1, S̄2) are plotted and the curves f(S̄1, S̄2) = 1 and g(S̄1, S̄2) = 1 are shown as
intersections of the surface with the plane (see Fig. 7c and d). Figure 7b illustrates that there is a unique point
(S̄1, S̄2) at which f(S̄1, S̄2) = g(S̄1, S̄2) = 1.
So, we have numerically shown the following result.

Lemma 3.6. System (2.6) has a unique pest equilibrium point when R0 > 1.

Now, we study the local asymptotic stability of the pest equilibrium point Q. To do this, we use the Central
Manifold Theory [9] as described in Theorem of Castillo- Chavez and Song [10].

Theorem 3.7. System (2.6) exhibits a bifurcation at R0 = 1 if the quantity a1 defined as in equation (A.10)
is negative, otherwise there exists a unique pest equilibrium point Q which is locally asymptotically stable in
Ω \ {Q0} for R0 > 1, but close to 1 and miridae population reached the highest possible level.

The proof is given in Appendix A
For the rest of numerical simulations, we choose Λ = 14, 400; γ1 = 0.05; γ2 = 0.027; α = 0.001; σS = 20;

σA = 26; β1 = 0.09; β2 = 0.02; r = 0.58; b = 3.28; νE = 1/15; νL = 1/25; µ1 = µI = 0.05; µ2 = µ3 = 0.00469;
µE = 0.001; µL = 0.03; µA = 0.07; θ1 = θ2 = 0.00001 (so that R0 = 20.2345 > 1). Initial conditions are chosen
to be S1(0) = 1200, S2(0) = S3(0) = I(0), E(0) = 300, L(0) = 360 and A(0) = 600.

Figure 8 presents the trajectories of system (2.6) when R0 > 1. From this figure, it clearly appears that the
trajectories of system (2.6) converge to the pest equilibrium point Q as shown in Theorem 3.7. This means that
the pest persists within the cocoa plot which leads to the production losses.

3.3. Estimation of production losses caused by Miridae

Herein, we provide and discuss some numerical simulations to estimate the production losses caused by
Miridae within a cocoa plot.

Figure 9 shows the time evolution of ripped pods and adults miridae population with and without miridae
in the plot during a growth season. As expected, the number of harvested pods decreases considerably. We will
therefore record these results in Table 4 in order to estimate the production losses of cocoa within a plot.

Table 4 recapitulates the number of ripped pods with and without the infestation by miridae using parameters
values in Figs 6 and 8 and the number of adults miridae presents in the plot. From this table, it is evident that
the production losses is approximately 39.21%. One can observe that about 3, 150 adults miridae are present in
the cacao plot.

According to the estimation of production losses and the presence level of miridae within a cocoa plantation,
it is then important to reduce the production losses caused by miridae and the presence level of miridae. This
is the objective of the next section.

4. Controlling production losses caused by miridae using
optimal control theory

In this section, we formulate a continuous optimal control problem which consists in minimizing the damages
caused by miridae within a cocoa plot. The optimal control approach is pretty common to investigate the best
control strategy to reduce the presence of miridae and thus increase the production within a cocoa plantation.
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Figure 8. Numerical simulations for system (2.6) when Λ = 14, 400; γ1 = 0.05; γ2 = 0.027;
α = 0.001; σS = 20; σA = 26; β1 = 0.09; β2 = 0.02; r = 0.58; b = 3.28; νE = 1/15; νL = 1/25;
µ1 = µI = 0.05; µ2 = µ3 = 0.00469; µE = 0.001; µL = 0.03; µA = 0.07; θ1 = θ2 = 0.00001 (so
that R0 = 20.2345 > 1). (a) Time evolution of cherelle S1; (b) Young pods S2; (c) Ripped pods
S3; (d) Infected pods I; (e) Eggs Miridae E; (f) Nymphs Miridae L and (g) Adults Miridae A.
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Figure 9. Ripped pods and adults Miridae with and without Miridae in the plot. Without
miridae (blue line) and with miridae (magenta line). (a) Ripped pods S3; (b) adults miridae A.

4.1. Optimal Control model

Herein, the interaction of pods and miridae is formulated in an optimal control model where the control
objective is to determine the rate of control such that the pest population keep under the injury level. There
are many strategies of control like cultural management, varietal management, chemical management, semio-
chemical management. In this paper, the control u represents chemical management, based on the use of chemical
insecticide. This control is the most widespread to reduce the miridae population in most countries producers
of cocoa like Cameroon. Note that the synthetic insecticides like λ-cyhalothrine and imidacloprid have a long
residual effect, but it depends on several environmental factors, like rainfall and is not usually used by cocoa
farmers in most countries producers of cocoa. We stress that the control action on the populations of adults
and nymphs should be different. In order to show the effects of the control action on the populations of adults
and nymphs, we have introduced two positive parameters ε1 and ε2 (ε1 > ε2) which are both less than one in
order to differentiate the effects of control on those two populations.

Using the same parameters and classes as in system (2.6), the system of differential equations describing the
controlled model is 

Ṡ1 = Λ− β1 λ(N,A)AS1 − (γ1 + µ1 + αS1)S1,

Ṡ2 = γ1 S1 − β2 λ(N,A)AS2 − (γ2 + µ2)S2,

Ṡ3 = γ2 S2 − µ3 S3

İ = λ(N,A)A (β1 S1 + β2 S2)− µI I,

Ė = r bA

(
1− E

K

)
− (νE + µE)E,

L̇ = νE E − (νL + µL)L− ε1 uL,

Ȧ = νL L−
µA

1 + θ1 S1 + θ2 S2
A− ε2 uA,

(4.1)
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where λ(N,A) is defined as in equation (2.5).
The function 0 ≤ u ≤ 1 represents the vector control to reduce the number of nymphs and adults population in
the plot. Products use for control are lethal for adults and nymphs. However, adults can still feed and lay on
pods.

The given objective function is

C(u) =

∫ T

0

(
B1 L(t) +B2A(t) +B3 u

2(t)
)
dt =

∫ T

0

g(t,X, u)dt, (4.2)

where T is the final time and the coefficients B1, B2 and B3 are positive weights to balance the factors. The
terms B1 L and B2A are the cost of Miridae attacks while B3 u

2 is the cost of treatment efforts. Our aim is to
minimize the number of nymphs L(t) and adults A(t), while minimizing the cost of control u(t). Thus, we seek
an optimal control u∗ such that

C(u∗) = min
u
{C(u), u ∈ U}, (4.3)

where U is the control set defined as:

U = {u ∈ L1(0, T ), 0 ≤ u ≤ 1}. (4.4)

The control is a quadratic form.
The existence of the optimal control can be obtained by using a result by Fleming and Rishel [16]. We have

the following result.

Theorem 4.1. Consider the control problem with system (4.1), there exists u∗ ∈ U such that

min
u∈U

J(u) = J(u∗).

Proof. To use an existence result, we must check the following properties:

1. The set of controls and corresponding state variables is nonempty.
By Theorem 3.2, we have the existence of solution of system (2.6) with bounded coefficients, which gives
condition 1.

2. The set of control U is convex and closed.
We note that the solutions are bounded. Our control set satisfies condition 2, so U is closed and convex
set.

3. The right hand side of the state system is bounded by a linear function in the state and control variables.
By definition, each right hand side of system (2.6) is continuous and can be written as a linear function
of u with coefficients depending on time and state.

4. The integrand of the objective functional is convex on U .
5. There exist c1, c2 > 0 and β > 1 such that the integrand g(t,X, u) of the objective functional satisfies

g(t,X, u) ≥ −c1 + c2(|u|2)β/2.

Indeed,

g(t,X, u) = B1 L+B2A+B3 u
2

≥ B3 u
2

≥ −c1 +B3(|u2|)1
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Take c1 ∈ R+, c2 = B3 and β = 2.

Thus, there exists and optimal control. This achieves the proof.

The necessary conditions that an optimal control must satisfy come from Pontryagin’s Minimum principle [24]
converts into a problem of minimizing point-wise a Hamiltonian H, with respect to u:

H = B1 L+B2A+B3 u
2 + λ1

(
Λ− β1 σS σAAS1

σS N + σAA
− (γ1 + µ1 + αS1)S1

)
(4.5)

+ λ2

(
γ1 S1 −

β2 σS σAAS2

σS N + σAA
− (γ2 + µ2)S2

)
+ λ3(γ2 S2 − µ3 S3)

+ λ4

(
σS σAA (β1 S1 + β2 S2)

σS N + σAA
− µI I

)
+ λ5

(
r bA

(
1− E

K

)
− (νE + µE)E

)
+ λ6 (νE E − (νL + µL)L− ε1 uL) + λ7

(
νL L−

µAA

1 + θ1 S1 + θ2 S2
− ε2 uA

)
,

where λ1, λ2, λ3, λ4, λ5, λ6 and λ7 are the adjoint functions associated with their respective states. Note that
in H, each adjoint function multiplies the right-hand side of the differential equation of its corresponding state
function. The first terms in H comes from the integrand of the objective functional. Thus, the adjoint variable
λj ; j ∈ {S1, S2, S3, I, E, L,A} together with our state system determine our optimality system. We have the
following result.

Theorem 4.2. Given an optimal control u∗ and the corresponding states S1, S2, S3, I, E, L and A that minimizes
C(u) over U , there exists adjoint variables λ1, λ2, λ3, λ4, λ5, λ6 and λ7 satisfying:

λ̇1 = λ1(µ1 + 2αS1) + γ1(λ1 − λ2)− (λ1 − λ4)

(
β1 σS σAA

σS N + σAA
− β1 σ

2
S σAAS1

(σ2
S N + σAA)2

)
−(λ2 − λ4)

β2 σ
2
S σAAS2

(σS N + σAA)2
− λ7

µA θ1A

(1 + θ1 S1 + θ2 S2)2
,

λ̇2 = λ2 µ2 + γ2(λ2 − λ3)− (λ2 − λ4)

(
β2 σ

2
S σAA

σS N + σAAS2
− β2 σS σAAS2

(σ2
S N + σAA)2

)
−(λ1 − λ4)

β1 σ
2
S σAAS1

(σS N + σAA)2
− λ7

µA θ2A

(1 + θ1 S1 + θ2 S2)2
,

λ̇3 = λ3 µ3 −
σ2
S σA β1AS1

(σS N + σAA)2
(λ1 − λ4)− σ2

S σA β2AS2

(σS N + σAA)2
(λ2 − λ4),

λ̇4 = λ4 µI −
σ2
S σA β1AS1

(σS N + σAA)2
(λ1 − λ4)− σ2

S σA β2AS2

(σS N + σAA)2
(λ2 − λ4),

λ̇5 = λ5

(
r bA

K
+ µE

)
+ (λ5 − λ6) νE ,

λ̇6 = −B1 + λ6 (ε1 u+ µL) + (λ6 − λ7) νL,

λ̇7 = −B2 + λ7

(
ε2 u+

µA
1 + θ1 S1 + θ2 S2

)
+

(
β1 σS σAA

σS N + σAA
− β1 σ

2
S σAAS1

(σ2
S N + σAA)2

)
(λ1 − λ4)

+

(
β2 σS σAA

σS N + σAA
− β2 σ

2
S σAAS2

(σ2
S N + σAA)2

)
(λ2 − λ4)− λ5 r b

(
1− E

K

)
,

(4.6)
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with the following transversality conditions:

λ1(T ) = λ2(T ) = λ3(T ) = λ4(T ) = λ5(T ) = λ6(T ) = λ7(T ) = 0, (4.7)

where T = 50 days is the free terminal time. Furthermore, the optimal control is characterized by

u∗ = max

{
0,min

{
1,
λ6 L

∗ + λ7A
∗

2B3

}}
. (4.8)

Proof. The differential equations governing the adjoint variables are obtained by differentiation of the
Hamiltonian function, evaluated at the optimal control:

λ̇∗(t) = −∂H
∂X

(t,X∗, λ∗(t), u∗)

∂H

∂u
(t,X∗, λ∗(t), u∗) = 0

The control characterization for u∗ comes from
∂H

∂u
= 0 whenever 0 < u∗ < 1 and taking bounds into account.

∂H

∂u
(t,X∗, λ(t)∗, u∗) = 0 =⇒ u∗ =



λ6 L
∗ + λ7A

∗

2B3
if 0 <

λ6 L
∗ + λ7A

∗

2B3
< 1,

0 if
λ6 L

∗ + λ7A
∗

2B3
≤ 0,

1 if
λ6 L

∗ + λ7A
∗

2B3
≥ 1.

Thus

u∗ = max

{
0,min

{
1,
λ6 L

∗ + λ7A
∗

2B3

}}
.

This concludes the proof.

Next, we discuss the numerical solutions of the optimality system and the corresponding optimal control, the
parameter choices and the interpretations from various cases.

4.2. Optimal control numerical simulations

Herein, we study numerically an optimal vector parameter control for system (4.1). Optimal control is
obtained by solving optimality system, consisting of seven (07) differential equations from the state and the
adjoint. An iterative scheme is used for solving the optimality system. We start to solve the state equations
with a guess for the controls over the simulated time using Euler scheme. Because of the transversality condi-
tions (4.7), the adjoint equations are solved by a backward Euler scheme using the current iterations solutions
of the state equation. Then, the control is updated by using a convex combination of the previous control and
the value from the characterization (4.8). This process is repeated and iterations are stopped if the values of
the unknowns at the previous iterations are very close to the ones at the present iterations [20].

For the numerical simulations, we used the following weight factors B1 = 0.15, B2 = 0.1 and B3 = 0.015.
We have the following initial conditions. At the beginning of the season, there are no pods in te plot so
S1(0) = S2(0) = S3(0) = I(0) = 0, E(0) = L(0) = 0 and A(0) = 960 corresponding to the presence of miridae
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Figure 10. Simulations of system (4.1) without control (red line) and with control (blue line).
(a) Cherelles S1; (b) Young pods S2; (c) infected pods I; (d) ripped pods S3.

in the plot. The parameter values used are β1 = 0.09, β2 = 0.02, γ1 = 0.05, γ2 = 0.027, σS = 20, σA = 26,
µ1 = 0.05, µ2 = µ3 = 0.00469, µI = 0.05, α = 0.001, r = 0.58, b = 3.28, νL = 1/25, νE = 1/15, µL = 0.03,
µE = 0.001, µA = 0.07, θ1 = 0.0001, θ2 = 0.0001, Λ = 14400, K = 5000, ε1 = 0.75 and ε2 = 0.25 (so that
R0 = 20.2365) to illustrate the optimal control strategy.

Figure 10 shows the time evolution of cherelles, young pods, infected pods and ripped pods with and without
control. During the control period, it is evident that the number of infected pods remains at zero and begins to
increase when the control is stopped. However, throughout the growth period, it remains lower than the number
of infected pods present in the plot in the absence of control. Throughout the production period, the number
of harvested pods and young pods is greater when considering the control in the plantation even if the control
is only carried out over a short period.

The time evolution of miridae population with and without control is depicted in Figure 11. From this figure,
one can observe that eggs, nymphs and adults, miridae population decreases to zero during the control period
and begins to grow when the control is stopped. However, throughout the growth period, each population
remains lower or equal than the level in the absence of control. One can also observe that the effect of the
control on the population of nymphs is more significant than on the population of adults. However, a decrease
of the population of nymphs will indirectly induce a decrease on the population of adults. Thus, the optimal
control strategy is very efficient to increase pods production and reduce the miridae population in the plot.
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Figure 11. Simulations of system (4.1) without control (red line) and with control (blue line).
(a) Eggs Miridae E; (b) nymphs L; (c) adults A.

Figure 12 presents the time evolution of vector control function u(t). Vector control is applied during 50 days
and after it is supposed to be equal to zero.

Numerical simulations were made over 180 days corresponding to the growth of the pods: from the appearance
of cherelle to the harvest. The control was done over 50 days, the first days after the appearance of cherelle.
After this time, the control is assumed to be equal to zero.

4.2.1. Estimation of production losses

Herein, we estimate the production losses in the presence under the control action.
Figure 13, page 27 presents the number of ripped pods and adults miridae in the plot with and without

miridae under the vector control in the plot. As expected, the number of ripped pods in the plot without
miridae is greater than the number of ripped pods with miridae, under or not the control. We recapitulate these
results in Table 5 in order to estimate the production. From Table 5, it is evident that the production losses
with control in the plot is approximately 20.58% whereas the production losses without control is 39.21% .

Figure 14, page 28 presents the effect of control on nymphs and adults miridae. As expected, under the vector
control, nymphs and adults population decreases rapidly toward zero. When control is stopped, nymphs and
adults miridae population gradually grow and converge towards the uncontrolled dynamics (see Fig. 11).
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Figure 12. Optimal control u(t) for system (4.1).

Figure 13. Ripped pods and adults miridae control numerical simulations for system (4.1)
without Miridae (green line), with Miridae and control (blue line) and without Miridae and
without control (red line). (a) Ripped pods S3, (b) adults miridae A.

Table 5. Estimation of production losses under the control action.

Without Production Production Losses Losses
Miridae without control with control without control with control

Ripe pods 51 000 31 000 40 500 39.21% 20.58%

Figures 15 presents the production S3(t) during the season without miridae (green, colour), for three different
initial values of miridae in the plot but no control (red colour), and with initial miridae and optimal control
(blue) and the curve of optimal control for several initial miridae in the plot. It seems that the initial value of
miridae in the plot do not impact the efficiency of vector control. Indeed, for these different values of initial
miridae in the plot, the production with control seems to be the same at the end of the season.
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Figure 14. Effect of vector control on nymphs (a) and adults miridae population (b).

Table 6. Estimation of losses of gain.

Without Without With Losses Losses
Miridae control control without control with control

Ripe pods 51 000 31 000 40 500 39.21% 20.58%
Commercial

cocoa 2142 kg 1302 kg 1701 kg 840 kg 441 kg
Farmer’s

gain 3255.84 USD 1979.04 USD 2585.52 USD 1276.8 USD 670.32 USD

4.2.2. Estimation of losses of gain

Annual production is estimated at 51 000 pods harvested in the absence of mirids and 31 000 pods in the
presence of mirids. A pod contains approximately 30–40 beans. The weight of a bean after elimination of the
pulp and husk varies between 1.3 g and 2.3 g; after drying, the weight of the bean varies between 0.9 g and 1.5 g.
fermentation and drying of the beans of the pods lead to obtaining of commercial cacao [18]. If we assume that
a pod contains on average 35 beans and that a commercial cocoa bean weighs 1.2 g on average, a pod makes it
possible to obtain 42g of commercial cocoa and therefore the production in a plot of 1200 plants is evaluated
at 2,142 kg of market cocoa in the absence of mirids and 1302 kg in the presence of mirids. A the end of the
season, the financial gain for the farmer is evaluated by the number of kilogramme of beans obtained. The price
of a kilogram of commercial cocoa is estimated to 1025 FCFA or 1.52 USD in Cameroon on September 28, 2022
(ONCC).

Table 6 recapitulates the losses of gain obtained by a farmer. The losses of gain with control in the plot is
approximately 670.32USD whereas the losses of gain obtained without control is 1276.8USD for 1, 200 plants
in the plot.

5. Conclusion and discussions

In this paper, we have formulated a mathematical model for the interaction between pods and miridae
in which we have incorporated an optimal control. The objective was to evaluate and control the losses of
production due to miridae. To do this, we formulated a controlled model based on vector control to reduce
pests population and increase production. A qualitative analysis of the models has been presented and our main
findings can be summarized as follows:
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Figure 15. Simulation of system (2.6) ripped pods and adults Miridae with optimal control for
initial conditions of adults Miridae populations. Without control (green colour) and system (4.1)
(a) A(0) = 100; (b) u(t) when A(0) = 100; (c) A(0) = 2000; (d) u(t) when A(0) = 2000; (e)
A(0) = 4000; (f) u(t) when A(0) = 4000.
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1. The system is well posed and we proved the basic properties: positivity and boundedness of solutions, the
existence and uniqueness of solutions.

2. For the model without control, we have two equilibria Q0 and Q. we show that there exists a threshold
parameter, R0, also called the basic offspring number, that summarizes the dynamics of the system.
Equilibrium Q0 corresponds to the case when there is no pest in the plot and equilibrium Q corresponds
to the case where there are pest and pods in the plantation. We proved that equilibrium Q0 is GAS
whenever R0 is less than one and unstable when R0 is greater than one. Numerical simulations show that
equilibrium Q is unique and we proved that it is LAS when R0 is greater than one.

3. As an application, another objective of our work was to study optimal control model. Optimal control u
consists in using vector control to reduce nymphs and adults and increase production in the plot. Optimal
control model was studied and we determined an optimal control strategy u∗.

4. Numerical simulations have been presented to illustrate the obtained theoretical results. Through
numerical simulations, we found that

(a) The sensitivity analysis of the model and sensitivity analysis of the basic offspring number R0 have
been investigated

(b) The presence of miridae in the plot can cause about 39.21% of losses of ripped pods within a plantation
where 1200 plants.

(c) Optimal control help us to reduce the losses of production to 20.58% and is independent of initial
miridae values in the plot.

(d) Numerical simulations tend to show that the effect of control action on the population of nymphs is
more significant than on the population of adults.

(e) The initial value of miridae in the plot do not impact the efficiency of vector control. Indeed, for these
different values of initial miridae in the plot, the production with control seems to be the same at the
end of the season.

(f) For a plantation of 1200 cocoa trees, the farmer loses an average of 1276.8USD when he leaves his plot
under miridae effects. When he applies optimal control (based on the elimination of nymphs and adults
miridae), the loss is 670.32USD . Optimal control therefore contributes to the increase of production
and consequently to the increase of gain.

Different improvements and extensions of this work can include introducing time-dependent parameters in
order to integrate the fluctuation of environmental factors due to periodic variations of climate; to formulate
and study a multi seasonal model with optimal control in order to better estimate the production. This multi
seasonal model with optimal control can take into account all the recommended periods of treatment of the plot
along the year.

Appendix A. Proof of Theorem 3.7

In this appendix, we give the proof of Theorem 3.7 on the local asymptotic stability of the pest equilibrium
point Q of system (2.6). We first recall the theorem of Castillo-Chavez and Song [10].

Theorem A.1. (Castillo-Chavez and Song [10]) Let

dx

dt
= f(x, φ), f : Rn × R←→ Rn and f ∈ C2(Rn × R). (A.1)

Without loss of generality, it is assumed that 0 is an trivial equilibrium for system (A.1) for all values of the
parameter φ, that is

f(0, φ) ≡ 0 for all φ. (A.2)

Assume



MATHEMATICAL MODELLING AND OPTIMAL CONTROL OF PRODUCTION LOSSES CAUSED BY MIRIDAE 31

A1 A = Dxf(0) =

(
∂fi
∂xj

(0)

)
is the linearisation matrix of system (A.1) around the equilibrium 0 with φ

evaluated at 0. Zero is a simple eigenvalue of A and all other eigenvalues of A have negative real parts;
A2 Matrix A has a non-negative right eigenvector w and a left eigenvector v corresponding to the zero

eigenvalue.

Let fk be the kth component of f and

a1 =

n∑
k,i,j=1

vkwiwj
∂2 fk

∂ xi ∂ xj
(0) (A.3)

b1 =

n∑
k,i=1

vkwi
∂2 fk
∂ xi ∂ φ

(0) (A.4)

The local dynamics of system (A.1) around 0 are totally determined by a and b.

(i) a1 > 0, b1 > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically stable, and there exists a positive
unstable equilibrium; when 0 < φ� 1, 0 is unstable and there exists a negative and locally asymptotically
stable equilibrium;

(ii) a1 < 0, b1 < 0. When φ < 0 with |φ| � 1, 0 is unstable; when 0 < φ� 1, 0 is locally asymptotically stable
and there exists a positive unstable equilibrium;

(iii) a1 > 0, b1 < 0. When φ < 0 with |φ| � 1, 0 is unstable, and there exists a locally asymptotically stable
negative equilibrium; when 0 < φ� 1, 0 is stable, and a positive unstable equilibrium appears;

(iv) a1 < 0, b1 > 0. When φ changes from negative to positive, 0 changes its stability from stable to unstable.
Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically stable.

In order to apply Castillo-Chavez and Song theorem [10] on system (2.6), the following simplification and
change of variables are first of all made.
Let x1 = S1, x2 = S2, x3 = S3, x4 = I, x5 = 4, x6 = L and x7 = A. Further, by using the vector notation
x = (x1, x2, x3, x4, x5), system (2.6) can be written in the form ẋ = f(x), with f = (f1, f2, f3, f4, f5, f6, f7), as
follows:



ẋ1 = f1 = Λ− λ(A,N)β1 x1 x7 − (γ1 + µ1 + αx1)x1,

ẋ2 = f2 = γ1 x1 − λ(A,N)β2 x7 x2 − (γ2 + µ2)x2,

ẋ3 = f3 = γ2 x1 − µ3 x3,

ẋ4 = f4 = λ(A,N)x7(β1 x1 + β2 x2)− µI x4,

ẋ5 = f5 = r b x7

(
1− x5

K

)
− (νE + µE)x5,

ẋ6 = f6 = νE x5 − (νL + µL)x6,

ẋ7 = f7 = νL x6 −
µA

1 + θ1 x1 + θ2 x2
x7.

(A.5)
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Consider R0 = 1. Suppose, further, that νE = ν∗E is chosen as a bifurcation parameter. Solving R0 = 1 give

νE = ν∗E =
µA µE (νL + µL)

r b νL (1 + θ1 S0
1 + θ2 S0

2)− µA (νL + µL)
.

The Jacobian matrix around the pest free equilibrium Q0 when νE = ν∗E is given by

J(Q0) =



−(γ1 + µ1 + 2αS0
1) 0 0 0 0 0 λ1 β1 S

0
1

γ1 −(γ2 + µ2) 0 0 0 0 λ1 β2 S
0
2

0 γ2 −µ3 0 0 0 0

0 0 0 −µI 0 0 λ1 (β1 S
0
1 + β2 S

0
2)

0 0 0 0 −(νE + µE) 0 r b

0 0 0 0 νE −(νL + µL) 0

0 0 0 0 0 νL − µA
1 + θ1 S0

1 + θ2 S0
2



,

where

λ1 =
σS σA

σS(S0
1 + S0

2 + S0
3)
.

When νE = ν∗E , it is straightforward to show that 0 is a simple eigenvalue of J(Q0) (all other eigenvalues have
negative real parts). In order to apply Castillo-Chavez and Song theorem [10], we need to compute:

� Eigenvectors of J under the condition νE = ν∗E . When R0 = 1, it can be shown that the
Jacobian matrix J(Q0) has a right eigenvector (corresponding to the zero eigenvalue), given by u =
(u1, u2, u3, u4, u5, u6, u7), where,

u1 =
λ1 β1 S

0
1

γ1 + µ1 + 2αS0
1

, u2 =
λ1 γ1 β1 S

0
1

(γ1 + µ1 + 2αS0
1)(γ2 + µ2)

+
λ1 β2 S

0
2

γ2 + µ2
, u3 =

γ2
µ3

u2, (A.6)

u4 =
λ1(β1 S

0
1 + β2 S

0
2)

µI
, u5 =

r b

ν∗E + µE
, u6 =

µA
νL(1 + θ1 S0

1 + θ2 S0
2)

and u7 = 1.

Similarly, the components of the left eigenvector (corresponding to the zero eigenvalue for JT (Q0)) denoted
v = (v1, v2, v3, v4, v5, v6, v7) are given by

v1 = v2 = v3 = v4 = 0, v5 = 1, v6 =
ν∗E + µE
ν∗E

and v7 =
(ν∗E + µE)(νL + µL)

ν∗E νL
. (A.7)

� Computation of b1: For system (A.5), the associated non-zero partial derivatives od f at Q0 are given
by

∂2 f5
∂ x5 ∂ νE

= −1 and
∂2 f6

∂ x5 ∂ νE
= 1. (A.8)
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Then, it follows that

b1 =

7∑
i,k=1

vk ui
∂2 fk

∂ xi∂ νE
(Q0),

= v5 u5
∂2 f5

∂ x5∂ νE
(Q0) + v6 u5

∂2 f6
∂ x5∂ νE

(Q0),

= (v6 − v5)u5,

=
r b µE
ν∗E + µE

> 0.

� Computation of a1: Since v1 = v2 = v3 = v4 = 0,

a1 =

7∑
i,j=1

v5 ui uj
∂ f5

∂ xi ∂ xj
+ v6 ui uj

∂ f6
∂ xi ∂ xj

+ v7 ui uj
∂ f7

∂ xi ∂ xj
.

For system (A.5), the associated non-zero partial derivatives of f at Q0 are given by:

∂2 f5
∂ x5 ∂ x7

=
∂2 f5

∂ x7 ∂ x5
= −r b

K
,

∂2 f7
∂ x1 ∂ x7

=
∂2 f5

∂ x7 ∂ x1
=

µA θ1
(1 + θ1 x1 + θ2 x2)2

, (A.9)

and
∂2 f7

∂ x2 ∂ x7
=

∂2 f5
∂ x7 ∂ x2

=
µA θ2

(1 + θ1 x1 + θ2 x2)2
.

Then, it follows that

a1 = 2 v5 u5 u7
∂2f5

∂x5 ∂x7
+ 2v7u1u7

∂2 f7
∂x7∂x1

+ +2v7u2u7
∂2 f7
∂x7∂x2

, (A.10)

= −2
r2 b2

K(ν∗E + µE)
+

2λ1 β2 S
0
1 µA θ1 (ν∗E + µE)(νL + µL)

ν∗EνL(γ1 + µ1 + 2αS0
1)(1 + θ1 x1 + θ2 x2)2

,

+ 2

(
λ1 γ1 β1 S

0
1

(γ1 + µ1 + 2αS0
1)(γ2 + µ2)

+
λ1 β2 S

0
2

γ2 + µ2

)(
(ν∗E + µE)(νL + µL)

ν∗E νL

)
µA θ2

(1 + θ1S1 + θ2S2)2
.

Thus, depending on the values of the parameters of system (A.5), the value of a1 can be positive or negative.
Since b1 > 0, the conclusion follows from Theorem A.1 items (i) and (iv). This achieves the proof of Theorem 3.7.
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