
HAL Id: hal-04323551
https://hal.science/hal-04323551v1

Preprint submitted on 27 Sep 2022 (v1), last revised 5 Dec 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerating hypersonic reentry simulations using deep
learning-based hybridization (with guarantees)

Paul Novello, Gaël Poëtte, David Lugato, Simon Peluchon, Pietro Marco
Congedo

To cite this version:
Paul Novello, Gaël Poëtte, David Lugato, Simon Peluchon, Pietro Marco Congedo. Accelerating
hypersonic reentry simulations using deep learning-based hybridization (with guarantees). 2022. �hal-
04323551v1�

https://hal.science/hal-04323551v1
https://hal.archives-ouvertes.fr

Accelerating hypersonic reentry simulations using deep
learning-based hybridization

(with guarantees)

Paul Novelloa,b,c,∗, Gaël Poëttea, David Lugatoa, Simon Peluchona, Pietro
Marco Congedob,c

aCESTA, CEA, Le Barp, France
bInria Saclay, Palaiseau, France

cCMAP, Ecole Polytechnique, Palaiseau, France

Abstract

In this paper, we are interested in the acceleration of numerical simulations.
We focus on a hypersonic planetary reentry problem whose simulation involves
coupling fluid dynamics and chemical reactions. Simulating chemical reactions
takes most of the computational time but, on the other hand, cannot be avoided
to obtain accurate predictions. We face a trade-off between cost-efficiency and
accuracy: the simulation code has to be sufficiently efficient to be used in an
operational context but accurate enough to predict the phenomenon faithfully.
To tackle this trade-off, we design a hybrid simulation code coupling a traditional
fluid dynamic solver with a neural network approximating the chemical reactions.
We rely on their power in terms of accuracy and dimension reduction when
applied in a big data context and on their efficiency stemming from their matrix-
vector structure to achieve important acceleration factors (×10 to ×18.6). This
paper aims to explain how we design such cost-effective hybrid simulation codes
in practice. Above all, we describe methodologies to ensure accuracy guarantees,
allowing us to go beyond traditional surrogate modeling and to use these codes
as references.

Keywords: Reentry, Chemical reactions, Machine Learning, Deep neural
networks

1 Introduction

In this paper, we are interested in the acceleration of numerical simulations.
More specifically, we focus on a hypersonic planetary reentry problem [1, 2, 3,

∗Corresponding author. Now at IRT Saint Exupery and Artificial and Natural Intelligence
Toulouse Institute (ANITI), DEEL team

Email addresses: paul.novello@outlook.fr (Paul Novello), gael.poette@cea.fr (Gaël
Poëtte), david.lugato@cea.fr (David Lugato), simon.peluchon@cea.fr (Simon Peluchon),
pietro.congedo@inria.fr (Pietro Marco Congedo)

4, 5, 6]: during a high-speed planetary atmosphere reentry, a shock wave forms
ahead of the entering object leading to an increase of temperature and pressure
of the fluid across the shock (see figure 1 for a general sketch).

Object

Fluid stream

Shock

Chemical
reactions

Figure 1: General sketch of a reentry problem: the object entering the atmosphere
is subject to a high-speed fluid stream creating a shock ahead of the object. The
temperature and pressure rise between the shock and the object leading to chemical
dissociation reactions. An accurate prediction of the flow field is mandatory in order
to design efficient protections and ensure the integrity of the object.

This increase generates chemical dissociation reactions within the shocked
fluid and changes its composition. The composition strongly affects the thermo-
dynamic quantities between the shock and the object [4, 5, 7]: in other words, we
here face a strong coupling problem between gas dynamics and reactions. Several
other physical phenomenon are certainly also important, such as turbulence
[8, 9], ablation [4, 5], pyrolysis [4, 6] etc. Although it may be necessary to
simulate the phenomenon accurately, the coupling of these different physics can
make the computations prohibitively intensive. In the following, we focus on the
coupling between compressible gas dynamics and the physics of reacting fluids.
Despite being simpler than simulating the full physics, this test case is sufficiently
challenging to emphasize the computational problems arising when coupling
different physics. Let us now give an idea of the difficulty of such simulation by
considering a simple motivating example: figure 2 presents two pressure fields
(the same scale is used on both pictures) of air around a sphere entering (a
simplified) earth’s atmosphere at a normal velocity of 4930.83 m.s.−1 (Mach 16).
The complete details of the simulations are given later on in section 5, let us
here focus on the results. The two simulations of figures 2 (a) and (b) only differ
from the fact that on figure 2 (a), chemical reactions are neglected whereas on
figure 2 (b), reaction N +O � NO is taken into account. The pressure on figure
2 (a) is higher than on figure 2 (b) and the position of the shock is different. By
neglecting the chemical reactions, the pressure on the boundary of the object is
overestimated in this case, which can lead to sub-optimal object conception. As

2

0.2

0.4

0.6

0.8

1.0

1e7

(a) Without chemical reactions
run-time: 81 s.

0.2

0.4

0.6

0.8

1.0

1e7

(b) With chemical reactions
run-time: 4090 s.

Figure 2: Pressure fields (in Pa) for a sphere entering earth’s atmosphere with and
without taking into account chemical reactions (see details in section 5).

an example, designing protections for such an object based on the simulations
that do not take chemical reactions into account would lead to heavier designs,
with propellers consuming more fuel. However, simulating chemical reactions
(even in this simplified case where we only consider N +O � NO) comes with
a cost: the simulation of figure 2 (b) is about ×50 more costly than the one of
figure 2 (a). Simulating chemical equilibrium takes most of the computational
time of the code, but on the other hand, Figure 2 shows that we cannot avoid
simulating it to obtain accurate predictions. There are consequently high stakes
in accelerating the computations related to the chemistry of the problem (let us
keep in mind that to design a new reentry object, more than one computation is
needed, for example, to propagate uncertainties [10, 11, 12, 13] or in order to
optimize designs under uncertainties [14, 15]). Some uncertain situations are
considered in section 5.

The previous example helps to understand our objective: we want to be able
to perform accurate predictions for reentry problems by taking into account
chemical reactions (at equilibrium in this paper), together with comprehensive
parametric studies. Hence, we need to accelerate our simulations. To achieve
this goal, in this paper, we study the design of a neural network-based hybrid
code.

Neural networks have already been intensively used in computational physics
for surrogate modeling, such as, for instance, in molecular simulations [16, 17, 18],

3

biological simulations [19, 20], fluid dynamic simulations [21, 22, 23, 8, 24]. Even
though supervised approaches are often followed, some emerging techniques
are becoming increasingly used, such as physics-informed deep learning [25,
26, 27, 28, 29], deep learning aided simulations [30, 31, 32] or hybridization
[33, 34, 35, 36, 37, 38].

In this work, we study the last approach and leverage the coupling structure
of the simulation code to replace the chemical reaction solver with a neural
network. The advantages of this approach are twofold. First, the definition
of neural networks allows us to easily vectorize their calls on array-like data
structures such as meshes. It is a solid computational advantage compared
to the original simulation code, which has to call the chemical reaction solver
in each mesh cell. Second, the chemical reaction solver is not costly when
executed as a standalone application. Consequently, it is possible to build a
large training database and substantially improve the neural network’s accuracy
without additional cost during inference. Besides, the neural network only
approximates the chemical reactions of the problem, thereby being applicable,
once trained, to any simulation which involves the same chemical reactions.

Still, these gains are not necessarily easily earned as the neural network
built to approximate the solution of the system of chemical reactions must be
both accurate and cost-effective in order to accelerate reentry computations.
The aim of this paper is to explain how we build such cost-effective neural
networks in practice and how we progressively test them before embedding them
within the simulation code. Above all, how we use them so that guarantees of
accuracy are ensured with the hybrid simulation code. As an important point, the
methodologies introduced in this paper are not specific to the studied reentry
test case: they can be applied to any simulation code involving a strong coupling
between different physics.

The paper is organized as follows. Section 2 describes the physical model
we consider in this paper. The model is relatively simple but representative of
the difficulties encountered in real-life applications. Furthermore, its simplicity
allows for obtaining reference solutions in practical times. Section 3 focuses
on Machine Learning (ML) and explains why we choose to consider (deep)
neural networks in order to accelerate the simulation codes rather than more
classical ML models such as polynomial regression or Kriging. We also provide
a methodology to anticipate the potential gains in terms of acceleration before
plugging any model within the simulation code. Then, we emphasize the trade-off
between accuracy and describe how to construct neural networks that are both
accurate and cost-effective based on a comprehensive goal-oriented sensitivity
analysis of their hyperparameters. Section 5 is devoted to numerical results and
gives a practical description of the methodology we apply in this paper. We assess
the hybrid code and find that the obtained predictions are both quantitatively
and qualitatively very promising while being 18.7 times faster. Above all, we
explain how we obtain guarantees with the hybrid code. Finally, section 6 is a
concluding section: in particular, it summarizes the conditions under which the
described methodology can be applied to any other physics/simulation codes.

4

2 Coupling compressible gas dynamics with chemical reactions at
equilibrium

In this section, we describe the set of partial differential equations (PDEs)
solved in order to produce the results of figure 2 together with its resolution
strategy. It corresponds to the coupling of compressible gas dynamics with
chemical reactions at equilibrium. The fluid dynamic is modeled thanks to the
Euler equations in 2D spatial dimension. It describes the behavior of non-viscous
compressible gas. In reentry problems, Navier-Stokes’ equations are generally
considered a finer model, but Euler’s system is enough for the purpose of this
paper, and the following material can easily be applied to any other fluid model
without more difficulties. The Euler system in 2D spatial dimension solved in
the spatial domain D is given by{

∂tU(x, y, t) +∇ · F (U(x, y, t)) = 0, ∀(x, y) ∈ D,
U(x, y, t) = b(x, y, t), ∀(x, y) ∈ ∂D.

(1)

In the above equation, b corresponds to the boundary conditions: typically, it
corresponds to an incoming flux boundary condition everywhere on ∂D except
on the boundary of the object where it corresponds to a no-slip one (this is
what has been used in the results of figure 2). In equation (1), the different
quantities are defined by (we drop the spatial and time dependences for the sake
of conciseness)

U =

ρ1

. . .
ρne
ρv
ρw
ρE

 , Fx(U) =

ρ1v
. . .
ρnev
ρv2 + p
ρvw

ρu(E + p
ρ)

 , Fy(U) =

ρ1w
. . .
ρnew
ρvw

ρw2 + p
ρw(E + p

ρ)

 .

The first ne equations stand for the conservation of the mass of the different
elements of the fluid (N and O typically for the two elements of reaction
N + O � NO). The partial density of element k can be expressed as ρk =∑ns
i=1 a

k
i
mek
mi
ρi, where me

k and mi are molar masses of element k and species i

while aki is the number of the kth element in species i. Partial mass of the ns
species are denoted by (ρi)i∈{1,...,ns}. The density of the fluid can be deduced
from the partial densities of the elements as ρ =

∑ne
k=1 ρk. Besides, v and w

are respectively the horizontal and vertical velocities of the fluid so that the
equations on ρv and ρw in equation (1) ensure the conservation of momentum.

Finally, E = ε+ v2+w2

2 is the total energy of the fluid and ε its internal energy.
The last equation of (1), on ρE, ensures the conservation of the total energy of
the fluid. The system remains to be closed: we need one last equation to relate
the pressure p to the other quantities.

The first solution for the latter purpose is to make the hypothesis that
chemical reactions have a negligible effect. It is the case, for example, when the

5

fluid is considered a perfect gas, in which case p is related to ε and directly to ρ
with

p = (γ − 1)ρε,

where γ is the Laplace constant. In the case of a diatomic gas, for example,
γ = 1.4. When chemical reactions are neglected, the closure is simple and
computationally fast, and the system can be closed without updating the partial
densities of the elements (ρi)i∈{1,...,ns}. However, this hypothesis is coarse (see
figure 2 and the related comments). In a more general case, the pressure p can
be accurately computed by simulating the chemical equilibrium between the
species produced by the Nr chemical reactions that occur during the dynamic.
Every elementary chemical reaction r ∈ {1, ..., Nr} can be described through the
general formula,

ns∑
i=1

νirAi � 0,

where ns is the number of species (i.e. ns = 3 in the case of reaction N+O � NO
for N,O and NO) and where (νir)i∈{1,...,ns} are the forward minus reverse
stoichiometric coefficients for species (Ai)i∈{1,...,ns} in reaction r (i.e. νir > 0 if
Ai disappears in reaction r, νir < 0 if Ai appears in reaction r and νir = 0 if Ai
is not involved in reaction r). In this case, the pressure is given by (see [39])

p(ρ, ε,x) =
ρRT (ε,x)∑ns
i=1 ximi

,

T (ε,x) =
εm−

∑ns
i=1 ximih

0
i∑ns

i=1 ximiCvi
,

∆G(x, U) = 0.

(2)

In the above equations, R is the universal gas constant, (h0
i)i∈{1,...,ns} and

(Cvi)i∈{1,...,ns} are respectively the mass enthalpies of formation and the mass
heat capacities at constant volume of the ns species. These expressions also
involve their molar fractions and molar masses {xi}i∈{1,...,ns} and {mi}i∈{1,...,ns}.
Finally, the vector of mass fractions x is obtained by minimizing the Gibbs free
energy G, which is implicitly recalled by the last equation of the system (2), i.e.
via the fact that x cancels ∆G, the differential of G. Note that the minimization
of the Gibbs free energy depends on the vector of unknowns of the Euler system
U and on the molar fractions x. In a nutshell, at equilibrium, we must have

∆G(x, U) =

Nr∑
r=1

ns∑
i=1

νirGi(xi, p, T) =

ns∑
i=1

νiGi(xi, p, T) = 0,

where (Gi)i∈{1,...,ns} are the Gibbs free energy of species i ∈ {1, ..., ns} per mole
of i, see [39, 7, 40] for more details.

Finally, the resolution of the whole strongly coupled system of equations can

6

be summed up by ∀t ∈ R+
∂tU(x, y, t) +∇ · F (U(x, y, t),x(x, y, t)) = 0, ∀x, y ∈ D,
∆G(x(x, y, t), U(x, y, t)) = 0, ∀x, y ∈ D,
U(x, y, t) = b(x, y, t), ∀x, y ∈ ∂D,

(3)

in which the dependence on x is made explicit in the expression of the flux F .

Now, for our reentry problem, system (3) must be solved for long times
(stationary problems). In practice, a second order in time splitting is operated
so that one iteration of the resolution, which is closely related to a time step
[tn, tn+1 = tn + ∆t], consists in the resolution of{

∂tU(x, y, t) +∇ · F (U(x, y, t),x(x, y, tn)) = 0, ∀x, y ∈ D,
U(x, y, t) = b(x, y, t), ∀x, y ∈ ∂D,

(4)

during time step ∀t ∈ [tn, tn+ 1
2], followed by the resolution of

∆G(x(x, y, tn+1), U(x, y, tn+ 1
2)) = 0, ∀x, y ∈ D, (5)

during time step ∀t ∈ [tn+ 1
2 , tn+1].

In our simulation code, the Euler counterpart (4) of the splitting is solved
using the numerical scheme presented in [4, 41, 42]: it is a Lagrange+remap
scheme. The main idea of the splitting is to separate the acoustic and dissipative
phenomena from the transport one. In Low Mach computations (as we aim
at treating liquid ablation in further work [4, 5]), an implicit treatment of the
Lagrangian step is done since the fast acoustic waves would induce very small
time steps otherwise. The remapping step is explicit and performed with a
finite volume scheme. The overall scheme resulting from this splitting operator
strategy is very robust, conservative, and preserves contact discontinuities.

The Gibbs free energy minimization counterpart (5) is solved thanks to the
library Mutation++ [7]. This library provides accurate and efficient computation
of physicochemical properties associated with partially ionized gases in various
degrees of thermal nonequilibrium. The users can compute thermodynamic
and transport properties, multiphase linearly-constrained equilibria, chemical
production rates, energy transfer rates, and gas-surface interactions (i.e. Muta-
tion++ is also a promising tool for other test cases than atmospheric reentry).
The framework is based on an object-oriented design in C++, allowing users to
plug-and-play various models, algorithms, and data as necessary. Mutation++
is available open-source under the GNU Lesser General Public License v3.0.

Mutation++ allows performing accurate reference solutions for our reentry
problem but remains costly for our needs. Remember the example of figure
2: we only consider the reaction N + O � NO. In that case, there are only
three species, N , O, and NO, and the computations are already computationally
intensive. Those three species are far from being sufficient to characterize Earth’s
atmosphere. A relevant set of species for Earth needs at least ns = 18 species

7

and is even more computationally intensive (see section 3.3). Besides, it does
not even take into account the species ejected from the ablating surface of the
object [4, 5, 6].

Let us present a sketch of the simulation code: algorithm 1 presents the main
steps of the resolution. We insist on the fact that algorithm 1 certainly stands
for a coarse description of the simulation code. But it is enough in order to
present the methodology applied in this paper. It also testifies to the simplicity
of application of the material of this paper.

1 # general initialization (mesh, quantities on mesh etc.)
2 initialise guess vector of unknowns on mesh(U0,x0)
3 while convergence criterion not satisfied do

4 Un+ 1
2 =solve Euler equations(Un,xn)

5 for i ∈ {1, ..., ND} do

6 xn+1
i , Un+1 =minimize Gibbs free energy with mutation++(U

n+ 1
2

i ,xni)
7 end
8 Un ← Un+1

9 xn ← xn+1

10 end
Algorithm 1: Core of the reentry code.

First, in algorithm 1, a mesh has to be built and the different quantities
must be initialized on this mesh. Of course, the closer to the stationary so-
lution the initialization, the faster the resolution in terms of iterations. In
practice, we rely on uniformly initialized quantities which are certainly far from
the solution to the problem. All the information is condensed in function ini-
tialise guess vector of unknowns on mesh in line 2 of algorithm 1. Then comes
the while loop: a convergence criterion must be chosen but it is not central in
this paper so we choose not to describe it. While convergence is not fulfilled, the
code solves the Euler equations (function solve Euler equations) before feeding

the updated field Un+ 1
2 into the minimization of the Gibbs free energy. Note

that Navier Stokes’ system could be solved instead of the Euler one in this paper,
and this would not change the methodology described in the next lines. Note
also that the minimization must occur within each cell i ∈ {1, ..., ND} where
ND corresponds to the total number of cells. The minimization is made in the
function minimize Gibbs free energy with mutation++, which is nothing more
than a call of Mutation++. It takes as inputs ρ, the density, ε, the mixture
energy, and the mole fractions of the elements initially found in the fluid (i.e.
the information contained in U). It outputs {x1, ...,xns} the mass fractions
of the mixture of ns chemical species but also additional quantities such as c,
the speed of sound, Cp the heat at constant pressure, Cv, the heat at constant
volume, p the pressure, and T the temperature after the equilibrium of the
reactions is fulfilled. In a sense, the call to Mutation++, denoted by M++, can

8

be summarized as a function of Rne+2 in Rns+5

M++ :

x1

...
xne
ρ
ε

 ∈ Rne+2 −→

x1

...
xns
P
T
Cp
Cv
c

,∈ Rns+5, (6)

with the outputs such that ∆G = 0. As highlighted by the example of section
1, the minimization of the Gibbs free energy is necessary for model accuracy
but very costly. We would like to build a surrogate model to replace the call
to Mutation++ by approximating M++, just as in algorithm 2, and hopefully
accelerate the reentry code without impacting its accuracy.

1 # general initialization (mesh, quantities on mesh etc.)
2 initialise guess vector of unknowns on mesh(U0,x0)
3 while convergence criterion not satisfied do

4 Un+ 1
2 =solve Euler equations(Un,xn)

5 xn+1, Un+1 =call surrogate model(Un+ 1
2 ,xn)

6 Un ← Un+1

7 xn ← xn+1

8 end
Algorithm 2: Core of the code with a call to a surrogate model of Muta-
tion++.

Obviously, for efficiency, the surrogate model has to be well-chosen. The classical
reflex at this stage would be to build and use some abacuses, as offline calls
to Mutation++ can be made. This is classical for tabulated equations of state
for example. Those abacuses can then be loaded into memory and interpolated
during the simulation [43, 44]. However, this method becomes intractable when
the input/output dimensions increases (here we have din = ne + 2 � 1 or
dout = ns + 5� 1, see section 3.3) because the number of points N needed to
obtain a fine interpolation increases exponentially fast with it, together with a
complexity for the search in the database which strongly depends on N too. For
this reason, in the following section, we study the possibility of building different
surrogate models of Mutation++ from gathered data. In particular, we explain
why we are interested in neural networks. As can be seen with algorithm 2, our
methodology is intrusive, we need to modify a few lines of the simulation code
as we are going to plug a neural network in it, hence the hybrid denomination.

3 Neural networks as approximators for hybridization

In the previous section, we formalized the problem of replacing Mutation++
with a surrogate model as an approximation problem. In section 3.1, we investi-

9

gate the different types of potential surrogate models allowing us to reach our
needs and explain why we consider neural networks. In section 3.3, we study
the capabilities of acceleration of neural networks on several benchmarks/atmo-
spheres and verify their behaviors in terms of complexity with respect to the
input and output dimensions (din and dout). Neural networks are promising (see
section 3.3), but their design has a strong impact on the final performances of
the hybrid code: section 4 is devoted to explaining how we look for accurate and
cost-effictive neural networks.

3.1 Many possible classical surrogate models

With the last paragraph of section 2, we formalised our problem as ap-
proximating a function of X ∈ Rdin −→ u(X) ∈ Rdout from N available data
(Xi, u(Xi))i∈{1,...,N}. Of course, for our application, u is nothing more than the
call to M++. In other words, we face an approximation theory problem. In
approximation theory (and in ML, which largely intersects with this field), it is
classical to look for a parametric function

(X, θ) ∈ Rdin × Rdθ −→ u(X, θ) ∈ Rdout ,

which has to be the closest possible to u(X) in a certain metric L. This goal is
achieved with the optimization of θ driven by the minimization of

J(θ) =

∫
L(u(X), u(X, θ)) dPX ,

where dPX is the measure of the input space. In practice, we do not have access
to J(θ) because the measure dPX is unknown. Hence, we approximate J(θ) with
an experimental design (Xi, wi)i∈{1,...,N}, which is a discretisation1 of (X, dPX),
as:

J(θ) =

∫
L(u(X), u(X, θ)) dPX ≈ JN (θ) =

N∑
i=1

wiL(u(Xi), u(Xi, θ)), (7)

where X is a random vector (of potentially correlated components) and dPX is
its probability measure.

There exist many different types of surrogate models. Amongst the most
classical ones in numerical and uncertainty analysis, we can count2

Lagrange interpolation or collocation. (and higher order ones such as Hermite
interpolation) [45, 46, 47, 48, 49, 50, 51]: they are based on the choices

• L(x, y) = (x− y)2 in equation (7),

1In the sense that ∀f ∈ L2,
∑N
i=1 wif(Xi)

L2−→
N→∞

∫
f(X) dPX .

2The lists of references in the following points are not exhaustive and have been chosen
because of the proximity of their application domain.

10

• u(X, θ) =

P∑
k=0

θkX
k, i.e. a polynomial approximation and a linear applica-

tion θ → u(X, θ) with respect to variable θ.

• together with N = P + 1 = dθ.

This ML model ensures u(Xi) = u(Xi, θ) ∀i ∈ {1, ..., N}. Besides, spectral
convergence can be achieved [47], hence very good accuracies, but the con-
vergence behavior strongly depends on the choice of the experimental design
(Xi, wi)i∈{1,...,N} discretising (X, dPX) (see the divergence of the approximation
of Runge’s function with uniform points [52, 51]). Finally, if N is huge (i.e. in a
big data context), P ∼ N is huge and the run-time of the ML model strongly
depends on the size of the database. It may become prohibitive for the desired
accuracy.

Polynomial regression and generalised Polynomial Chaos. [53, 54, 55, 10, 11, 56,
12, 57, 14, 58, 13, 59] are very popular, especially in problems of Uncertainty
Quantification (UQ). Since the seminal work of [10], it is extensively used in
(non-intrusive) uncertainty propagation [11, 56, 12, 57, 14, 60, 61, 59]. These
ML models are based on the choices:

• L(x, y) = (x− y)2 in equation (7),

• u(X, θ) =

P∑
k=0

θkφk(X), is linear with respect to θ and (φk(X))k∈{0,...,P}

are orthonormal polynomials with respect to the scalar product defined by
dPX .

• The number of parameters dθ = P + 1 is not constrained by N .

Spectral convergence with respect to P is ensured [62]. The orthonormality of
the basis helps with round-off errors and conditioning [63] while having a model
for which N and P are not correlated anymore (i.e. we can take N � P , big
datasets, with a model having a run-time depending on P � N).

Gaussian Process regression or Kriging. Popularized for ML by [64] and inten-
sively used in Uncertainty Quantification (UQ) [65, 15, 66, 67, 68, 69, 70, 71, 72,
73], this technique has established to a leading position in surrogate modeling.
It can be summed-up as taking

• L(x, y) = (x− y)2 in equation (7),

• u(X, θ) =

P∑
k=0

θkφk(X) + Z(θP+1, ..., θdθ),

– where (φk(X))k∈{0,...,P} can be orthonormal polynomials with respect
to the scalar product defined by dPX as in [74, 75, 76, 63] or classical
polynomials [69],

11

– and where Z is a gaussian process conditionned to satisfy u(Xi) =
u(Xi, θ) ∀i ∈ {1, ..., N}. Some particular shapes of Z are a priori
determined by choosing particular covariance functions for the process
[69, 70, 77].

– The ML model is linear with respect to (θ0, ..., θP) and nonlinear with
respect to (θP+1, ..., θdθ).

• The number of parameters dθ is not constrained by N .

This type of ML model can be understood as a way to make the best of the two
previous approaches as we have u(Xi) = u(Xi, θ) ∀i ∈ {1, ..., N} together with
convergence properties for the mean [74, 75, 76, 63] and with having N > dθ.
But the run-time of such an ML model still strongly depends on N . For huge
databases, these models can be very accurate but far from being cost-effective.

3.2 The advantages of neural networks

This brings us to the last type of approximator we consider in this paper:
(deep or shallow) neural networks. They are nonlinear approximators leading to
a non-convex loss function J [78, 79]. They are based on the choices:

• L(x, y) can be general (L2-norm, L1-norm, cross-entropy etc., see [78]).

• For a shallow neural network3, which is nonlinear with respect to θ =
(θ1, θ2). The function σ : R → R is called the activation function. In
practice, it only has to be unbounded and non-constant [80, 81].

• Deep neural networks with L layers correspond to L compositions of the
above expression: an L−layer feed forward neural network is defined
recursively as dθ = 2(P + 1) × L parameters4 and rely on the recursive
formula:

u0(X, θ) = X,

ul(X, θ) =

P∑
k=0

θlkσ
(
θl−1ul−1(X, θ)

)
,∀l ∈ {1, ..., L− 1},

u(X, θ) = θL−1uL−1(X, θ),

where σ is applied element-wise. Note that in this formula, the number of
neurons per layers P = n units is considered constant but may change
with l ∈ {1, ..., L = n layers}.

• The number of parameters dθ is not constrained by N .

3Bias are taken into account with this notation, u(X, θ) =

P∑
k=0

θ1kσ(θ2 ·X), see [79].

4Or dθ = 3(P + 1)× L parameters if bias a considered [79].

12

The convergence of the approximation is guaranteed under the hypothesis of
Hornik’s theorem [80] (or Barron’s one [81]) as the number of neurons grows; or
under the hypothesis of [82] for deep neural networks as the number of layers
L grows. In each of the previous theoretical results, the existence of a set of
parameters ensuring convergence is guaranteed. Yet, a difference remains with
the other approaches in that the loss function J (and JN) may have a lot of local
minima [83], and we consequently have to find the set of parameters ensuring
convergence.

Neural networks share many similarities with classical surrogate models.
However, they differ on several points.

• For classical surrogate modeling, some pre-processing is needed in order
to take into account correlated input variables [84, 85, 86]. It can be
a problem since training data may come from previous simulations and
uncontrolled (possibly correlated) distributions.

• In classical surrogate modeling, when the space of output is of size dout,
dout surrogate models must be built. This is problematic when the training
and inference time of the model increase. For neural networks, only the
last linear layer depends on dout.

• Classical surrogate models are very sensitive to the curse of dimensionality
as the number of parameters dθ may grow exponentially fast with both
P and din. As a consequence, these models are not well suited to high-
dimensional problems. Neural networks complexity scales linearly with din,
and is famous for its recent breakthrough on high dimensional test cases
like image or text processing. In addition, the complexity of one prediction
is independent of N , so we can leverage very large databases.

• The implementation of the inference of neural networks boils down to
a succession of matrix-vector products, which can be easily vectorized.
As a result, they can process array-like data structures very efficiently,
which makes them perfectly suited to computations on meshes. Classical
surrogate models do not offer such implementation properties.

In the next section, we introduce a profiling experiment that gives an idea
about the potential computational gains of neural network-based hybridization.

3.3 Assessing the capabilities of neural networks in terms of accelerations

To test the potential computational gains of hybridization, we construct a
simple benchmarking code that compares the run-times of neural networks and
Mutation++ for a given number of input points. In our case, this number,
ND, is the size of the simulation mesh. This code (C++) only corresponds
to the extraction of the for loop of algorithm 1 for Mutation++ and of the
call surrogate model of algorithm 2. The neural networks are implemented
within this code via the Tensorflow C API and a wrapper, CppFlow5.

5https://github.com/serizba/cppflow

13

https://github.com/serizba/cppflow

In the next studies, the neural networks have n layers = 5 hidden layers,
and the number of neurons in each layer n units is constant per layer and
chosen as a parameter of the code. In other words, we only study the influence of
hyperparameter n units, the number of neurons per layer, even if many others
exist (dropout rate, the different architectures, and their parameters, the different
optimizers and their parameters, etc. see [78]) together with the influence of
operational conditions ND ∈ {10, 102, 103, 104, 105, 106}, the numbers of cells of
the grid and ns ∈ {3, 18, 38, 64}, the number of species. In order to study the
influence of ns, we consider 4 different atmospheres (arbitrarily constructed out
of the elements found in each atmosphere to obtain increasingly complex test
cases):

• Toy problem: the toy problem corresponds to the conditions mentioned in
section 1 with 2 elements and 3 species N,O,NO.

• Earth: it corresponds to the case where the fluid is air with 2 elements but
where 18 species are considered: N , NO, O, N2, O2, e−, N+, O+, N+

2 ,
O+

2 , NO+, NO−3 , NO3, NO2, O3, NO−2 , O−, O−2 , i.e. ns = 18 species.

• Cloudy Earth: it corresponds to the same test case as above but where
another element is considered, H, coming from the clouds that the object
can meet. Additional species are therefore considered, for a total of 38
species: N , NO, O, N2, O2, e−, N+, O+, N+

2 , O+
2 , NO+, H, OH,

NH, H+, OH+, NH+, H2O
+, H2O, H2, H+

2 , NH3, NO−3 , NO3, NH+
4 ,

H3O
+, NO2, N2H2, H−, HNO, O3, HNO2, HNO3, NO−2 , O−, OH−,

NH2, O−2 .

• Cloudy Jupiter: on Jupiter, the clouds are made of water but also of
ammonium hydrosulfide and ammonia. Hence, N and S are added as
input elements, and 64 species are considered: O, O2, C, e−, C+, O+,
O+

2 , CO+, C2, CO, CO2, H, CH, OH, H+, CH+, OH+, H2O
+, H2O,

H2, H+
2 , CH4, He, He+, CH2, H−, HCO+, CH3, C2H, HCO, C−, O−,

OH−, C−2 , O−2 , C2O, N , NO, O, N2, O2, e−, N+, O+, N+
2 , O+

2 , NO+,
NH3, NO−3 , NO3, NH+

4 , NO2, N2H2, H−, HNO, O3, HNO2, HNO3,
NO−2 , NH2, S, S+, S−, CS, CS2, COS, CNCOCN , CN , CN+, CN−.

The cloudy Jupiter scenario may appear far fetched but considering it allows
progressively increasing the number of species ns from 3 (toy), 18 (Earth), 38
(cloudy Earth) to 64 (cloudy Jupiter) and study the impact of the number of
outputs of the neural networks. Moreover, with 64 species, the cloudy Jupiter
scenario is close to some operational conditions in which the species of the
atmosphere are mixed with some from the ablating surface of the entering
object.

On Figure 3, we plot the run-times of Mutation++ and neural networks
of different widths n units ∈ {20, 40, 80, 160, 320} for each atmospheres with
respect to the number of grid points ND. Note that 10 repetitions are carried
out for each curve to check for their stability (standard deviations are plotted,
but they are barely visible due to the low value of the variance). First, for

14

100 101 102 103 104 105 106

number of points

10 4

10 3

10 2

10 1

100

wa
ll

ex
ec

ut
io

n
tim

e
Mutation++
width: 20
width: 40
width: 80
width: 160
width: 320

(a) Toy test case

100 101 102 103 104 105 106

number of points

10 3

10 2

10 1

100

101

wa
ll

ex
ec

ut
io

n
tim

e

Mutation++
width: 20
width: 40
width: 80
width: 160
width: 320

(b) Earth test case

100 101 102 103 104 105 106

number of points

10 3

10 2

10 1

100

101

wa
ll

ex
ec

ut
io

n
tim

e

Mutation++
width: 20
width: 40
width: 80
width: 160
width: 320

(c) Cloudy Earth test case

100 101 102 103 104 105 106

number of points

10 3

10 2

10 1

100

101

102

wa
ll

ex
ec

ut
io

n
tim

e

Mutation++
width: 20
width: 40
width: 80
width: 160
width: 320

(d) Cloudy Jupiter test case

Figure 3: Execution time of Mutation++ vs neural networks of different widths for
each test case with respect to the number of input points (with log axes).

ND = 100 = 1, we can compare the sequential run-times of Mutation++ and
of the neural networks for the different atmospheres: the neural networks are
not always faster than the calls to Mutation++. However, within the code,
Mutation++ is called sequentially, while the neural networks are executed on the
whole array of cells in a batch fashion. Figure 3 illustrates how neural networks
exploit vectorial acceleration: as the number of cells ND increases, their run-
times become competitive with respect to Mutation++. In (a) it happens at
ND > 103. Of course, for some test cases, neural networks are competitive even
sequentially (in (c) and (d)). In a general manner, for ND between 104 and 105

- which turns out to be the orders of cells numbers per mesh block (4000 and
12000 in our experiment of section 5), neural networks performs much better
than Mutation++ in terms of computational time.

In Figure 4 we visualize the run-times of neural networks and Mutation++
run-times with respect to ns. We can see that the higher the number of species,
the higher the run-time of Mutation++. This effect is less marked for the neural
networks. For conciseness, we only present the plots for n units of 20 and 80,
which show that even for low width, the effect of ns on the run-time is limited, and
above a width of 80, it can be hardly distinguished. We recover experimentally

15

the fact that the computational complexity of the operations between the hidden
layers is insensitive to the dimensions of the problem. The input and output
dimensions can be increased with a limited impact on the run-time, which
illustrates how neural networks mitigate the curse of dimensionality.

100 101 102 103 104 105 106

grid size

10 4

10 3

10 2

10 1

100

101

102

ex
ec

. t
im

e

Toy
Earth
Cloudy Earth
Cloudy Jupiter

(a) Test cases with Mutation++

100 101 102 103 104 105 106

number of points

10 3

10 2

10 1

wa
ll

ex
ec

ut
io

n
tim

e

Toy
Earth
Cloudy Earth
Cloudy Jupiter

(b) Test cases with a network of width 20

100 101 102 103 104 105 106

number of points

10 3

10 2

10 1

wa
ll

ex
ec

ut
io

n
tim

e

Toy
Earth
Cloudy Earth
Cloudy Jupiter

(c) Test cases with a network of width 80

Figure 4: Execution time of Mutation++ and a neural network of a given width for
the different test cases with respect to the number of input points (with log axes).

Figure 5 summarizes the gain factor that we can hope for each test case, with
respect to ND and ns. It also emphasizes that the highest the number of species
ns, the more important the gain with factors going up to ×275 for n units = 20
for cloudy Jupiter’s atmosphere. Of course, this factor of gain will be relevant
only if a good accuracy can be reached for moderate width. It motivates the next
section, which deals with the optimization of neural networks’ hyperparameters
that have a strong influence on both their accuracy and cost-efficiency.

The following section describes how we design neural networks to maximize
this computational gain factor while maintaining a good approximation accuracy.

16

050100150200250300
width

1

50

100

150

200

250

300

m
ax

. t
im

e
im

pr
ov

em
en

t f
ac

to
r

Toy
Earth
Cloudy Earth
Cloudy Jupiter

Figure 5: Gains in terms of run-times of neural networks compared to the ones of
Mutation++, with respect to the width n units.

4 Design of accurate and cost-effective neural networks with goal-
oriented sensitivity analysis of hyperparameters

In this section, we emphasize the impact of neural networks’ hyperparameters
on their cost-efficiency and accuracy. To that end, we consider the approximation
of Mutation++ in the conditions of the atmosphere of the toy problem described
in section 3.3.

The hyperparameters involved in the training are given in Appendix B.
We also use the work of [87], which studies the link between the neural network
error and the variance of the output to learn. They define a sampling scheme
and its weighting counterparts to account for this variance and improve the
error. In the previous section, we explained we want to learn as much as possible
from operational conditions of (ρ, ε). But for this toy problem, relying on the
previous independent probability measures gives accurate enough models (as
will be seen later on) and considerably eases the reproducibility of the results
of this paper. The neural networks are trained using Tensorflow in python
on a training dataset of 170000 points, and the hyperparameters are selected
using a test set of 20000 points. The training and test sets are constructed by
sampling ρ and ε, respectively, uniformly and log-uniformly within the intervals
[0.1, 3.8]×[2.07503×107, 3×108], defined based on the execution of the simulation
code without chemical reactions.

Figure 6 displays the histogram of the L2 errors obtained after a random
search [88], i.e. a uniform Monte Carlo sampling of NMC = 3× 103 samples on
the hyperparameter space described. It shows several important properties:

• first, there is a non-zero probability of having poor performance in terms
of accuracies: the L2 errors go up to ≈ 106. For this reason, it is important
performing an optimization of the hyperparameters and not only rely on
one test.

• The errors within the range [10−3, 10−1] are more probable than others,

17

Figure 6: Histogram of the normalized L2 validation error of the neural networks
for approximating M++ in the toy problem configuration when performing a random
search (with NMC = 3× 103 samples of the hyperparameters).

but they are certainly not enough for our reentry application.

• Finally, there is a non-zero probability of having very good accuracies,
with errors going down to 10−8.

In a nutshell, neural networks allow a wide range of errors (order 1010 between
the lowest and the highest) depending on the hyperparameters use depending
on the hyperparameters used. For this problem, the best error (normalized
L2) is 9.37 × 10−8, which is lower than the (double) round-off error and is
consequently promising. The question now is: is such an accurate neural network
cost-effective and competitive with respect to a call of Mutation++? The neural
network yielding the previous performances has depth n layers = 9 and width
n units = 191 units, which is close to the upper boundary of the search space
for these hyperparameters. Using such depth and width could significantly affect
the expected cost efficiency improvement. Indeed, in figure 5, with n layers = 5
and n units = 191, only a gain of approximately 7 is achievable.

Now, in histogram 6, there are other values of errors that are probably
acceptable (for example, errors in the range [10−8, 10−6]). The question is: are
there cost-effective neural networks allowing us to reach such errors?

In order to answer this question, we rely on the work of [89], based on
papers [90, 15]: In [89], the authors study the use of goal-oriented sensitivity
analysis, based on the Hilbert-Schmidt Independence Criterion (HSIC), for
hyperparameter analysis and optimization. They design a robust analysis index
that is able to quantify hyperparameters’ relative impact on an NN’s final error.
This tool allows a better understanding of the hyperparameters’ effects on both
the error and the run-time. It is able to identify which hyperparameter(s) is
(are) responsible for explaining the lowest errors. Once this/these are identified,
it allows focusing the optimization on the hyperparameters having a significant
impact on the error while considering the constraints of having viable run-times.

18

The application of the methodology only consists of quick post-processing of the
random search results. It can give fast and accurate insights from the previously
performed random search. We do not give more details on the matter of paper
[89]; we only present the results and the interpretations.

Figure 7: Goal-oriented sensitivity indices of the hyperparameters as in [89] obtained
by post-processing the random search for Mutation++ for the toy atmosphere.

Figure 7 presents the aforementioned goal-oriented sensitivity indices for
each hyperparameter. The indices are stacked and sorted by decreasing impor-
tance from top to bottom. For instance, the choice of the optimizer is the
most important hyperparameter to reach the best 10% error percentile, and
dropout rate is the least important. Besides, estimation error bars for these
indices are provided, attesting to relatively converged results with respect to
the number of points in the random search NMC = 3 × 103. Note that the
error bars of the last hyperparameters intersect, so we will not allow ourselves
to interpret them. Nonetheless, according to the error bars, we can focus on
the primary hyperparameters, at least the 5 most important. In other words,
hyperparameters optimizer, learning rate and activation are by far the
three most influential hyperparameters in order to reach the 10% best errors.
This information is of great value: these hyperparameters do not impact the
run-time once the parameters θ are tuned. This means that within the 10% best
results, there are probably cheap (i.e. shallow and tight) neural networks. The
number of layers n layers and of units n units only come at the 4th and 5th

position of relative importance. By using the methodologies of [89], it is possible
to:

• Select cost effective values for n layers and n units, as well as other
low-impactful hyperparameters, with a limited impact on the error,

• Focus subsequent hyperparameter optimization on the three most impactful
hyperparameters, optimizer, learning rate and activations.

We perform a Gaussian Process-based bayesian optimization in low dimension
- see the TS-GPBO methodology of [89]. The obtained neural network reaches

19

an L2 error of 8.48× 10−8, which is even lower than with the previous random
search, with only n layers = 5 layers and n units = 20 neurons. This network
has a competitive error with far fewer parameters and much shorter run times.
We suggest now plugging this neural network into the reentry code and revisiting
the problem of section 1 with a hybrid simulation code.

5 Deep Learning-based hybridization with guarantees

In this section, we revisit the motivating example of section 1 with a hybrid
reentry simulation code. The sketch of the code is recalled below in the algorithm
3.

1 # general initialization (mesh, quantities on mesh etc.)
2 initialise guess vector of unknowns on mesh(U0,x0)
3 while convergence criterion not satisfied do

4 Un+ 1
2 =solve Euler equations(Un,xn)

5 xn+1, Un+1 =call neural network(Un+ 1
2 ,xn)

6 Un ← Un+1

7 xn ← xn+1

8 end
Algorithm 3: Core of the code with a call to a neural network surrogate
model of Mutation++.

In function call neural network, we plug the neural network approximating
Mutation++ described at the end of section 3 using the Tensorflow C API and a
wrapper, CppFlow6. Note that Algorithm 3 is slightly different from Algorithm
1 because, in the former, the neural network is called in a batch fashion to
take advantage of the vectorial optimizations, while in the latter, Mutation++
has to be called sequentially. We qualitatively verify that the results obtained
thanks to the neural network are in agreement with the ones of Mutation++
by displaying the maps (ρ, ε)→ α(ρ, ε) for α ∈ {xO,xN ,xNO, P, T, Cp, Cv, c} in
Appendix Appendix A.

For each output physical observable of figure 8, the predictions are compared
to the reference values computed by M++. The results are in very good agree-
ment (remember we have a L2 error close to 10−8 with this neural network).
Still, in figure 9 (f) and (g), for Cp and Cv, there are numerical artifacts in
the predictions of M++ at the top of the domain (for high values of ε) whereas
these are not observable with the neural network. These numerical instabilities
M++ may disturb the reentry computation in practice. The neural network
does not seem to be subject to such instabilities. We will see that this point is

6https://github.com/serizba/cppflow

20

https://github.com/serizba/cppflow

M
+

+
n

et
.

ε
ε

ρ

(a) xO

ρ

(b) xN

ρ

(c) xNO

ρ

(d) p

M
+

+
n

et
.

ε
ε

ρ

(e) T

ρ

(f) Cp

ρ

(g) Cv

ρ

(h) c

Figure 8: Predictions of the neural network (top) and predictions of M++ (bottom) on
the input domain. Axis values are omitted for clarity but we recall that ρ and ε are
defined on [0.1, 3.8]and[2.07503× 107, 3× 108] respectively.

of importance in the following numerical results.

From now on, this section is articulated as follows. In section 5.1, we present
the results and accelerations obtained with the hybrid reentry code. However,
in critical decision-making, the use of machine learning is often controversial
because it lacks natural accuracy guarantees. Sections 5.2 and 5.3 are dedicated
to alleviating this problem. Notably, in section 5.2, we explain how to make sure
that the hybrid code recovers exactly the same results as the native one (together
with ensuring a ×10 factor of acceleration). Finally, in section 5.3, we suggest a

21

way to validate the reliability of the hybrid simulation code as such based on
proper analysis and study of the different sources of errors and uncertainties of
the original simulation code.

5.1 Acceleration of the reentry code

In this section, we come back to the configuration of section 1. The reference
simulations are provided by the native reentry simulation code described in
section 2 (and algorithm 1).

In the configuration of interest, see table 1, we consider a sphere of radius
rsphere = 10−2 entering a simplified Earth’s atmosphere (species N,O,NO). The

Input value
Elements, ne = 2 (elem:fraction) O:0.2, N:0.8
Upstream pressure 35737.40Pa
Upstream temperature 216.57K
Upstream velocity (Mach 16) 4930.83 m.s−1

Chemical species (ns = 3) N, O, NO

Table 1: Simulation parameters and boundary conditions for the toy example.

boundary conditions are:

• no-slip boundary conditions on the sphere incoming in Earth’s atmosphere,

• incoming flux upstream of the sphere, see table 1 for the considered nominal
values of the upstream velocity, pressure, and temperature.

Let us first perform some comparisons on the pressure fields in the same conditions
(same mesh) as in section 1 with the three different reentry codes:

• PG (for perfect gas) denotes the results obtained with the reentry code
without simulating any chemical reactions.

• MPP (for Mutation++) denotes the results obtained with the reentry code
with the simulation of chemical reactions using Mutation++.

• NN (for neural network) denotes the results obtained with the hybrid reen-
try code with the simulation of chemical reactions using the neural network
approximating Mutation++ obtained with the methodology described in
section 3.

Figure 9 echoes figure 2 and presents the results obtained with the three above
reentry codes. As in section 1, we can observe, by comparing figure 9 (a) and (c)
that the perfect gas closure (PG) is a coarse model for our reentry problem as
its results in terms of pressure field considerably differ from the one obtained
with chemical reactions (MPP), i.e. which takes into account finer physics. On
the other hand, the pressure field obtained with the hybrid reentry code (NN) is
not visually distinguishable from the results obtained with Mutation++. Now,

22

0.2

0.4

0.6

0.8

1.0

1e7

(a) MPP, run-time 4090 s.

0.2

0.4

0.6

0.8

1.0

1e7

(b) NN, run-time 220 s.

0.2

0.4

0.6

0.8

1.0

1e7

(c) PG, run-time 81 s.

Figure 9: Pressure field for MPP, NN and PG, with the same scales.

in terms of run-time, with about the same accuracy, the hybrid reentry code
ensures a gain of a factor × 4090

220 ≈ 18.6.
The results of figure 9 are rather qualitative. Let us progressively switch

to more quantitative ones. For this, on figure 10, we extract the pressure on
the surface of the object (figure 10 left) and the distance of the shock (figure
10 right) for the three different codes. Note that the suffixes high and low
corresponds to two different meshes:

low is for low-resolution mesh (30× 100),

high is for high-resolution mesh (90× 100) and is 3 times more refined in the
direction of the shock.

First, with figure 10 (right column), we can see that the perfect gas closure is
also coarse for the shock distance: the model error (i.e. between MPP and PG
independently of the observable of interest) is way more important than the
discretization error (as the error between the two meshes is small in comparison
to the differences between PG and MPP). This justifies taking the chemistry of
the phenomenon into account for the simulation. Now, for those two observables
at the surface of the object, we can see that the NN error is even smaller than
the discretization error as the dotted lines are the closest to the full lines. Finally,
without zooming, no visual differences can be detected between MPP and NN.
To assess the prediction error of NN, we have to look at more quantitative results:
table 2 displays the L2 and L∞ normalized errors for these curves with respect
to MPP low and MPP high together with the run-times of the different codes:
Several comments can be made regarding these results:

• The errors between PG (low and high) and MPP high are at least
three decades higher than the errors between the results of NN and MPP,

23

0.0 0.2 0.4 0.6 0.8 1.0
x wall

0.2

0.4

0.6

0.8

1.0

1.2
p

1e7
MPP_low
MPP_high
NN_low
NN_high
GP_low
GP_high

0.04 0.05 0.06 0.07 0.08 0.09 0.10
x wall

7.80

7.85

7.90

7.95

8.00

8.05

8.10

8.15

8.20

p

1e6
MPP_low
MPP_high
NN_low
NN_high
GP_low
GP_high

(a) Pressure profile

0.0 0.2 0.4 0.6 0.8 1.0
x wall

0.004

0.006

0.008

0.010

0.012

0.014

0.016

sh
oc

k
di

st
an

ce

MPP_low
MPP_high
NN_low
NN_high
GP_low
GP_high

0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96
x wall

0.0110

0.0115

0.0120

0.0125

0.0130

0.0135

0.0140

0.0145

0.0150

sh
oc

k
di

st
an

ce

MPP_low
MPP_high
NN_low
NN_high
GP_low
GP_high

(b) Shock distance

Figure 10: Top: pressure profile and shock distance projected on the surface of the
object. Bottom: same quantities with a zoom on the highest error area for the hybrid
code.

regardless of the resolution, which illustrates the need for simulating
chemical reactions.

• The errors of NN high and NN low are comparable to that of MPP low
when MPP high is taken as the reference. Th error between NN low and
MPP low is even lower.

• However, the run-times of NN are closer to those of PG with 220s. and
529s. for NN and 81s. and 211s. for PG, against 4090s. and 9478s. for
MPP. Note also that NN high is still faster than the MPP low while being
more accurate.

To sum up, on the one hand, MPP and NN are comparable in terms of error,
and on the other hand, NN is almost one decade faster than MPP. These results
are comforting and motivate us to study the method further and discuss the
possibility of having guarantees with the hybrid code.

The error of NN was comparable to that of MPP low on this prediction, but
it was on one single prediction. This evaluation process is insufficient to state

24

MPP low (ref) NN low PG low
Time (s) 4090 220 81
Impr. (×) - 18.7 58.5
Pressure
L2 - 6.06× 10−7 7.74× 10−2

L∞ - 1.13× 10−3 4.64× 10−1

Shock dist.
L2 - 7.85× 10−7 1.70× 10−3

L∞ - 4.85× 10−3 9.89× 10−2

MPP high (ref) MPP low NN high NN low PG high PG low
Time (s) 9478 4090 529 220 211 81
Impr. (×) - 2.3 17.9 43.1 44.9 117
Pressure
L2 - 3.19× 10−5 1.13× 10−6 4.00× 10−5 7.65× 10−2 8.15× 10−2

L∞ - 9.07× 10−3 2.22× 10−3 9.82× 10−3 4.62× 10−1 4.75× 10−1

Shock dist.
L2 - 9.14× 10−5 6.55× 10−6 9.19× 10−5 1.65× 10−3 1.29× 10−3

L∞ - 3.60× 10−2 1.08× 10−2 3.60× 10−2 1.08× 10−1 9.00× 10−2

Table 2: Execution times and normalized errors for the different codes.

whether the error is acceptable. In order to ensure prediction guarantees, which
are mandatory for using codes in production, we have to go deeper into the
analysis.

In the next sections, we introduce two ways to obtain guarantees on the
predictions of the hybrid code. The first ensures to have exactly the same
prediction accuracy as the fine reentry code (i.e. MPP) but brings additional
computations. The second compares the error made with the hybridization of
the reentry code with other sources of errors that are ubiquitous in numerical
simulation to assess the acceptability of the hybrid code. If the hybridization
error is lower than other errors, it is then possible to use the hybrid code (NN)
at full speed.

5.2 Zero-error guarantees of the hybrid code

As we mentioned earlier, the reentry simulation code is an iterative solver,
see algorithm 1. It is initialized with a guess solution, which is uninformative -
usually, the same value over the entire mesh - and iterations are made until a
certain convergence criterion is reached. In this section, we suggest first executing
the hybrid code (NN), using its prediction as initialization for the classical code
(MPP). Then, the classical solver may hopefully converge in fewer iterations
since the initialization is supposed to be close to the convergence point. The
new structure of the code is presented in algorithm 4.

25

1 # general initialization (mesh, quantities on mesh etc.)
2 initialise guess vector of unknowns on mesh(U0,x0)
3 # 1st step with the neural network surrogate model
4 while convergence criterion not satisfied do

5 Un+ 1
2 =solve Euler equations(Un,xn)

6 xn+1, Un+1 =call NN surrogate model(Un+ 1
2 ,xn)

7 Un ← Un+1

8 xn ← xn+1

9 end

10 # 2nd step with Mutation++ using the NN results as the initial guess
11 while convergence criterion not satisfied do

12 Un+ 1
2 =solve Euler equations(Un,xn)

13 for i ∈ {1, ..., ND} do

14 xn+1
i , Un+1 =minimize Gibbs free energy with mutation++(U

n+ 1
2

i ,xni)
15 end
16 Un ← Un+1

17 xn ← xn+1

18 end
Algorithm 4: Core of the code with a call to a neural network surrogate
model of Mutation++ in order to initialize the guess of a classical computa-
tion.

The strategy described in algorithm 4 gives the following results. Once the
prediction of NN low is given as a guess of the original code, MPP low, the latter
reaches convergence in 163s.. If we sum the run times of both codes, in that
case, the simulation takes 383s. which is ×10.6 faster than MPP low alone, for
a prediction whose accuracy is exactly the same as the ones of the original code.
This strategy is denoted by NN+MPP in the following paragraphs. In that case,
there is no need to compare the pressure profiles or the shock distances between
the different options of the code since the prediction are indistinguishable
from one another. In other words, we obtained an acceleration of a factor
10.6 for the exact same accuracy, i.e. with the same guarantees as the original
code.

Remark 1. This approach is not specific to our reentry problem: it can be
applied to any stationary simulations or in a general manner to any computation
code involving an iterative solver whose iterations are not of interest as simulation
outputs.

5.3 Guarantees of acceptable error for the hybrid code

As we have seen in the previous section, for our reentry simulations, it is
possible to have the same guarantees with the hybrid code as with the original
one at the price of a smaller acceleration (×10 with guarantees instead of 18.6).
Now, one could be interested in this 18.6 factor of acceleration instead of ×10.6
(or one could not have a stationary problem). In order to make sure the error
coming from neural network approximation remains acceptable, it is mandatory

26

to be able to quantify it and compare it to the other sources of errors that are
classically found in numerical simulations. In this section, we compare the error
due to the use of a neural network within the hybrid code with these other errors,
namely the model error, the discretization error, and the fluctuations relative to
the sources of uncertainty.

Let us formalize this: suppose we are interested in observable y (it can be
the pressure on the surface of the object, the distance to the shock etc.). Let us
denote by yr the ground-truth value of y that we want to predict with a model.
We denote the original code MPP by M and the hybrid code NN by M̂, with
Mhigh denoting the model of MPP high, and so on for the other MPP and NN
codes. The models take parameters x as input and output a prediction M(x)

and M̂(x). In our case, the input vector x contains the upstream pressure,
temperature, and speed. The predictions can be expressed as{

M(x) = yr + eM(x) = yr + δ∆,M(x) + δx,M(x),

M̂(x) = yr + eM̂(x) = yr + δ
∆,M̂(x) + δ

x,M̂(x) + δ
θ,M̂(x).

(8)

Equation (8) emphasizes three different types of errors :

• The discretization errors δ∆,M and δ
∆,M̂. The choice of the mesh used

to run the simulation has an impact on the prediction error. A low mesh
resolution may degrade the error, as we saw with MPP low, but the
geometry of the mesh also has its impact.

• The parameters’ errors δx,M and δ
x,M̂. In practice, we conduct numerical

simulations because we are interested in the output of a phenomenon
under specific conditions of interest. Nonetheless, we may have imperfect
knowledge of these conditions of interest. This translates into uncertainties
on the input vector x, which contains the values of the parameters that
define the conditions of the simulation. These uncertainties have an impact
on the model prediction and, therefore, on their prediction error.

• The neural network approximation error δ
θ,M̂. In the hybrid code, NN,

the neural network approximates M++ with a certain error. This error
propagates through the hybrid code, thereby affecting its prediction error.

In order to ensure that NN yields reliable predictions, the neural network
approximation error must be compared with parameters and discretization errors.
If the former is at most similar to the two others, NN could be used safely.

Remark 2. Another type of error is often specified when decomposing the error
of numerical codes. This error is called modeling error and refers to the error
that stems from modeling choices. In our case, the model error would be the error
between PG and MPP, coming from the choice not to simulate the chemistry
in PG. Another model error could come from the choice not to simulate the
chemistry, to simulate it with more or fewer species, or to use Naver-Stokes
equations rather than Euler equations. In addition, round-off errors could also

27

0.0 0.2 0.4 0.6 0.8 1.0
x wall

0.2

0.4

0.6

0.8

1.0

1.2
p

1e7
low

high

low

high

PG_low
PG_high

0.04 0.06 0.08 0.10 0.12 0.14 0.16
x wall

6.5

7.0

7.5

8.0

8.5

9.0

p

1e6

low

high

low

high

PG_low
PG_high

(a) Pressure profile

0.0 0.2 0.4 0.6 0.8 1.0
x wall

0.004

0.006

0.008

0.010

0.012

0.014

0.016

di
st

an
ce

low

high

low

high

PG_low
PG_high

0.84 0.86 0.88 0.90 0.92 0.94 0.96
x wall

0.0110

0.0115

0.0120

0.0125

0.0130

0.0135

0.0140

0.0145

di
st

an
ce

low

high

low

high

PG_low
PG_high

(b) Shock distance

Figure 11: Pressure profile and shock distance projected on the wall of the object, for
40 different values of the upstream speed. In the bottom line, zoom of the curves in
the highest error area.

be taken into account. In this work, we suppose they are negligible with respect
to the other sources of errors. The reader interested in ways to quantify them
can refer to [91] for example.

5.3.1 Uncertainty propagation for reliable error comparison

To compare the different errors, we introduce a perturbation in x, mod-
eling the uncertainty on the upstream speed. Let x = (x, y, z), with x ∼
U(0.95x, 1.05x), x = 4930.83 (the nominal value of the initial test case). The
random variable x traduces the uncertainty on the speed of the upstream
field, and the values of y and z are the upstream pressure and temperature.
We simulate the random variable x on N = 40 Gauss quadrature points
{x1, ..., xN}, with xi ∈ [0.95x, 1.05x], that are used to evaluate E[M(x)] with

M ∈ {Mlow,Mhigh,M̂low,M̂high}. Such an analysis allows us to study the
effect of parameter uncertainty on the error, as well as statistically compare the
different sources of error.

The mean E[M(x)] and each of the 40 curves are plotted in Figure 11.
These graphs are quite loaded, but they highlight that the variability induced

28

by parameter uncertainty is much higher than that coming from approximation
and even discretization errors.

Comparing discretization and neural network approximation errors is more
subtle because it is not clear-cut in Figure 11. To do so, we directly compare
the discretization error of Mlow with the approximation error of M̂low and
M̂high under parameters uncertainty. First, we plot ||Mlow − Mhigh|| and

||M̂low−Mhigh|| for the 40 values of xi in Figure 12. Here, ||.|| is the normalized
absolute difference evaluated point-wise in the pressure profile and the shock
distance. At first sight, the approximation error seems to be lower (for the
pressure profile) or equivalent (for the shock distance) to the discretization error.

0.0 0.2 0.4 0.6 0.8 1.0
x wall

10 5

10 4

10 3

10 2

p

|| low high||
|| low high||

(a) Pressure profile

0.0 0.2 0.4 0.6 0.8 1.0
x wall

0.00

0.01

0.02

0.03

0.04

di
st

an
ce

|| low high||
|| low high||

(b) Shock distance

Figure 12: Discretization errors ||Mlow−Mhigh|| and ||M̂low−Mhigh|| for the pressure
profile and the shock distance for each of the 40 different values of the upstream speed.

We confirm this observation by plotting ||M̂low −Mlow|| and ||M̂high −
Mhigh|| in Figure 13. We plot the 40 curves corresponding to each xi and
the mean estimated using the Gauss quadrature. It clarifies the comparison
and strengthens the conclusion that approximation error is lower than both
discretization and parameters error.

This error study shows that the neural network’s approximation error can be
small compared to other types of errors. In this case, the hybrid code is reliable,
which is a strong argument in favor of the use of hybrid simulation codes.

5.3.2 Benefits of NN+MPP to obtain reference predictions

To conduct this experiment, we never executedMlow andMhigh entirely, but

always used an initialization from the prediction of M̂low and M̂high (NN+MPP,
as described in Section 5.2). The advantages were twofold. First, the study was
much faster (approximately by a factor of 10). Second, for some {x1, ..., xN},
MPP did not converge, perhaps because of numerical instabilities. Initializing
MPP using the hybrid code solved this problem. This echoes remark 1 on the
artefacts in predictions of Cp and Cv by M++.

29

0.0 0.2 0.4 0.6 0.8 1.0
x wall

10 7

10 6

10 5

10 4

10 3

10 2

p

|| low low||
|| high high||

0.0 0.2 0.4 0.6 0.8 1.0
x wall

10 3

10 2

p

	low high	
	low low	
	high high	

(a) Pressure profile

0.0 0.2 0.4 0.6 0.8 1.0
x wall

0.000

0.005

0.010

0.015

0.020

di
st

an
ce

|| low low||
|| high high||

0.0 0.2 0.4 0.6 0.8 1.0
x wall

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

di
st

an
ce

	low high	
	low low	
	high high	

(b) Shock distance

Figure 13: Top: approximation errors ||M̂low −Mlow|| and ||M̂high −Mhigh|| for the
pressure profile and the shock distance for each of the 40 different values of the upstream
speed. Bottom: comparison of the mean of the discretization and approximation errors.

6 Discussion and Perspectives

In this work, we studied the acceleration of a simulation code involving
the coupling between hypersonic fluid dynamic and chemical equilibrium. The
simulation code is computationally expensive because of the chemical equilibrium
simulator (Mutation++) that has to be called at each cell of the simulation
mesh. This motivated using neural networks as surrogate models approximating
chemical reactions because (1) their execution can be easily vectorized, so they
can be called efficiently on a whole mesh, and (2) they can be trained on an
extensive database constructed out of Mutation++.

By taking care of constructing neural networks not only accurate but also
cost-effective thanks to the methodology of [89], we achieve an acceleration
factor of 18.7 for the hybrid simulation code (NN). The obtained prediction
is qualitatively indistinguishable and quantitatively very close to that of the
original simulation code (MPP).

Nonetheless, though promising, these results are insufficient to ensure NN
guarantees for reliable use in production. We describe two simple methodologies

30

for obtaining guarantees to tackle that problem. The first methodology ensures
the same guarantees as MPP by initializing it with the prediction of NN. However,
the acceleration factor decreases to 10. The second methodology relies on the
consideration that many sources of errors affect the prediction of numerical
simulation code, even without hybridization. We conduct a statistical study
of the effect of some of these errors, namely the parameter’s uncertainty and
discretization errors, and compare them to the neural network’s approximation
error. It turns out that in this test case, the neural network’s error is negligible
with respect to the others, so we tend to recommend using the hybrid code with
its full acceleration factor of 18.7 safely. We would like to conclude the paper
with a discussion on the perspectives of this work.

6.1 Towards a general approximation of Mutation++

In this section, the methodology for approximating Mutation++ consists of
constructing a training database and fitting a neural network. This is a strong
advantage of this method since the neural network can be used in any simulation
code involving the same chemical equilibrium setting (as we saw in section 5.3).

However, the neural network is trained for a fixed output dimension corre-
sponding to the number of species. It cannot be used for test cases that involve
different species because it requires constructing a new training database for
each different chemical setting.

It would be interesting to investigate the use of transfer learning to make
the approach easily applicable to other chemical reactions. One could pre-train
a neural network once for a high number of different species and with a large
database constructed out of Mutation++. Then, one could find a simple way
to adapt this neural network for each different test case, for instance, with a
least-squares linear regression on the feature space of the pre-trained network,
using a smaller data set.

6.2 A general pattern for hybridization

Our approach is not specific to hypersonic reentry coupled with chemical
equilibrium. The idea of constructing a hybrid code based on both numerical
simulation and machine learning has already been explored in previous works.
In molecular simulations, [92] use a neural network approximation of potential
energy surface, and [93] use Gaussian processes to sample Gibbs free energy
surface, opening the avenue for applications based on such methodologies [34, 35,
36, 37]. [33] use neural networks to approximate physical components of multi-
physics problems for electro-thermal simulation when conducting electrosurgery.
In [23, 38], the authors approximate non-local thermodynamic equilibrium in
the simulation of inertial confinement fusion.

More formally, a multi-physics simulation code often solves a coupled system
of several components that model different physics. To simplify the framework,
we only consider a code with two coupled systems of equations. The system can

31

be written : {
F1(U,x,α) = 0,

F2(U,x,α) = 0,

(9a)

(9b)

where

• U and x are vectors of unknowns,

• α is a vector of physical parameters, that are not computer during the
simulation (e.g. physical or chemical constants),

• F1 and F2 are mathematical (possibly differential) operators. In our test
case, equation (9a) is Euler equations and equation (9b) is the Gibbs free
energy minimization equation, which is behind Mutation++.

In such cases, most of the time, the solver needs to solve equation (9b)
repeatedly in order to solve equation (9a). As a result, equation (9a) is costly to
solve because it regularly calls for the resolution of equation (9b). The approach
of approximating F2 with a neural network and leveraging its implementation
to process an entire mesh in a batch input fashion is, therefore, more general
than the present hypersonic reentry test case. Numerical simulations, in general,
could benefit from such an approach, strengthened by the described methodology
for guaranteeing the results of the obtained hybrid code.

6.3 Hybrid simulation codes as an additional lever for acceleration

We would like to point out that even if the obtained hybrid code no longer
uses the code part that is approximated by a neural network, this part is
still crucial for constructing the hybrid code. Indeed, a good training set is
mandatory to ensure neural network accuracy, and the original code part is key
to achieving that accuracy. That is why we do not claim deep learning to replace
simulation codes. Instead, we argue that it should be seen as an additional step
in constructing simulation codes, allowing for significant accelerations.

Bibliography

[1] A. Martin, I. Boyd, Strongly coupled computation of material response
and nonequilibrium flow for hypersonic ablation, Journal of Spacecraft and
Rockets 52. doi:10.2514/1.A32847.

[2] F. S. Milos, Y.-K. Chen, Ablation, thermal response, and chemistry program
for analysis of thermal protection systems, Journal of Spacecraft and Rockets
50 (2013) 137–149.

[3] D. Bianchi, F. Nasuti, E. Martelli, Navier–stokes simulations of hypersonic
flows with coupled graphite ablation, Journal of Spacecraft and Rockets - J
SPACECRAFT ROCKET 47 (2010) 554–562. doi:10.2514/1.47995.

32

http://dx.doi.org/10.2514/1.A32847
http://dx.doi.org/10.2514/1.47995

[4] S. Peluchon, Approximation numrique et modelisation de l’ablation liquide,
Theses, Université de Bordeaux (Nov. 2017).
URL https://tel.archives-ouvertes.fr/tel-01684676

[5] M. Latige, Simulation numérique de l’ablation liquide, Theses, Université
Sciences et Technologies - Bordeaux I (Sep. 2013).
URL https://tel.archives-ouvertes.fr/tel-00858600

[6] J. Yin, H. Zhang, X. Xiong, B. Huang, J. Zuo, Ablation properties of
carbon/carbon composites with tungsten carbide, Applied Surface Science
255 (9) (2009) 5036–5040. doi:10.1016/j.apsusc.2008.12.063.

[7] J. B. Scoggins, V. Leroy, G. Bellas-Chatzigeorgis, B. Dias, T. E. Magin,
Mutation++: Multicomponent thermodynamic and transport properties for
ionized gases in c++, SoftwareX 12. doi:10.1016/j.softx.2020.100575.

[8] F. Danvin, M. Olazabal, F. Pinna, Laminar to turbulent transition
prediction in hypersonic flows with neural networks committee, 2021.
arXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.2019-2837, doi:10.

2514/6.2019-2837.
URL https://arc.aiaa.org/doi/abs/10.2514/6.2019-2837

[9] M. Olazabal-Loumé, F. Chedevergne, F. Danvin, J. Mathiaud, Roughness
corrections applied to the simulation of turbulent hypersonic flows, in:
EUCASS 2019, MADRID, Spain, 2019.
URL https://hal.archives-ouvertes.fr/hal-02344348

[10] O. P. Le Mâıtre, O. M. Knio, Uncertainty Propagation using Wiener-Haar
Expansions, J. Comp. Phys. 197 (2004) 28–57.

[11] S. Hosder, R. W. Walters, R. Perez, A Non Intrusive Polynomial Chaos
Method for Uncertainty Propagation in CFD Simulations, 44th AIAA
Aerospace Sciences Meeting and Exhibit AIAA 2006-891.

[12] G. Poëtte, B. Després, D. Lucor, Uncertainty Quantification for Systems of
Conservation Laws, J. Comp. Phys. 228 (7) (2009) 2443–2467. doi:http:
//dx.doi.org/10.1016/j.jcp.2008.12.018.

[13] D. Lucor, J. Meyers, P. Sagaut, Sensitivity Analysis of LES to Subgrid-Scale-
Model Parametric Uncertainty using Polynomial Chaos, J. Fluid Mech. 585
(2007) 255–279.

[14] P. Congedo, C. Corre, J.-M. Martinez, Shape optimization of an airfoil
in a bzt flow with multiple-source uncertainties, Computer Meth-
ods in Applied Mechanics and Engineering 200 (1) (2011) 216–232.
doi:https://doi.org/10.1016/j.cma.2010.08.006.
URL https://www.sciencedirect.com/science/article/pii/

S0045782510002392

33

https://tel.archives-ouvertes.fr/tel-01684676
https://tel.archives-ouvertes.fr/tel-01684676
https://tel.archives-ouvertes.fr/tel-00858600
https://tel.archives-ouvertes.fr/tel-00858600
http://dx.doi.org/10.1016/j.apsusc.2008.12.063
http://dx.doi.org/10.1016/j.softx.2020.100575
https://arc.aiaa.org/doi/abs/10.2514/6.2019-2837
https://arc.aiaa.org/doi/abs/10.2514/6.2019-2837
http://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/6.2019-2837
http://dx.doi.org/10.2514/6.2019-2837
http://dx.doi.org/10.2514/6.2019-2837
https://arc.aiaa.org/doi/abs/10.2514/6.2019-2837
https://hal.archives-ouvertes.fr/hal-02344348
https://hal.archives-ouvertes.fr/hal-02344348
https://hal.archives-ouvertes.fr/hal-02344348
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2008.12.018
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2008.12.018
https://www.sciencedirect.com/science/article/pii/S0045782510002392
https://www.sciencedirect.com/science/article/pii/S0045782510002392
http://dx.doi.org/https://doi.org/10.1016/j.cma.2010.08.006
https://www.sciencedirect.com/science/article/pii/S0045782510002392
https://www.sciencedirect.com/science/article/pii/S0045782510002392

[15] S. Da Veiga, F. Wahl, F. Gamboa, Local polynomial estimation for sensitivity
analysis on models with correlated inputs, Technometrics 51 (2009) 452 –
463.

[16] N. Plattner, S. Doerr, G. De Fabritiis, F. Noé, Complete protein–protein
association kinetics in atomic detail revealed by molecular dynamics simula-
tions and Markov modelling, Nature Chemistry 9 (10) (2017) 1005–1011.
doi:10.1038/nchem.2785.
URL http://www.nature.com/articles/nchem.2785

[17] M. I. Zimmerman, G. R. Bowman, Fast conformational searches by bal-
ancing explorationexploitation trade-offs, Journal of Chemical Theory and
Computation 11 (12) (2015) 5747–5757. doi:10.1021/acs.jctc.5b00737.
URL https://pubs.acs.org/doi/10.1021/acs.jctc.5b00737

[18] S. Doerr, G. De Fabritiis, On-the-fly learning and sampling of ligand binding
by high-throughput molecular simulations, Journal of Chemical Theory and
Computation 10 (5) (2014) 2064–2069. doi:10.1021/ct400919u.
URL https://pubs.acs.org/doi/10.1021/ct400919u

[19] W. A. Lahoz, B. Khattatov, R. Ménard (Eds.), Data assimilation: mak-
ing sense of observations, Springer, Heidleberg, New York, 2010, oCLC:
ocn499067426.

[20] R. E. Baker, J.-M. Peña, J. Jayamohan, A. Jérusalem, Mechanistic
models versus machine learning, a fight worth fighting for the biological
community?, Biology Letters 14 (5) (2018) 20170660. arXiv:https:

//royalsocietypublishing.org/doi/pdf/10.1098/rsbl.2017.0660,
doi:10.1098/rsbl.2017.0660.
URL https://royalsocietypublishing.org/doi/abs/10.1098/rsbl.

2017.0660

[21] S. Koziel, L. Leifsson, Knowledge-based airfoil shape optimization using
space mapping, in: 30th AIAA Applied Aerodynamics Conference, 2012.
arXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.2012-3016, doi:10.

2514/6.2012-3016.
URL https://arc.aiaa.org/doi/abs/10.2514/6.2012-3016

[22] X. Guo, W. Li, F. Iorio, Convolutional neural networks for steady flow
approximation, in: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, Association
for Computing Machinery, New York, NY, USA, 2016, p. 481–490. doi:

10.1145/2939672.2939738.
URL https://doi.org/10.1145/2939672.2939738

[23] G. Kluth, K. D. Humbird, B. K. Spears, J. L. Peterson, H. A. Scott, M. V.
Patel, J. Koning, M. Marinak, L. Divol, C. V. Young, Deep learning for
nlte spectral opacities, Physics of Plasmas 27 (5) (2020) 052707. arXiv:

34

http://www.nature.com/articles/nchem.2785
http://www.nature.com/articles/nchem.2785
http://www.nature.com/articles/nchem.2785
http://dx.doi.org/10.1038/nchem.2785
http://www.nature.com/articles/nchem.2785
https://pubs.acs.org/doi/10.1021/acs.jctc.5b00737
https://pubs.acs.org/doi/10.1021/acs.jctc.5b00737
http://dx.doi.org/10.1021/acs.jctc.5b00737
https://pubs.acs.org/doi/10.1021/acs.jctc.5b00737
https://pubs.acs.org/doi/10.1021/ct400919u
https://pubs.acs.org/doi/10.1021/ct400919u
http://dx.doi.org/10.1021/ct400919u
https://pubs.acs.org/doi/10.1021/ct400919u
https://royalsocietypublishing.org/doi/abs/10.1098/rsbl.2017.0660
https://royalsocietypublishing.org/doi/abs/10.1098/rsbl.2017.0660
https://royalsocietypublishing.org/doi/abs/10.1098/rsbl.2017.0660
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsbl.2017.0660
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsbl.2017.0660
http://dx.doi.org/10.1098/rsbl.2017.0660
https://royalsocietypublishing.org/doi/abs/10.1098/rsbl.2017.0660
https://royalsocietypublishing.org/doi/abs/10.1098/rsbl.2017.0660
https://arc.aiaa.org/doi/abs/10.2514/6.2012-3016
https://arc.aiaa.org/doi/abs/10.2514/6.2012-3016
http://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/6.2012-3016
http://dx.doi.org/10.2514/6.2012-3016
http://dx.doi.org/10.2514/6.2012-3016
https://arc.aiaa.org/doi/abs/10.2514/6.2012-3016
https://doi.org/10.1145/2939672.2939738
https://doi.org/10.1145/2939672.2939738
http://dx.doi.org/10.1145/2939672.2939738
http://dx.doi.org/10.1145/2939672.2939738
https://doi.org/10.1145/2939672.2939738
https://doi.org/10.1063/5.0006784
https://doi.org/10.1063/5.0006784
http://arxiv.org/abs/https://doi.org/10.1063/5.0006784
http://arxiv.org/abs/https://doi.org/10.1063/5.0006784
http://arxiv.org/abs/https://doi.org/10.1063/5.0006784

https://doi.org/10.1063/5.0006784, doi:10.1063/5.0006784.
URL https://doi.org/10.1063/5.0006784

[24] P. J. Milan, J.-P. Hickey, X. Wang, V. Yang, Deep-learning accelerated
calculation of real-fluid properties in numerical simulation of com-
plex flowfields, Journal of Computational Physics 444 (2021) 110567.
doi:https://doi.org/10.1016/j.jcp.2021.110567.
URL https://www.sciencedirect.com/science/article/pii/

S0021999121004629

[25] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics informed deep learning
(part i): Data-driven solutions of nonlinear partial differential equations,
arXiv preprint arXiv:1711.10561.

[26] M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neu-
ral networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equa-
tions, Journal of Computational Physics 378 (2019) 686–707.
doi:https://doi.org/10.1016/j.jcp.2018.10.045.
URL https://www.sciencedirect.com/science/article/pii/

S0021999118307125

[27] S. Cai, Z. Mao, Z. Wang, M. Yin, G. E. Karniadakis, Physics-informed neural
networks (pinns) for fluid mechanics: A review (2021). arXiv:2105.09506.

[28] L. Lu, P. Jin, G. Pang, Z. Zhang, G. E. Karniadakis, Learning nonlinear
operators via deeponet based on the universal approximation theorem
of operators, Nature Machine Intelligence 3 (3) (2021) 218–229. doi:

10.1038/s42256-021-00302-5.
URL https://doi.org/10.1038/s42256-021-00302-5

[29] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in
nervous activity, The bulletin of mathematical biophysics 5 (4) (1943) 115–
133. doi:10.1007/BF02478259.
URL https://doi.org/10.1007/BF02478259

[30] Y. Li, Z. Zhou, S. Ying, Delisa: Deep learning based iteration scheme
approximation for solving pdes, Journal of Computational Physics 451
(2022) 110884. doi:https://doi.org/10.1016/j.jcp.2021.110884.
URL https://www.sciencedirect.com/science/article/pii/

S0021999121007798

[31] J. Huang, H. Wang, H. Yang, Int-deep: A deep learning initialized iterative
method for nonlinear problems, Journal of Computational Physics 419
(2020) 109675. doi:https://doi.org/10.1016/j.jcp.2020.109675.
URL https://www.sciencedirect.com/science/article/pii/

S0021999120304496

35

http://arxiv.org/abs/https://doi.org/10.1063/5.0006784
http://arxiv.org/abs/https://doi.org/10.1063/5.0006784
http://arxiv.org/abs/https://doi.org/10.1063/5.0006784
http://dx.doi.org/10.1063/5.0006784
https://doi.org/10.1063/5.0006784
https://www.sciencedirect.com/science/article/pii/S0021999121004629
https://www.sciencedirect.com/science/article/pii/S0021999121004629
https://www.sciencedirect.com/science/article/pii/S0021999121004629
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2021.110567
https://www.sciencedirect.com/science/article/pii/S0021999121004629
https://www.sciencedirect.com/science/article/pii/S0021999121004629
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://arxiv.org/abs/2105.09506
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1038/s42256-021-00302-5
http://dx.doi.org/10.1038/s42256-021-00302-5
http://dx.doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://www.sciencedirect.com/science/article/pii/S0021999121007798
https://www.sciencedirect.com/science/article/pii/S0021999121007798
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2021.110884
https://www.sciencedirect.com/science/article/pii/S0021999121007798
https://www.sciencedirect.com/science/article/pii/S0021999121007798
https://www.sciencedirect.com/science/article/pii/S0021999120304496
https://www.sciencedirect.com/science/article/pii/S0021999120304496
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2020.109675
https://www.sciencedirect.com/science/article/pii/S0021999120304496
https://www.sciencedirect.com/science/article/pii/S0021999120304496

[32] Z. Wang, Z. Zhang, A mesh-free method for interface problems using the
deep learning approach, Journal of Computational Physics 400 (2020)
108963. doi:https://doi.org/10.1016/j.jcp.2019.108963.
URL https://www.sciencedirect.com/science/article/pii/

S0021999119306680

[33] Z. Han, Rahul, S. De, A deep learning-based hybrid approach for
the solution of multiphysics problems in electrosurgery, Computer
Methods in Applied Mechanics and Engineering 357 (2019) 112603.
doi:10.1016/j.cma.2019.112603.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0045782519304797

[34] E. Schneider, L. Dai, R. Q. Topper, C. Drechsel-Grau, M. E. Tuckerman,
Stochastic Neural Network Approach for Learning High-Dimensional Free
Energy Surfaces, Physical Review Letters 119 (15) (2017) 150601. doi:

10.1103/PhysRevLett.119.150601.
URL https://link.aps.org/doi/10.1103/PhysRevLett.119.150601

[35] L. Mones, N. Bernstein, G. Csányi, Exploration, Sampling, And Re-
construction of Free Energy Surfaces with Gaussian Process Regression,
Journal of Chemical Theory and Computation 12 (10) (2016) 5100–5110.
doi:10.1021/acs.jctc.6b00553.
URL https://pubs.acs.org/doi/10.1021/acs.jctc.6b00553

[36] T. Bereau, R. A. DiStasio, A. Tkatchenko, O. A. von Lilienfeld, Non-
covalent interactions across organic and biological subsets of chemical space:
Physics-based potentials parametrized from machine learning, The Journal
of Chemical Physics 148 (24) (2018) 241706. doi:10.1063/1.5009502.
URL http://aip.scitation.org/doi/10.1063/1.5009502

[37] F. Brockherde, L. Vogt, L. Li, M. E. Tuckerman, K. Burke, K.-R. Müller,
Bypassing the Kohn-Sham equations with machine learning, Nature Com-
munications 8 (1) (2017) 872. doi:10.1038/s41467-017-00839-3.
URL http://www.nature.com/articles/s41467-017-00839-3

[38] G. Kluth, K. Humbird, B. Spears, H. Scott, M. Patel, L. Peterson, J. Koning,
M. Marinak, L. Divol, C. Young, Deep Learning for Non-Local Thermo-
dynamic Equilibrium in hydrocodes for ICF, in: APS Division of Plasma
Physics Meeting Abstracts, Vol. 2019 of APS Meeting Abstracts, 2019, p.
BO5.009.

[39] J. Anderson, Hypersonic and High-temperature Gas Dynamics, AIAA
education series, American Institute of Aeronautics and Astronautics, 2006.
URL https://books.google.fr/books?id=UgWmQgAACAAJ

[40] J. Scoggins, Development of numerical methods and study of coupled flow,
radiation, and ablation phenomena for atmospheric entry, Ph.D. thesis,
PhD thesis, Université Paris-Saclay and VKI (2017).

36

https://www.sciencedirect.com/science/article/pii/S0021999119306680
https://www.sciencedirect.com/science/article/pii/S0021999119306680
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2019.108963
https://www.sciencedirect.com/science/article/pii/S0021999119306680
https://www.sciencedirect.com/science/article/pii/S0021999119306680
https://linkinghub.elsevier.com/retrieve/pii/S0045782519304797
https://linkinghub.elsevier.com/retrieve/pii/S0045782519304797
http://dx.doi.org/10.1016/j.cma.2019.112603
https://linkinghub.elsevier.com/retrieve/pii/S0045782519304797
https://linkinghub.elsevier.com/retrieve/pii/S0045782519304797
https://link.aps.org/doi/10.1103/PhysRevLett.119.150601
https://link.aps.org/doi/10.1103/PhysRevLett.119.150601
http://dx.doi.org/10.1103/PhysRevLett.119.150601
http://dx.doi.org/10.1103/PhysRevLett.119.150601
https://link.aps.org/doi/10.1103/PhysRevLett.119.150601
https://pubs.acs.org/doi/10.1021/acs.jctc.6b00553
https://pubs.acs.org/doi/10.1021/acs.jctc.6b00553
http://dx.doi.org/10.1021/acs.jctc.6b00553
https://pubs.acs.org/doi/10.1021/acs.jctc.6b00553
http://aip.scitation.org/doi/10.1063/1.5009502
http://aip.scitation.org/doi/10.1063/1.5009502
http://aip.scitation.org/doi/10.1063/1.5009502
http://dx.doi.org/10.1063/1.5009502
http://aip.scitation.org/doi/10.1063/1.5009502
http://www.nature.com/articles/s41467-017-00839-3
http://dx.doi.org/10.1038/s41467-017-00839-3
http://www.nature.com/articles/s41467-017-00839-3
https://books.google.fr/books?id=UgWmQgAACAAJ
https://books.google.fr/books?id=UgWmQgAACAAJ

[41] S. Peluchon, G. Gallice, L. Mieussens, A robust implicit–explicit
acoustic-transport splitting scheme for two-phase flows, Jour-
nal of Computational Physics 339 (2017) 328–355. doi:https:

//doi.org/10.1016/j.jcp.2017.03.019.
URL https://www.sciencedirect.com/science/article/pii/

S0021999117302061

[42] S. Peluchon, G. Gallice, P.-H. Maire, Some acoustic-transport splitting
schemes for two-phase compressible flows, 2016, pp. 1151–1164. doi:10.

7712/100016.1876.7453.

[43] J.-F. Sigrist, Numerical Simulation, An Art of Prediction 1, 2019. doi:

10.1002/9781119686798.

[44] J.-F. Sigrist, Numerical Simulation, An Art of Prediction 2: Examples, 2020.
doi:10.1002/9781119694731.

[45] A. Loeven, J. Witteveen, H. Bijl, Efficient Uncertainty Quantification using
a Two-Step Approach with Chaos Collocation, ECCOMAS CFD.

[46] F. Nobile, R. Tempone, C. Webster, A Sparse Grid Stochastic Collocation
Method for Partial Differential Equations with Random Input Data, SIAM
J. Numer. Anal. 46 (5) (2008) 2309–2345.

[47] D. Xiu, J. Hesthaven, High-Order Collocation Methods for Differential
Equations with Random Inputs, J. Sci. Comput. 27(3) (2005) 1118–1139.

[48] G. Loeven, H. Bijl, Airfoil Analysis with Uncertain Geometry Using the
Probabilistic Collocation Method, 49th AIAA Aerospace Sciences Meeting
and Exhibit AIAA 2008-2070.

[49] G. Loeven, J. A. S. Witteveen, H. Bijl, Probabilistic Collocation: an
Efficient Non Intrusive Approach for Arbitrarily Distributed Parametric
Uncertainties, 45th AIAA Aerospace Sciences Meeting and Exhibit AIAA
2007-317.

[50] B. Ganapathysubramanian, N. Zabaras, Sparse Grid Collocation Schemes
for Stochastic Natural Convection Problems, J. Comp. Phys. 225 (2007)
652–685.

[51] J. F. Epperson, On the runge example, The American Mathematical Monthly
94 (4) (1987) 329–341.
URL http://www.jstor.org/stable/2323093

[52] E. Cheney, W. Light, A Course in Approximation Theory, Graduate studies
in mathematics, American Mathematical Soc.
URL https://books.google.fr/books?id=mukLPHQSqLUC

[53] N. Wiener, The Homogeneous Chaos, Amer. J. Math. 60 (1938) 897–936.

37

https://www.sciencedirect.com/science/article/pii/S0021999117302061
https://www.sciencedirect.com/science/article/pii/S0021999117302061
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2017.03.019
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2017.03.019
https://www.sciencedirect.com/science/article/pii/S0021999117302061
https://www.sciencedirect.com/science/article/pii/S0021999117302061
http://dx.doi.org/10.7712/100016.1876.7453
http://dx.doi.org/10.7712/100016.1876.7453
http://dx.doi.org/10.1002/9781119686798
http://dx.doi.org/10.1002/9781119686798
http://dx.doi.org/10.1002/9781119694731
http://www.jstor.org/stable/2323093
http://www.jstor.org/stable/2323093
https://books.google.fr/books?id=mukLPHQSqLUC
https://books.google.fr/books?id=mukLPHQSqLUC

[54] D. Xiu, G. E. Karniadakis, The wiener–askey polynomial chaos for stochastic
differential equations, SIAM J. Sci. Comput. 24 (2) (2002) 619–644. doi:
10.1137/S1064827501387826.
URL https://doi.org/10.1137/S1064827501387826

[55] G. Blatman, B. Sudret, Sparse polynomial chaos expansions and adaptive
stochastic finite elements using a regression approach, Comptes Rendus
Mécanique 336 (6) (2008) 518–523. doi:10.1016/j.crme.2008.02.013.
URL https://linkinghub.elsevier.com/retrieve/pii/

S1631072108000582

[56] L. D., X. D., S. C.H., K. G.E., Predictability and uncertainty in CFD,
International Journal for Numerical Methods in Fluids 43 (2003) 483–505.

[57] D. Lucor, C. Enaux, H. Jourdren, P. Sagaut, Multi-Physics Stochastic Design
Optimization: Application to Reacting Flows and Detonation, Comp. Meth.
Appl. Mech. Eng. 196 (2007) 5047–5062.

[58] B. Sudret, Global sensitivity analysis using polynomial chaos expan-
sions, Reliability Engineering & System Safety 93 (7) (2008) 964–979.
doi:10.1016/j.ress.2007.04.002.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0951832007001329

[59] X. Wan, G. Karniadakis, Beyond Wiener-Askey Expansions: Handling
Arbitrary PDFs, SIAM J. Sci. Comp. 27(1-3).

[60] G. Poëtte, D. Lucor, Non Intrusive Iterative Stochastic Spectral Repre-
sentation with Application to Compressible Gas Dynamics, J. of Comput.
Phys.DOI information: 10.1016/j.jcp.2011.12.038.

[61] A. Birolleau, G. Poëtte, D. Lucor, Adaptive bayesian inference for dis-
continuous inverse problems, application to hyperbolic conservation laws,
Communications in Computational Physics 16 (1) (2014) 1–34. doi:

10.4208/cicp.240113.071113a.

[62] Ernst, Oliver G., Mugler, Antje, Starkloff, Hans-Jörg, Ullmann, Elisabeth,
On the convergence of generalized polynomial chaos expansions, ESAIM:
M2AN 46 (2) (2012) 317–339. doi:10.1051/m2an/2011045.
URL https://doi.org/10.1051/m2an/2011045

[63] G. Poëtte, A comparative study of generalized Polynomial Chaos based
Approximations: integration vs. regression vs. collocation vs. kriging, Inter-
national Journal for Uncertainty Quantification.
URL https://hal.archives-ouvertes.fr/hal-01831191

[64] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learn-
ing (Adaptive Computation and Machine Learning), The MIT Press, 2005.

38

https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1137/S1064827501387826
http://dx.doi.org/10.1137/S1064827501387826
http://dx.doi.org/10.1137/S1064827501387826
https://doi.org/10.1137/S1064827501387826
https://linkinghub.elsevier.com/retrieve/pii/S1631072108000582
https://linkinghub.elsevier.com/retrieve/pii/S1631072108000582
http://dx.doi.org/10.1016/j.crme.2008.02.013
https://linkinghub.elsevier.com/retrieve/pii/S1631072108000582
https://linkinghub.elsevier.com/retrieve/pii/S1631072108000582
https://linkinghub.elsevier.com/retrieve/pii/S0951832007001329
https://linkinghub.elsevier.com/retrieve/pii/S0951832007001329
http://dx.doi.org/10.1016/j.ress.2007.04.002
https://linkinghub.elsevier.com/retrieve/pii/S0951832007001329
https://linkinghub.elsevier.com/retrieve/pii/S0951832007001329
http://dx.doi.org/10.4208/cicp.240113.071113a
http://dx.doi.org/10.4208/cicp.240113.071113a
https://doi.org/10.1051/m2an/2011045
http://dx.doi.org/10.1051/m2an/2011045
https://doi.org/10.1051/m2an/2011045
https://hal.archives-ouvertes.fr/hal-01831191
https://hal.archives-ouvertes.fr/hal-01831191
https://hal.archives-ouvertes.fr/hal-01831191

[65] J. E. Oakley, A. O’Hagan, Probabilistic sensitivity analysis of complex
models: a bayesian approach, Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 66 (3) (2004) 751–769. arXiv:https://
rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9868.2004.

05304.x, doi:https://doi.org/10.1111/j.1467-9868.2004.05304.x.
URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.

1467-9868.2004.05304.x

[66] A. Marrel, N. Marie, M. De Lozzo, Advanced surrogate model and
sensitivity analysis methods for sodium fast reactor accident assess-
ment, Reliability Engineering & System Safety 138 (2015) 232–241.
doi:https://doi.org/10.1016/j.ress.2015.01.019.
URL https://www.sciencedirect.com/science/article/pii/

S0951832015000290

[67] M. C. Kennedy, A. O’Hagan, Bayesian calibration of computer
models, Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology) 63 (3) (2001) 425–464. arXiv:https:

//rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9868.00294,
doi:https://doi.org/10.1111/1467-9868.00294.
URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/

1467-9868.00294

[68] R. B. Gramacy, Surrogates: Gaussian Process Modeling, Design and Op-
timization for the Applied Sciences, Chapman Hall/CRC, Boca Raton,
Florida, 2020, http://bobby.gramacy.com/surrogates/.

[69] F. Bachoc, Estimation paramétrique de la fonction de covariance dans le
modèle de krigeage par processus gaussiens : application à la quantification
des incertitudes en simulation numérique, Ph.D. thesis, thèse de doctorat
dirigée par Garnier, Josselin Mathématiques appliquées Paris 7 2013 (2013).
URL http://www.theses.fr/2013PA077111

[70] F. Bachoc, Asymptotic analysis of the role of spatial sampling for covariance
parameter estimation of Gaussian processes, ArXiv e-printsarXiv:1301.
4321.

[71] G. Poëtte, A comparative study of generalized Polynomial Chaos based Ap-
proximations: integration vs. regression vs. collocation vs. kriging, working
paper or preprint (Jul. 2018).
URL https://hal.archives-ouvertes.fr/hal-01831191

[72] D. R. Jones, M. Schonlau, W. J. Welch, Efficient global optimization of
expensive black-box functions, J. of Global Optimization 13 (4) (1998)
455–492. doi:10.1023/A:1008306431147.
URL https://doi.org/10.1023/A:1008306431147

[73] T. J. Santner, W. B., N. W., The Design and Analysis of Computer Experi-
ments, Second Edition, Springer-Verlag, 2018.

39

https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2004.05304.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2004.05304.x
http://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9868.2004.05304.x
http://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9868.2004.05304.x
http://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9868.2004.05304.x
http://dx.doi.org/https://doi.org/10.1111/j.1467-9868.2004.05304.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2004.05304.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2004.05304.x
https://www.sciencedirect.com/science/article/pii/S0951832015000290
https://www.sciencedirect.com/science/article/pii/S0951832015000290
https://www.sciencedirect.com/science/article/pii/S0951832015000290
http://dx.doi.org/https://doi.org/10.1016/j.ress.2015.01.019
https://www.sciencedirect.com/science/article/pii/S0951832015000290
https://www.sciencedirect.com/science/article/pii/S0951832015000290
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00294
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00294
http://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9868.00294
http://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9868.00294
http://dx.doi.org/https://doi.org/10.1111/1467-9868.00294
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00294
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00294
http://bobby.gramacy.com/surrogates/
http://www.theses.fr/2013PA077111
http://www.theses.fr/2013PA077111
http://www.theses.fr/2013PA077111
http://www.theses.fr/2013PA077111
http://arxiv.org/abs/1301.4321
http://arxiv.org/abs/1301.4321
https://hal.archives-ouvertes.fr/hal-01831191
https://hal.archives-ouvertes.fr/hal-01831191
https://hal.archives-ouvertes.fr/hal-01831191
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
http://dx.doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147

[74] R. Shöbi, B. Sudret, J. Wiart, Polynomial-chaos-based kriging.

[75] P. Kersaudy, B. Sudret, N. VARSIER, O. Picon, J. Wiart, A new surrogate
modeling technique combining Kriging and polynomial chaos expansions –
Application to uncertainty analysis in computational dosimetry, Journal
of Computational Physics 286 (2015) 130–117. doi:10.1016/j.jcp.2015.
01.034.
URL https://hal.archives-ouvertes.fr/hal-01143146

[76] R. Schöbi, B. Sudret, S. Marelli, Rare Event Estimation Using Polynomial-
Chaos Kriging, ASCE-ASME Journal of Risk and Uncertainty in Engineering
Systems, Part A: Civil Engineering 3 (2) (2017) D4016002. doi:10.1061/
AJRUA6.0000870.

[77] F. Bachoc, Asymptotic analysis of covariance parameter estimation for
Gaussian processes in the misspecified case, ArXiv e-printsarXiv:1412.
1926.

[78] I. J. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press,
Cambridge, MA, USA, 2016, http://www.deeplearningbook.org.

[79] J. Berner, P. Grohs, G. Kutyniok, P. Petersen, The modern mathematics of
deep learning (2021). arXiv:2105.04026.

[80] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are
universal approximators, Neural Networks 2 (5) (1989) 359 – 366.

[81] A. R. Barron, Approximation and estimation bounds for artificial neural net-
works, Machine Learning 14 (1) (1994) 115–133. doi:10.1007/BF00993164.
URL https://doi.org/10.1007/BF00993164

[82] Z. Lu, H. Pu, F. Wang, Z. Hu, L. Wang, The expressive power of neural
networks: A view from the width, CoRR abs/1709.02540. arXiv:1709.

02540.
URL http://arxiv.org/abs/1709.02540

[83] P. Auer, M. Herbster, M. K. Warmuth, Exponentially many local minima
for single neurons, Departement of computer science.

[84] R. Lebrun, A. Dutfoy, A Generalization of the Nataf Transformation to
Distributions with Elliptical Copula, Prob. Eng. Mech. 24,2 (2009) 172–178.

[85] R. Lebrun, A. Dutfoy, An Innovating Analysis of the Nataf Transformation
from the Copula viewpoint, Prob. Eng. Mech. 24,3 (2009) 312–320.

[86] A. Dutfoy, R. Lebrun, Practical approach to dependence modelling using
copulas, Journal of Risk and Reliability 223 (4) (2009) 347–361.
URL http://EconPapers.repec.org/RePEc:sae:risrel:v:223:y:

2009:i:4:p:347-361

40

https://hal.archives-ouvertes.fr/hal-01143146
https://hal.archives-ouvertes.fr/hal-01143146
https://hal.archives-ouvertes.fr/hal-01143146
http://dx.doi.org/10.1016/j.jcp.2015.01.034
http://dx.doi.org/10.1016/j.jcp.2015.01.034
https://hal.archives-ouvertes.fr/hal-01143146
http://dx.doi.org/10.1061/AJRUA6.0000870
http://dx.doi.org/10.1061/AJRUA6.0000870
http://arxiv.org/abs/1412.1926
http://arxiv.org/abs/1412.1926
http://www.deeplearningbook.org
http://arxiv.org/abs/2105.04026
https://doi.org/10.1007/BF00993164
https://doi.org/10.1007/BF00993164
http://dx.doi.org/10.1007/BF00993164
https://doi.org/10.1007/BF00993164
http://arxiv.org/abs/1709.02540
http://arxiv.org/abs/1709.02540
http://arxiv.org/abs/1709.02540
http://arxiv.org/abs/1709.02540
http://arxiv.org/abs/1709.02540
http://EconPapers.repec.org/RePEc:sae:risrel:v:223:y:2009:i:4:p:347-361
http://EconPapers.repec.org/RePEc:sae:risrel:v:223:y:2009:i:4:p:347-361
http://EconPapers.repec.org/RePEc:sae:risrel:v:223:y:2009:i:4:p:347-361
http://EconPapers.repec.org/RePEc:sae:risrel:v:223:y:2009:i:4:p:347-361

[87] P. Novello, G. Poëtte, D. Lugato, P. Congedo, Variance based sample
weighting for supervised learning, in: Submitted to International Conference
on Learning Representations, 2021, under review.
URL https://openreview.net/forum?id=3F0Qm7TzNDM

[88] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization,
Journal of Machine Learning Research 13 (10) (2012) 281–305.
URL http://jmlr.org/papers/v13/bergstra12a.html

[89] P. Novello, G. Poëtte, D. Lugato, P. M. Congedo, Goal-Oriented Sensitivity
Analysis of Hyperparameters in Deep Learning, working paper or preprint
(Dec. 2021).
URL https://hal.archives-ouvertes.fr/hal-03128298

[90] A. Gretton, O. Bousquet, A. Smola, B. Schölkopf, Measuring statistical
dependence with hilbert-schmidt norms, in: Proceedings of the 16th Interna-
tional Conference on Algorithmic Learning Theory, ALT’05, Springer-Verlag,
Berlin, Heidelberg, 2005, p. 63–77. doi:10.1007/11564089_7.
URL https://doi.org/10.1007/11564089_7

[91] N. Demeure, Gestion du compromis entre la performance et la précision de
code de calcul, Theses, Université Paris-Saclay (Jan. 2021).
URL https://tel.archives-ouvertes.fr/tel-03116750

[92] J. Behler, M. Parrinello, Generalized neural-network representation of high-
dimensional potential-energy surfaces, Phys. Rev. Lett. 98 (2007) 146401.
doi:10.1103/PhysRevLett.98.146401.
URL https://link.aps.org/doi/10.1103/PhysRevLett.98.146401

[93] T. Stecher, N. Bernstein, G. Csányi, Free Energy Surface Reconstruction
from Umbrella Samples Using Gaussian Process Regression, Journal of
Chemical Theory and Computation 10 (9) (2014) 4079–4097. doi:10.1021/
ct500438v.
URL https://pubs.acs.org/doi/10.1021/ct500438v

Appendix A: Additional plots

In this appendix, we gather additional plots of the effect of the neural
network input dimension on its execution time for different widths. These plots
are complementary with those of Section 3.3.

41

https://openreview.net/forum?id=3F0Qm7TzNDM
https://openreview.net/forum?id=3F0Qm7TzNDM
https://openreview.net/forum?id=3F0Qm7TzNDM
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://hal.archives-ouvertes.fr/hal-03128298
https://hal.archives-ouvertes.fr/hal-03128298
https://hal.archives-ouvertes.fr/hal-03128298
https://doi.org/10.1007/11564089_7
https://doi.org/10.1007/11564089_7
http://dx.doi.org/10.1007/11564089_7
https://doi.org/10.1007/11564089_7
https://tel.archives-ouvertes.fr/tel-03116750
https://tel.archives-ouvertes.fr/tel-03116750
https://tel.archives-ouvertes.fr/tel-03116750
https://link.aps.org/doi/10.1103/PhysRevLett.98.146401
https://link.aps.org/doi/10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1103/PhysRevLett.98.146401
https://link.aps.org/doi/10.1103/PhysRevLett.98.146401
https://pubs.acs.org/doi/10.1021/ct500438v
https://pubs.acs.org/doi/10.1021/ct500438v
http://dx.doi.org/10.1021/ct500438v
http://dx.doi.org/10.1021/ct500438v
https://pubs.acs.org/doi/10.1021/ct500438v

100 101 102 103 104 105 106

number of points

10 3

10 2

10 1

wa
ll

ex
ec

ut
io

n
tim

e
Toy
Earth
Cloudy Earth
Cloudy Jupiter

(a) Test cases with a network of width 40

100 101 102 103 104 105 106

number of points

10 3

10 2

10 1

100

wa
ll

ex
ec

ut
io

n
tim

e

Toy
Earth
Cloudy Earth
Cloudy Jupiter

(b) Test cases with a network of width 160

100 101 102 103 104 105 106

number of points

10 3

10 2

10 1

100

wa
ll

ex
ec

ut
io

n
tim

e

Toy
Earth
Cloudy Earth
Cloudy Jupiter

(c) Test cases with a network of width 320

Figure 14: Execution time of a neural network of a given width for the different test
cases with respect to the number of input points (with log axes).

Appendix B: Hyperparameter search space

This table shows the hyperparameters considered in the hyperparameter
search of Section 4, as well es their possible values.

42

,,

43

,,,,

44

	Introduction
	Coupling compressible gas dynamics with chemical reactions at equilibrium
	Neural networks as approximators for hybridization
	Many possible classical surrogate models
	The advantages of neural networks
	Assessing the capabilities of neural networks in terms of accelerations

	Design of accurate and cost-effective neural networks with goal-oriented sensitivity analysis of hyperparameters
	Deep Learning-based hybridization with guarantees
	Acceleration of the reentry code
	Zero-error guarantees of the hybrid code
	Guarantees of acceptable error for the hybrid code
	Uncertainty propagation for reliable error comparison
	Benefits of NN+MPP to obtain reference predictions

	Discussion and Perspectives
	Towards a general approximation of Mutation++
	A general pattern for hybridization
	Hybrid simulation codes as an additional lever for acceleration

	Bibliography

