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Characterizing the Topological Properties of 1D
Non-Hermitian Systems without the Berry–Zak Phase

Didier Felbacq* and Emmanuel Rousseau

A new method is proposed to predict the topological properties of 1D periodic
structures in wave physics, including quantum mechanics. From Bloch waves,
a unique complex valued function is constructed, exhibiting poles and zeros.
The sequence of poles and zeros of this function is a topological invariant that
can be linked to the Berry–Zak phase. Since the characterization of the
topological properties is done in the complex plane, it can easily be extended
to the case of non-Hermitian systems. The sequence of poles and zeros allows
to predict topological phase transitions.

1. Introduction

A considerable amount of work has been devoted to the study
of the topological properties of photonic structures.[1] The word
topological means that what is at stake are the properties of a
structure that are stable under a continuous variation of the pa-
rameters defining it. For instance, the existence of a band gap is
a topological property since a not too large variation of the prop-
erties (e.g., the size of the basic cell, the values of the electro-
magnetic parameters) does not close the gap. In some cases, the
topological properties can be characterized by an integer number,
a quantity that obviously remains constant over small continuous
variations.[2] Of course, for larger variations it may happen that,
for example, the gap closes, which can lead to a change in the in-
teger number. This will be called a topological transition. First at-
tempts to find topological properties in photonic structures were
made by mimicking the field of topological insulators:[3] The
time-reversal invariance was broken by the use of gyromagnetic
materials controlled by a magnetic field. The devices considered
there were quite complicated and specific. Amajor breakthrough
was made when it was realized that topological effects could be
obtained in purely dielectric structures.[4] As a matter of fact, a
topological effect can be obtained for very simple structures: one
dimensional stratified media exhibit boundary modes that are
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topologically protected.[5] These can be
analyzed using theoretical tools that
were developed a long time ago[6] and
which have been given a second look
in the context of geometric phases: in
ref. [7], it was shown that the properties
exhibited in ref. [6] could be interpreted
using the mathematical apparatus de-
veloped by ref. [8] in view of the results
obtained by Berry in ref. [9]. Mathemat-
ically speaking, this comes under the
domain of vector bundles endowed with
a connection.[10,11] Simon introduced in

ref. [8] the now celebrated connection 1-form A(k) = ⟨uk,∇kuk⟩,
where uk is a Bloch mode. This connection is often called the
Berry connection, while it is in fact a specific case of the Levi–
Civita connection.[12] Zak’s article was probably the first work ap-
plying the concept of geometric phase to Bloch waves. Recently,
there was an interest in the possibility of extending these results
to non-Hermitian Hamiltonians[13–16] and, in the context of pho-
tonic crystals, to media with losses.[17] All the preceding results
were obtained by generalizing the Levi–Civita connection for a
non-Hermitian bundle. In the present work, we propose a new
approach to the topological properties of 1D periodic structures.
We show that the topological properties can be analyzed without
reference to the Levi–Civita–Simon–Berry connection. We intro-
duce a function of the wavenumber that presents poles and zeros.
The arrangement of the poles and zeros characterizes the topo-
logical properties of the medium. It turns out that this pole and
zero structure extends naturally to the situation when losses are
present in the materials out of which the structure is made, that
is to the non-Hermitian situation.
The article is organized as follows: In the first section, we recall

the elements of the theory of wave propagation in 1D structures,
comprising Bloch waves. In the second section, we develop our
approach and introduce the function that will prove to be a clue
to the understanding of the topological properties. In the third
section, we make the link with the usual approach using the geo-
metrical phase when the mediums under consideration are loss-
less. Finally, we extend the approach to the situation where loss is
added. Throughout the sections, numerical illustrations are pro-
vided in order to clarify the somewhat abstract statements. Fi-
nally, in the conclusion, we show that our approach can also han-
dle a structurewith some disorder and comment on the extension
to higher dimensions.

2. Wave Propagation in a 1D Structure

An example of a 1D medium is depicted in Figure 1. We have
chosen to represent a 1D stratified photonic crystal, but the
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Figure 1. An example of 1D structure. It is a stratified photonic crystal
with two homogeneous slabs in the basic cell. The vertical dashed lines
correspond to the two origins for which the potential is symmetric.

results that we obtain apply to continuously varying structures,
as well as to acoustic structures and to quantum waves in a 1D
potential. For definiteness, we proceed by using the vocabulary
of electromagnetism in the following: However, we will occa-
sionally use the word “potential” generically to designate the
permittivity (permeability) or the quantum confining potential.
With an abuse of notation, we will talk of the “potential V(x)”
to denote generically these quantities. We will further make the
hypothesis that there is an inversion symmetry in the medium,
that is, an origin can be chosen in such a way that V(x) = V(−x).
Let us briefly recall the theory of 1D media.[18] We consider

time-harmonic fields (time-dependence of e−i𝜔t) that are invari-
ant along the axes y and z and depend only on the variable x
(see Figure 1). Since the medium under consideration is invari-
ant along two directions of space, the electromagnetic field can
be decomposed as a sum of two linearly polarized fields. Either
the electric field is linearly polarized along z (E|| case) or themag-
netic field is linearly polarized along z (H|| case). In both cases,
we denote by u(x) the function representing the field, that is,
Ez(x) = u(x)ez (E|| case) orHz(x) = u(x)ez (H|| case). Themedium
is described by a periodic relative permittivity 𝜀(x) and a peri-
odic relative permeability 𝜇(x). The system of units is chosen in
such a way that 𝜀(x + 1) = 𝜀(x), 𝜇(x + 1) = 𝜇(x). Let us consider
the E|| case, the H|| case being obtained by switching 𝜀 and 𝜇.
The Maxwell–Faraday and Maxwell–Ampère equations provide
the following relations

∇ × (uez) = i𝜔𝜇0𝜇Hz, ∇ ×Hz = −i𝜔𝜀0𝜀uez (1)

which leads to

∇ × (𝜇−1∇u × ez) = k20𝜀uez (2)

where k20 = (𝜔∕c)2. Projecting on ez, we get

− d
dx

(
𝜇−1 d

dx
u
)

= k20𝜀u (3)

Finally, the following equation is obtained

Hu = k20u (4)

where:

H = −p−1(x) d
dx

(
q−1(x) d

dx

)
(5)

and, according to the polarization

E|| : q(x) = 𝜇(x), p(x) = 𝜀(x), H|| : q(x) = 𝜀(x), p(x) = 𝜇(x) (6)

This equation is more conveniently rewritten as an order one
differential system

d
dx

U =

(
0 1

−k20p(x) 0

)
U (7)

where

U =

(
u

1
q(x)

du
dx

)
(8)

In the following, we denote

u′ = 1
q(x)

du
dx

(9)

From the general theory of ordinary differential equation,[19]

there exists a so-called “resolventmatrix”(x, y) such thatU(x) =
(x, y)U(y).
Over one period, the values ofU(1) andU(0) are related by the

so-called “monodromy matrix”

(k0) = (1, 0) (10)

This matrix is unimodular (i.e., det = 1) and, as we will show,
it characterizes the band structure in the Hermitian case. The
monodromy matrix depends on the norm of the wavevector in
vacuum (or on the energy of the system in the case of quan-
tum physics). The characteristic polynomial of reads as: X2 −
tr()X + 1, therefore three sets can be defined according to the
nature of the eigenvalues of[20,21]

• G = {k0 ∈ ℝ, |Tr((k0))| > 2}, for which the eigenvalues are
real and inverse one of the other. This corresponds to non pro-
gagative modes, that is, band gaps.

• B = {k0 ∈ ℝ, |Tr((k0))| < 2}, for which the eigenvalues are
complex of modulus one and conjugated. This corresponds to
progagative modes, that is conduction bands. The eigenvalues
can be written e±i𝜃 , with 𝜃 ∈ [−𝜋,+𝜋] the Bloch number and
the interval [−𝜋,+𝜋] is the so-called Brillouin zone.

• Δ = {k0 ∈ ℝ, |Tr((k0))| = 2}, for which the eigenvalues are
±1. The eigenvalues are of multiplicity 2. We denote Δ0 the
subset of Δ for which(k0) = ±Id.

Conventionaly, Bloch waves are associated to eigenvalues ofmod-
ulus one and therefore, to propagative modes in the structure.
This corresponds to the set B. Looking at the various sets, we
see that the distinction between the various domains is purely
qualitative: eigenmodes always exist in the system but they are
unbounded for k0 ∈ G. That is why we call “generalized Bloch
modes” the modes corresponding to the sets G and Δ. In the
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band gaps, the solutions to the wave equation are not bounded
over the infinite structure, but they play a crucial role in the case
of a finite or semi-infinite medium. We therefore take as a pa-
rameter the wavenumber k0 that will vary in ℝ+ and study the
evolution of eigenvalues and eigenvectors with respect to k0.
For k0 ∈ B and 𝜃 ∈ [−𝜋, 𝜋], the fields that can exist in the struc-

ture are superposition of Bloch waves 𝜓(x; 𝜃, k0). The Bloch wave
are quasi-periodic in the x variable, that is, there are of the form

𝜓(x; 𝜃, k0) = ei𝜃xu(x; 𝜃, k0) (11)

where u(x; 𝜃, k0) is 1-periodic in the x variable:
u(x + 1; 𝜃, k0) = u(x; 𝜃, k0).
It is convenient to transform the Brillouin zone into the cir-

cle S1 = {z ∈ ℂ, |z| = 1}, that is, we associate to 𝜃 ∈ [−𝜋,𝜋] the
complex number z = ei𝜃 ∈ S1. Any function defined on the inter-
val [−𝜋,𝜋] can be considered a function on S1. From now on, the
Bloch modes are thus denoted u(x; z, k0). To each value of z, we
can associate a set of wavenumbers

k0,j(z), j = 1… (12)

where k20,j are the eigenvalues of H and for each of these
wavenumbers a complex vector space of dimension 1. The col-
lection of these vector spaces constitutes the Bloch bundle as-
sociated with the branch k0,j(z). As a function of 𝜃, it is not
obvious that u(x; 𝜃, k0) satisfies the condition that u(x;𝜋, k0) =
u(x;−𝜋, k0). However, it is a general result that for any 1D com-
plex bundle over S1, there exists a continuous function z ∈ S1 →
u(x; z, k0)

[10] (such a function is called a “section” of the bundle).
This does not mean that no topological effect is to be expected,
as we will see below, because we have the additional hypothesis
that the potential is symmetric.
Due to the fact that the Bloch waves depend on both the direct

and indirect variables x and 𝜃 this representation of the Bloch
bundle is not easy to handle. We present another, simpler, repre-
sentation of the bundle.
In order to make the discussion less arid, we shall now give a

numerical illustration of the concept that we deal with (the code,
written in Matlab, is available upon request). We consider the
case of a binary medium, where the period is made of two ho-
mogeneous layers of relative permittivity 𝜀1 and 𝜀2 and width d1
and d2 (see Figure 1). Let us denote 𝜈j =

√
𝜀j, j = 1, 2.

For each layer, the monodromy matrix has the form

j =

(
cos(k0𝜈jdj)

1
k0𝜈j

sin(k0𝜈jdj)

−k0𝜈j sin(k0𝜈jdj) cos(k0𝜈jdj)

)
(13)

and the complete monodromy matrix is simply  = 21.
The dispersion relation is obtained by computing the trace of,
which leads to the equation:

cos(𝜃) = cos(k0𝜈1d1) cos(k0𝜈2d2) −
1
2

(
𝜈2

𝜈1
+
𝜈1

𝜈2

)
sin(k0𝜈1d1) sin(k0𝜈2d2)

(14)

and the eigenvectors U± are obtained by diagonalizing the mon-
odromy matrix . An example of a band structure is given in

Figure 2. Band structure for a photonic crystal with parameters 𝜀1 =
3.8, 𝜀2 = 1, h1 = 0.42, h2 = 0.58 and the permeabilities are equal to 1.
These are the values used in ref. [5]. The labeling of the branches is as
in Equation (12).

Figure 2 where the conduction bands are labeled as in Equa-
tion (12).
Let us now extend this setting to complex values of the ener-

gies. Consider the Bloch variety

F =
{
(z, k0) ∈ ℂ2, ∃U ≠ 0 : (k0)U = zU

}
(15)

The Bloch variety is obtained explicitly by computing the roots of
the characteristic polynomial of

det((k0) − zI2) = 0 (16)

This allows us to consider the situation when the potential is not
necessarily real (i.e., the case of a non-Hermitian quantum sys-
tem or of amedia with losses). The Bloch variety defines the zeros
set of an analytic function of the two variables (k0, z). In the com-
munity of integrable systems, it is called the spectral curve of the
system.[22] The vector bundle envisioned previously extends to a
vector bundle over this curve. The situation of a real potential and
real energies corresponds to the set F0 ⊂ F defined by

F0 = {(z, k0) ∈ ℂ ×ℝ, ∃U ≠ 0 : (k0)U = zU} (17)

Generically, the monodromy matrix can be put in diago-
nal form. However, for (k0, z) ∈ Δ ⧵ Δ0, a particular situation
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happens: the eigenvalues ±1 have a multiplicity of 2 but the
eigenspace is of dimension 1. The points where this happens
are called ramification points. The set Δ0 where = ±I2 corre-
sponds to a non-generic situation that is a topological phase tran-
sition, as will be shown in the following. Indeed, this corresponds
to two bands touching at one point z = ±1. This singularity can
be removed by an infinitesimal variation of the parameters. It
separates two topological phases stable under small variations of
the parameters far enough from this singularity.

3. Topological Characterization Using Poles and
Zeros

Let us consider for now the usual case of a real potential, or loss-
less media. The eigenvectors U±(x0) of are the boundary val-
ues of the generalized Bloch waves at an origin x0 that can be
chosen at will. Changing the value of x0 amounts to changing
the basic cell to [x0, x0 + 1]. It is equivalent to a change of gauge
in real space whenever an infinite medium is considered. When
finite structures are considered, different choices of the origin
will correspond to different physical properties, as shall be seen
later on.
The eigenvectorsU± are complex conjugated quantities, when

the potential is real and for k0 ∈ B. Using the resolvent matrix,
the value of a Bloch mode at any point x in the period is ob-
tained by using the relation:U±(x) = (x, x0)U

±(x0). From these
considerations, we conclude that the Bloch eigenspace at a point
(k0, z) is entirely determined by the eigenvectors U±(x0). There-
fore, the Bloch bundle, that is, the collection of all the eigenspaces
as z describes S1, is isomorphic to the vector bundle of eigenvec-
tors of the monodromy matrix . As we have already said, it is
a complex vector bundle over S1, and therefore it is trivial, which
means that there exists a non-vanishing section, that is, a contin-
uous parametrization of a Bloch mode all around the Brillouin
zone.We recover here one of the conclusions of ref. [7]. Still, there
can be topological properties provided that we take into account
the hypothesis that the potential has an inversion symmetry 𝜎:
V(x) = V(−x).
Two different origins, x0 and x1 can be chosen such thatV(x) =

V(−x). These two points are such that x1 − x0 = 1∕2 mod (1)
(see Figure 1, where the two origins are indicated as dashed
lines). Let us assume that the boundary values are chosen at one
of the two points such that V(x) = V(−x), that is, we fix the gauge
in real space. This point is now the new origin, x = 0.
For the eigenvectors U± of the monodromy matrix, the in-

version symmetry 𝜎 acts as 𝜎(U±) = 𝜎zU
±, where 𝜎z is the Pauli

matrix
(
1 0
0 −1

)
. This is so because, under the change x → −x,

the derivative changes sign and the wave propagates backward;
the corresponding monodromy matrix is −1. The inversion
symmetry implies that if U is an eigenvector of the monodromy
matrix with the eigenvalue z then 𝜎zU is an eigenvector of the
monodromy matrix but with the eigenvalue 1∕z. As a conse-
quence, we have the following result:
When V(x) = V(−x), it holds:

𝜎z𝜎z = −1, and the basis of eigenvectors is of the form (U, 𝜎zU)

(18)

For k0 ∈ B, it holds, projectively, U∗ = 𝜎zU (∗ denotes com-
plex conjugaison). When we say that two vectors are equal “pro-
jectively,” we mean that they are collinear. Given a vector U =
(u(0; k0, z), u

′(0; k0, z))
t, the vector space generated by U is de-

noted 𝜒 = [u(0; k0, z) : u
′(0; k0, z)]. This is the standard notation

for an element of the projective space ℂP1 which is the set of all
complex lines going through the origin in the complex plane ℂ2.
This space is equivalent to the Riemann sphere, that is, the com-
plex numbers ℂ together with a point∞ at infinity.
This suggests finding a function that characterizes an

eigenspace. Given an eigenvector

U = (u(0; k0, z), u
′(0; k0, z))

t (19)

we define

𝜒(k0, z) = u(0; k0, z)∕u′(0; k0, z) (20)

This quantity does not depend upon the specific eigenvector that
is chosen to represent the eigenspace, that is, for 𝛾 ∈ ℂ, the vec-
tors U and 𝛾U define the same function 𝜒 .
For k0 ∈ B, the ratio 𝜒(k0, z) = u(0; k0, z)∕u′(0; k0, z) satisfies

the relation 𝜒∗(k0, z) = −𝜒(k0, z) and therefore, thanks to Equa-
tion (18), it is purely imaginary in the conduction bands for a
real potential.
For a given wavenumber k0, there are two eigenvectors (U

+ =
U,U− = 𝜎zU) with eigenvalues z and 1∕z, respectively. Therefore
two functions 𝜒± are obtained from the components of the eigen-
vector U+ or U−, respectively. These functions satisfy therefore
the relation

𝜒+(k0, z) = −𝜒−(k0, 1∕z) (21)

Let us show that these can be combined to provide a sin-
gle function.
For k0 ∈ G, since one of the numbers (|z|, 1∕|z|) is lower than

1, we can define a single function 𝜒 such that

𝜒(k0) =

{
𝜒+(k0, z), |z| < 1

−𝜒+(k0, z), |z| > 1
(22)

In order to extend this definition to the conduction band, a cri-
terium is needed to distinguish between z and 1∕z. Let us con-
sider the functions: k0 → z(k0), k0 → 1∕z(k0), which represent the
evolution of the eigenvalues as functions of k0. The graphs of
these functions are curves in the complex planes. This is repre-
sented in Figures 3 and 4 when varying the wavenumber k0∕2𝜋
between 0 and 4. These curves show all the possible eigenvalues
for a given geometry. The parameters used for the calculations
are indicated in the caption of Figure 2. The eigenvalues corre-
sponding to propagating waves, that is, corresponding to the set
B, lie on the unit circle. The eigenvalues corresponding to the
band gap G have a null imaginary part. They give rise to the line
segments around z = ±1. When the potential is real, the ramifi-
cation points are 1 and −1. The curve in Figure 4 is the “blow-
up” of the preceding curves by plotting directly the skew curve
k0 → (z(k0), 1∕z(k0)).
At the ramification point, the curves cross at a right angle,

which makes it seemingly impossible to follow one eigenvalue
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Figure 3. Eigenvalues of themonodromymatrix in the complex plane. The
circle corresponds to B and the real intervals toG. The transitions between
G and B, that is, the set Δ, correspond to z = ±1.

Figure 4. Evolution of the eigenvalues z as functions of k0. The band gaps
correspond to the (real) ovoid regions and the conduction bands to the
helical parts of the curve.

Figure 5. Evolution of the eigenvalues as functions of k0 when at small
imaginary part is added to k0. The curves can now be distinguished (ex-
cept at the bottom when k0 → 0): the blue curve corresponds to eigenval-
ues smaller than 1 in modulus within the band gaps and the red one to
eigenvalues larger than 1 in modulus in the band gaps.

by continuity from B to G. However, this degeneracy is in fact
directly linked to the stringent condition that the potential be
real, since it is a consequence of the fact that the monodromy
matrix has eigenvalues ±1 at the boundaries of the conduction
bands. This degeneracy can be lifted by using the limiting ab-
sorption principle, that is, by adding a small imaginary part 𝛿 ei-
ther to the potential or to the frequency. Indeed, if we replace k0
by k0 + i𝛿, the equation tr((k0)) = ±2 is replaced by the equa-
tion tr((k0 + i𝛿)) = ±2. Therefore the crossing points are no
longer real (generically). This is what is done in Figure 5 where a
small imaginary value of 10−2 was added to k0. The real part of k0
is used as a blow-up parameter to plot the eigenvalues as curves
in ℝ3. It is seen that the curves no longer cross and therefore the
eigenvalues can be followed individually.
Since the eigenvalues can be distinguished, it is also possible to

follow the eigenvectors by continuity, that is to resolve the ramifi-
cation points. Therefore, the same holds for the functions 𝜒±. For
these functions, another extension problem appears when there
is a pole. When a small imaginary part is added to k0, the poles of
𝜒± gain a small imaginary part and the restrictions of these func-
tions to the real axis of k0 are now continuous. It is illustrated
in Figure 6 where the values of 𝜒± are plotted on the Riemann
sphere by stereographic projection. We conclude the following:
There is a unique function 𝜒(k0, z) corresponding to eigenspaces

associated with eigenvalues lower than 1 in modulus for k0 ∈ G.
At the heart of the topological properties captured by the

function 𝜒 are the poles and zeros that it possesses. A zero is
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Figure 6. On the right, the graph of the function 𝜒(k0) on the Riemann sphere. The north pole corresponds to 0 and the south pole to infinity. On the
left, the same but blowed up by using the parameter k0.

associated with the eigenvector (0, 1)t and a pole to the eigenvec-
tor (1, 0)t. We have the following result:
For k0 ∈ B, since U∗(k0, z) = U(k0, 1∕z), we have that either

𝜒(k0, z) is null at z = ±1 or it has a pole.
The values of k0 for which there can be a zero or a pole are char-

acterized as follows. Assume that there is a zero kZ in the interior
of a band. Then 𝜒± are both null and therefore the eigenvectors
of (kZ) are linearly dependent and the eigenvalues z and 1∕z
are equal. Consequently, tr() = ±2. If tr() is not transversal
there, that is, if the derivative of tr() is null, then it is a non-
generic point that can be removed by an infinitesimal variation of
the parameters. Similarly, if there is a pole of 𝜒 then U = (1, 0)t

with eigenvalue z. The other eigenvector is 𝜎zU = (1, 0)t. There-
fore there is a degeneracy and z2 = 1 and therefore tr() = ±2.
We can then conclude the following:
The only poles and zeros of the function𝜒 are generically situated at

band edges only, that is, at points where tr() = ±2 and ≠ ±I2.
They are real when the potential is real.
The position of poles and zeros is the clue to understanding

the topological properties of the structures. Indeed, a topological
transition is characterized by the closing and re-opening of a gap
through a continuous variation of the parameters defining the
structure. The value of k0 for which the lower and upper bands
touch is a critical point of f (k0) = Tr((k0))

2 − 4, indeed, there
it holds f (z) = 0 and f ′(z) = 0. Therefore: = ±I2. Since at this
point the eigenvectors are (1, 0)t and (0, 1)t, this means that a pole
and a zero of 𝜒 merge. As a consequence, there is always a pole
and a zero at the boundaries of a band gap. In other words, when
the topological transition takes place, a pole and a zero change
places and therefore they have to merge. We conclude that:

When the potential is real, the topological transitions take place at
 = ±I2.
Furthermore, the poles and zeros are continuous functions of

the parameters and disappear only when they merge. As a con-
sequence:
The ordered sequence of poles and zeros is a topological invariant.

It determines the positions of the forbidden and conduction bands
This sequence is called the poles and zeros pattern. For a given

band gap, the various possibilities are zero–zero, zero–pole, pole–
zero, pole–pole.
When losses are added, the situation is more complicated, be-

cause in that case the poles and zeros pattern is contained in the
lower part of the complex plane. When the potential is complex,
the function 𝜒 is no longer purely imaginary in the conduction
bands nor real in the band gaps. It turns out that the function
𝜒 is defined over F and takes values in the projective space, as-
similated to the Riemann sphere. This result is immediate when-
ever the eigenspaces are not degenerated, since the entries of the
monodromy matrix are holomorphic.

4. The Berry–Zak Phase and the Triviality of the
Bundle

Let us relate these results to the Berry–Zak phase. This phase
is the one that is acquired by a Bloch wave as the Bloch num-
ber evolves around the Brillouin zone. It is defined explicitly as
follows: Consider the periodic part of a Bloch mode 𝜓(k; x). The
Bloch mode infinitely close to 𝜓(k; x) is obtained by making a
small variation dk and by imposing that 𝜓 is transported with-
out variation at order 1. To do so, we write that 𝜓(k + dk; x) =

Ann. Phys. (Berlin) 2023, 2300321 2300321 (6 of 12) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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𝜓(k; x) + 𝜕k𝜓(x; k)dk +O(dk2), and we impose that the variation
𝛿𝜓 of 𝜓 belongs to the eigenspace of 𝜓 :

𝛿𝜓 = Π𝜓

(
𝜓(k + dk; x) − 𝜓(k; x)

)
(23)

where Π𝜓 = |𝜓⟩⟨𝜓|. This gives: 𝛿𝜓 = ⟨𝜓 , 𝜕k𝜓⟩𝜓 . This defines
the so-called “connection form:” A(k) = ⟨𝜓 , 𝜕k𝜓⟩dk. From this
definition, it is seen that A(k) is purely imaginary for a nor-
malized Bloch mode. Indeed, if ⟨𝜓 ,𝜓⟩ = 1, then ⟨𝜕k𝜓 ,𝜓⟩ +⟨𝜓 , 𝜕k𝜓⟩ = 0.
For a generic Bloch mode 𝜙(k; x) = w(k)𝜓(k; x), the parallel

transport of 𝜙 around the Brillouin zone amounts to let 𝜙
evolve in such a way that its variation is orthogonal to the the
eigenspace generated by𝜓 (this is what is done in first order time-
independent perturbation theory): ⟨𝛿𝜙,𝜓⟩ = 𝜕kw + A(k)w = 0.[12]

This gives the differential equation: 𝜕kw = −A(k)w and therefore:
w(k) = e− ∫ k

−𝜋 A(k
′)w(−𝜋). Going around the Brillouin zone defines

the so-called Berry–Zak phase ∫ 𝜋

−𝜋 A(k
′) through the integration

of the differential equation: w(𝜋) = e− ∫ 𝜋−𝜋 A(k
′)w(−𝜋). A major re-

sult obtained in ref. [6] and re-expressed in terms of geometrical
phases in ref. [7] is that, provided the potential as the invertion
symmetry, it holds:

e− ∫ 𝜋−𝜋 A(k
′) = ±1. (24)

The Bloch bundle is trivial when the value is 1 and non-trivial
when it is −1. This is equivalent to the existence of an equivariant
section. Here, equivariant means that a section, that is, a contin-
uous parametrization of a Bloch mode over the Brillouin zone,
satisfies a compatibility condition with the inversion symmetry.
This concept translates easily in our formulation. Indeed, the

Bloch modes are represented by the eigenvectors of (k0) and
a conduction band corresponds to an interval of wavenumbers
[k1, k2]. At the boundaries k1, k2 the monodromy matrix is of one
of the following form(
±1 ∗
0 ±1

)
or

(
±1 0

±1

)
(25)

where ∗ is a non-zero element. The corresponding eigenvectors
are(
1
0

)
,
(
0
1

)
(26)

The point, however, is the possibility to follow by continuity an
eigenvector around the Brillouin zone. As already said, since
the bundle is complex and over S1, such a section necessarily
exists.[10] Here, we request further that it be equivariant, that
is, that it be compatible with the group action induced by the
inversion symmetry. Specifically, an equivariant section V(k0, z)
should satisfy

U(k0, 1∕z) = �̃�U(k0, z) (27)

where

�̃� = 𝜎z or �̃� = −𝜎z (28)

Figure 7. The structure is made with two 1D photonic crystals with differ-
ent topological properties.

• Assume that we start with the eigenvector (1, 0)t (that is, a pole
of 𝜒) for z = 1. It satisfies the relation: (1, 0)t = 𝜎z(1, 0)

t. Let
us say that we follow the upper part of S1, then we arrive at
an eigenvector (a, b)t for z = −1 that corresponds either to a
zero or to a pole. Going around the lower part, we arrive at
the eigenvector (a′, b′)t for z = −1. Keeping into account the
equivariance of the section, we impose that (a′, b′)t = 𝜎z(a, b)

t,
that is: a = a′, b = −b′. For the section to be continuous, we
have, of course to impose: a = a′, b = b′, but then, of course,
b = 0. Therefore we end up with the eigenvector (1, 0)t. We
have therefore fulfilled the conditions for the existence of a
section.

• Let us start now with a zero (0, 1)t. This does fulfill the re-
quirement of equivariance provided that we write (0, 1)t =
−𝜎z(0, 1)t. If there is also a zero at z = −1, the same gluing
works to provide a global section.

• The situation is different if we start with a zero (0, 1)t and
end with a pole (1, 0)t. This time we start with the condition
(0, 1)t = −𝜎z(0, 1) and end with the condition (1, 0)t = 𝜎z(1, 0)

t.
Therefore, the section is not globally equivariant and it has to
be twisted.

We end up with the following conclusions:

1) The pole–pole or zero–zero cases correspond to a Berry phase
equals to 0,

2) The pole–zero or zero–pole cases correspond to a Berry phase
equals to 𝜋.

We note that following our approach, the Berry–Zak phase is
very easy to compute, as it suffices to consider the form of the
monodromy matrix at the boundaries of the conduction bands.

5. The Bulk-Boundary Correspondence

Let us consider a structure made of two semi-infinite photonic
crystals, Phc1 and Phc2, put side by side, such as depicted in
Figure 7, and characterized by the monodromy matrices1 and
2. Our point is to investigate under what conditions a bound-
ary mode can exist and how it can be characterized topologically
by means of the properties of the 𝜒 function.
The edge states are ruled by the following result. Assume the

photonic crystal Phc1, defined by1, extends over x < 0 and that
Phc2, defined by 2, extends over x > 0. At k0 the eigenvalues
of 1 and 2 are real and of the form (z1, 1∕z1) and (z2, 1∕z2).
Let us assume that |z1,2| < 1. A boundary mode is characterized

Ann. Phys. (Berlin) 2023, 2300321 2300321 (7 of 12) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 8. Band structures for two photonic crystals with parameters 𝜀1 = 3.8, 𝜀2 = 1, h1 = 0.42, h2 = 0.58 (Phc1), on the left, and 𝜀1 = 4.2, 𝜀2 = 1,
h1 = 0.38, h2 = 0.62 (Phc2), on the right. The origin is chosen in such a way that the basic cell contains three layers of width h1∕2, h2, h1∕2, and
permittivities 𝜀1, 𝜀2, and 𝜀1. In both cases the permeabilities are equal to 1. In the middle the transmission spectrum is given. It is obtained with a finite
structure comprising ten periods of each photonic crystal. The peak inside the band gap (highlighted by a red dashed ellipsis) corresponds to an edge
mode.

Figure 9. In red the function 𝜒1, in blue the function −𝜒2. The commuta-
tor of1 and2 is plotted in green. The positions of the band gaps are
indicated by the red dashed curve for Phc1 and the blue dot-dashed curve
for Phc2 (the value of 1 corresponds to the band gaps and 0 to the conduc-
tion bands). The edgemode appears when 𝜒1 and−𝜒2 cross. As explained
in the text, the commutator is null when 𝜒1 and −𝜒2 cross (indicated by
the dashed ellipsis).

by its initial value U at the junction between the media. For the
mode to be bounded, the vectorU should be damped along x > 0
and x < 0, therefore it should hold

1U = 1∕z1U and2U = z1U (29)

Thismeans first that, generically,1 and2 have a common set
of eigenvectors, hence thesematrices commute. Second, because

Figure 10. Same as Figure 9 but zoomed in.

of the symmetry of the potential, the second eigenvector is V =
𝜎zU.
We can thus conclude the following:
Let1 and2 be the respective monodromymatrices of each pho-

tonic crystal Phc1 and Phc2. For a Bloch wavevector k0, there exists an
eigenvector vector U(k0) defining an edge state provided the following
conditions are fulfilled:

• The matrices1(k0) and2(k0) have a common gap at the Bloch
wavevector k0, that is, |tr(1)| > 2 and |tr(1)| > 2.

• The matrices 1(k0) and 2(k0) commute:[1(k0),2(k0)] =
0.

Ann. Phys. (Berlin) 2023, 2300321 2300321 (8 of 12) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 11. Poles and zeros patterns for the two photonic crystals de-
scribed in Figure 8. The bright spots are the poles and the blue ones the ze-
ros. Around the value k0∕2𝜋 = 2.5 one of the photonic crystal (top figure,
corresponding to Phc1) has a zero–pole pattern while the other one (bot-
tom figure, corresponding to Phc2) has a pole–zero pattern.

• The associated Bloch functions 𝜒1(k0) and 𝜒2(k0) have opposite
signs.

The last two conditions are equivalent to the single following
one:

• The values of the Bloch functions 𝜒1(k0) and 𝜒2(k0) are opposite:
𝜒1(k0) = −𝜒2(k0).

The link with the poles and zeros pattern can now be deduced.
Recall that at the boundaries of the gaps the functions 𝜒 neces-
sarily have a zero or a pole and that they have a constant sign

within a band gap. This means that, provided 𝜒1 and 𝜒2 have
opposite signs in a band gap, when the pattern inside a gap is
pole–zero for one structure and zero–pole for the other, the func-
tions 𝜒1 and −𝜒2 necessarily cross and there is necessarily an
edge mode.
A few words are in order as to the fact that the existence of a

mode is linked in a very strict way to the symmetry property of
the potential, as far as the theoretical analysis is concerned. An
edge mode inside a gap corresponds to a pole of the scattering
matrix (i.e., of the reflection and the transmission coefficients).
Since we expect the pole to be a continuous function of the pa-
rameters it seems paradoxical that it could disappear suddenly
when the symmetry is broken since it can be broken in a contin-
uous fashion by moving continuously the origin of the basic cell.
To resolve this apparent paradox, one should recall that the reflec-
tion and transmission coefficients are defined for two finite struc-
tures put side by side (see ref. [21] for the definition of the reflec-
tion coefficient for a semi-infinite photonic crystal). When two
semi-infinite photonic crystals are considered, the mode should
be evanescent in both photonic crystals away from the edge and
this is a strict condition. When finite photonic crystals are con-
sidered (containing eachN periods), and with an plane wave inci-
dent field, there necessarily are anti-evanescent waves in addition
to evanescent waves in order to fulfill the boundary conditions.
Therefore, breaking the symmetry condition does not kill sud-
denly the edge mode, rather its wavenumber is shifted toward
the edges of the band gap and, as the number of periods N tends
to infinity, the edge mode disappears continuously by being ab-
sorbed at the edges of the band gap.
Let us illustrate these results numerically. The two band

structures corresponding to each photonic crystal are given in
Figure 8. A finite structure made of 10 periods of each photonic
crystal is considered. The transmission spectrum for an incident
plane wave is plotted in Figure 8. The existence of an edge state

Figure 12. Band structures for the same photonic crystals as in Figure 8 but the photonic crystal on the left (Phc2) no longer satisfies the symmetry
condition. The formula for the widths of the layers of the basic cell is now 3∕5h1, h2, 2∕5h1 and the permittivities are 𝜀1, 𝜀2, 𝜀1. In the middle, the
transmission spectrum is given. An edge mode is still present (corresponding to the peak enclosed by the dashed red ellipsis) but it has moved toward
the upper edge of the bandgap.

Ann. Phys. (Berlin) 2023, 2300321 2300321 (9 of 12) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 13. Phase diagram for a stratified medium with two slabs. The pa-
rameters are the permittivities 𝜀1,2 and the widths h1,2 of the slabs. Since
the period is 1, there is only one width parameter since h1 + h2 = 1. We
fix 𝜀2 = 1 and the only permittivity parameter is 𝜀1. The diagram corre-
sponds to the existence of a band gap in the interval [2.4; 2.6]. The index
1 is attributed to the pattern pole–zero and the index −1 to the pattern
zero–pole.

is detected as a peak inside the band gap for the forbidden band
situated inside the interval of k0∕2𝜋 ∈ [2.4, 2.6].
In Figures 9 and 10, we have plotted 𝜒1 (in red) and −𝜒2 (in

blue), as well as the commutator of 1 and 2 in green. The
positions of the band gaps are indicated by the dashed blue and
dot-dashed red curves (with a value of 1 in the band gaps and 0
in the conduction bands). As can be seen in Figures 9 and 10,
the edge state (appearing as a peak inside the band gap in the
transmission spectrum, cf. Figure 8) corresponds to a value of k0
for which the functions 𝜒1 and −𝜒2 cross and the commutator
of the monodromy matrices is null. All the other zeros of the
commutator do not correspond to a crossing of 𝜒1 and −𝜒2.
Let us now see what happens when complex values of k0 are

used. In Figure 11, we plot the absolute value of 𝜒 in the com-
plex strip around the real axis. The poles are indicated by bright
spots and the zeros by blue spots. We see clearly that both pho-
tonic crystals have the same poles and zeros pattern, except for
the gap around k0∕2𝜋 = 2.5 where one of the structure has the
pattern zero–pole and the other one the pattern pole-zero. In this
band gap, there is a boundarymode. In Figure 12, we have plotted
the band structure and transmission spectrum when the right-
hand side photonic crystal does not fulfill the symmetry condi-
tion that V(−x) = V(x). As explained in the discussion above, the
edge mode is still present but is shifted toward the boundary of
the band gap. By varying the values of the permittivities and the
width of the layers, it is possible to obtain a phase diagram for
the topological properties, that is, the poles and zeros pattern (cf.
Figure 13). It can be seen that the regions of interest are separated
by a line corresponding to the closing of the band gap.
Our point is now to study the situation where the potential is

complex, that is, an imaginary part is added to the permittivities.
The new poles and zeros pattern is given in Figure 14 for both

the photonic crystals Phc1 and Phc2, as defined in Figure 8 but

Figure 14. Same as Figure 11, but losses have been added to the photonic
crystal Phc1, corresponding to the figure at the top. The other photonic
crystal Phc2 remains lossless. For Phc1, the poles and zeros pattern is
still there, except that, due to the presence of losses, the poles and zeros
have moved toward the lower part of the complex plane of wavevectors. It
can still be seen that the band gap around k0∕2𝜋 = 2.5 corresponds to a
pole–zero/zero–pole pattern.

Figure 15. Transmission spectrum for the finite structure made of two fi-
nite photonic crystals containing ten periods and put side by side as de-
fined in Figure 14. Losses are present in the finite Phc1, but there is still
an edge mode. It appears as a peak inside a band gap. Due to the losses,
the peak is larger and the maximum value is smaller than in Figure 8.

with a small imaginary part of 0.01 added to the permittivities
of the layers of Phc1 (Phc2 remains lossless). There, it can be
seen that the poles and zeros havemoved toward the lower part of
the complex plane of wavevectors. Still, the poles and zeros pat-
tern is preserved. There is a continuous transformation, math-
ematically speaking, a homotopy, between the poles and zeros

Ann. Phys. (Berlin) 2023, 2300321 2300321 (10 of 12) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 16. The figure represents the widths of the layers for one realization of the structure with some disorder. We have represented the widths of each
of the 30 layers of each of the two photonic crystals put side by side. The figure on the left corresponds to Phc1 and the figure on the right corresponds
to Phc2. The dashed red lines indicate the widths of the layers when there is no disorder, that is, the values given in Figure 8.

structures of both photonic crystals. When a pole and zero ex-
change places by continuously varying a parameter, there is a
configuration for which the pole and the zero have the same real
part. This amounts to saying that the gap closes there. Conse-
quently, as far as the poles and zeros pattern remains close to the
real axis, these patterns continue to characterize topologically the
structures. Indeed, when plotting the transmission spectrum for
the finite structure with losses (cf. Figure 15), a mode can be seen
to remain (as an enlarged peak) in the same band gap. Of course,
the life-time of the mode is now much shorter due to material
losses added to radiative losses.

6. Conclusion and Possible Extensions

It is customary to analyze the topological properties of one di-
mensional structures by using the familiar concept of the Zak
phase, directly linked to Berry’s connection. We have shown here
that another approach can be put forward, by using the poles and
zeros of a function defined for all energies and not only for that
corresponding to propagating modes. By using this tool, the ex-
tension of the topological classification of Bloch waves to lossy or
non-Hermitian situations is straightforward and avoids the diffi-
culties encountered when trying to extend the Berry connection

Figure 17. The left most and right most figures represent the Bloch diagram for the disordered photonic crystals. The middle figure represents the
transmission spectrum for the complete structure. A peak corresponding to an edge mode can be seen (dashed red ellipsis). The onset of this mode is
analyzed in Figure 18.

Ann. Phys. (Berlin) 2023, 2300321 2300321 (11 of 12) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 18. The figure represents the functions 𝜒1 (in red) and −𝜒2 (in
blue). It is seen that the peak in the transmission curve of Figure 17 cor-
responds to different patterns of poles and zeros of the functions 𝜒1 and
𝜒2: it is a zero–pole pattern for 𝜒1 and a pole–zero pattern for 𝜒2.

approach to non-Hermitian systems.Moreover, our approach can
be applied to structures in which a small amount of disorder is
introduced. While a complete exposition goes beyond the scope
of this work, let us give one numerical example. The structure is
the same as that used in the previous simulations and defined
in Figure 8, but a small amount of disorder is now added to the
widths of all the layers. More precisely, we start with ten peri-
ods of the three-layers structure and then we add some disorder
to the width of the layers. The disorder is obtained by modify-
ing the width of the layers by an amount of ±0.01 at most with
a uniform law. We thus deal with 30 layers for each structure.
The entire structure contains 60 layers. A typical realization of
the media is given in Figure 16.
The monodromy matrix is now computed by taking into ac-

count the entire structure since the periodicity is lost. The Bloch
diagrams and the transmission spectrum are given in Figure 17.
The functions 𝜒1 and 𝜒2 are given in Figure 18.
A mode is obtained as can be seen in Figure 17: A peak is seen

inside the transmission spectrum around k0∕2𝜋 = 2.5 inside a
common band gap of both photonic crystals. In this bang gap,
the curves 𝜒1 and −𝜒2 cross with inverted pole and zero patterns
(see Figure 18). This shows that themethod also works in that sit-
uation.
A natural question is to investigate whether it is possible to ex-

tend this approach to higher dimensional structures. It is a gen-
eral rule that the methods employed in dimension 1 are difficult
to extend to dimensions 2 or 3. While the extension of our ap-
proach seems difficult to extend to higher dimensions for contin-
uous models, the situation seems more accessible when consid-
ering tight-binding models, where the proposed approach could
give possible theoretical insights for handling the case of complex
energies and for analyzing the Bloch variety.[23] By tight-binding

model, we have in mind a structure such as an inverted contrast
2D photonic crystal where holes are filled in such a way as to de-
sign a periodic superstructure made of weakly coupled cavities.
We are currently investigating the properties of such a structure
which is amenable to a discrete description.
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