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Abstract—Recently, deep neural networks (DNNs) have been
utilized in real-time systems such as autonomous vehicles, where
meeting temporal constraints is essential. However, executing
such systems on CPU-GPU architectures can make scheduling
analysis challenging due to the added delays caused by computing
and memory contention. In addition, classic task models are not
directly able to model accurately such systems. In this article, we
propose a new task model called DNN Task Model (DTM). This
model considers both DNN properties and GPU architecture at
the same time. It allows us to distinguish between CPU and GPU
tasks, provides information about the DNN application and give
more accurate execution time analysis through consideration of
data quality. We compute DTM from a source CUDA file and a set
of real-time specifications of the system. The proposed model is
extensible enough to be adopted to various DNN type applications
allowing designer to compare candidate software and GPU
architectures. Furthermore, we propose a graph optimization
inspired by Tensor-RT.

I. INTRODUCTION

As the use of Deep Neural Networks (DNNs) continue to
raise in the field of real-time systems, they are becoming a
popular choice for applications like autonomous driving. For
the inference stage, DNNs are often executed on CPU-GPU
architectures. This allows a balance of computational power
and energy and a faster processing of the data [3] enabling
the efficient execution of the DNNs. GPU systems provide
high performance by offering greater computational power
than most common CPUs. However, the use of GPUs also
introduces contention, which can lead to additional variability
in task execution time [6].

A. Problem Statement

Alongside the need for computational efficiency, real-time
DNNs are commonly characterized by real-time requirements,
which need to be satisfied to guarantee the safe and correct
behavior of the system. However, current DNN applications
deployed over CPU-GPU systems have poor performance in
terms of execution time variation. [6] found a non-negligible
variations in execution time for DNN inference, which signifi-
cantly challenges the worst case execution time estimation and
scheduling problem. For example, in autonomous driving ap-
plications, the majority of DNN models show variations larger
than 100ms, which affects autonomous driving safety [6].
There are several sources of uncertainty that contribute to
the execution time variation issue in real-time DNN appli-
cations, including the input quality such as image resolution,

communication latency and contention of concurrent tasks for
resources such as memory, CPU, and GPU [6]. In addition,
classic task models are not immediately suitable with CPU-
GPU architectures and real-time DNNs. They are not able to
model simultaneously and accurately both CPU tasks and GPU
tasks, streams and communication delays.

B. Contributions

In this article, we first propose a new task model that allows
designers to perform an accurate schedulability analysis in
order to assess the predictability of real-time DNN appli-
cations deployed over CPU-GPU architectures. We call the
proposed model DNN Task Model (DTM). The DTM model
describes both the details of the GPU architecture and the
DNN application. It allows us to distinguish between CPU
tasks and GPU tasks. The execution time for GPU tasks
takes into account the targeted data quality and its impact on
the execution time analysis. Additionally, the model specifies
the type of operation for each GPU task, affording deeper
understanding of the DNN network and enabling optimization
of the task graph. From the source CUDA file and the real-time
requirements of the system, the DTM task model is computed.

The second contribution of this article is to propose a
graph optimization of the generated DTM. The optimization
is inspired by Tensor-RT, which is a tool for optimizing
DNN inference [7]. Graph optimization of Tensor-RT may not
always align with real-time constraints. Our approach takes
this into consideration and prioritizes the verification of real-
time constraints compliance for every possible optimization.

The remainder of the paper is organized as follows. The
next section introduces background elements about CPU-GPU
architecture and Tensor-RT. Section III proposes our task
model. Then, Section IV presents the graph optimization of
DTM. An illustrative example is given in Section V. Section VI
presents related works and Section VII concludes the article.

II. BACKGROUND
A. GPU Execution Model and CUDA file

The considered GPU execution model for a given GPU ker-
nel involves the following steps: first, a CPU task is launched,
which initiates the execution of the kernel. Then, data is
transferred from the CPU memory to the GPU memory. The
GPU executes the kernel. Finally, the result of the computation
is then transferred back from the GPU memory to the CPU.



GPU kernels are typically described in a file called a
CUDA source file. This file includes different CPU and GPU
kernels, which are functions that are executed both on the
GPU and CPU [3]. It can also include data transfers between
the CPU and GPU. Kernels are assigned into streams, which
are sequences of kernels that are executed in order. Streams
are used to synchronize the execution of different kernels and
manage the data flow between them [4].

B. DNN Inference and Tensor-RT

In the context of neural networks, we typically go through
two phases: training and inference. In this work, we focus
only on the inference phase wich is the process of using the
trained model to make predictions on new data [7]. In order to
make this process more efficient, it is important to optimize the
DNN for inference. One tool that can be used for this purpose
is Tensor-RT, which is a library developed by NVIDIA for
optimizing DNNs for deployment on NVIDIA GPUs. It can
be used to perform tasks such as layer fusion and precision
calibration to improve DNN inference [7]. In this work, we
consider an architecture consisting of multiple CPUs and a
single GPU with multiple Streaming Multiprocessors (SMs).
We consider also dependent periodic real-time tasks.

ITI. DNN TASK MODEL (DTM)

As shown in Fig 1(a), from the CUDA source file and real-
time specifications of the system, we compute the DTM.

« The CUDA source file: outlines the software architecture
of a program by specifying which functions will be
executed on CPU and GPU. Additionally, it describes
how data are transferred between the CPU and GPU.

« The system specification: provides information regarding
the real-time constraints of the system and the quality of
the data to be processed. These considerations must be
taken into account during the modeling step in order to
achieve an accurate scheduling analysis.
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Fig. 1. General Approach: (a) DNN Task Model (b) DTM Graph Optimization

A. Task Model

We model kernels specified in the CUDA source file as two
sets of tasks I'c pyy and ' py. ' py describes tasks executed
on the CPU, while I' s pi; describes tasks executed on the GPU.

The task set I'cpy is composed of n periodic tasks
Tepy ={71,72,...,7}. This task set is composed by two
types of tasks, traditional tasks that are independent of the
GPU, and tasks that are executed on the CPU to trigger the
execution of a kernel on a GPU. Each task leads to an infinite
sequence of jobs. Each task 7; of I'cpy is defined as follows:

7, =10, T, D, 11, Cy,, Node,,, Next} where:

e O, is the first release time of the task ;.

o T is the period of the task.

e D, is the implicit deadline of the task (D,,= T7,).

o 1L, is the fixed priority of the task. 1 denotes the highest
priority level while a larger value is a lower priority. The
scheduling algorithm is not considered in this paper.

o C, specifies the computation time needed by the task
defined as its Worst Case Execution Time (WCET). We
consider a measurement-based WCET estimation.

e Node, identifies the CPU running the task. This param-
eter allows us to introduce the mapping configuration, i.e.
to which CPU each task is assigned to.

e Next is the precedence constraints function with:

Next : {PCPU» FGPU} — {FCPU; FGPU}
7, — Neaxt(r;) ={7;... 7}
For a given CPU task 7, Next(r;) determines the set of
tasks 7; that have precedence constraints with the task 7;
where 7; can be a GPU task or CPU task.

The task set T'gpy ={¢1,d2,...,¢Pm} comprises m peri-
odic tasks. Each task leads to a sequence of infinite jobs. Each
task ¢; of ' py is defined as follows: ¢; = { Og,, Tp,, Dy,,
II4,, Next, Cy,, Streamg,, Typey,, Datag,, Sizey, } where:

o Parameters Oy,, Ty,, Dy,, Next and I1,, have the same
definition as tasks of I'cpy.

o Cy, specifies the computation time needed by the task
defined as its WCET. The value of this parameter is
dependent on the quality of data being handled Cy,(data
quality). It is possible to set different levels of data
quality, such as ”low (L)”, “medium (M) and "high (H)”,
and thus assign appropriate values to this parameter, with
the understanding that Cy,(H) > Cy, (M) > Cy,(L).

o Streamy, specifies to which stream the task ¢; is as-
signed. We can have multiple streams for a given system.
Multiple GPU tasks can belong to the same stream.

o Typey, specifies the type of operation that the task
performs. In the context of DNN, there are several types
of tasks, such as convolution, pooling and activation.

e Datay, specifies data that is used by the task ¢;.

o Sizey, specifies the number of sub tasks (blocks) of the
task ¢;. A GPU task can be composed of multiple sub-
tasks. Each sub task models a thread block.

The Cy4, parameter allows us to increase the accuracy of
our analysis of execution time by considering multiple levels
of quality. Datag, and T'ypey, provide more information
about the considered task and allow to apply our graph
optimization. Streamy,, Next, and Sizeqy, enable a more
accurate scheduling analysis. The DNN processing component
is not inherently periodic, but it can be used as part of a larger



periodic system that repeats the same steps (e.g. acquiring
data, processing data using the DNN) at regular intervals. For
that, we assume in this work that tasks belonging to the same
DNN network have the same periods and deadlines.

B. Guidelines for Generating DTM

Each function in the CUDA code is modeled as a task. By
analyzing keywords and interpreting different syntax compo-
nents of the code, we can identify the various characteristics
and parameters of each task. For example, to identify CPU and
GPU tasks, specific keywords such as “global” and “device”
can be used, which indicate that the task is executed on
the GPU and CPU respectively. Here are some of the most
commonly used keywords in CUDA.

« global or host indicate that a function is is executed on
either the GPU or CPU. It can be modeled as a GPU task
or a CPU task, respectively.

« cudaMemcpy is used to transfer data between the host
(CPU) and device (GPU) or between different memory
spaces on the device. It can be considered in the definition
of dependencies between tasks in DTM.

« cudaStreamCreate and cudaMemcpyAsync manage a
stream. It can be considered in the definition of depen-
dencies between GPU tasks.

There are many other keywords and syntax components
available for specific tasks and functionality. In the final ver-
sion of this work, more detailed information will be provided
on all used keywords and how they are modeled in DTM.

IV. OPTIMIZED DTM : GRAPH OPTIMIZATION

Figure 1(b) shows the optimization we propose in this arti-
cle. Using the generated model, we apply graph optimization
rules in order to produce an optimized model in terms of
computation time while considering real-time constraints of
the system. We apply transformations to the set of GPU tasks
with the aim of reducing the data transfer between the CPU
and GPU. This leads to a reduction in communication delays.
These optimizations can reduce memory usage, increase com-
putation throughput, and improve overall performance.

Our optimization rules are inspired by Tensor-RT which
involve merging multiple tasks into a single task when they
belong to the same neural network, use the same data, and
have constraints of precedence. Furthermore, tasks are fused
based on operation type, such as merging Convolution task
and ReLU Activation task into one. However, not all Tensor-
RT optimizations are suitable for real-time systems, unlike
our approach, which is specifically designed to meet these
constraints. In the final version of this work, more detailed
rules of graph optimization applied to DTM will be provided.

V. EXAMPLE OF A REAL-TIME DNN OovVER CPU-GPU
ARCHITECTURE

In this section, we give an example of CUDA code
for one DNN inference application and one CPU task.
The DNN application is composed of 4 GPU kernels with
precedence constraints, using the same stream. Kernel 1

named DNN_Kernel 1 uses datal and data2. kernel 2 named
DNN_kernel_2 uses datal. kernel 3 named DNN_kernel_3
uses datal, and kernel 4 named DNN_kernel_4 uses datal
and data2.

#include <cuda_runtime.h>

1
o] __global___ void DNN_Kernel_ 1 (int =xdatal,

3 int xdata2) {

4 // GPU code here

5 +datal = xdatal;

6 +data2 = xdata2;}

71 __global___ void DNN_Kernel_ 2 (int =xdatal) {
3 // GPU code here

9 xdatal = xdatal;}

0] __global__ void DNN_Kernel_3(int =*datal) {
1 // GPU code here

12 *datal = xdatal;}

13] __global___ void DNN_Kernel_4 (int =xdatal,
14 int xdata2) { // GPU code here

15 xdatal = xdatal;

16| +data2 = xdata2;}

17] int main () {

18 int xdatal, =xdata2, =data3;

19 cudaMalloc (&datal, sizeof (int) = 100);
20 cudaMalloc (&data2, sizeof (int) =+ 100);
21 cudaMalloc (&data3, sizeof (int) =+ 100);
22 cudaStream_t stream;

23 cudaStreamCreate (&stream) ;

2 dim3 block(10,1,1);
25 dim3 grid(3,1,1);

26 DNN_Kernel_1l<<<grid, block, 0, stream>>>(datal,
dataz);

27 DNN_Kernel_2<<<grid, block, 0, stream>>>(datal);

28 DNN_Kernel_3<<<grid, block, 0, stream>>>(datal);

29 DNN_Kernel_4<<<grid, block, 0, stream>>>(datal,

dataz2);

30 cudaStreamSynchronize (stream) ;
31 // CPU code here

32 kernel5 (data3);

33 cudaStreamDestroy (stream) ;
34 cudaFree (datal);
35 cudaFree (data2);

36 cudaFree (data3);

37 return 0;}

38l void kernel5 (int +data3l)
39 *data3 = xdata3;}

{ // CPU code here

@)
@& O @ -0 ® O ®
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Fig. 2. (a) Task graph of DTM - (b) Task graph of the optimizated DTM

By applying DTM to this code example, we will generate
the following task model. For DNN inference application, we
will have 8 dependent tasks, 4 GPU tasks (¢4, ¢B, ¢c, ¢p)
and 4 CPU tasks (72, 73, T4, 75). For the second application,
we will have one independent CPU task (71). In Fig 2 (a) and
in Table I, we give more details about the generated DNN
task model for this example. Task parameters are given as an
illustration to showcase our approach. This example is based



on a DNN (4 layers: Normalization, Convolution, ReLU, Fully
Connected (FC)) which can be used for image classification.

Ccpu T1 T2 T3 T4 Ts
(O;T=D) | (0;20) | (0;100) | (0;100) | (0;100) | (0;100)
11 2 1 1 1 1
C 4 5 5 5 5

Node CPU1 CPU1 CPU1 CPU1 CPU1
Next TA B TC D
I'epu pa oB Pc ¢D
(O;T=D ;1) | (0;100;1) | (0;100;1) | (0;100;1) | (0;100;1)
C(L, M, H) (6;8;10) (6;8;10) (6;8;10) (6;8;10)
Node GPU1 GPU1 GPU1 GPUI1
Next T3 T4 T5
Stream stream stream stream stream
Data 1,2 1 1 1.2
Type Normal Conv ReLU FC
Size 3 3 3 3
TABLE 1

TASK PARAMETERS

Now we apply graph optimization on the generated DNN
task model. GPU tasks ¢ and ¢ utilize the same data (datal)
and are part of the same DNN application. As such, we suggest
merging these two GPU tasks into a unified task ¢pc.

As a result of merging the two previous GPU tasks, there
will be one attached CPU task (734) instead of two separate
tasks (73 and 74). Fig 2 (b) illustrates the optimized graph.

VI. RELATED WORKS

There are many previous research works on the execution of
real-time DNNs inference over CPU-GPU at different levels.

Task model: In [10] the authors propose a periodic graph-
based task model and a method to reduce the graph response
time bounds by merging graph nodes. [5] presents the HPC-
DAG Task Model, a workload-based task model, which allows
specifying real-time tasks deployed over heterogeneous em-
bedded platforms. [1] defines Multi-segment suspension based
task model. Suspension is used for the offload mechanism such
as memory copy and migration on the GPU. These models
represent significant efforts to support real-time systems on
GPU. However,

Scheduling framework: [3], [2], [4] present scheduling
frameworks that have been proposed to schedule DNNs over
a CPU-GPU architecture. However, models used in these
frameworks are not optimally adapted for DNN applications
deployed over CPU-GPU architectures.

DNN modifications: [4], [9], [10] propose techniques for
the modification of a neural network that can improve its usage
and throughput. For example, using lower-resolution images in
object detection context.

DTM is distinct from most previous models. The main
difference lies in our approach, which aims to accurately
model both DNN and CPU-GPU properties simultaneously.
DTM introduces new parameters such as data, type, size, and
stream, which improve the accuracy of modeling DNN appli-
cations over CPU-GPU. These parameters enable more precise
estimation of execution time while considering the quality of

the processed data and allow to apply graph optimizations.
Furthermore, our proposed model is automatically generated
from a NVIDIA CUDA file. Finally, DTM comes with an
adapted graph optimization inspired by Tensor-RT.

VII. CONCLUSION

In this article, we introduce DTM, a novel task model
designed to model real-time DNN deployed over a CPU-GPU
architecture. DTM takes into account all relevant factors that
can affect the execution time of tasks, allowing for more
accurate assessments of task schedulability. Additionally, we
propose a graph optimization technique to speed up the infer-
ence of DNN while satisfying real-time system constraints.

In the future, we plan to provide a detailed explanation
of DTM’s rules and the specifics of the graph optimizations
implemented. Additionally, we aim to integrate DTM and its
optimizer into the Cheddar real-time system simulation tool.

We will implement DTM into Cheddar which is a GPL
framework that provides a scheduling simulator, schedulabil-
ity tests and various features related to the design and the
scheduling analysis of real-time systems [8]. CheddarADL
allows the users to describe both the software and the hardware
parts of the system they expect to analyze [8]. We will extend
CheddarADL to implement DTM.
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